Merge tag 'vfs-5.10-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59
60 #include "gt/intel_rps.h"
61
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91         DRM_FORMAT_C8,
92         DRM_FORMAT_XRGB1555,
93         DRM_FORMAT_RGB565,
94         DRM_FORMAT_XRGB8888,
95 };
96
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99         DRM_FORMAT_C8,
100         DRM_FORMAT_RGB565,
101         DRM_FORMAT_XRGB8888,
102         DRM_FORMAT_XBGR8888,
103         DRM_FORMAT_XRGB2101010,
104         DRM_FORMAT_XBGR2101010,
105 };
106
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109         DRM_FORMAT_C8,
110         DRM_FORMAT_RGB565,
111         DRM_FORMAT_XRGB8888,
112         DRM_FORMAT_XBGR8888,
113         DRM_FORMAT_XRGB2101010,
114         DRM_FORMAT_XBGR2101010,
115         DRM_FORMAT_XBGR16161616F,
116 };
117
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120         DRM_FORMAT_C8,
121         DRM_FORMAT_RGB565,
122         DRM_FORMAT_XRGB8888,
123         DRM_FORMAT_XBGR8888,
124         DRM_FORMAT_ARGB8888,
125         DRM_FORMAT_ABGR8888,
126         DRM_FORMAT_XRGB2101010,
127         DRM_FORMAT_XBGR2101010,
128         DRM_FORMAT_ARGB2101010,
129         DRM_FORMAT_ABGR2101010,
130         DRM_FORMAT_XBGR16161616F,
131 };
132
133 static const u64 i9xx_format_modifiers[] = {
134         I915_FORMAT_MOD_X_TILED,
135         DRM_FORMAT_MOD_LINEAR,
136         DRM_FORMAT_MOD_INVALID
137 };
138
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141         DRM_FORMAT_ARGB8888,
142 };
143
144 static const u64 cursor_format_modifiers[] = {
145         DRM_FORMAT_MOD_LINEAR,
146         DRM_FORMAT_MOD_INVALID
147 };
148
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150                                 struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152                               struct intel_crtc_state *pipe_config);
153
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155                                   struct drm_i915_gem_object *obj,
156                                   struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160                                          const struct intel_link_m_n *m_n,
161                                          const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167                             const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169                             const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173                                          struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175
176 struct intel_limit {
177         struct {
178                 int min, max;
179         } dot, vco, n, m, m1, m2, p, p1;
180
181         struct {
182                 int dot_limit;
183                 int p2_slow, p2_fast;
184         } p2;
185 };
186
187 /* returns HPLL frequency in kHz */
188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191
192         /* Obtain SKU information */
193         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194                 CCK_FUSE_HPLL_FREQ_MASK;
195
196         return vco_freq[hpll_freq] * 1000;
197 }
198
199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200                       const char *name, u32 reg, int ref_freq)
201 {
202         u32 val;
203         int divider;
204
205         val = vlv_cck_read(dev_priv, reg);
206         divider = val & CCK_FREQUENCY_VALUES;
207
208         drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209                  (divider << CCK_FREQUENCY_STATUS_SHIFT),
210                  "%s change in progress\n", name);
211
212         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214
215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216                            const char *name, u32 reg)
217 {
218         int hpll;
219
220         vlv_cck_get(dev_priv);
221
222         if (dev_priv->hpll_freq == 0)
223                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224
225         hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226
227         vlv_cck_put(dev_priv);
228
229         return hpll;
230 }
231
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235                 return;
236
237         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238                                                       CCK_CZ_CLOCK_CONTROL);
239
240         drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241                 dev_priv->czclk_freq);
242 }
243
244 /* units of 100MHz */
245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246                                const struct intel_crtc_state *pipe_config)
247 {
248         if (HAS_DDI(dev_priv))
249                 return pipe_config->port_clock; /* SPLL */
250         else
251                 return dev_priv->fdi_pll_freq;
252 }
253
254 static const struct intel_limit intel_limits_i8xx_dac = {
255         .dot = { .min = 25000, .max = 350000 },
256         .vco = { .min = 908000, .max = 1512000 },
257         .n = { .min = 2, .max = 16 },
258         .m = { .min = 96, .max = 140 },
259         .m1 = { .min = 18, .max = 26 },
260         .m2 = { .min = 6, .max = 16 },
261         .p = { .min = 4, .max = 128 },
262         .p1 = { .min = 2, .max = 33 },
263         .p2 = { .dot_limit = 165000,
264                 .p2_slow = 4, .p2_fast = 2 },
265 };
266
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268         .dot = { .min = 25000, .max = 350000 },
269         .vco = { .min = 908000, .max = 1512000 },
270         .n = { .min = 2, .max = 16 },
271         .m = { .min = 96, .max = 140 },
272         .m1 = { .min = 18, .max = 26 },
273         .m2 = { .min = 6, .max = 16 },
274         .p = { .min = 4, .max = 128 },
275         .p1 = { .min = 2, .max = 33 },
276         .p2 = { .dot_limit = 165000,
277                 .p2_slow = 4, .p2_fast = 4 },
278 };
279
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281         .dot = { .min = 25000, .max = 350000 },
282         .vco = { .min = 908000, .max = 1512000 },
283         .n = { .min = 2, .max = 16 },
284         .m = { .min = 96, .max = 140 },
285         .m1 = { .min = 18, .max = 26 },
286         .m2 = { .min = 6, .max = 16 },
287         .p = { .min = 4, .max = 128 },
288         .p1 = { .min = 1, .max = 6 },
289         .p2 = { .dot_limit = 165000,
290                 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294         .dot = { .min = 20000, .max = 400000 },
295         .vco = { .min = 1400000, .max = 2800000 },
296         .n = { .min = 1, .max = 6 },
297         .m = { .min = 70, .max = 120 },
298         .m1 = { .min = 8, .max = 18 },
299         .m2 = { .min = 3, .max = 7 },
300         .p = { .min = 5, .max = 80 },
301         .p1 = { .min = 1, .max = 8 },
302         .p2 = { .dot_limit = 200000,
303                 .p2_slow = 10, .p2_fast = 5 },
304 };
305
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307         .dot = { .min = 20000, .max = 400000 },
308         .vco = { .min = 1400000, .max = 2800000 },
309         .n = { .min = 1, .max = 6 },
310         .m = { .min = 70, .max = 120 },
311         .m1 = { .min = 8, .max = 18 },
312         .m2 = { .min = 3, .max = 7 },
313         .p = { .min = 7, .max = 98 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 112000,
316                 .p2_slow = 14, .p2_fast = 7 },
317 };
318
319
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321         .dot = { .min = 25000, .max = 270000 },
322         .vco = { .min = 1750000, .max = 3500000},
323         .n = { .min = 1, .max = 4 },
324         .m = { .min = 104, .max = 138 },
325         .m1 = { .min = 17, .max = 23 },
326         .m2 = { .min = 5, .max = 11 },
327         .p = { .min = 10, .max = 30 },
328         .p1 = { .min = 1, .max = 3},
329         .p2 = { .dot_limit = 270000,
330                 .p2_slow = 10,
331                 .p2_fast = 10
332         },
333 };
334
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336         .dot = { .min = 22000, .max = 400000 },
337         .vco = { .min = 1750000, .max = 3500000},
338         .n = { .min = 1, .max = 4 },
339         .m = { .min = 104, .max = 138 },
340         .m1 = { .min = 16, .max = 23 },
341         .m2 = { .min = 5, .max = 11 },
342         .p = { .min = 5, .max = 80 },
343         .p1 = { .min = 1, .max = 8},
344         .p2 = { .dot_limit = 165000,
345                 .p2_slow = 10, .p2_fast = 5 },
346 };
347
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349         .dot = { .min = 20000, .max = 115000 },
350         .vco = { .min = 1750000, .max = 3500000 },
351         .n = { .min = 1, .max = 3 },
352         .m = { .min = 104, .max = 138 },
353         .m1 = { .min = 17, .max = 23 },
354         .m2 = { .min = 5, .max = 11 },
355         .p = { .min = 28, .max = 112 },
356         .p1 = { .min = 2, .max = 8 },
357         .p2 = { .dot_limit = 0,
358                 .p2_slow = 14, .p2_fast = 14
359         },
360 };
361
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363         .dot = { .min = 80000, .max = 224000 },
364         .vco = { .min = 1750000, .max = 3500000 },
365         .n = { .min = 1, .max = 3 },
366         .m = { .min = 104, .max = 138 },
367         .m1 = { .min = 17, .max = 23 },
368         .m2 = { .min = 5, .max = 11 },
369         .p = { .min = 14, .max = 42 },
370         .p1 = { .min = 2, .max = 6 },
371         .p2 = { .dot_limit = 0,
372                 .p2_slow = 7, .p2_fast = 7
373         },
374 };
375
376 static const struct intel_limit pnv_limits_sdvo = {
377         .dot = { .min = 20000, .max = 400000},
378         .vco = { .min = 1700000, .max = 3500000 },
379         /* Pineview's Ncounter is a ring counter */
380         .n = { .min = 3, .max = 6 },
381         .m = { .min = 2, .max = 256 },
382         /* Pineview only has one combined m divider, which we treat as m2. */
383         .m1 = { .min = 0, .max = 0 },
384         .m2 = { .min = 0, .max = 254 },
385         .p = { .min = 5, .max = 80 },
386         .p1 = { .min = 1, .max = 8 },
387         .p2 = { .dot_limit = 200000,
388                 .p2_slow = 10, .p2_fast = 5 },
389 };
390
391 static const struct intel_limit pnv_limits_lvds = {
392         .dot = { .min = 20000, .max = 400000 },
393         .vco = { .min = 1700000, .max = 3500000 },
394         .n = { .min = 3, .max = 6 },
395         .m = { .min = 2, .max = 256 },
396         .m1 = { .min = 0, .max = 0 },
397         .m2 = { .min = 0, .max = 254 },
398         .p = { .min = 7, .max = 112 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 112000,
401                 .p2_slow = 14, .p2_fast = 14 },
402 };
403
404 /* Ironlake / Sandybridge
405  *
406  * We calculate clock using (register_value + 2) for N/M1/M2, so here
407  * the range value for them is (actual_value - 2).
408  */
409 static const struct intel_limit ilk_limits_dac = {
410         .dot = { .min = 25000, .max = 350000 },
411         .vco = { .min = 1760000, .max = 3510000 },
412         .n = { .min = 1, .max = 5 },
413         .m = { .min = 79, .max = 127 },
414         .m1 = { .min = 12, .max = 22 },
415         .m2 = { .min = 5, .max = 9 },
416         .p = { .min = 5, .max = 80 },
417         .p1 = { .min = 1, .max = 8 },
418         .p2 = { .dot_limit = 225000,
419                 .p2_slow = 10, .p2_fast = 5 },
420 };
421
422 static const struct intel_limit ilk_limits_single_lvds = {
423         .dot = { .min = 25000, .max = 350000 },
424         .vco = { .min = 1760000, .max = 3510000 },
425         .n = { .min = 1, .max = 3 },
426         .m = { .min = 79, .max = 118 },
427         .m1 = { .min = 12, .max = 22 },
428         .m2 = { .min = 5, .max = 9 },
429         .p = { .min = 28, .max = 112 },
430         .p1 = { .min = 2, .max = 8 },
431         .p2 = { .dot_limit = 225000,
432                 .p2_slow = 14, .p2_fast = 14 },
433 };
434
435 static const struct intel_limit ilk_limits_dual_lvds = {
436         .dot = { .min = 25000, .max = 350000 },
437         .vco = { .min = 1760000, .max = 3510000 },
438         .n = { .min = 1, .max = 3 },
439         .m = { .min = 79, .max = 127 },
440         .m1 = { .min = 12, .max = 22 },
441         .m2 = { .min = 5, .max = 9 },
442         .p = { .min = 14, .max = 56 },
443         .p1 = { .min = 2, .max = 8 },
444         .p2 = { .dot_limit = 225000,
445                 .p2_slow = 7, .p2_fast = 7 },
446 };
447
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450         .dot = { .min = 25000, .max = 350000 },
451         .vco = { .min = 1760000, .max = 3510000 },
452         .n = { .min = 1, .max = 2 },
453         .m = { .min = 79, .max = 126 },
454         .m1 = { .min = 12, .max = 22 },
455         .m2 = { .min = 5, .max = 9 },
456         .p = { .min = 28, .max = 112 },
457         .p1 = { .min = 2, .max = 8 },
458         .p2 = { .dot_limit = 225000,
459                 .p2_slow = 14, .p2_fast = 14 },
460 };
461
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463         .dot = { .min = 25000, .max = 350000 },
464         .vco = { .min = 1760000, .max = 3510000 },
465         .n = { .min = 1, .max = 3 },
466         .m = { .min = 79, .max = 126 },
467         .m1 = { .min = 12, .max = 22 },
468         .m2 = { .min = 5, .max = 9 },
469         .p = { .min = 14, .max = 42 },
470         .p1 = { .min = 2, .max = 6 },
471         .p2 = { .dot_limit = 225000,
472                 .p2_slow = 7, .p2_fast = 7 },
473 };
474
475 static const struct intel_limit intel_limits_vlv = {
476          /*
477           * These are the data rate limits (measured in fast clocks)
478           * since those are the strictest limits we have. The fast
479           * clock and actual rate limits are more relaxed, so checking
480           * them would make no difference.
481           */
482         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
483         .vco = { .min = 4000000, .max = 6000000 },
484         .n = { .min = 1, .max = 7 },
485         .m1 = { .min = 2, .max = 3 },
486         .m2 = { .min = 11, .max = 156 },
487         .p1 = { .min = 2, .max = 3 },
488         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490
491 static const struct intel_limit intel_limits_chv = {
492         /*
493          * These are the data rate limits (measured in fast clocks)
494          * since those are the strictest limits we have.  The fast
495          * clock and actual rate limits are more relaxed, so checking
496          * them would make no difference.
497          */
498         .dot = { .min = 25000 * 5, .max = 540000 * 5},
499         .vco = { .min = 4800000, .max = 6480000 },
500         .n = { .min = 1, .max = 1 },
501         .m1 = { .min = 2, .max = 2 },
502         .m2 = { .min = 24 << 22, .max = 175 << 22 },
503         .p1 = { .min = 2, .max = 4 },
504         .p2 = { .p2_slow = 1, .p2_fast = 14 },
505 };
506
507 static const struct intel_limit intel_limits_bxt = {
508         /* FIXME: find real dot limits */
509         .dot = { .min = 0, .max = INT_MAX },
510         .vco = { .min = 4800000, .max = 6700000 },
511         .n = { .min = 1, .max = 1 },
512         .m1 = { .min = 2, .max = 2 },
513         /* FIXME: find real m2 limits */
514         .m2 = { .min = 2 << 22, .max = 255 << 22 },
515         .p1 = { .min = 2, .max = 4 },
516         .p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518
519 /* WA Display #0827: Gen9:all */
520 static void
521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523         if (enable)
524                 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525                                intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526         else
527                 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528                                intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530
531 /* Wa_2006604312:icl,ehl */
532 static void
533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534                        bool enable)
535 {
536         if (enable)
537                 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538                                intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539         else
540                 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541                                intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543
544 static bool
545 needs_modeset(const struct intel_crtc_state *state)
546 {
547         return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549
550 static bool
551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553         return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555
556 static bool
557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559         return crtc_state->sync_mode_slaves_mask != 0;
560 }
561
562 bool
563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565         return is_trans_port_sync_master(crtc_state) ||
566                 is_trans_port_sync_slave(crtc_state);
567 }
568
569 /*
570  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573  * The helpers' return value is the rate of the clock that is fed to the
574  * display engine's pipe which can be the above fast dot clock rate or a
575  * divided-down version of it.
576  */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580         clock->m = clock->m2 + 2;
581         clock->p = clock->p1 * clock->p2;
582         if (WARN_ON(clock->n == 0 || clock->p == 0))
583                 return 0;
584         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586
587         return clock->dot;
588 }
589
590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594
595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597         clock->m = i9xx_dpll_compute_m(clock);
598         clock->p = clock->p1 * clock->p2;
599         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600                 return 0;
601         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603
604         return clock->dot;
605 }
606
607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609         clock->m = clock->m1 * clock->m2;
610         clock->p = clock->p1 * clock->p2;
611         if (WARN_ON(clock->n == 0 || clock->p == 0))
612                 return 0;
613         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615
616         return clock->dot / 5;
617 }
618
619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621         clock->m = clock->m1 * clock->m2;
622         clock->p = clock->p1 * clock->p2;
623         if (WARN_ON(clock->n == 0 || clock->p == 0))
624                 return 0;
625         clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626                                            clock->n << 22);
627         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628
629         return clock->dot / 5;
630 }
631
632 /*
633  * Returns whether the given set of divisors are valid for a given refclk with
634  * the given connectors.
635  */
636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637                                const struct intel_limit *limit,
638                                const struct dpll *clock)
639 {
640         if (clock->n < limit->n.min || limit->n.max < clock->n)
641                 return false;
642         if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643                 return false;
644         if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645                 return false;
646         if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647                 return false;
648
649         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651                 if (clock->m1 <= clock->m2)
652                         return false;
653
654         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655             !IS_GEN9_LP(dev_priv)) {
656                 if (clock->p < limit->p.min || limit->p.max < clock->p)
657                         return false;
658                 if (clock->m < limit->m.min || limit->m.max < clock->m)
659                         return false;
660         }
661
662         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663                 return false;
664         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665          * connector, etc., rather than just a single range.
666          */
667         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668                 return false;
669
670         return true;
671 }
672
673 static int
674 i9xx_select_p2_div(const struct intel_limit *limit,
675                    const struct intel_crtc_state *crtc_state,
676                    int target)
677 {
678         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679
680         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681                 /*
682                  * For LVDS just rely on its current settings for dual-channel.
683                  * We haven't figured out how to reliably set up different
684                  * single/dual channel state, if we even can.
685                  */
686                 if (intel_is_dual_link_lvds(dev_priv))
687                         return limit->p2.p2_fast;
688                 else
689                         return limit->p2.p2_slow;
690         } else {
691                 if (target < limit->p2.dot_limit)
692                         return limit->p2.p2_slow;
693                 else
694                         return limit->p2.p2_fast;
695         }
696 }
697
698 /*
699  * Returns a set of divisors for the desired target clock with the given
700  * refclk, or FALSE.  The returned values represent the clock equation:
701  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702  *
703  * Target and reference clocks are specified in kHz.
704  *
705  * If match_clock is provided, then best_clock P divider must match the P
706  * divider from @match_clock used for LVDS downclocking.
707  */
708 static bool
709 i9xx_find_best_dpll(const struct intel_limit *limit,
710                     struct intel_crtc_state *crtc_state,
711                     int target, int refclk, struct dpll *match_clock,
712                     struct dpll *best_clock)
713 {
714         struct drm_device *dev = crtc_state->uapi.crtc->dev;
715         struct dpll clock;
716         int err = target;
717
718         memset(best_clock, 0, sizeof(*best_clock));
719
720         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723              clock.m1++) {
724                 for (clock.m2 = limit->m2.min;
725                      clock.m2 <= limit->m2.max; clock.m2++) {
726                         if (clock.m2 >= clock.m1)
727                                 break;
728                         for (clock.n = limit->n.min;
729                              clock.n <= limit->n.max; clock.n++) {
730                                 for (clock.p1 = limit->p1.min;
731                                         clock.p1 <= limit->p1.max; clock.p1++) {
732                                         int this_err;
733
734                                         i9xx_calc_dpll_params(refclk, &clock);
735                                         if (!intel_pll_is_valid(to_i915(dev),
736                                                                 limit,
737                                                                 &clock))
738                                                 continue;
739                                         if (match_clock &&
740                                             clock.p != match_clock->p)
741                                                 continue;
742
743                                         this_err = abs(clock.dot - target);
744                                         if (this_err < err) {
745                                                 *best_clock = clock;
746                                                 err = this_err;
747                                         }
748                                 }
749                         }
750                 }
751         }
752
753         return (err != target);
754 }
755
756 /*
757  * Returns a set of divisors for the desired target clock with the given
758  * refclk, or FALSE.  The returned values represent the clock equation:
759  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760  *
761  * Target and reference clocks are specified in kHz.
762  *
763  * If match_clock is provided, then best_clock P divider must match the P
764  * divider from @match_clock used for LVDS downclocking.
765  */
766 static bool
767 pnv_find_best_dpll(const struct intel_limit *limit,
768                    struct intel_crtc_state *crtc_state,
769                    int target, int refclk, struct dpll *match_clock,
770                    struct dpll *best_clock)
771 {
772         struct drm_device *dev = crtc_state->uapi.crtc->dev;
773         struct dpll clock;
774         int err = target;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781              clock.m1++) {
782                 for (clock.m2 = limit->m2.min;
783                      clock.m2 <= limit->m2.max; clock.m2++) {
784                         for (clock.n = limit->n.min;
785                              clock.n <= limit->n.max; clock.n++) {
786                                 for (clock.p1 = limit->p1.min;
787                                         clock.p1 <= limit->p1.max; clock.p1++) {
788                                         int this_err;
789
790                                         pnv_calc_dpll_params(refclk, &clock);
791                                         if (!intel_pll_is_valid(to_i915(dev),
792                                                                 limit,
793                                                                 &clock))
794                                                 continue;
795                                         if (match_clock &&
796                                             clock.p != match_clock->p)
797                                                 continue;
798
799                                         this_err = abs(clock.dot - target);
800                                         if (this_err < err) {
801                                                 *best_clock = clock;
802                                                 err = this_err;
803                                         }
804                                 }
805                         }
806                 }
807         }
808
809         return (err != target);
810 }
811
812 /*
813  * Returns a set of divisors for the desired target clock with the given
814  * refclk, or FALSE.  The returned values represent the clock equation:
815  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816  *
817  * Target and reference clocks are specified in kHz.
818  *
819  * If match_clock is provided, then best_clock P divider must match the P
820  * divider from @match_clock used for LVDS downclocking.
821  */
822 static bool
823 g4x_find_best_dpll(const struct intel_limit *limit,
824                    struct intel_crtc_state *crtc_state,
825                    int target, int refclk, struct dpll *match_clock,
826                    struct dpll *best_clock)
827 {
828         struct drm_device *dev = crtc_state->uapi.crtc->dev;
829         struct dpll clock;
830         int max_n;
831         bool found = false;
832         /* approximately equals target * 0.00585 */
833         int err_most = (target >> 8) + (target >> 9);
834
835         memset(best_clock, 0, sizeof(*best_clock));
836
837         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838
839         max_n = limit->n.max;
840         /* based on hardware requirement, prefer smaller n to precision */
841         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842                 /* based on hardware requirement, prefere larger m1,m2 */
843                 for (clock.m1 = limit->m1.max;
844                      clock.m1 >= limit->m1.min; clock.m1--) {
845                         for (clock.m2 = limit->m2.max;
846                              clock.m2 >= limit->m2.min; clock.m2--) {
847                                 for (clock.p1 = limit->p1.max;
848                                      clock.p1 >= limit->p1.min; clock.p1--) {
849                                         int this_err;
850
851                                         i9xx_calc_dpll_params(refclk, &clock);
852                                         if (!intel_pll_is_valid(to_i915(dev),
853                                                                 limit,
854                                                                 &clock))
855                                                 continue;
856
857                                         this_err = abs(clock.dot - target);
858                                         if (this_err < err_most) {
859                                                 *best_clock = clock;
860                                                 err_most = this_err;
861                                                 max_n = clock.n;
862                                                 found = true;
863                                         }
864                                 }
865                         }
866                 }
867         }
868         return found;
869 }
870
871 /*
872  * Check if the calculated PLL configuration is more optimal compared to the
873  * best configuration and error found so far. Return the calculated error.
874  */
875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876                                const struct dpll *calculated_clock,
877                                const struct dpll *best_clock,
878                                unsigned int best_error_ppm,
879                                unsigned int *error_ppm)
880 {
881         /*
882          * For CHV ignore the error and consider only the P value.
883          * Prefer a bigger P value based on HW requirements.
884          */
885         if (IS_CHERRYVIEW(to_i915(dev))) {
886                 *error_ppm = 0;
887
888                 return calculated_clock->p > best_clock->p;
889         }
890
891         if (drm_WARN_ON_ONCE(dev, !target_freq))
892                 return false;
893
894         *error_ppm = div_u64(1000000ULL *
895                                 abs(target_freq - calculated_clock->dot),
896                              target_freq);
897         /*
898          * Prefer a better P value over a better (smaller) error if the error
899          * is small. Ensure this preference for future configurations too by
900          * setting the error to 0.
901          */
902         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903                 *error_ppm = 0;
904
905                 return true;
906         }
907
908         return *error_ppm + 10 < best_error_ppm;
909 }
910
911 /*
912  * Returns a set of divisors for the desired target clock with the given
913  * refclk, or FALSE.  The returned values represent the clock equation:
914  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915  */
916 static bool
917 vlv_find_best_dpll(const struct intel_limit *limit,
918                    struct intel_crtc_state *crtc_state,
919                    int target, int refclk, struct dpll *match_clock,
920                    struct dpll *best_clock)
921 {
922         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923         struct drm_device *dev = crtc->base.dev;
924         struct dpll clock;
925         unsigned int bestppm = 1000000;
926         /* min update 19.2 MHz */
927         int max_n = min(limit->n.max, refclk / 19200);
928         bool found = false;
929
930         target *= 5; /* fast clock */
931
932         memset(best_clock, 0, sizeof(*best_clock));
933
934         /* based on hardware requirement, prefer smaller n to precision */
935         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939                                 clock.p = clock.p1 * clock.p2;
940                                 /* based on hardware requirement, prefer bigger m1,m2 values */
941                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942                                         unsigned int ppm;
943
944                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945                                                                      refclk * clock.m1);
946
947                                         vlv_calc_dpll_params(refclk, &clock);
948
949                                         if (!intel_pll_is_valid(to_i915(dev),
950                                                                 limit,
951                                                                 &clock))
952                                                 continue;
953
954                                         if (!vlv_PLL_is_optimal(dev, target,
955                                                                 &clock,
956                                                                 best_clock,
957                                                                 bestppm, &ppm))
958                                                 continue;
959
960                                         *best_clock = clock;
961                                         bestppm = ppm;
962                                         found = true;
963                                 }
964                         }
965                 }
966         }
967
968         return found;
969 }
970
971 /*
972  * Returns a set of divisors for the desired target clock with the given
973  * refclk, or FALSE.  The returned values represent the clock equation:
974  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975  */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978                    struct intel_crtc_state *crtc_state,
979                    int target, int refclk, struct dpll *match_clock,
980                    struct dpll *best_clock)
981 {
982         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983         struct drm_device *dev = crtc->base.dev;
984         unsigned int best_error_ppm;
985         struct dpll clock;
986         u64 m2;
987         int found = false;
988
989         memset(best_clock, 0, sizeof(*best_clock));
990         best_error_ppm = 1000000;
991
992         /*
993          * Based on hardware doc, the n always set to 1, and m1 always
994          * set to 2.  If requires to support 200Mhz refclk, we need to
995          * revisit this because n may not 1 anymore.
996          */
997         clock.n = 1, clock.m1 = 2;
998         target *= 5;    /* fast clock */
999
1000         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001                 for (clock.p2 = limit->p2.p2_fast;
1002                                 clock.p2 >= limit->p2.p2_slow;
1003                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004                         unsigned int error_ppm;
1005
1006                         clock.p = clock.p1 * clock.p2;
1007
1008                         m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009                                                    refclk * clock.m1);
1010
1011                         if (m2 > INT_MAX/clock.m1)
1012                                 continue;
1013
1014                         clock.m2 = m2;
1015
1016                         chv_calc_dpll_params(refclk, &clock);
1017
1018                         if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019                                 continue;
1020
1021                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022                                                 best_error_ppm, &error_ppm))
1023                                 continue;
1024
1025                         *best_clock = clock;
1026                         best_error_ppm = error_ppm;
1027                         found = true;
1028                 }
1029         }
1030
1031         return found;
1032 }
1033
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035                         struct dpll *best_clock)
1036 {
1037         int refclk = 100000;
1038         const struct intel_limit *limit = &intel_limits_bxt;
1039
1040         return chv_find_best_dpll(limit, crtc_state,
1041                                   crtc_state->port_clock, refclk,
1042                                   NULL, best_clock);
1043 }
1044
1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046                                     enum pipe pipe)
1047 {
1048         i915_reg_t reg = PIPEDSL(pipe);
1049         u32 line1, line2;
1050         u32 line_mask;
1051
1052         if (IS_GEN(dev_priv, 2))
1053                 line_mask = DSL_LINEMASK_GEN2;
1054         else
1055                 line_mask = DSL_LINEMASK_GEN3;
1056
1057         line1 = intel_de_read(dev_priv, reg) & line_mask;
1058         msleep(5);
1059         line2 = intel_de_read(dev_priv, reg) & line_mask;
1060
1061         return line1 != line2;
1062 }
1063
1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067         enum pipe pipe = crtc->pipe;
1068
1069         /* Wait for the display line to settle/start moving */
1070         if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071                 drm_err(&dev_priv->drm,
1072                         "pipe %c scanline %s wait timed out\n",
1073                         pipe_name(pipe), onoff(state));
1074 }
1075
1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078         wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080
1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083         wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085
1086 static void
1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091
1092         if (INTEL_GEN(dev_priv) >= 4) {
1093                 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1095
1096                 /* Wait for the Pipe State to go off */
1097                 if (intel_de_wait_for_clear(dev_priv, reg,
1098                                             I965_PIPECONF_ACTIVE, 100))
1099                         drm_WARN(&dev_priv->drm, 1,
1100                                  "pipe_off wait timed out\n");
1101         } else {
1102                 intel_wait_for_pipe_scanline_stopped(crtc);
1103         }
1104 }
1105
1106 /* Only for pre-ILK configs */
1107 void assert_pll(struct drm_i915_private *dev_priv,
1108                 enum pipe pipe, bool state)
1109 {
1110         u32 val;
1111         bool cur_state;
1112
1113         val = intel_de_read(dev_priv, DPLL(pipe));
1114         cur_state = !!(val & DPLL_VCO_ENABLE);
1115         I915_STATE_WARN(cur_state != state,
1116              "PLL state assertion failure (expected %s, current %s)\n",
1117                         onoff(state), onoff(cur_state));
1118 }
1119
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123         u32 val;
1124         bool cur_state;
1125
1126         vlv_cck_get(dev_priv);
1127         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128         vlv_cck_put(dev_priv);
1129
1130         cur_state = val & DSI_PLL_VCO_EN;
1131         I915_STATE_WARN(cur_state != state,
1132              "DSI PLL state assertion failure (expected %s, current %s)\n",
1133                         onoff(state), onoff(cur_state));
1134 }
1135
1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137                           enum pipe pipe, bool state)
1138 {
1139         bool cur_state;
1140
1141         if (HAS_DDI(dev_priv)) {
1142                 /*
1143                  * DDI does not have a specific FDI_TX register.
1144                  *
1145                  * FDI is never fed from EDP transcoder
1146                  * so pipe->transcoder cast is fine here.
1147                  */
1148                 enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149                 u32 val = intel_de_read(dev_priv,
1150                                         TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152         } else {
1153                 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154                 cur_state = !!(val & FDI_TX_ENABLE);
1155         }
1156         I915_STATE_WARN(cur_state != state,
1157              "FDI TX state assertion failure (expected %s, current %s)\n",
1158                         onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162
1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164                           enum pipe pipe, bool state)
1165 {
1166         u32 val;
1167         bool cur_state;
1168
1169         val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170         cur_state = !!(val & FDI_RX_ENABLE);
1171         I915_STATE_WARN(cur_state != state,
1172              "FDI RX state assertion failure (expected %s, current %s)\n",
1173                         onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177
1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179                                       enum pipe pipe)
1180 {
1181         u32 val;
1182
1183         /* ILK FDI PLL is always enabled */
1184         if (IS_GEN(dev_priv, 5))
1185                 return;
1186
1187         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188         if (HAS_DDI(dev_priv))
1189                 return;
1190
1191         val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194
1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196                        enum pipe pipe, bool state)
1197 {
1198         u32 val;
1199         bool cur_state;
1200
1201         val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203         I915_STATE_WARN(cur_state != state,
1204              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205                         onoff(state), onoff(cur_state));
1206 }
1207
1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210         i915_reg_t pp_reg;
1211         u32 val;
1212         enum pipe panel_pipe = INVALID_PIPE;
1213         bool locked = true;
1214
1215         if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216                 return;
1217
1218         if (HAS_PCH_SPLIT(dev_priv)) {
1219                 u32 port_sel;
1220
1221                 pp_reg = PP_CONTROL(0);
1222                 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223
1224                 switch (port_sel) {
1225                 case PANEL_PORT_SELECT_LVDS:
1226                         intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227                         break;
1228                 case PANEL_PORT_SELECT_DPA:
1229                         intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230                         break;
1231                 case PANEL_PORT_SELECT_DPC:
1232                         intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233                         break;
1234                 case PANEL_PORT_SELECT_DPD:
1235                         intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236                         break;
1237                 default:
1238                         MISSING_CASE(port_sel);
1239                         break;
1240                 }
1241         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242                 /* presumably write lock depends on pipe, not port select */
1243                 pp_reg = PP_CONTROL(pipe);
1244                 panel_pipe = pipe;
1245         } else {
1246                 u32 port_sel;
1247
1248                 pp_reg = PP_CONTROL(0);
1249                 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250
1251                 drm_WARN_ON(&dev_priv->drm,
1252                             port_sel != PANEL_PORT_SELECT_LVDS);
1253                 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254         }
1255
1256         val = intel_de_read(dev_priv, pp_reg);
1257         if (!(val & PANEL_POWER_ON) ||
1258             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259                 locked = false;
1260
1261         I915_STATE_WARN(panel_pipe == pipe && locked,
1262              "panel assertion failure, pipe %c regs locked\n",
1263              pipe_name(pipe));
1264 }
1265
1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267                  enum transcoder cpu_transcoder, bool state)
1268 {
1269         bool cur_state;
1270         enum intel_display_power_domain power_domain;
1271         intel_wakeref_t wakeref;
1272
1273         /* we keep both pipes enabled on 830 */
1274         if (IS_I830(dev_priv))
1275                 state = true;
1276
1277         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279         if (wakeref) {
1280                 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281                 cur_state = !!(val & PIPECONF_ENABLE);
1282
1283                 intel_display_power_put(dev_priv, power_domain, wakeref);
1284         } else {
1285                 cur_state = false;
1286         }
1287
1288         I915_STATE_WARN(cur_state != state,
1289                         "transcoder %s assertion failure (expected %s, current %s)\n",
1290                         transcoder_name(cpu_transcoder),
1291                         onoff(state), onoff(cur_state));
1292 }
1293
1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296         enum pipe pipe;
1297         bool cur_state;
1298
1299         cur_state = plane->get_hw_state(plane, &pipe);
1300
1301         I915_STATE_WARN(cur_state != state,
1302                         "%s assertion failure (expected %s, current %s)\n",
1303                         plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308
1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312         struct intel_plane *plane;
1313
1314         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315                 assert_plane_disabled(plane);
1316 }
1317
1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321                 drm_crtc_vblank_put(crtc);
1322 }
1323
1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325                                     enum pipe pipe)
1326 {
1327         u32 val;
1328         bool enabled;
1329
1330         val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331         enabled = !!(val & TRANS_ENABLE);
1332         I915_STATE_WARN(enabled,
1333              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334              pipe_name(pipe));
1335 }
1336
1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338                                    enum pipe pipe, enum port port,
1339                                    i915_reg_t dp_reg)
1340 {
1341         enum pipe port_pipe;
1342         bool state;
1343
1344         state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345
1346         I915_STATE_WARN(state && port_pipe == pipe,
1347                         "PCH DP %c enabled on transcoder %c, should be disabled\n",
1348                         port_name(port), pipe_name(pipe));
1349
1350         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351                         "IBX PCH DP %c still using transcoder B\n",
1352                         port_name(port));
1353 }
1354
1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356                                      enum pipe pipe, enum port port,
1357                                      i915_reg_t hdmi_reg)
1358 {
1359         enum pipe port_pipe;
1360         bool state;
1361
1362         state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363
1364         I915_STATE_WARN(state && port_pipe == pipe,
1365                         "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366                         port_name(port), pipe_name(pipe));
1367
1368         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369                         "IBX PCH HDMI %c still using transcoder B\n",
1370                         port_name(port));
1371 }
1372
1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374                                       enum pipe pipe)
1375 {
1376         enum pipe port_pipe;
1377
1378         assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379         assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380         assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381
1382         I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383                         port_pipe == pipe,
1384                         "PCH VGA enabled on transcoder %c, should be disabled\n",
1385                         pipe_name(pipe));
1386
1387         I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388                         port_pipe == pipe,
1389                         "PCH LVDS enabled on transcoder %c, should be disabled\n",
1390                         pipe_name(pipe));
1391
1392         /* PCH SDVOB multiplex with HDMIB */
1393         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397
1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399                             const struct intel_crtc_state *pipe_config)
1400 {
1401         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402         enum pipe pipe = crtc->pipe;
1403
1404         intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405         intel_de_posting_read(dev_priv, DPLL(pipe));
1406         udelay(150);
1407
1408         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409                 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411
1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413                            const struct intel_crtc_state *pipe_config)
1414 {
1415         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416         enum pipe pipe = crtc->pipe;
1417
1418         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419
1420         /* PLL is protected by panel, make sure we can write it */
1421         assert_panel_unlocked(dev_priv, pipe);
1422
1423         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424                 _vlv_enable_pll(crtc, pipe_config);
1425
1426         intel_de_write(dev_priv, DPLL_MD(pipe),
1427                        pipe_config->dpll_hw_state.dpll_md);
1428         intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430
1431
1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433                             const struct intel_crtc_state *pipe_config)
1434 {
1435         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436         enum pipe pipe = crtc->pipe;
1437         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438         u32 tmp;
1439
1440         vlv_dpio_get(dev_priv);
1441
1442         /* Enable back the 10bit clock to display controller */
1443         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444         tmp |= DPIO_DCLKP_EN;
1445         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446
1447         vlv_dpio_put(dev_priv);
1448
1449         /*
1450          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451          */
1452         udelay(1);
1453
1454         /* Enable PLL */
1455         intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456
1457         /* Check PLL is locked */
1458         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459                 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461
1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463                            const struct intel_crtc_state *pipe_config)
1464 {
1465         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466         enum pipe pipe = crtc->pipe;
1467
1468         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         assert_panel_unlocked(dev_priv, pipe);
1472
1473         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474                 _chv_enable_pll(crtc, pipe_config);
1475
1476         if (pipe != PIPE_A) {
1477                 /*
1478                  * WaPixelRepeatModeFixForC0:chv
1479                  *
1480                  * DPLLCMD is AWOL. Use chicken bits to propagate
1481                  * the value from DPLLBMD to either pipe B or C.
1482                  */
1483                 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484                 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485                                pipe_config->dpll_hw_state.dpll_md);
1486                 intel_de_write(dev_priv, CBR4_VLV, 0);
1487                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488
1489                 /*
1490                  * DPLLB VGA mode also seems to cause problems.
1491                  * We should always have it disabled.
1492                  */
1493                 drm_WARN_ON(&dev_priv->drm,
1494                             (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495                              DPLL_VGA_MODE_DIS) == 0);
1496         } else {
1497                 intel_de_write(dev_priv, DPLL_MD(pipe),
1498                                pipe_config->dpll_hw_state.dpll_md);
1499                 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500         }
1501 }
1502
1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505         if (IS_I830(dev_priv))
1506                 return false;
1507
1508         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510
1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512                             const struct intel_crtc_state *crtc_state)
1513 {
1514         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515         i915_reg_t reg = DPLL(crtc->pipe);
1516         u32 dpll = crtc_state->dpll_hw_state.dpll;
1517         int i;
1518
1519         assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520
1521         /* PLL is protected by panel, make sure we can write it */
1522         if (i9xx_has_pps(dev_priv))
1523                 assert_panel_unlocked(dev_priv, crtc->pipe);
1524
1525         /*
1526          * Apparently we need to have VGA mode enabled prior to changing
1527          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528          * dividers, even though the register value does change.
1529          */
1530         intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531         intel_de_write(dev_priv, reg, dpll);
1532
1533         /* Wait for the clocks to stabilize. */
1534         intel_de_posting_read(dev_priv, reg);
1535         udelay(150);
1536
1537         if (INTEL_GEN(dev_priv) >= 4) {
1538                 intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539                                crtc_state->dpll_hw_state.dpll_md);
1540         } else {
1541                 /* The pixel multiplier can only be updated once the
1542                  * DPLL is enabled and the clocks are stable.
1543                  *
1544                  * So write it again.
1545                  */
1546                 intel_de_write(dev_priv, reg, dpll);
1547         }
1548
1549         /* We do this three times for luck */
1550         for (i = 0; i < 3; i++) {
1551                 intel_de_write(dev_priv, reg, dpll);
1552                 intel_de_posting_read(dev_priv, reg);
1553                 udelay(150); /* wait for warmup */
1554         }
1555 }
1556
1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561         enum pipe pipe = crtc->pipe;
1562
1563         /* Don't disable pipe or pipe PLLs if needed */
1564         if (IS_I830(dev_priv))
1565                 return;
1566
1567         /* Make sure the pipe isn't still relying on us */
1568         assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569
1570         intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571         intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573
1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576         u32 val;
1577
1578         /* Make sure the pipe isn't still relying on us */
1579         assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580
1581         val = DPLL_INTEGRATED_REF_CLK_VLV |
1582                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583         if (pipe != PIPE_A)
1584                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585
1586         intel_de_write(dev_priv, DPLL(pipe), val);
1587         intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589
1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593         u32 val;
1594
1595         /* Make sure the pipe isn't still relying on us */
1596         assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597
1598         val = DPLL_SSC_REF_CLK_CHV |
1599                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600         if (pipe != PIPE_A)
1601                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602
1603         intel_de_write(dev_priv, DPLL(pipe), val);
1604         intel_de_posting_read(dev_priv, DPLL(pipe));
1605
1606         vlv_dpio_get(dev_priv);
1607
1608         /* Disable 10bit clock to display controller */
1609         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610         val &= ~DPIO_DCLKP_EN;
1611         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612
1613         vlv_dpio_put(dev_priv);
1614 }
1615
1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617                          struct intel_digital_port *dig_port,
1618                          unsigned int expected_mask)
1619 {
1620         u32 port_mask;
1621         i915_reg_t dpll_reg;
1622
1623         switch (dig_port->base.port) {
1624         case PORT_B:
1625                 port_mask = DPLL_PORTB_READY_MASK;
1626                 dpll_reg = DPLL(0);
1627                 break;
1628         case PORT_C:
1629                 port_mask = DPLL_PORTC_READY_MASK;
1630                 dpll_reg = DPLL(0);
1631                 expected_mask <<= 4;
1632                 break;
1633         case PORT_D:
1634                 port_mask = DPLL_PORTD_READY_MASK;
1635                 dpll_reg = DPIO_PHY_STATUS;
1636                 break;
1637         default:
1638                 BUG();
1639         }
1640
1641         if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642                                        port_mask, expected_mask, 1000))
1643                 drm_WARN(&dev_priv->drm, 1,
1644                          "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645                          dig_port->base.base.base.id, dig_port->base.base.name,
1646                          intel_de_read(dev_priv, dpll_reg) & port_mask,
1647                          expected_mask);
1648 }
1649
1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654         enum pipe pipe = crtc->pipe;
1655         i915_reg_t reg;
1656         u32 val, pipeconf_val;
1657
1658         /* Make sure PCH DPLL is enabled */
1659         assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660
1661         /* FDI must be feeding us bits for PCH ports */
1662         assert_fdi_tx_enabled(dev_priv, pipe);
1663         assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665         if (HAS_PCH_CPT(dev_priv)) {
1666                 reg = TRANS_CHICKEN2(pipe);
1667                 val = intel_de_read(dev_priv, reg);
1668                 /*
1669                  * Workaround: Set the timing override bit
1670                  * before enabling the pch transcoder.
1671                  */
1672                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673                 /* Configure frame start delay to match the CPU */
1674                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675                 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676                 intel_de_write(dev_priv, reg, val);
1677         }
1678
1679         reg = PCH_TRANSCONF(pipe);
1680         val = intel_de_read(dev_priv, reg);
1681         pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682
1683         if (HAS_PCH_IBX(dev_priv)) {
1684                 /* Configure frame start delay to match the CPU */
1685                 val &= ~TRANS_FRAME_START_DELAY_MASK;
1686                 val |= TRANS_FRAME_START_DELAY(0);
1687
1688                 /*
1689                  * Make the BPC in transcoder be consistent with
1690                  * that in pipeconf reg. For HDMI we must use 8bpc
1691                  * here for both 8bpc and 12bpc.
1692                  */
1693                 val &= ~PIPECONF_BPC_MASK;
1694                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695                         val |= PIPECONF_8BPC;
1696                 else
1697                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1698         }
1699
1700         val &= ~TRANS_INTERLACE_MASK;
1701         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702                 if (HAS_PCH_IBX(dev_priv) &&
1703                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704                         val |= TRANS_LEGACY_INTERLACED_ILK;
1705                 else
1706                         val |= TRANS_INTERLACED;
1707         } else {
1708                 val |= TRANS_PROGRESSIVE;
1709         }
1710
1711         intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712         if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713                 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714                         pipe_name(pipe));
1715 }
1716
1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718                                       enum transcoder cpu_transcoder)
1719 {
1720         u32 val, pipeconf_val;
1721
1722         /* FDI must be feeding us bits for PCH ports */
1723         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724         assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725
1726         val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727         /* Workaround: set timing override bit. */
1728         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729         /* Configure frame start delay to match the CPU */
1730         val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731         val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732         intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733
1734         val = TRANS_ENABLE;
1735         pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736
1737         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738             PIPECONF_INTERLACED_ILK)
1739                 val |= TRANS_INTERLACED;
1740         else
1741                 val |= TRANS_PROGRESSIVE;
1742
1743         intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744         if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745                                   TRANS_STATE_ENABLE, 100))
1746                 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750                                        enum pipe pipe)
1751 {
1752         i915_reg_t reg;
1753         u32 val;
1754
1755         /* FDI relies on the transcoder */
1756         assert_fdi_tx_disabled(dev_priv, pipe);
1757         assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759         /* Ports must be off as well */
1760         assert_pch_ports_disabled(dev_priv, pipe);
1761
1762         reg = PCH_TRANSCONF(pipe);
1763         val = intel_de_read(dev_priv, reg);
1764         val &= ~TRANS_ENABLE;
1765         intel_de_write(dev_priv, reg, val);
1766         /* wait for PCH transcoder off, transcoder state */
1767         if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768                 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769                         pipe_name(pipe));
1770
1771         if (HAS_PCH_CPT(dev_priv)) {
1772                 /* Workaround: Clear the timing override chicken bit again. */
1773                 reg = TRANS_CHICKEN2(pipe);
1774                 val = intel_de_read(dev_priv, reg);
1775                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776                 intel_de_write(dev_priv, reg, val);
1777         }
1778 }
1779
1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782         u32 val;
1783
1784         val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785         val &= ~TRANS_ENABLE;
1786         intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787         /* wait for PCH transcoder off, transcoder state */
1788         if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789                                     TRANS_STATE_ENABLE, 50))
1790                 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791
1792         /* Workaround: clear timing override bit. */
1793         val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795         intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797
1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801
1802         if (HAS_PCH_LPT(dev_priv))
1803                 return PIPE_A;
1804         else
1805                 return crtc->pipe;
1806 }
1807
1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811
1812         /*
1813          * On i965gm the hardware frame counter reads
1814          * zero when the TV encoder is enabled :(
1815          */
1816         if (IS_I965GM(dev_priv) &&
1817             (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818                 return 0;
1819
1820         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821                 return 0xffffffff; /* full 32 bit counter */
1822         else if (INTEL_GEN(dev_priv) >= 3)
1823                 return 0xffffff; /* only 24 bits of frame count */
1824         else
1825                 return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827
1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831
1832         assert_vblank_disabled(&crtc->base);
1833         drm_crtc_set_max_vblank_count(&crtc->base,
1834                                       intel_crtc_max_vblank_count(crtc_state));
1835         drm_crtc_vblank_on(&crtc->base);
1836 }
1837
1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841
1842         drm_crtc_vblank_off(&crtc->base);
1843         assert_vblank_disabled(&crtc->base);
1844 }
1845
1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850         enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851         enum pipe pipe = crtc->pipe;
1852         i915_reg_t reg;
1853         u32 val;
1854
1855         drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856
1857         assert_planes_disabled(crtc);
1858
1859         /*
1860          * A pipe without a PLL won't actually be able to drive bits from
1861          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1862          * need the check.
1863          */
1864         if (HAS_GMCH(dev_priv)) {
1865                 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866                         assert_dsi_pll_enabled(dev_priv);
1867                 else
1868                         assert_pll_enabled(dev_priv, pipe);
1869         } else {
1870                 if (new_crtc_state->has_pch_encoder) {
1871                         /* if driving the PCH, we need FDI enabled */
1872                         assert_fdi_rx_pll_enabled(dev_priv,
1873                                                   intel_crtc_pch_transcoder(crtc));
1874                         assert_fdi_tx_pll_enabled(dev_priv,
1875                                                   (enum pipe) cpu_transcoder);
1876                 }
1877                 /* FIXME: assert CPU port conditions for SNB+ */
1878         }
1879
1880         trace_intel_pipe_enable(crtc);
1881
1882         reg = PIPECONF(cpu_transcoder);
1883         val = intel_de_read(dev_priv, reg);
1884         if (val & PIPECONF_ENABLE) {
1885                 /* we keep both pipes enabled on 830 */
1886                 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887                 return;
1888         }
1889
1890         intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891         intel_de_posting_read(dev_priv, reg);
1892
1893         /*
1894          * Until the pipe starts PIPEDSL reads will return a stale value,
1895          * which causes an apparent vblank timestamp jump when PIPEDSL
1896          * resets to its proper value. That also messes up the frame count
1897          * when it's derived from the timestamps. So let's wait for the
1898          * pipe to start properly before we call drm_crtc_vblank_on()
1899          */
1900         if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901                 intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903
1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908         enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909         enum pipe pipe = crtc->pipe;
1910         i915_reg_t reg;
1911         u32 val;
1912
1913         drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914
1915         /*
1916          * Make sure planes won't keep trying to pump pixels to us,
1917          * or we might hang the display.
1918          */
1919         assert_planes_disabled(crtc);
1920
1921         trace_intel_pipe_disable(crtc);
1922
1923         reg = PIPECONF(cpu_transcoder);
1924         val = intel_de_read(dev_priv, reg);
1925         if ((val & PIPECONF_ENABLE) == 0)
1926                 return;
1927
1928         /*
1929          * Double wide has implications for planes
1930          * so best keep it disabled when not needed.
1931          */
1932         if (old_crtc_state->double_wide)
1933                 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935         /* Don't disable pipe or pipe PLLs if needed */
1936         if (!IS_I830(dev_priv))
1937                 val &= ~PIPECONF_ENABLE;
1938
1939         intel_de_write(dev_priv, reg, val);
1940         if ((val & PIPECONF_ENABLE) == 0)
1941                 intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946         return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948
1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951         if (!is_ccs_modifier(fb->modifier))
1952                 return false;
1953
1954         return plane >= fb->format->num_planes / 2;
1955 }
1956
1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959         return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960                modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961
1962 }
1963
1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966         return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968
1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971         if (is_ccs_modifier(fb->modifier))
1972                 return is_ccs_plane(fb, plane);
1973
1974         return plane == 1;
1975 }
1976
1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979         drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980                     (main_plane && main_plane >= fb->format->num_planes / 2));
1981
1982         return fb->format->num_planes / 2 + main_plane;
1983 }
1984
1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987         drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988                     ccs_plane < fb->format->num_planes / 2);
1989
1990         return ccs_plane - fb->format->num_planes / 2;
1991 }
1992
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996         if (is_ccs_modifier(fb->modifier))
1997                 return main_to_ccs_plane(fb, main_plane);
1998
1999         return 1;
2000 }
2001
2002 bool
2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004                                     uint64_t modifier)
2005 {
2006         return info->is_yuv &&
2007                info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009
2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011                                    int color_plane)
2012 {
2013         return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014                color_plane == 1;
2015 }
2016
2017 static unsigned int
2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021         unsigned int cpp = fb->format->cpp[color_plane];
2022
2023         switch (fb->modifier) {
2024         case DRM_FORMAT_MOD_LINEAR:
2025                 return intel_tile_size(dev_priv);
2026         case I915_FORMAT_MOD_X_TILED:
2027                 if (IS_GEN(dev_priv, 2))
2028                         return 128;
2029                 else
2030                         return 512;
2031         case I915_FORMAT_MOD_Y_TILED_CCS:
2032                 if (is_ccs_plane(fb, color_plane))
2033                         return 128;
2034                 fallthrough;
2035         case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037                 if (is_ccs_plane(fb, color_plane))
2038                         return 64;
2039                 fallthrough;
2040         case I915_FORMAT_MOD_Y_TILED:
2041                 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042                         return 128;
2043                 else
2044                         return 512;
2045         case I915_FORMAT_MOD_Yf_TILED_CCS:
2046                 if (is_ccs_plane(fb, color_plane))
2047                         return 128;
2048                 fallthrough;
2049         case I915_FORMAT_MOD_Yf_TILED:
2050                 switch (cpp) {
2051                 case 1:
2052                         return 64;
2053                 case 2:
2054                 case 4:
2055                         return 128;
2056                 case 8:
2057                 case 16:
2058                         return 256;
2059                 default:
2060                         MISSING_CASE(cpp);
2061                         return cpp;
2062                 }
2063                 break;
2064         default:
2065                 MISSING_CASE(fb->modifier);
2066                 return cpp;
2067         }
2068 }
2069
2070 static unsigned int
2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073         if (is_gen12_ccs_plane(fb, color_plane))
2074                 return 1;
2075
2076         return intel_tile_size(to_i915(fb->dev)) /
2077                 intel_tile_width_bytes(fb, color_plane);
2078 }
2079
2080 /* Return the tile dimensions in pixel units */
2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082                             unsigned int *tile_width,
2083                             unsigned int *tile_height)
2084 {
2085         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086         unsigned int cpp = fb->format->cpp[color_plane];
2087
2088         *tile_width = tile_width_bytes / cpp;
2089         *tile_height = intel_tile_height(fb, color_plane);
2090 }
2091
2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093                                         int color_plane)
2094 {
2095         unsigned int tile_width, tile_height;
2096
2097         intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098
2099         return fb->pitches[color_plane] * tile_height;
2100 }
2101
2102 unsigned int
2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104                       int color_plane, unsigned int height)
2105 {
2106         unsigned int tile_height = intel_tile_height(fb, color_plane);
2107
2108         return ALIGN(height, tile_height);
2109 }
2110
2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113         unsigned int size = 0;
2114         int i;
2115
2116         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2118
2119         return size;
2120 }
2121
2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124         unsigned int size = 0;
2125         int i;
2126
2127         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128                 size += rem_info->plane[i].width * rem_info->plane[i].height;
2129
2130         return size;
2131 }
2132
2133 static void
2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135                         const struct drm_framebuffer *fb,
2136                         unsigned int rotation)
2137 {
2138         view->type = I915_GGTT_VIEW_NORMAL;
2139         if (drm_rotation_90_or_270(rotation)) {
2140                 view->type = I915_GGTT_VIEW_ROTATED;
2141                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2142         }
2143 }
2144
2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147         if (IS_I830(dev_priv))
2148                 return 16 * 1024;
2149         else if (IS_I85X(dev_priv))
2150                 return 256;
2151         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152                 return 32;
2153         else
2154                 return 4 * 1024;
2155 }
2156
2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159         if (INTEL_GEN(dev_priv) >= 9)
2160                 return 256 * 1024;
2161         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163                 return 128 * 1024;
2164         else if (INTEL_GEN(dev_priv) >= 4)
2165                 return 4 * 1024;
2166         else
2167                 return 0;
2168 }
2169
2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171                                          int color_plane)
2172 {
2173         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174
2175         /* AUX_DIST needs only 4K alignment */
2176         if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177             is_ccs_plane(fb, color_plane))
2178                 return 4096;
2179
2180         switch (fb->modifier) {
2181         case DRM_FORMAT_MOD_LINEAR:
2182                 return intel_linear_alignment(dev_priv);
2183         case I915_FORMAT_MOD_X_TILED:
2184                 if (INTEL_GEN(dev_priv) >= 9)
2185                         return 256 * 1024;
2186                 return 0;
2187         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188                 if (is_semiplanar_uv_plane(fb, color_plane))
2189                         return intel_tile_row_size(fb, color_plane);
2190                 fallthrough;
2191         case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192                 return 16 * 1024;
2193         case I915_FORMAT_MOD_Y_TILED_CCS:
2194         case I915_FORMAT_MOD_Yf_TILED_CCS:
2195         case I915_FORMAT_MOD_Y_TILED:
2196                 if (INTEL_GEN(dev_priv) >= 12 &&
2197                     is_semiplanar_uv_plane(fb, color_plane))
2198                         return intel_tile_row_size(fb, color_plane);
2199                 fallthrough;
2200         case I915_FORMAT_MOD_Yf_TILED:
2201                 return 1 * 1024 * 1024;
2202         default:
2203                 MISSING_CASE(fb->modifier);
2204                 return 0;
2205         }
2206 }
2207
2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212
2213         return INTEL_GEN(dev_priv) < 4 ||
2214                 (plane->has_fbc &&
2215                  plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217
2218 struct i915_vma *
2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220                            const struct i915_ggtt_view *view,
2221                            bool uses_fence,
2222                            unsigned long *out_flags)
2223 {
2224         struct drm_device *dev = fb->dev;
2225         struct drm_i915_private *dev_priv = to_i915(dev);
2226         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227         intel_wakeref_t wakeref;
2228         struct i915_vma *vma;
2229         unsigned int pinctl;
2230         u32 alignment;
2231
2232         if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233                 return ERR_PTR(-EINVAL);
2234
2235         alignment = intel_surf_alignment(fb, 0);
2236         if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237                 return ERR_PTR(-EINVAL);
2238
2239         /* Note that the w/a also requires 64 PTE of padding following the
2240          * bo. We currently fill all unused PTE with the shadow page and so
2241          * we should always have valid PTE following the scanout preventing
2242          * the VT-d warning.
2243          */
2244         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245                 alignment = 256 * 1024;
2246
2247         /*
2248          * Global gtt pte registers are special registers which actually forward
2249          * writes to a chunk of system memory. Which means that there is no risk
2250          * that the register values disappear as soon as we call
2251          * intel_runtime_pm_put(), so it is correct to wrap only the
2252          * pin/unpin/fence and not more.
2253          */
2254         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255
2256         atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257
2258         /*
2259          * Valleyview is definitely limited to scanning out the first
2260          * 512MiB. Lets presume this behaviour was inherited from the
2261          * g4x display engine and that all earlier gen are similarly
2262          * limited. Testing suggests that it is a little more
2263          * complicated than this. For example, Cherryview appears quite
2264          * happy to scanout from anywhere within its global aperture.
2265          */
2266         pinctl = 0;
2267         if (HAS_GMCH(dev_priv))
2268                 pinctl |= PIN_MAPPABLE;
2269
2270         vma = i915_gem_object_pin_to_display_plane(obj,
2271                                                    alignment, view, pinctl);
2272         if (IS_ERR(vma))
2273                 goto err;
2274
2275         if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276                 int ret;
2277
2278                 /*
2279                  * Install a fence for tiled scan-out. Pre-i965 always needs a
2280                  * fence, whereas 965+ only requires a fence if using
2281                  * framebuffer compression.  For simplicity, we always, when
2282                  * possible, install a fence as the cost is not that onerous.
2283                  *
2284                  * If we fail to fence the tiled scanout, then either the
2285                  * modeset will reject the change (which is highly unlikely as
2286                  * the affected systems, all but one, do not have unmappable
2287                  * space) or we will not be able to enable full powersaving
2288                  * techniques (also likely not to apply due to various limits
2289                  * FBC and the like impose on the size of the buffer, which
2290                  * presumably we violated anyway with this unmappable buffer).
2291                  * Anyway, it is presumably better to stumble onwards with
2292                  * something and try to run the system in a "less than optimal"
2293                  * mode that matches the user configuration.
2294                  */
2295                 ret = i915_vma_pin_fence(vma);
2296                 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297                         i915_gem_object_unpin_from_display_plane(vma);
2298                         vma = ERR_PTR(ret);
2299                         goto err;
2300                 }
2301
2302                 if (ret == 0 && vma->fence)
2303                         *out_flags |= PLANE_HAS_FENCE;
2304         }
2305
2306         i915_vma_get(vma);
2307 err:
2308         atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310         return vma;
2311 }
2312
2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315         i915_gem_object_lock(vma->obj, NULL);
2316         if (flags & PLANE_HAS_FENCE)
2317                 i915_vma_unpin_fence(vma);
2318         i915_gem_object_unpin_from_display_plane(vma);
2319         i915_gem_object_unlock(vma->obj);
2320
2321         i915_vma_put(vma);
2322 }
2323
2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2325                           unsigned int rotation)
2326 {
2327         if (drm_rotation_90_or_270(rotation))
2328                 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2329         else
2330                 return fb->pitches[color_plane];
2331 }
2332
2333 /*
2334  * Convert the x/y offsets into a linear offset.
2335  * Only valid with 0/180 degree rotation, which is fine since linear
2336  * offset is only used with linear buffers on pre-hsw and tiled buffers
2337  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2338  */
2339 u32 intel_fb_xy_to_linear(int x, int y,
2340                           const struct intel_plane_state *state,
2341                           int color_plane)
2342 {
2343         const struct drm_framebuffer *fb = state->hw.fb;
2344         unsigned int cpp = fb->format->cpp[color_plane];
2345         unsigned int pitch = state->color_plane[color_plane].stride;
2346
2347         return y * pitch + x * cpp;
2348 }
2349
2350 /*
2351  * Add the x/y offsets derived from fb->offsets[] to the user
2352  * specified plane src x/y offsets. The resulting x/y offsets
2353  * specify the start of scanout from the beginning of the gtt mapping.
2354  */
2355 void intel_add_fb_offsets(int *x, int *y,
2356                           const struct intel_plane_state *state,
2357                           int color_plane)
2358
2359 {
2360         *x += state->color_plane[color_plane].x;
2361         *y += state->color_plane[color_plane].y;
2362 }
2363
2364 static u32 intel_adjust_tile_offset(int *x, int *y,
2365                                     unsigned int tile_width,
2366                                     unsigned int tile_height,
2367                                     unsigned int tile_size,
2368                                     unsigned int pitch_tiles,
2369                                     u32 old_offset,
2370                                     u32 new_offset)
2371 {
2372         unsigned int pitch_pixels = pitch_tiles * tile_width;
2373         unsigned int tiles;
2374
2375         WARN_ON(old_offset & (tile_size - 1));
2376         WARN_ON(new_offset & (tile_size - 1));
2377         WARN_ON(new_offset > old_offset);
2378
2379         tiles = (old_offset - new_offset) / tile_size;
2380
2381         *y += tiles / pitch_tiles * tile_height;
2382         *x += tiles % pitch_tiles * tile_width;
2383
2384         /* minimize x in case it got needlessly big */
2385         *y += *x / pitch_pixels * tile_height;
2386         *x %= pitch_pixels;
2387
2388         return new_offset;
2389 }
2390
2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2392 {
2393         return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2394                is_gen12_ccs_plane(fb, color_plane);
2395 }
2396
2397 static u32 intel_adjust_aligned_offset(int *x, int *y,
2398                                        const struct drm_framebuffer *fb,
2399                                        int color_plane,
2400                                        unsigned int rotation,
2401                                        unsigned int pitch,
2402                                        u32 old_offset, u32 new_offset)
2403 {
2404         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2405         unsigned int cpp = fb->format->cpp[color_plane];
2406
2407         drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2408
2409         if (!is_surface_linear(fb, color_plane)) {
2410                 unsigned int tile_size, tile_width, tile_height;
2411                 unsigned int pitch_tiles;
2412
2413                 tile_size = intel_tile_size(dev_priv);
2414                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2415
2416                 if (drm_rotation_90_or_270(rotation)) {
2417                         pitch_tiles = pitch / tile_height;
2418                         swap(tile_width, tile_height);
2419                 } else {
2420                         pitch_tiles = pitch / (tile_width * cpp);
2421                 }
2422
2423                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2424                                          tile_size, pitch_tiles,
2425                                          old_offset, new_offset);
2426         } else {
2427                 old_offset += *y * pitch + *x * cpp;
2428
2429                 *y = (old_offset - new_offset) / pitch;
2430                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2431         }
2432
2433         return new_offset;
2434 }
2435
2436 /*
2437  * Adjust the tile offset by moving the difference into
2438  * the x/y offsets.
2439  */
2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2441                                              const struct intel_plane_state *state,
2442                                              int color_plane,
2443                                              u32 old_offset, u32 new_offset)
2444 {
2445         return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2446                                            state->hw.rotation,
2447                                            state->color_plane[color_plane].stride,
2448                                            old_offset, new_offset);
2449 }
2450
2451 /*
2452  * Computes the aligned offset to the base tile and adjusts
2453  * x, y. bytes per pixel is assumed to be a power-of-two.
2454  *
2455  * In the 90/270 rotated case, x and y are assumed
2456  * to be already rotated to match the rotated GTT view, and
2457  * pitch is the tile_height aligned framebuffer height.
2458  *
2459  * This function is used when computing the derived information
2460  * under intel_framebuffer, so using any of that information
2461  * here is not allowed. Anything under drm_framebuffer can be
2462  * used. This is why the user has to pass in the pitch since it
2463  * is specified in the rotated orientation.
2464  */
2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2466                                         int *x, int *y,
2467                                         const struct drm_framebuffer *fb,
2468                                         int color_plane,
2469                                         unsigned int pitch,
2470                                         unsigned int rotation,
2471                                         u32 alignment)
2472 {
2473         unsigned int cpp = fb->format->cpp[color_plane];
2474         u32 offset, offset_aligned;
2475
2476         if (!is_surface_linear(fb, color_plane)) {
2477                 unsigned int tile_size, tile_width, tile_height;
2478                 unsigned int tile_rows, tiles, pitch_tiles;
2479
2480                 tile_size = intel_tile_size(dev_priv);
2481                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2482
2483                 if (drm_rotation_90_or_270(rotation)) {
2484                         pitch_tiles = pitch / tile_height;
2485                         swap(tile_width, tile_height);
2486                 } else {
2487                         pitch_tiles = pitch / (tile_width * cpp);
2488                 }
2489
2490                 tile_rows = *y / tile_height;
2491                 *y %= tile_height;
2492
2493                 tiles = *x / tile_width;
2494                 *x %= tile_width;
2495
2496                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2497
2498                 offset_aligned = offset;
2499                 if (alignment)
2500                         offset_aligned = rounddown(offset_aligned, alignment);
2501
2502                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2503                                          tile_size, pitch_tiles,
2504                                          offset, offset_aligned);
2505         } else {
2506                 offset = *y * pitch + *x * cpp;
2507                 offset_aligned = offset;
2508                 if (alignment) {
2509                         offset_aligned = rounddown(offset_aligned, alignment);
2510                         *y = (offset % alignment) / pitch;
2511                         *x = ((offset % alignment) - *y * pitch) / cpp;
2512                 } else {
2513                         *y = *x = 0;
2514                 }
2515         }
2516
2517         return offset_aligned;
2518 }
2519
2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2521                                               const struct intel_plane_state *state,
2522                                               int color_plane)
2523 {
2524         struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2525         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2526         const struct drm_framebuffer *fb = state->hw.fb;
2527         unsigned int rotation = state->hw.rotation;
2528         int pitch = state->color_plane[color_plane].stride;
2529         u32 alignment;
2530
2531         if (intel_plane->id == PLANE_CURSOR)
2532                 alignment = intel_cursor_alignment(dev_priv);
2533         else
2534                 alignment = intel_surf_alignment(fb, color_plane);
2535
2536         return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2537                                             pitch, rotation, alignment);
2538 }
2539
2540 /* Convert the fb->offset[] into x/y offsets */
2541 static int intel_fb_offset_to_xy(int *x, int *y,
2542                                  const struct drm_framebuffer *fb,
2543                                  int color_plane)
2544 {
2545         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2546         unsigned int height;
2547         u32 alignment;
2548
2549         if (INTEL_GEN(dev_priv) >= 12 &&
2550             is_semiplanar_uv_plane(fb, color_plane))
2551                 alignment = intel_tile_row_size(fb, color_plane);
2552         else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2553                 alignment = intel_tile_size(dev_priv);
2554         else
2555                 alignment = 0;
2556
2557         if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2558                 drm_dbg_kms(&dev_priv->drm,
2559                             "Misaligned offset 0x%08x for color plane %d\n",
2560                             fb->offsets[color_plane], color_plane);
2561                 return -EINVAL;
2562         }
2563
2564         height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2565         height = ALIGN(height, intel_tile_height(fb, color_plane));
2566
2567         /* Catch potential overflows early */
2568         if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2569                             fb->offsets[color_plane])) {
2570                 drm_dbg_kms(&dev_priv->drm,
2571                             "Bad offset 0x%08x or pitch %d for color plane %d\n",
2572                             fb->offsets[color_plane], fb->pitches[color_plane],
2573                             color_plane);
2574                 return -ERANGE;
2575         }
2576
2577         *x = 0;
2578         *y = 0;
2579
2580         intel_adjust_aligned_offset(x, y,
2581                                     fb, color_plane, DRM_MODE_ROTATE_0,
2582                                     fb->pitches[color_plane],
2583                                     fb->offsets[color_plane], 0);
2584
2585         return 0;
2586 }
2587
2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2589 {
2590         switch (fb_modifier) {
2591         case I915_FORMAT_MOD_X_TILED:
2592                 return I915_TILING_X;
2593         case I915_FORMAT_MOD_Y_TILED:
2594         case I915_FORMAT_MOD_Y_TILED_CCS:
2595         case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2596         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2597                 return I915_TILING_Y;
2598         default:
2599                 return I915_TILING_NONE;
2600         }
2601 }
2602
2603 /*
2604  * From the Sky Lake PRM:
2605  * "The Color Control Surface (CCS) contains the compression status of
2606  *  the cache-line pairs. The compression state of the cache-line pair
2607  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2608  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2609  *  cache-line-pairs. CCS is always Y tiled."
2610  *
2611  * Since cache line pairs refers to horizontally adjacent cache lines,
2612  * each cache line in the CCS corresponds to an area of 32x16 cache
2613  * lines on the main surface. Since each pixel is 4 bytes, this gives
2614  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2615  * main surface.
2616  */
2617 static const struct drm_format_info skl_ccs_formats[] = {
2618         { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2619           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2620         { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2621           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2622         { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2623           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2624         { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2625           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2626 };
2627
2628 /*
2629  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2630  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2631  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2632  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2633  * the main surface.
2634  */
2635 static const struct drm_format_info gen12_ccs_formats[] = {
2636         { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2637           .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638           .hsub = 1, .vsub = 1, },
2639         { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2640           .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641           .hsub = 1, .vsub = 1, },
2642         { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2643           .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644           .hsub = 1, .vsub = 1, .has_alpha = true },
2645         { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2646           .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647           .hsub = 1, .vsub = 1, .has_alpha = true },
2648         { .format = DRM_FORMAT_YUYV, .num_planes = 2,
2649           .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650           .hsub = 2, .vsub = 1, .is_yuv = true },
2651         { .format = DRM_FORMAT_YVYU, .num_planes = 2,
2652           .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653           .hsub = 2, .vsub = 1, .is_yuv = true },
2654         { .format = DRM_FORMAT_UYVY, .num_planes = 2,
2655           .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656           .hsub = 2, .vsub = 1, .is_yuv = true },
2657         { .format = DRM_FORMAT_VYUY, .num_planes = 2,
2658           .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2659           .hsub = 2, .vsub = 1, .is_yuv = true },
2660         { .format = DRM_FORMAT_NV12, .num_planes = 4,
2661           .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2662           .hsub = 2, .vsub = 2, .is_yuv = true },
2663         { .format = DRM_FORMAT_P010, .num_planes = 4,
2664           .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665           .hsub = 2, .vsub = 2, .is_yuv = true },
2666         { .format = DRM_FORMAT_P012, .num_planes = 4,
2667           .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668           .hsub = 2, .vsub = 2, .is_yuv = true },
2669         { .format = DRM_FORMAT_P016, .num_planes = 4,
2670           .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2671           .hsub = 2, .vsub = 2, .is_yuv = true },
2672 };
2673
2674 static const struct drm_format_info *
2675 lookup_format_info(const struct drm_format_info formats[],
2676                    int num_formats, u32 format)
2677 {
2678         int i;
2679
2680         for (i = 0; i < num_formats; i++) {
2681                 if (formats[i].format == format)
2682                         return &formats[i];
2683         }
2684
2685         return NULL;
2686 }
2687
2688 static const struct drm_format_info *
2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2690 {
2691         switch (cmd->modifier[0]) {
2692         case I915_FORMAT_MOD_Y_TILED_CCS:
2693         case I915_FORMAT_MOD_Yf_TILED_CCS:
2694                 return lookup_format_info(skl_ccs_formats,
2695                                           ARRAY_SIZE(skl_ccs_formats),
2696                                           cmd->pixel_format);
2697         case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2698         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2699                 return lookup_format_info(gen12_ccs_formats,
2700                                           ARRAY_SIZE(gen12_ccs_formats),
2701                                           cmd->pixel_format);
2702         default:
2703                 return NULL;
2704         }
2705 }
2706
2707 bool is_ccs_modifier(u64 modifier)
2708 {
2709         return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2710                modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2711                modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2712                modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2713 }
2714
2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2716 {
2717         return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2718                             512) * 64;
2719 }
2720
2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2722                               u32 pixel_format, u64 modifier)
2723 {
2724         struct intel_crtc *crtc;
2725         struct intel_plane *plane;
2726
2727         /*
2728          * We assume the primary plane for pipe A has
2729          * the highest stride limits of them all,
2730          * if in case pipe A is disabled, use the first pipe from pipe_mask.
2731          */
2732         crtc = intel_get_first_crtc(dev_priv);
2733         if (!crtc)
2734                 return 0;
2735
2736         plane = to_intel_plane(crtc->base.primary);
2737
2738         return plane->max_stride(plane, pixel_format, modifier,
2739                                  DRM_MODE_ROTATE_0);
2740 }
2741
2742 static
2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2744                         u32 pixel_format, u64 modifier)
2745 {
2746         /*
2747          * Arbitrary limit for gen4+ chosen to match the
2748          * render engine max stride.
2749          *
2750          * The new CCS hash mode makes remapping impossible
2751          */
2752         if (!is_ccs_modifier(modifier)) {
2753                 if (INTEL_GEN(dev_priv) >= 7)
2754                         return 256*1024;
2755                 else if (INTEL_GEN(dev_priv) >= 4)
2756                         return 128*1024;
2757         }
2758
2759         return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2760 }
2761
2762 static u32
2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2764 {
2765         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2766         u32 tile_width;
2767
2768         if (is_surface_linear(fb, color_plane)) {
2769                 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2770                                                            fb->format->format,
2771                                                            fb->modifier);
2772
2773                 /*
2774                  * To make remapping with linear generally feasible
2775                  * we need the stride to be page aligned.
2776                  */
2777                 if (fb->pitches[color_plane] > max_stride &&
2778                     !is_ccs_modifier(fb->modifier))
2779                         return intel_tile_size(dev_priv);
2780                 else
2781                         return 64;
2782         }
2783
2784         tile_width = intel_tile_width_bytes(fb, color_plane);
2785         if (is_ccs_modifier(fb->modifier)) {
2786                 /*
2787                  * Display WA #0531: skl,bxt,kbl,glk
2788                  *
2789                  * Render decompression and plane width > 3840
2790                  * combined with horizontal panning requires the
2791                  * plane stride to be a multiple of 4. We'll just
2792                  * require the entire fb to accommodate that to avoid
2793                  * potential runtime errors at plane configuration time.
2794                  */
2795                 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2796                         tile_width *= 4;
2797                 /*
2798                  * The main surface pitch must be padded to a multiple of four
2799                  * tile widths.
2800                  */
2801                 else if (INTEL_GEN(dev_priv) >= 12)
2802                         tile_width *= 4;
2803         }
2804         return tile_width;
2805 }
2806
2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2808 {
2809         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2810         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2811         const struct drm_framebuffer *fb = plane_state->hw.fb;
2812         int i;
2813
2814         /* We don't want to deal with remapping with cursors */
2815         if (plane->id == PLANE_CURSOR)
2816                 return false;
2817
2818         /*
2819          * The display engine limits already match/exceed the
2820          * render engine limits, so not much point in remapping.
2821          * Would also need to deal with the fence POT alignment
2822          * and gen2 2KiB GTT tile size.
2823          */
2824         if (INTEL_GEN(dev_priv) < 4)
2825                 return false;
2826
2827         /*
2828          * The new CCS hash mode isn't compatible with remapping as
2829          * the virtual address of the pages affects the compressed data.
2830          */
2831         if (is_ccs_modifier(fb->modifier))
2832                 return false;
2833
2834         /* Linear needs a page aligned stride for remapping */
2835         if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2836                 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2837
2838                 for (i = 0; i < fb->format->num_planes; i++) {
2839                         if (fb->pitches[i] & alignment)
2840                                 return false;
2841                 }
2842         }
2843
2844         return true;
2845 }
2846
2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2848 {
2849         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2850         const struct drm_framebuffer *fb = plane_state->hw.fb;
2851         unsigned int rotation = plane_state->hw.rotation;
2852         u32 stride, max_stride;
2853
2854         /*
2855          * No remapping for invisible planes since we don't have
2856          * an actual source viewport to remap.
2857          */
2858         if (!plane_state->uapi.visible)
2859                 return false;
2860
2861         if (!intel_plane_can_remap(plane_state))
2862                 return false;
2863
2864         /*
2865          * FIXME: aux plane limits on gen9+ are
2866          * unclear in Bspec, for now no checking.
2867          */
2868         stride = intel_fb_pitch(fb, 0, rotation);
2869         max_stride = plane->max_stride(plane, fb->format->format,
2870                                        fb->modifier, rotation);
2871
2872         return stride > max_stride;
2873 }
2874
2875 static void
2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2877                                const struct drm_framebuffer *fb,
2878                                int color_plane)
2879 {
2880         int main_plane;
2881
2882         if (color_plane == 0) {
2883                 *hsub = 1;
2884                 *vsub = 1;
2885
2886                 return;
2887         }
2888
2889         /*
2890          * TODO: Deduct the subsampling from the char block for all CCS
2891          * formats and planes.
2892          */
2893         if (!is_gen12_ccs_plane(fb, color_plane)) {
2894                 *hsub = fb->format->hsub;
2895                 *vsub = fb->format->vsub;
2896
2897                 return;
2898         }
2899
2900         main_plane = ccs_to_main_plane(fb, color_plane);
2901         *hsub = drm_format_info_block_width(fb->format, color_plane) /
2902                 drm_format_info_block_width(fb->format, main_plane);
2903
2904         /*
2905          * The min stride check in the core framebuffer_check() function
2906          * assumes that format->hsub applies to every plane except for the
2907          * first plane. That's incorrect for the CCS AUX plane of the first
2908          * plane, but for the above check to pass we must define the block
2909          * width with that subsampling applied to it. Adjust the width here
2910          * accordingly, so we can calculate the actual subsampling factor.
2911          */
2912         if (main_plane == 0)
2913                 *hsub *= fb->format->hsub;
2914
2915         *vsub = 32;
2916 }
2917 static int
2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2919 {
2920         struct drm_i915_private *i915 = to_i915(fb->dev);
2921         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2922         int main_plane;
2923         int hsub, vsub;
2924         int tile_width, tile_height;
2925         int ccs_x, ccs_y;
2926         int main_x, main_y;
2927
2928         if (!is_ccs_plane(fb, ccs_plane))
2929                 return 0;
2930
2931         intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2932         intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2933
2934         tile_width *= hsub;
2935         tile_height *= vsub;
2936
2937         ccs_x = (x * hsub) % tile_width;
2938         ccs_y = (y * vsub) % tile_height;
2939
2940         main_plane = ccs_to_main_plane(fb, ccs_plane);
2941         main_x = intel_fb->normal[main_plane].x % tile_width;
2942         main_y = intel_fb->normal[main_plane].y % tile_height;
2943
2944         /*
2945          * CCS doesn't have its own x/y offset register, so the intra CCS tile
2946          * x/y offsets must match between CCS and the main surface.
2947          */
2948         if (main_x != ccs_x || main_y != ccs_y) {
2949                 drm_dbg_kms(&i915->drm,
2950                               "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2951                               main_x, main_y,
2952                               ccs_x, ccs_y,
2953                               intel_fb->normal[main_plane].x,
2954                               intel_fb->normal[main_plane].y,
2955                               x, y);
2956                 return -EINVAL;
2957         }
2958
2959         return 0;
2960 }
2961
2962 static void
2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2964 {
2965         int main_plane = is_ccs_plane(fb, color_plane) ?
2966                          ccs_to_main_plane(fb, color_plane) : 0;
2967         int main_hsub, main_vsub;
2968         int hsub, vsub;
2969
2970         intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2971         intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2972         *w = fb->width / main_hsub / hsub;
2973         *h = fb->height / main_vsub / vsub;
2974 }
2975
2976 /*
2977  * Setup the rotated view for an FB plane and return the size the GTT mapping
2978  * requires for this view.
2979  */
2980 static u32
2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2982                   u32 gtt_offset_rotated, int x, int y,
2983                   unsigned int width, unsigned int height,
2984                   unsigned int tile_size,
2985                   unsigned int tile_width, unsigned int tile_height,
2986                   struct drm_framebuffer *fb)
2987 {
2988         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2989         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2990         unsigned int pitch_tiles;
2991         struct drm_rect r;
2992
2993         /* Y or Yf modifiers required for 90/270 rotation */
2994         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2995             fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2996                 return 0;
2997
2998         if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2999                 return 0;
3000
3001         rot_info->plane[plane] = *plane_info;
3002
3003         intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3004
3005         /* rotate the x/y offsets to match the GTT view */
3006         drm_rect_init(&r, x, y, width, height);
3007         drm_rect_rotate(&r,
3008                         plane_info->width * tile_width,
3009                         plane_info->height * tile_height,
3010                         DRM_MODE_ROTATE_270);
3011         x = r.x1;
3012         y = r.y1;
3013
3014         /* rotate the tile dimensions to match the GTT view */
3015         pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3016         swap(tile_width, tile_height);
3017
3018         /*
3019          * We only keep the x/y offsets, so push all of the
3020          * gtt offset into the x/y offsets.
3021          */
3022         intel_adjust_tile_offset(&x, &y,
3023                                  tile_width, tile_height,
3024                                  tile_size, pitch_tiles,
3025                                  gtt_offset_rotated * tile_size, 0);
3026
3027         /*
3028          * First pixel of the framebuffer from
3029          * the start of the rotated gtt mapping.
3030          */
3031         intel_fb->rotated[plane].x = x;
3032         intel_fb->rotated[plane].y = y;
3033
3034         return plane_info->width * plane_info->height;
3035 }
3036
3037 static int
3038 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3039                    struct drm_framebuffer *fb)
3040 {
3041         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3042         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3043         u32 gtt_offset_rotated = 0;
3044         unsigned int max_size = 0;
3045         int i, num_planes = fb->format->num_planes;
3046         unsigned int tile_size = intel_tile_size(dev_priv);
3047
3048         for (i = 0; i < num_planes; i++) {
3049                 unsigned int width, height;
3050                 unsigned int cpp, size;
3051                 u32 offset;
3052                 int x, y;
3053                 int ret;
3054
3055                 cpp = fb->format->cpp[i];
3056                 intel_fb_plane_dims(&width, &height, fb, i);
3057
3058                 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3059                 if (ret) {
3060                         drm_dbg_kms(&dev_priv->drm,
3061                                     "bad fb plane %d offset: 0x%x\n",
3062                                     i, fb->offsets[i]);
3063                         return ret;
3064                 }
3065
3066                 ret = intel_fb_check_ccs_xy(fb, i, x, y);
3067                 if (ret)
3068                         return ret;
3069
3070                 /*
3071                  * The fence (if used) is aligned to the start of the object
3072                  * so having the framebuffer wrap around across the edge of the
3073                  * fenced region doesn't really work. We have no API to configure
3074                  * the fence start offset within the object (nor could we probably
3075                  * on gen2/3). So it's just easier if we just require that the
3076                  * fb layout agrees with the fence layout. We already check that the
3077                  * fb stride matches the fence stride elsewhere.
3078                  */
3079                 if (i == 0 && i915_gem_object_is_tiled(obj) &&
3080                     (x + width) * cpp > fb->pitches[i]) {
3081                         drm_dbg_kms(&dev_priv->drm,
3082                                     "bad fb plane %d offset: 0x%x\n",
3083                                      i, fb->offsets[i]);
3084                         return -EINVAL;
3085                 }
3086
3087                 /*
3088                  * First pixel of the framebuffer from
3089                  * the start of the normal gtt mapping.
3090                  */
3091                 intel_fb->normal[i].x = x;
3092                 intel_fb->normal[i].y = y;
3093
3094                 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3095                                                       fb->pitches[i],
3096                                                       DRM_MODE_ROTATE_0,
3097                                                       tile_size);
3098                 offset /= tile_size;
3099
3100                 if (!is_surface_linear(fb, i)) {
3101                         struct intel_remapped_plane_info plane_info;
3102                         unsigned int tile_width, tile_height;
3103
3104                         intel_tile_dims(fb, i, &tile_width, &tile_height);
3105
3106                         plane_info.offset = offset;
3107                         plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3108                                                          tile_width * cpp);
3109                         plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3110                         plane_info.height = DIV_ROUND_UP(y + height,
3111                                                          tile_height);
3112
3113                         /* how many tiles does this plane need */
3114                         size = plane_info.stride * plane_info.height;
3115                         /*
3116                          * If the plane isn't horizontally tile aligned,
3117                          * we need one more tile.
3118                          */
3119                         if (x != 0)
3120                                 size++;
3121
3122                         gtt_offset_rotated +=
3123                                 setup_fb_rotation(i, &plane_info,
3124                                                   gtt_offset_rotated,
3125                                                   x, y, width, height,
3126                                                   tile_size,
3127                                                   tile_width, tile_height,
3128                                                   fb);
3129                 } else {
3130                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3131                                             x * cpp, tile_size);
3132                 }
3133
3134                 /* how many tiles in total needed in the bo */
3135                 max_size = max(max_size, offset + size);
3136         }
3137
3138         if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3139                 drm_dbg_kms(&dev_priv->drm,
3140                             "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3141                             mul_u32_u32(max_size, tile_size), obj->base.size);
3142                 return -EINVAL;
3143         }
3144
3145         return 0;
3146 }
3147
3148 static void
3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3150 {
3151         struct drm_i915_private *dev_priv =
3152                 to_i915(plane_state->uapi.plane->dev);
3153         struct drm_framebuffer *fb = plane_state->hw.fb;
3154         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3155         struct intel_rotation_info *info = &plane_state->view.rotated;
3156         unsigned int rotation = plane_state->hw.rotation;
3157         int i, num_planes = fb->format->num_planes;
3158         unsigned int tile_size = intel_tile_size(dev_priv);
3159         unsigned int src_x, src_y;
3160         unsigned int src_w, src_h;
3161         u32 gtt_offset = 0;
3162
3163         memset(&plane_state->view, 0, sizeof(plane_state->view));
3164         plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3165                 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3166
3167         src_x = plane_state->uapi.src.x1 >> 16;
3168         src_y = plane_state->uapi.src.y1 >> 16;
3169         src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3170         src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3171
3172         drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3173
3174         /* Make src coordinates relative to the viewport */
3175         drm_rect_translate(&plane_state->uapi.src,
3176                            -(src_x << 16), -(src_y << 16));
3177
3178         /* Rotate src coordinates to match rotated GTT view */
3179         if (drm_rotation_90_or_270(rotation))
3180                 drm_rect_rotate(&plane_state->uapi.src,
3181                                 src_w << 16, src_h << 16,
3182                                 DRM_MODE_ROTATE_270);
3183
3184         for (i = 0; i < num_planes; i++) {
3185                 unsigned int hsub = i ? fb->format->hsub : 1;
3186                 unsigned int vsub = i ? fb->format->vsub : 1;
3187                 unsigned int cpp = fb->format->cpp[i];
3188                 unsigned int tile_width, tile_height;
3189                 unsigned int width, height;
3190                 unsigned int pitch_tiles;
3191                 unsigned int x, y;
3192                 u32 offset;
3193
3194                 intel_tile_dims(fb, i, &tile_width, &tile_height);
3195
3196                 x = src_x / hsub;
3197                 y = src_y / vsub;
3198                 width = src_w / hsub;
3199                 height = src_h / vsub;
3200
3201                 /*
3202                  * First pixel of the src viewport from the
3203                  * start of the normal gtt mapping.
3204                  */
3205                 x += intel_fb->normal[i].x;
3206                 y += intel_fb->normal[i].y;
3207
3208                 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3209                                                       fb, i, fb->pitches[i],
3210                                                       DRM_MODE_ROTATE_0, tile_size);
3211                 offset /= tile_size;
3212
3213                 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3214                 info->plane[i].offset = offset;
3215                 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3216                                                      tile_width * cpp);
3217                 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3218                 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3219
3220                 if (drm_rotation_90_or_270(rotation)) {
3221                         struct drm_rect r;
3222
3223                         /* rotate the x/y offsets to match the GTT view */
3224                         drm_rect_init(&r, x, y, width, height);
3225                         drm_rect_rotate(&r,
3226                                         info->plane[i].width * tile_width,
3227                                         info->plane[i].height * tile_height,
3228                                         DRM_MODE_ROTATE_270);
3229                         x = r.x1;
3230                         y = r.y1;
3231
3232                         pitch_tiles = info->plane[i].height;
3233                         plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3234
3235                         /* rotate the tile dimensions to match the GTT view */
3236                         swap(tile_width, tile_height);
3237                 } else {
3238                         pitch_tiles = info->plane[i].width;
3239                         plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3240                 }
3241
3242                 /*
3243                  * We only keep the x/y offsets, so push all of the
3244                  * gtt offset into the x/y offsets.
3245                  */
3246                 intel_adjust_tile_offset(&x, &y,
3247                                          tile_width, tile_height,
3248                                          tile_size, pitch_tiles,
3249                                          gtt_offset * tile_size, 0);
3250
3251                 gtt_offset += info->plane[i].width * info->plane[i].height;
3252
3253                 plane_state->color_plane[i].offset = 0;
3254                 plane_state->color_plane[i].x = x;
3255                 plane_state->color_plane[i].y = y;
3256         }
3257 }
3258
3259 static int
3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3261 {
3262         const struct intel_framebuffer *fb =
3263                 to_intel_framebuffer(plane_state->hw.fb);
3264         unsigned int rotation = plane_state->hw.rotation;
3265         int i, num_planes;
3266
3267         if (!fb)
3268                 return 0;
3269
3270         num_planes = fb->base.format->num_planes;
3271
3272         if (intel_plane_needs_remap(plane_state)) {
3273                 intel_plane_remap_gtt(plane_state);
3274
3275                 /*
3276                  * Sometimes even remapping can't overcome
3277                  * the stride limitations :( Can happen with
3278                  * big plane sizes and suitably misaligned
3279                  * offsets.
3280                  */
3281                 return intel_plane_check_stride(plane_state);
3282         }
3283
3284         intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3285
3286         for (i = 0; i < num_planes; i++) {
3287                 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3288                 plane_state->color_plane[i].offset = 0;
3289
3290                 if (drm_rotation_90_or_270(rotation)) {
3291                         plane_state->color_plane[i].x = fb->rotated[i].x;
3292                         plane_state->color_plane[i].y = fb->rotated[i].y;
3293                 } else {
3294                         plane_state->color_plane[i].x = fb->normal[i].x;
3295                         plane_state->color_plane[i].y = fb->normal[i].y;
3296                 }
3297         }
3298
3299         /* Rotate src coordinates to match rotated GTT view */
3300         if (drm_rotation_90_or_270(rotation))
3301                 drm_rect_rotate(&plane_state->uapi.src,
3302                                 fb->base.width << 16, fb->base.height << 16,
3303                                 DRM_MODE_ROTATE_270);
3304
3305         return intel_plane_check_stride(plane_state);
3306 }
3307
3308 static int i9xx_format_to_fourcc(int format)
3309 {
3310         switch (format) {
3311         case DISPPLANE_8BPP:
3312                 return DRM_FORMAT_C8;
3313         case DISPPLANE_BGRA555:
3314                 return DRM_FORMAT_ARGB1555;
3315         case DISPPLANE_BGRX555:
3316                 return DRM_FORMAT_XRGB1555;
3317         case DISPPLANE_BGRX565:
3318                 return DRM_FORMAT_RGB565;
3319         default:
3320         case DISPPLANE_BGRX888:
3321                 return DRM_FORMAT_XRGB8888;
3322         case DISPPLANE_RGBX888:
3323                 return DRM_FORMAT_XBGR8888;
3324         case DISPPLANE_BGRA888:
3325                 return DRM_FORMAT_ARGB8888;
3326         case DISPPLANE_RGBA888:
3327                 return DRM_FORMAT_ABGR8888;
3328         case DISPPLANE_BGRX101010:
3329                 return DRM_FORMAT_XRGB2101010;
3330         case DISPPLANE_RGBX101010:
3331                 return DRM_FORMAT_XBGR2101010;
3332         case DISPPLANE_BGRA101010:
3333                 return DRM_FORMAT_ARGB2101010;
3334         case DISPPLANE_RGBA101010:
3335                 return DRM_FORMAT_ABGR2101010;
3336         case DISPPLANE_RGBX161616:
3337                 return DRM_FORMAT_XBGR16161616F;
3338         }
3339 }
3340
3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3342 {
3343         switch (format) {
3344         case PLANE_CTL_FORMAT_RGB_565:
3345                 return DRM_FORMAT_RGB565;
3346         case PLANE_CTL_FORMAT_NV12:
3347                 return DRM_FORMAT_NV12;
3348         case PLANE_CTL_FORMAT_XYUV:
3349                 return DRM_FORMAT_XYUV8888;
3350         case PLANE_CTL_FORMAT_P010:
3351                 return DRM_FORMAT_P010;
3352         case PLANE_CTL_FORMAT_P012:
3353                 return DRM_FORMAT_P012;
3354         case PLANE_CTL_FORMAT_P016:
3355                 return DRM_FORMAT_P016;
3356         case PLANE_CTL_FORMAT_Y210:
3357                 return DRM_FORMAT_Y210;
3358         case PLANE_CTL_FORMAT_Y212:
3359                 return DRM_FORMAT_Y212;
3360         case PLANE_CTL_FORMAT_Y216:
3361                 return DRM_FORMAT_Y216;
3362         case PLANE_CTL_FORMAT_Y410:
3363                 return DRM_FORMAT_XVYU2101010;
3364         case PLANE_CTL_FORMAT_Y412:
3365                 return DRM_FORMAT_XVYU12_16161616;
3366         case PLANE_CTL_FORMAT_Y416:
3367                 return DRM_FORMAT_XVYU16161616;
3368         default:
3369         case PLANE_CTL_FORMAT_XRGB_8888:
3370                 if (rgb_order) {
3371                         if (alpha)
3372                                 return DRM_FORMAT_ABGR8888;
3373                         else
3374                                 return DRM_FORMAT_XBGR8888;
3375                 } else {
3376                         if (alpha)
3377                                 return DRM_FORMAT_ARGB8888;
3378                         else
3379                                 return DRM_FORMAT_XRGB8888;
3380                 }
3381         case PLANE_CTL_FORMAT_XRGB_2101010:
3382                 if (rgb_order) {
3383                         if (alpha)
3384                                 return DRM_FORMAT_ABGR2101010;
3385                         else
3386                                 return DRM_FORMAT_XBGR2101010;
3387                 } else {
3388                         if (alpha)
3389                                 return DRM_FORMAT_ARGB2101010;
3390                         else
3391                                 return DRM_FORMAT_XRGB2101010;
3392                 }
3393         case PLANE_CTL_FORMAT_XRGB_16161616F:
3394                 if (rgb_order) {
3395                         if (alpha)
3396                                 return DRM_FORMAT_ABGR16161616F;
3397                         else
3398                                 return DRM_FORMAT_XBGR16161616F;
3399                 } else {
3400                         if (alpha)
3401                                 return DRM_FORMAT_ARGB16161616F;
3402                         else
3403                                 return DRM_FORMAT_XRGB16161616F;
3404                 }
3405         }
3406 }
3407
3408 static struct i915_vma *
3409 initial_plane_vma(struct drm_i915_private *i915,
3410                   struct intel_initial_plane_config *plane_config)
3411 {
3412         struct drm_i915_gem_object *obj;
3413         struct i915_vma *vma;
3414         u32 base, size;
3415
3416         if (plane_config->size == 0)
3417                 return NULL;
3418
3419         base = round_down(plane_config->base,
3420                           I915_GTT_MIN_ALIGNMENT);
3421         size = round_up(plane_config->base + plane_config->size,
3422                         I915_GTT_MIN_ALIGNMENT);
3423         size -= base;
3424
3425         /*
3426          * If the FB is too big, just don't use it since fbdev is not very
3427          * important and we should probably use that space with FBC or other
3428          * features.
3429          */
3430         if (size * 2 > i915->stolen_usable_size)
3431                 return NULL;
3432
3433         obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3434         if (IS_ERR(obj))
3435                 return NULL;
3436
3437         switch (plane_config->tiling) {
3438         case I915_TILING_NONE:
3439                 break;
3440         case I915_TILING_X:
3441         case I915_TILING_Y:
3442                 obj->tiling_and_stride =
3443                         plane_config->fb->base.pitches[0] |
3444                         plane_config->tiling;
3445                 break;
3446         default:
3447                 MISSING_CASE(plane_config->tiling);
3448                 goto err_obj;
3449         }
3450
3451         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3452         if (IS_ERR(vma))
3453                 goto err_obj;
3454
3455         if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3456                 goto err_obj;
3457
3458         if (i915_gem_object_is_tiled(obj) &&
3459             !i915_vma_is_map_and_fenceable(vma))
3460                 goto err_obj;
3461
3462         return vma;
3463
3464 err_obj:
3465         i915_gem_object_put(obj);
3466         return NULL;
3467 }
3468
3469 static bool
3470 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3471                               struct intel_initial_plane_config *plane_config)
3472 {
3473         struct drm_device *dev = crtc->base.dev;
3474         struct drm_i915_private *dev_priv = to_i915(dev);
3475         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3476         struct drm_framebuffer *fb = &plane_config->fb->base;
3477         struct i915_vma *vma;
3478
3479         switch (fb->modifier) {
3480         case DRM_FORMAT_MOD_LINEAR:
3481         case I915_FORMAT_MOD_X_TILED:
3482         case I915_FORMAT_MOD_Y_TILED:
3483                 break;
3484         default:
3485                 drm_dbg(&dev_priv->drm,
3486                         "Unsupported modifier for initial FB: 0x%llx\n",
3487                         fb->modifier);
3488                 return false;
3489         }
3490
3491         vma = initial_plane_vma(dev_priv, plane_config);
3492         if (!vma)
3493                 return false;
3494
3495         mode_cmd.pixel_format = fb->format->format;
3496         mode_cmd.width = fb->width;
3497         mode_cmd.height = fb->height;
3498         mode_cmd.pitches[0] = fb->pitches[0];
3499         mode_cmd.modifier[0] = fb->modifier;
3500         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3501
3502         if (intel_framebuffer_init(to_intel_framebuffer(fb),
3503                                    vma->obj, &mode_cmd)) {
3504                 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3505                 goto err_vma;
3506         }
3507
3508         plane_config->vma = vma;
3509         return true;
3510
3511 err_vma:
3512         i915_vma_put(vma);
3513         return false;
3514 }
3515
3516 static void
3517 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3518                         struct intel_plane_state *plane_state,
3519                         bool visible)
3520 {
3521         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3522
3523         plane_state->uapi.visible = visible;
3524
3525         if (visible)
3526                 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3527         else
3528                 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3529 }
3530
3531 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3532 {
3533         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3534         struct drm_plane *plane;
3535
3536         /*
3537          * Active_planes aliases if multiple "primary" or cursor planes
3538          * have been used on the same (or wrong) pipe. plane_mask uses
3539          * unique ids, hence we can use that to reconstruct active_planes.
3540          */
3541         crtc_state->active_planes = 0;
3542
3543         drm_for_each_plane_mask(plane, &dev_priv->drm,
3544                                 crtc_state->uapi.plane_mask)
3545                 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3546 }
3547
3548 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3549                                          struct intel_plane *plane)
3550 {
3551         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3552         struct intel_crtc_state *crtc_state =
3553                 to_intel_crtc_state(crtc->base.state);
3554         struct intel_plane_state *plane_state =
3555                 to_intel_plane_state(plane->base.state);
3556
3557         drm_dbg_kms(&dev_priv->drm,
3558                     "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3559                     plane->base.base.id, plane->base.name,
3560                     crtc->base.base.id, crtc->base.name);
3561
3562         intel_set_plane_visible(crtc_state, plane_state, false);
3563         fixup_active_planes(crtc_state);
3564         crtc_state->data_rate[plane->id] = 0;
3565         crtc_state->min_cdclk[plane->id] = 0;
3566
3567         if (plane->id == PLANE_PRIMARY)
3568                 hsw_disable_ips(crtc_state);
3569
3570         /*
3571          * Vblank time updates from the shadow to live plane control register
3572          * are blocked if the memory self-refresh mode is active at that
3573          * moment. So to make sure the plane gets truly disabled, disable
3574          * first the self-refresh mode. The self-refresh enable bit in turn
3575          * will be checked/applied by the HW only at the next frame start
3576          * event which is after the vblank start event, so we need to have a
3577          * wait-for-vblank between disabling the plane and the pipe.
3578          */
3579         if (HAS_GMCH(dev_priv) &&
3580             intel_set_memory_cxsr(dev_priv, false))
3581                 intel_wait_for_vblank(dev_priv, crtc->pipe);
3582
3583         /*
3584          * Gen2 reports pipe underruns whenever all planes are disabled.
3585          * So disable underrun reporting before all the planes get disabled.
3586          */
3587         if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3588                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3589
3590         intel_disable_plane(plane, crtc_state);
3591 }
3592
3593 static struct intel_frontbuffer *
3594 to_intel_frontbuffer(struct drm_framebuffer *fb)
3595 {
3596         return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3597 }
3598
3599 static void
3600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3601                              struct intel_initial_plane_config *plane_config)
3602 {
3603         struct drm_device *dev = intel_crtc->base.dev;
3604         struct drm_i915_private *dev_priv = to_i915(dev);
3605         struct drm_crtc *c;
3606         struct drm_plane *primary = intel_crtc->base.primary;
3607         struct drm_plane_state *plane_state = primary->state;
3608         struct intel_plane *intel_plane = to_intel_plane(primary);
3609         struct intel_plane_state *intel_state =
3610                 to_intel_plane_state(plane_state);
3611         struct drm_framebuffer *fb;
3612         struct i915_vma *vma;
3613
3614         if (!plane_config->fb)
3615                 return;
3616
3617         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3618                 fb = &plane_config->fb->base;
3619                 vma = plane_config->vma;
3620                 goto valid_fb;
3621         }
3622
3623         /*
3624          * Failed to alloc the obj, check to see if we should share
3625          * an fb with another CRTC instead
3626          */
3627         for_each_crtc(dev, c) {
3628                 struct intel_plane_state *state;
3629
3630                 if (c == &intel_crtc->base)
3631                         continue;
3632
3633                 if (!to_intel_crtc(c)->active)
3634                         continue;
3635
3636                 state = to_intel_plane_state(c->primary->state);
3637                 if (!state->vma)
3638                         continue;
3639
3640                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3641                         fb = state->hw.fb;
3642                         vma = state->vma;
3643                         goto valid_fb;
3644                 }
3645         }
3646
3647         /*
3648          * We've failed to reconstruct the BIOS FB.  Current display state
3649          * indicates that the primary plane is visible, but has a NULL FB,
3650          * which will lead to problems later if we don't fix it up.  The
3651          * simplest solution is to just disable the primary plane now and
3652          * pretend the BIOS never had it enabled.
3653          */
3654         intel_plane_disable_noatomic(intel_crtc, intel_plane);
3655
3656         return;
3657
3658 valid_fb:
3659         intel_state->hw.rotation = plane_config->rotation;
3660         intel_fill_fb_ggtt_view(&intel_state->view, fb,
3661                                 intel_state->hw.rotation);
3662         intel_state->color_plane[0].stride =
3663                 intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3664
3665         __i915_vma_pin(vma);
3666         intel_state->vma = i915_vma_get(vma);
3667         if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3668                 if (vma->fence)
3669                         intel_state->flags |= PLANE_HAS_FENCE;
3670
3671         plane_state->src_x = 0;
3672         plane_state->src_y = 0;
3673         plane_state->src_w = fb->width << 16;
3674         plane_state->src_h = fb->height << 16;
3675
3676         plane_state->crtc_x = 0;
3677         plane_state->crtc_y = 0;
3678         plane_state->crtc_w = fb->width;
3679         plane_state->crtc_h = fb->height;
3680
3681         intel_state->uapi.src = drm_plane_state_src(plane_state);
3682         intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3683
3684         if (plane_config->tiling)
3685                 dev_priv->preserve_bios_swizzle = true;
3686
3687         plane_state->fb = fb;
3688         drm_framebuffer_get(fb);
3689
3690         plane_state->crtc = &intel_crtc->base;
3691         intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3692
3693         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3694
3695         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3696                   &to_intel_frontbuffer(fb)->bits);
3697 }
3698
3699 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3700                                int color_plane,
3701                                unsigned int rotation)
3702 {
3703         int cpp = fb->format->cpp[color_plane];
3704
3705         switch (fb->modifier) {
3706         case DRM_FORMAT_MOD_LINEAR:
3707         case I915_FORMAT_MOD_X_TILED:
3708                 /*
3709                  * Validated limit is 4k, but has 5k should
3710                  * work apart from the following features:
3711                  * - Ytile (already limited to 4k)
3712                  * - FP16 (already limited to 4k)
3713                  * - render compression (already limited to 4k)
3714                  * - KVMR sprite and cursor (don't care)
3715                  * - horizontal panning (TODO verify this)
3716                  * - pipe and plane scaling (TODO verify this)
3717                  */
3718                 if (cpp == 8)
3719                         return 4096;
3720                 else
3721                         return 5120;
3722         case I915_FORMAT_MOD_Y_TILED_CCS:
3723         case I915_FORMAT_MOD_Yf_TILED_CCS:
3724         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3725                 /* FIXME AUX plane? */
3726         case I915_FORMAT_MOD_Y_TILED:
3727         case I915_FORMAT_MOD_Yf_TILED:
3728                 if (cpp == 8)
3729                         return 2048;
3730                 else
3731                         return 4096;
3732         default:
3733                 MISSING_CASE(fb->modifier);
3734                 return 2048;
3735         }
3736 }
3737
3738 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3739                                int color_plane,
3740                                unsigned int rotation)
3741 {
3742         int cpp = fb->format->cpp[color_plane];
3743
3744         switch (fb->modifier) {
3745         case DRM_FORMAT_MOD_LINEAR:
3746         case I915_FORMAT_MOD_X_TILED:
3747                 if (cpp == 8)
3748                         return 4096;
3749                 else
3750                         return 5120;
3751         case I915_FORMAT_MOD_Y_TILED_CCS:
3752         case I915_FORMAT_MOD_Yf_TILED_CCS:
3753                 /* FIXME AUX plane? */
3754         case I915_FORMAT_MOD_Y_TILED:
3755         case I915_FORMAT_MOD_Yf_TILED:
3756                 if (cpp == 8)
3757                         return 2048;
3758                 else
3759                         return 5120;
3760         default:
3761                 MISSING_CASE(fb->modifier);
3762                 return 2048;
3763         }
3764 }
3765
3766 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3767 {
3768         /* Wa_14011264657, Wa_14011050563: gen11+ */
3769         switch (fb->format->format) {
3770         case DRM_FORMAT_C8:
3771                 return 18;
3772         case DRM_FORMAT_RGB565:
3773                 return 10;
3774         case DRM_FORMAT_XRGB8888:
3775         case DRM_FORMAT_XBGR8888:
3776         case DRM_FORMAT_ARGB8888:
3777         case DRM_FORMAT_ABGR8888:
3778         case DRM_FORMAT_XRGB2101010:
3779         case DRM_FORMAT_XBGR2101010:
3780         case DRM_FORMAT_ARGB2101010:
3781         case DRM_FORMAT_ABGR2101010:
3782         case DRM_FORMAT_XVYU2101010:
3783         case DRM_FORMAT_Y212:
3784         case DRM_FORMAT_Y216:
3785                 return 6;
3786         case DRM_FORMAT_NV12:
3787                 return 20;
3788         case DRM_FORMAT_P010:
3789         case DRM_FORMAT_P012:
3790         case DRM_FORMAT_P016:
3791                 return 12;
3792         case DRM_FORMAT_XRGB16161616F:
3793         case DRM_FORMAT_XBGR16161616F:
3794         case DRM_FORMAT_ARGB16161616F:
3795         case DRM_FORMAT_ABGR16161616F:
3796         case DRM_FORMAT_XVYU12_16161616:
3797         case DRM_FORMAT_XVYU16161616:
3798                 return 4;
3799         default:
3800                 return 1;
3801         }
3802 }
3803
3804 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3805                                int color_plane,
3806                                unsigned int rotation)
3807 {
3808         return 5120;
3809 }
3810
3811 static int skl_max_plane_height(void)
3812 {
3813         return 4096;
3814 }
3815
3816 static int icl_max_plane_height(void)
3817 {
3818         return 4320;
3819 }
3820
3821 static bool
3822 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3823                                int main_x, int main_y, u32 main_offset,
3824                                int ccs_plane)
3825 {
3826         const struct drm_framebuffer *fb = plane_state->hw.fb;
3827         int aux_x = plane_state->color_plane[ccs_plane].x;
3828         int aux_y = plane_state->color_plane[ccs_plane].y;
3829         u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3830         u32 alignment = intel_surf_alignment(fb, ccs_plane);
3831         int hsub;
3832         int vsub;
3833
3834         intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3835         while (aux_offset >= main_offset && aux_y <= main_y) {
3836                 int x, y;
3837
3838                 if (aux_x == main_x && aux_y == main_y)
3839                         break;
3840
3841                 if (aux_offset == 0)
3842                         break;
3843
3844                 x = aux_x / hsub;
3845                 y = aux_y / vsub;
3846                 aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3847                                                                plane_state,
3848                                                                ccs_plane,
3849                                                                aux_offset,
3850                                                                aux_offset -
3851                                                                 alignment);
3852                 aux_x = x * hsub + aux_x % hsub;
3853                 aux_y = y * vsub + aux_y % vsub;
3854         }
3855
3856         if (aux_x != main_x || aux_y != main_y)
3857                 return false;
3858
3859         plane_state->color_plane[ccs_plane].offset = aux_offset;
3860         plane_state->color_plane[ccs_plane].x = aux_x;
3861         plane_state->color_plane[ccs_plane].y = aux_y;
3862
3863         return true;
3864 }
3865
3866 unsigned int
3867 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3868 {
3869         int x = 0, y = 0;
3870
3871         intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3872                                           plane_state->color_plane[0].offset, 0);
3873
3874         return y;
3875 }
3876
3877 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3878 {
3879         struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3880         const struct drm_framebuffer *fb = plane_state->hw.fb;
3881         unsigned int rotation = plane_state->hw.rotation;
3882         int x = plane_state->uapi.src.x1 >> 16;
3883         int y = plane_state->uapi.src.y1 >> 16;
3884         int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3885         int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3886         int max_width, min_width, max_height;
3887         u32 alignment, offset;
3888         int aux_plane = intel_main_to_aux_plane(fb, 0);
3889         u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3890
3891         if (INTEL_GEN(dev_priv) >= 11) {
3892                 max_width = icl_max_plane_width(fb, 0, rotation);
3893                 min_width = icl_min_plane_width(fb);
3894         } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3895                 max_width = glk_max_plane_width(fb, 0, rotation);
3896                 min_width = 1;
3897         } else {
3898                 max_width = skl_max_plane_width(fb, 0, rotation);
3899                 min_width = 1;
3900         }
3901
3902         if (INTEL_GEN(dev_priv) >= 11)
3903                 max_height = icl_max_plane_height();
3904         else
3905                 max_height = skl_max_plane_height();
3906
3907         if (w > max_width || w < min_width || h > max_height) {
3908                 drm_dbg_kms(&dev_priv->drm,
3909                             "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3910                             w, h, min_width, max_width, max_height);
3911                 return -EINVAL;
3912         }
3913
3914         intel_add_fb_offsets(&x, &y, plane_state, 0);
3915         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3916         alignment = intel_surf_alignment(fb, 0);
3917         if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3918                 return -EINVAL;
3919
3920         /*
3921          * AUX surface offset is specified as the distance from the
3922          * main surface offset, and it must be non-negative. Make
3923          * sure that is what we will get.
3924          */
3925         if (offset > aux_offset)
3926                 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3927                                                            offset, aux_offset & ~(alignment - 1));
3928
3929         /*
3930          * When using an X-tiled surface, the plane blows up
3931          * if the x offset + width exceed the stride.
3932          *
3933          * TODO: linear and Y-tiled seem fine, Yf untested,
3934          */
3935         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3936                 int cpp = fb->format->cpp[0];
3937
3938                 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3939                         if (offset == 0) {
3940                                 drm_dbg_kms(&dev_priv->drm,
3941                                             "Unable to find suitable display surface offset due to X-tiling\n");
3942                                 return -EINVAL;
3943                         }
3944
3945                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3946                                                                    offset, offset - alignment);
3947                 }
3948         }
3949
3950         /*
3951          * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3952          * they match with the main surface x/y offsets.
3953          */
3954         if (is_ccs_modifier(fb->modifier)) {
3955                 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3956                                                        offset, aux_plane)) {
3957                         if (offset == 0)
3958                                 break;
3959
3960                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3961                                                                    offset, offset - alignment);
3962                 }
3963
3964                 if (x != plane_state->color_plane[aux_plane].x ||
3965                     y != plane_state->color_plane[aux_plane].y) {
3966                         drm_dbg_kms(&dev_priv->drm,
3967                                     "Unable to find suitable display surface offset due to CCS\n");
3968                         return -EINVAL;
3969                 }
3970         }
3971
3972         plane_state->color_plane[0].offset = offset;
3973         plane_state->color_plane[0].x = x;
3974         plane_state->color_plane[0].y = y;
3975
3976         /*
3977          * Put the final coordinates back so that the src
3978          * coordinate checks will see the right values.
3979          */
3980         drm_rect_translate_to(&plane_state->uapi.src,
3981                               x << 16, y << 16);
3982
3983         return 0;
3984 }
3985
3986 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3987 {
3988         struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3989         const struct drm_framebuffer *fb = plane_state->hw.fb;
3990         unsigned int rotation = plane_state->hw.rotation;
3991         int uv_plane = 1;
3992         int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3993         int max_height = 4096;
3994         int x = plane_state->uapi.src.x1 >> 17;
3995         int y = plane_state->uapi.src.y1 >> 17;
3996         int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3997         int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3998         u32 offset;
3999
4000         intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4001         offset = intel_plane_compute_aligned_offset(&x, &y,
4002                                                     plane_state, uv_plane);
4003
4004         /* FIXME not quite sure how/if these apply to the chroma plane */
4005         if (w > max_width || h > max_height) {
4006                 drm_dbg_kms(&i915->drm,
4007                             "CbCr source size %dx%d too big (limit %dx%d)\n",
4008                             w, h, max_width, max_height);
4009                 return -EINVAL;
4010         }
4011
4012         if (is_ccs_modifier(fb->modifier)) {
4013                 int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4014                 int aux_offset = plane_state->color_plane[ccs_plane].offset;
4015                 int alignment = intel_surf_alignment(fb, uv_plane);
4016
4017                 if (offset > aux_offset)
4018                         offset = intel_plane_adjust_aligned_offset(&x, &y,
4019                                                                    plane_state,
4020                                                                    uv_plane,
4021                                                                    offset,
4022                                                                    aux_offset & ~(alignment - 1));
4023
4024                 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4025                                                        offset, ccs_plane)) {
4026                         if (offset == 0)
4027                                 break;
4028
4029                         offset = intel_plane_adjust_aligned_offset(&x, &y,
4030                                                                    plane_state,
4031                                                                    uv_plane,
4032                                                                    offset, offset - alignment);
4033                 }
4034
4035                 if (x != plane_state->color_plane[ccs_plane].x ||
4036                     y != plane_state->color_plane[ccs_plane].y) {
4037                         drm_dbg_kms(&i915->drm,
4038                                     "Unable to find suitable display surface offset due to CCS\n");
4039                         return -EINVAL;
4040                 }
4041         }
4042
4043         plane_state->color_plane[uv_plane].offset = offset;
4044         plane_state->color_plane[uv_plane].x = x;
4045         plane_state->color_plane[uv_plane].y = y;
4046
4047         return 0;
4048 }
4049
4050 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4051 {
4052         const struct drm_framebuffer *fb = plane_state->hw.fb;
4053         int src_x = plane_state->uapi.src.x1 >> 16;
4054         int src_y = plane_state->uapi.src.y1 >> 16;
4055         u32 offset;
4056         int ccs_plane;
4057
4058         for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4059                 int main_hsub, main_vsub;
4060                 int hsub, vsub;
4061                 int x, y;
4062
4063                 if (!is_ccs_plane(fb, ccs_plane))
4064                         continue;
4065
4066                 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4067                                                ccs_to_main_plane(fb, ccs_plane));
4068                 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4069
4070                 hsub *= main_hsub;
4071                 vsub *= main_vsub;
4072                 x = src_x / hsub;
4073                 y = src_y / vsub;
4074
4075                 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4076
4077                 offset = intel_plane_compute_aligned_offset(&x, &y,
4078                                                             plane_state,
4079                                                             ccs_plane);
4080
4081                 plane_state->color_plane[ccs_plane].offset = offset;
4082                 plane_state->color_plane[ccs_plane].x = (x * hsub +
4083                                                          src_x % hsub) /
4084                                                         main_hsub;
4085                 plane_state->color_plane[ccs_plane].y = (y * vsub +
4086                                                          src_y % vsub) /
4087                                                         main_vsub;
4088         }
4089
4090         return 0;
4091 }
4092
4093 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4094 {
4095         const struct drm_framebuffer *fb = plane_state->hw.fb;
4096         int ret, i;
4097
4098         ret = intel_plane_compute_gtt(plane_state);
4099         if (ret)
4100                 return ret;
4101
4102         if (!plane_state->uapi.visible)
4103                 return 0;
4104
4105         /*
4106          * Handle the AUX surface first since the main surface setup depends on
4107          * it.
4108          */
4109         if (is_ccs_modifier(fb->modifier)) {
4110                 ret = skl_check_ccs_aux_surface(plane_state);
4111                 if (ret)
4112                         return ret;
4113         }
4114
4115         if (intel_format_info_is_yuv_semiplanar(fb->format,
4116                                                 fb->modifier)) {
4117                 ret = skl_check_nv12_aux_surface(plane_state);
4118                 if (ret)
4119                         return ret;
4120         }
4121
4122         for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4123                 plane_state->color_plane[i].offset = ~0xfff;
4124                 plane_state->color_plane[i].x = 0;
4125                 plane_state->color_plane[i].y = 0;
4126         }
4127
4128         ret = skl_check_main_surface(plane_state);
4129         if (ret)
4130                 return ret;
4131
4132         return 0;
4133 }
4134
4135 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4136                              const struct intel_plane_state *plane_state,
4137                              unsigned int *num, unsigned int *den)
4138 {
4139         const struct drm_framebuffer *fb = plane_state->hw.fb;
4140         unsigned int cpp = fb->format->cpp[0];
4141
4142         /*
4143          * g4x bspec says 64bpp pixel rate can't exceed 80%
4144          * of cdclk when the sprite plane is enabled on the
4145          * same pipe. ilk/snb bspec says 64bpp pixel rate is
4146          * never allowed to exceed 80% of cdclk. Let's just go
4147          * with the ilk/snb limit always.
4148          */
4149         if (cpp == 8) {
4150                 *num = 10;
4151                 *den = 8;
4152         } else {
4153                 *num = 1;
4154                 *den = 1;
4155         }
4156 }
4157
4158 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4159                                 const struct intel_plane_state *plane_state)
4160 {
4161         unsigned int pixel_rate;
4162         unsigned int num, den;
4163
4164         /*
4165          * Note that crtc_state->pixel_rate accounts for both
4166          * horizontal and vertical panel fitter downscaling factors.
4167          * Pre-HSW bspec tells us to only consider the horizontal
4168          * downscaling factor here. We ignore that and just consider
4169          * both for simplicity.
4170          */
4171         pixel_rate = crtc_state->pixel_rate;
4172
4173         i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4174
4175         /* two pixels per clock with double wide pipe */
4176         if (crtc_state->double_wide)
4177                 den *= 2;
4178
4179         return DIV_ROUND_UP(pixel_rate * num, den);
4180 }
4181
4182 unsigned int
4183 i9xx_plane_max_stride(struct intel_plane *plane,
4184                       u32 pixel_format, u64 modifier,
4185                       unsigned int rotation)
4186 {
4187         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4188
4189         if (!HAS_GMCH(dev_priv)) {
4190                 return 32*1024;
4191         } else if (INTEL_GEN(dev_priv) >= 4) {
4192                 if (modifier == I915_FORMAT_MOD_X_TILED)
4193                         return 16*1024;
4194                 else
4195                         return 32*1024;
4196         } else if (INTEL_GEN(dev_priv) >= 3) {
4197                 if (modifier == I915_FORMAT_MOD_X_TILED)
4198                         return 8*1024;
4199                 else
4200                         return 16*1024;
4201         } else {
4202                 if (plane->i9xx_plane == PLANE_C)
4203                         return 4*1024;
4204                 else
4205                         return 8*1024;
4206         }
4207 }
4208
4209 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4210 {
4211         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4212         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4213         u32 dspcntr = 0;
4214
4215         if (crtc_state->gamma_enable)
4216                 dspcntr |= DISPPLANE_GAMMA_ENABLE;
4217
4218         if (crtc_state->csc_enable)
4219                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4220
4221         if (INTEL_GEN(dev_priv) < 5)
4222                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4223
4224         return dspcntr;
4225 }
4226
4227 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4228                           const struct intel_plane_state *plane_state)
4229 {
4230         struct drm_i915_private *dev_priv =
4231                 to_i915(plane_state->uapi.plane->dev);
4232         const struct drm_framebuffer *fb = plane_state->hw.fb;
4233         unsigned int rotation = plane_state->hw.rotation;
4234         u32 dspcntr;
4235
4236         dspcntr = DISPLAY_PLANE_ENABLE;
4237
4238         if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4239             IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4240                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4241
4242         switch (fb->format->format) {
4243         case DRM_FORMAT_C8:
4244                 dspcntr |= DISPPLANE_8BPP;
4245                 break;
4246         case DRM_FORMAT_XRGB1555:
4247                 dspcntr |= DISPPLANE_BGRX555;
4248                 break;
4249         case DRM_FORMAT_ARGB1555:
4250                 dspcntr |= DISPPLANE_BGRA555;
4251                 break;
4252         case DRM_FORMAT_RGB565:
4253                 dspcntr |= DISPPLANE_BGRX565;
4254                 break;
4255         case DRM_FORMAT_XRGB8888:
4256                 dspcntr |= DISPPLANE_BGRX888;
4257                 break;
4258         case DRM_FORMAT_XBGR8888:
4259                 dspcntr |= DISPPLANE_RGBX888;
4260                 break;
4261         case DRM_FORMAT_ARGB8888:
4262                 dspcntr |= DISPPLANE_BGRA888;
4263                 break;
4264         case DRM_FORMAT_ABGR8888:
4265                 dspcntr |= DISPPLANE_RGBA888;
4266                 break;
4267         case DRM_FORMAT_XRGB2101010:
4268                 dspcntr |= DISPPLANE_BGRX101010;
4269                 break;
4270         case DRM_FORMAT_XBGR2101010:
4271                 dspcntr |= DISPPLANE_RGBX101010;
4272                 break;
4273         case DRM_FORMAT_ARGB2101010:
4274                 dspcntr |= DISPPLANE_BGRA101010;
4275                 break;
4276         case DRM_FORMAT_ABGR2101010:
4277                 dspcntr |= DISPPLANE_RGBA101010;
4278                 break;
4279         case DRM_FORMAT_XBGR16161616F:
4280                 dspcntr |= DISPPLANE_RGBX161616;
4281                 break;
4282         default:
4283                 MISSING_CASE(fb->format->format);
4284                 return 0;
4285         }
4286
4287         if (INTEL_GEN(dev_priv) >= 4 &&
4288             fb->modifier == I915_FORMAT_MOD_X_TILED)
4289                 dspcntr |= DISPPLANE_TILED;
4290
4291         if (rotation & DRM_MODE_ROTATE_180)
4292                 dspcntr |= DISPPLANE_ROTATE_180;
4293
4294         if (rotation & DRM_MODE_REFLECT_X)
4295                 dspcntr |= DISPPLANE_MIRROR;
4296
4297         return dspcntr;
4298 }
4299
4300 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4301 {
4302         struct drm_i915_private *dev_priv =
4303                 to_i915(plane_state->uapi.plane->dev);
4304         const struct drm_framebuffer *fb = plane_state->hw.fb;
4305         int src_x, src_y, src_w;
4306         u32 offset;
4307         int ret;
4308
4309         ret = intel_plane_compute_gtt(plane_state);
4310         if (ret)
4311                 return ret;
4312
4313         if (!plane_state->uapi.visible)
4314                 return 0;
4315
4316         src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4317         src_x = plane_state->uapi.src.x1 >> 16;
4318         src_y = plane_state->uapi.src.y1 >> 16;
4319
4320         /* Undocumented hardware limit on i965/g4x/vlv/chv */
4321         if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4322                 return -EINVAL;
4323
4324         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4325
4326         if (INTEL_GEN(dev_priv) >= 4)
4327                 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4328                                                             plane_state, 0);
4329         else
4330                 offset = 0;
4331
4332         /*
4333          * Put the final coordinates back so that the src
4334          * coordinate checks will see the right values.
4335          */
4336         drm_rect_translate_to(&plane_state->uapi.src,
4337                               src_x << 16, src_y << 16);
4338
4339         /* HSW/BDW do this automagically in hardware */
4340         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4341                 unsigned int rotation = plane_state->hw.rotation;
4342                 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4343                 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4344
4345                 if (rotation & DRM_MODE_ROTATE_180) {
4346                         src_x += src_w - 1;
4347                         src_y += src_h - 1;
4348                 } else if (rotation & DRM_MODE_REFLECT_X) {
4349                         src_x += src_w - 1;
4350                 }
4351         }
4352
4353         plane_state->color_plane[0].offset = offset;
4354         plane_state->color_plane[0].x = src_x;
4355         plane_state->color_plane[0].y = src_y;
4356
4357         return 0;
4358 }
4359
4360 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4361 {
4362         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4363         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4364
4365         if (IS_CHERRYVIEW(dev_priv))
4366                 return i9xx_plane == PLANE_B;
4367         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4368                 return false;
4369         else if (IS_GEN(dev_priv, 4))
4370                 return i9xx_plane == PLANE_C;
4371         else
4372                 return i9xx_plane == PLANE_B ||
4373                         i9xx_plane == PLANE_C;
4374 }
4375
4376 static int
4377 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4378                  struct intel_plane_state *plane_state)
4379 {
4380         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4381         int ret;
4382
4383         ret = chv_plane_check_rotation(plane_state);
4384         if (ret)
4385                 return ret;
4386
4387         ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4388                                                   &crtc_state->uapi,
4389                                                   DRM_PLANE_HELPER_NO_SCALING,
4390                                                   DRM_PLANE_HELPER_NO_SCALING,
4391                                                   i9xx_plane_has_windowing(plane),
4392                                                   true);
4393         if (ret)
4394                 return ret;
4395
4396         ret = i9xx_check_plane_surface(plane_state);
4397         if (ret)
4398                 return ret;
4399
4400         if (!plane_state->uapi.visible)
4401                 return 0;
4402
4403         ret = intel_plane_check_src_coordinates(plane_state);
4404         if (ret)
4405                 return ret;
4406
4407         plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4408
4409         return 0;
4410 }
4411
4412 static void i9xx_update_plane(struct intel_plane *plane,
4413                               const struct intel_crtc_state *crtc_state,
4414                               const struct intel_plane_state *plane_state)
4415 {
4416         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4417         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4418         u32 linear_offset;
4419         int x = plane_state->color_plane[0].x;
4420         int y = plane_state->color_plane[0].y;
4421         int crtc_x = plane_state->uapi.dst.x1;
4422         int crtc_y = plane_state->uapi.dst.y1;
4423         int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4424         int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4425         unsigned long irqflags;
4426         u32 dspaddr_offset;
4427         u32 dspcntr;
4428
4429         dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4430
4431         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4432
4433         if (INTEL_GEN(dev_priv) >= 4)
4434                 dspaddr_offset = plane_state->color_plane[0].offset;
4435         else
4436                 dspaddr_offset = linear_offset;
4437
4438         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4439
4440         intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4441                           plane_state->color_plane[0].stride);
4442
4443         if (INTEL_GEN(dev_priv) < 4) {
4444                 /*
4445                  * PLANE_A doesn't actually have a full window
4446                  * generator but let's assume we still need to
4447                  * program whatever is there.
4448                  */
4449                 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4450                                   (crtc_y << 16) | crtc_x);
4451                 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4452                                   ((crtc_h - 1) << 16) | (crtc_w - 1));
4453         } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4454                 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4455                                   (crtc_y << 16) | crtc_x);
4456                 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4457                                   ((crtc_h - 1) << 16) | (crtc_w - 1));
4458                 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4459         }
4460
4461         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4462                 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4463                                   (y << 16) | x);
4464         } else if (INTEL_GEN(dev_priv) >= 4) {
4465                 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4466                                   linear_offset);
4467                 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4468                                   (y << 16) | x);
4469         }
4470
4471         /*
4472          * The control register self-arms if the plane was previously
4473          * disabled. Try to make the plane enable atomic by writing
4474          * the control register just before the surface register.
4475          */
4476         intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4477         if (INTEL_GEN(dev_priv) >= 4)
4478                 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4479                                   intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4480         else
4481                 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4482                                   intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4483
4484         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4485 }
4486
4487 static void i9xx_disable_plane(struct intel_plane *plane,
4488                                const struct intel_crtc_state *crtc_state)
4489 {
4490         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4491         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4492         unsigned long irqflags;
4493         u32 dspcntr;
4494
4495         /*
4496          * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4497          * enable on ilk+ affect the pipe bottom color as
4498          * well, so we must configure them even if the plane
4499          * is disabled.
4500          *
4501          * On pre-g4x there is no way to gamma correct the
4502          * pipe bottom color but we'll keep on doing this
4503          * anyway so that the crtc state readout works correctly.
4504          */
4505         dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4506
4507         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4508
4509         intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4510         if (INTEL_GEN(dev_priv) >= 4)
4511                 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4512         else
4513                 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4514
4515         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4516 }
4517
4518 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4519                                     enum pipe *pipe)
4520 {
4521         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4522         enum intel_display_power_domain power_domain;
4523         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4524         intel_wakeref_t wakeref;
4525         bool ret;
4526         u32 val;
4527
4528         /*
4529          * Not 100% correct for planes that can move between pipes,
4530          * but that's only the case for gen2-4 which don't have any
4531          * display power wells.
4532          */
4533         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4534         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4535         if (!wakeref)
4536                 return false;
4537
4538         val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4539
4540         ret = val & DISPLAY_PLANE_ENABLE;
4541
4542         if (INTEL_GEN(dev_priv) >= 5)
4543                 *pipe = plane->pipe;
4544         else
4545                 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4546                         DISPPLANE_SEL_PIPE_SHIFT;
4547
4548         intel_display_power_put(dev_priv, power_domain, wakeref);
4549
4550         return ret;
4551 }
4552
4553 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4554 {
4555         struct drm_device *dev = intel_crtc->base.dev;
4556         struct drm_i915_private *dev_priv = to_i915(dev);
4557         unsigned long irqflags;
4558
4559         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4560
4561         intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4562         intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4563         intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4564
4565         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4566 }
4567
4568 /*
4569  * This function detaches (aka. unbinds) unused scalers in hardware
4570  */
4571 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4572 {
4573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4574         const struct intel_crtc_scaler_state *scaler_state =
4575                 &crtc_state->scaler_state;
4576         int i;
4577
4578         /* loop through and disable scalers that aren't in use */
4579         for (i = 0; i < intel_crtc->num_scalers; i++) {
4580                 if (!scaler_state->scalers[i].in_use)
4581                         skl_detach_scaler(intel_crtc, i);
4582         }
4583 }
4584
4585 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4586                                           int color_plane, unsigned int rotation)
4587 {
4588         /*
4589          * The stride is either expressed as a multiple of 64 bytes chunks for
4590          * linear buffers or in number of tiles for tiled buffers.
4591          */
4592         if (is_surface_linear(fb, color_plane))
4593                 return 64;
4594         else if (drm_rotation_90_or_270(rotation))
4595                 return intel_tile_height(fb, color_plane);
4596         else
4597                 return intel_tile_width_bytes(fb, color_plane);
4598 }
4599
4600 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4601                      int color_plane)
4602 {
4603         const struct drm_framebuffer *fb = plane_state->hw.fb;
4604         unsigned int rotation = plane_state->hw.rotation;
4605         u32 stride = plane_state->color_plane[color_plane].stride;
4606
4607         if (color_plane >= fb->format->num_planes)
4608                 return 0;
4609
4610         return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4611 }
4612
4613 static u32 skl_plane_ctl_format(u32 pixel_format)
4614 {
4615         switch (pixel_format) {
4616         case DRM_FORMAT_C8:
4617                 return PLANE_CTL_FORMAT_INDEXED;
4618         case DRM_FORMAT_RGB565:
4619                 return PLANE_CTL_FORMAT_RGB_565;
4620         case DRM_FORMAT_XBGR8888:
4621         case DRM_FORMAT_ABGR8888:
4622                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4623         case DRM_FORMAT_XRGB8888:
4624         case DRM_FORMAT_ARGB8888:
4625                 return PLANE_CTL_FORMAT_XRGB_8888;
4626         case DRM_FORMAT_XBGR2101010:
4627         case DRM_FORMAT_ABGR2101010:
4628                 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4629         case DRM_FORMAT_XRGB2101010:
4630         case DRM_FORMAT_ARGB2101010:
4631                 return PLANE_CTL_FORMAT_XRGB_2101010;
4632         case DRM_FORMAT_XBGR16161616F:
4633         case DRM_FORMAT_ABGR16161616F:
4634                 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4635         case DRM_FORMAT_XRGB16161616F:
4636         case DRM_FORMAT_ARGB16161616F:
4637                 return PLANE_CTL_FORMAT_XRGB_16161616F;
4638         case DRM_FORMAT_XYUV8888:
4639                 return PLANE_CTL_FORMAT_XYUV;
4640         case DRM_FORMAT_YUYV:
4641                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4642         case DRM_FORMAT_YVYU:
4643                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4644         case DRM_FORMAT_UYVY:
4645                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4646         case DRM_FORMAT_VYUY:
4647                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4648         case DRM_FORMAT_NV12:
4649                 return PLANE_CTL_FORMAT_NV12;
4650         case DRM_FORMAT_P010:
4651                 return PLANE_CTL_FORMAT_P010;
4652         case DRM_FORMAT_P012:
4653                 return PLANE_CTL_FORMAT_P012;
4654         case DRM_FORMAT_P016:
4655                 return PLANE_CTL_FORMAT_P016;
4656         case DRM_FORMAT_Y210:
4657                 return PLANE_CTL_FORMAT_Y210;
4658         case DRM_FORMAT_Y212:
4659                 return PLANE_CTL_FORMAT_Y212;
4660         case DRM_FORMAT_Y216:
4661                 return PLANE_CTL_FORMAT_Y216;
4662         case DRM_FORMAT_XVYU2101010:
4663                 return PLANE_CTL_FORMAT_Y410;
4664         case DRM_FORMAT_XVYU12_16161616:
4665                 return PLANE_CTL_FORMAT_Y412;
4666         case DRM_FORMAT_XVYU16161616:
4667                 return PLANE_CTL_FORMAT_Y416;
4668         default:
4669                 MISSING_CASE(pixel_format);
4670         }
4671
4672         return 0;
4673 }
4674
4675 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4676 {
4677         if (!plane_state->hw.fb->format->has_alpha)
4678                 return PLANE_CTL_ALPHA_DISABLE;
4679
4680         switch (plane_state->hw.pixel_blend_mode) {
4681         case DRM_MODE_BLEND_PIXEL_NONE:
4682                 return PLANE_CTL_ALPHA_DISABLE;
4683         case DRM_MODE_BLEND_PREMULTI:
4684                 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4685         case DRM_MODE_BLEND_COVERAGE:
4686                 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4687         default:
4688                 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4689                 return PLANE_CTL_ALPHA_DISABLE;
4690         }
4691 }
4692
4693 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4694 {
4695         if (!plane_state->hw.fb->format->has_alpha)
4696                 return PLANE_COLOR_ALPHA_DISABLE;
4697
4698         switch (plane_state->hw.pixel_blend_mode) {
4699         case DRM_MODE_BLEND_PIXEL_NONE:
4700                 return PLANE_COLOR_ALPHA_DISABLE;
4701         case DRM_MODE_BLEND_PREMULTI:
4702                 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4703         case DRM_MODE_BLEND_COVERAGE:
4704                 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4705         default:
4706                 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4707                 return PLANE_COLOR_ALPHA_DISABLE;
4708         }
4709 }
4710
4711 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4712 {
4713         switch (fb_modifier) {
4714         case DRM_FORMAT_MOD_LINEAR:
4715                 break;
4716         case I915_FORMAT_MOD_X_TILED:
4717                 return PLANE_CTL_TILED_X;
4718         case I915_FORMAT_MOD_Y_TILED:
4719                 return PLANE_CTL_TILED_Y;
4720         case I915_FORMAT_MOD_Y_TILED_CCS:
4721                 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4722         case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4723                 return PLANE_CTL_TILED_Y |
4724                        PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4725                        PLANE_CTL_CLEAR_COLOR_DISABLE;
4726         case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4727                 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4728         case I915_FORMAT_MOD_Yf_TILED:
4729                 return PLANE_CTL_TILED_YF;
4730         case I915_FORMAT_MOD_Yf_TILED_CCS:
4731                 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4732         default:
4733                 MISSING_CASE(fb_modifier);
4734         }
4735
4736         return 0;
4737 }
4738
4739 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4740 {
4741         switch (rotate) {
4742         case DRM_MODE_ROTATE_0:
4743                 break;
4744         /*
4745          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4746          * while i915 HW rotation is clockwise, thats why this swapping.
4747          */
4748         case DRM_MODE_ROTATE_90:
4749                 return PLANE_CTL_ROTATE_270;
4750         case DRM_MODE_ROTATE_180:
4751                 return PLANE_CTL_ROTATE_180;
4752         case DRM_MODE_ROTATE_270:
4753                 return PLANE_CTL_ROTATE_90;
4754         default:
4755                 MISSING_CASE(rotate);
4756         }
4757
4758         return 0;
4759 }
4760
4761 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4762 {
4763         switch (reflect) {
4764         case 0:
4765                 break;
4766         case DRM_MODE_REFLECT_X:
4767                 return PLANE_CTL_FLIP_HORIZONTAL;
4768         case DRM_MODE_REFLECT_Y:
4769         default:
4770                 MISSING_CASE(reflect);
4771         }
4772
4773         return 0;
4774 }
4775
4776 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4777 {
4778         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4779         u32 plane_ctl = 0;
4780
4781         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4782                 return plane_ctl;
4783
4784         if (crtc_state->gamma_enable)
4785                 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4786
4787         if (crtc_state->csc_enable)
4788                 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4789
4790         return plane_ctl;
4791 }
4792
4793 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4794                   const struct intel_plane_state *plane_state)
4795 {
4796         struct drm_i915_private *dev_priv =
4797                 to_i915(plane_state->uapi.plane->dev);
4798         const struct drm_framebuffer *fb = plane_state->hw.fb;
4799         unsigned int rotation = plane_state->hw.rotation;
4800         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4801         u32 plane_ctl;
4802
4803         plane_ctl = PLANE_CTL_ENABLE;
4804
4805         if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4806                 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4807                 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4808
4809                 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4810                         plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4811
4812                 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4813                         plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4814         }
4815
4816         plane_ctl |= skl_plane_ctl_format(fb->format->format);
4817         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4818         plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4819
4820         if (INTEL_GEN(dev_priv) >= 10)
4821                 plane_ctl |= cnl_plane_ctl_flip(rotation &
4822                                                 DRM_MODE_REFLECT_MASK);
4823
4824         if (key->flags & I915_SET_COLORKEY_DESTINATION)
4825                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4826         else if (key->flags & I915_SET_COLORKEY_SOURCE)
4827                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4828
4829         return plane_ctl;
4830 }
4831
4832 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4833 {
4834         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4835         u32 plane_color_ctl = 0;
4836
4837         if (INTEL_GEN(dev_priv) >= 11)
4838                 return plane_color_ctl;
4839
4840         if (crtc_state->gamma_enable)
4841                 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4842
4843         if (crtc_state->csc_enable)
4844                 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4845
4846         return plane_color_ctl;
4847 }
4848
4849 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4850                         const struct intel_plane_state *plane_state)
4851 {
4852         struct drm_i915_private *dev_priv =
4853                 to_i915(plane_state->uapi.plane->dev);
4854         const struct drm_framebuffer *fb = plane_state->hw.fb;
4855         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4856         u32 plane_color_ctl = 0;
4857
4858         plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4859         plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4860
4861         if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4862                 switch (plane_state->hw.color_encoding) {
4863                 case DRM_COLOR_YCBCR_BT709:
4864                         plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4865                         break;
4866                 case DRM_COLOR_YCBCR_BT2020:
4867                         plane_color_ctl |=
4868                                 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4869                         break;
4870                 default:
4871                         plane_color_ctl |=
4872                                 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4873                 }
4874                 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4875                         plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4876         } else if (fb->format->is_yuv) {
4877                 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4878         }
4879
4880         return plane_color_ctl;
4881 }
4882
4883 static int
4884 __intel_display_resume(struct drm_device *dev,
4885                        struct drm_atomic_state *state,
4886                        struct drm_modeset_acquire_ctx *ctx)
4887 {
4888         struct drm_crtc_state *crtc_state;
4889         struct drm_crtc *crtc;
4890         int i, ret;
4891
4892         intel_modeset_setup_hw_state(dev, ctx);
4893         intel_vga_redisable(to_i915(dev));
4894
4895         if (!state)
4896                 return 0;
4897
4898         /*
4899          * We've duplicated the state, pointers to the old state are invalid.
4900          *
4901          * Don't attempt to use the old state until we commit the duplicated state.
4902          */
4903         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4904                 /*
4905                  * Force recalculation even if we restore
4906                  * current state. With fast modeset this may not result
4907                  * in a modeset when the state is compatible.
4908                  */
4909                 crtc_state->mode_changed = true;
4910         }
4911
4912         /* ignore any reset values/BIOS leftovers in the WM registers */
4913         if (!HAS_GMCH(to_i915(dev)))
4914                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4915
4916         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4917
4918         drm_WARN_ON(dev, ret == -EDEADLK);
4919         return ret;
4920 }
4921
4922 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4923 {
4924         return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4925                 intel_has_gpu_reset(&dev_priv->gt));
4926 }
4927
4928 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4929 {
4930         struct drm_device *dev = &dev_priv->drm;
4931         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4932         struct drm_atomic_state *state;
4933         int ret;
4934
4935         /* reset doesn't touch the display */
4936         if (!dev_priv->params.force_reset_modeset_test &&
4937             !gpu_reset_clobbers_display(dev_priv))
4938                 return;
4939
4940         /* We have a modeset vs reset deadlock, defensively unbreak it. */
4941         set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4942         smp_mb__after_atomic();
4943         wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4944
4945         if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4946                 drm_dbg_kms(&dev_priv->drm,
4947                             "Modeset potentially stuck, unbreaking through wedging\n");
4948                 intel_gt_set_wedged(&dev_priv->gt);
4949         }
4950
4951         /*
4952          * Need mode_config.mutex so that we don't
4953          * trample ongoing ->detect() and whatnot.
4954          */
4955         mutex_lock(&dev->mode_config.mutex);
4956         drm_modeset_acquire_init(ctx, 0);
4957         while (1) {
4958                 ret = drm_modeset_lock_all_ctx(dev, ctx);
4959                 if (ret != -EDEADLK)
4960                         break;
4961
4962                 drm_modeset_backoff(ctx);
4963         }
4964         /*
4965          * Disabling the crtcs gracefully seems nicer. Also the
4966          * g33 docs say we should at least disable all the planes.
4967          */
4968         state = drm_atomic_helper_duplicate_state(dev, ctx);
4969         if (IS_ERR(state)) {
4970                 ret = PTR_ERR(state);
4971                 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4972                         ret);
4973                 return;
4974         }
4975
4976         ret = drm_atomic_helper_disable_all(dev, ctx);
4977         if (ret) {
4978                 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4979                         ret);
4980                 drm_atomic_state_put(state);
4981                 return;
4982         }
4983
4984         dev_priv->modeset_restore_state = state;
4985         state->acquire_ctx = ctx;
4986 }
4987
4988 void intel_finish_reset(struct drm_i915_private *dev_priv)
4989 {
4990         struct drm_device *dev = &dev_priv->drm;
4991         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4992         struct drm_atomic_state *state;
4993         int ret;
4994
4995         /* reset doesn't touch the display */
4996         if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4997                 return;
4998
4999         state = fetch_and_zero(&dev_priv->modeset_restore_state);
5000         if (!state)
5001                 goto unlock;
5002
5003         /* reset doesn't touch the display */
5004         if (!gpu_reset_clobbers_display(dev_priv)) {
5005                 /* for testing only restore the display */
5006                 ret = __intel_display_resume(dev, state, ctx);
5007                 if (ret)
5008                         drm_err(&dev_priv->drm,
5009                                 "Restoring old state failed with %i\n", ret);
5010         } else {
5011                 /*
5012                  * The display has been reset as well,
5013                  * so need a full re-initialization.
5014                  */
5015                 intel_pps_unlock_regs_wa(dev_priv);
5016                 intel_modeset_init_hw(dev_priv);
5017                 intel_init_clock_gating(dev_priv);
5018
5019                 spin_lock_irq(&dev_priv->irq_lock);
5020                 if (dev_priv->display.hpd_irq_setup)
5021                         dev_priv->display.hpd_irq_setup(dev_priv);
5022                 spin_unlock_irq(&dev_priv->irq_lock);
5023
5024                 ret = __intel_display_resume(dev, state, ctx);
5025                 if (ret)
5026                         drm_err(&dev_priv->drm,
5027                                 "Restoring old state failed with %i\n", ret);
5028
5029                 intel_hpd_init(dev_priv);
5030         }
5031
5032         drm_atomic_state_put(state);
5033 unlock:
5034         drm_modeset_drop_locks(ctx);
5035         drm_modeset_acquire_fini(ctx);
5036         mutex_unlock(&dev->mode_config.mutex);
5037
5038         clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5039 }
5040
5041 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5042 {
5043         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5044         enum pipe pipe = crtc->pipe;
5045         u32 tmp;
5046
5047         tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5048
5049         /*
5050          * Display WA #1153: icl
5051          * enable hardware to bypass the alpha math
5052          * and rounding for per-pixel values 00 and 0xff
5053          */
5054         tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5055         /*
5056          * Display WA # 1605353570: icl
5057          * Set the pixel rounding bit to 1 for allowing
5058          * passthrough of Frame buffer pixels unmodified
5059          * across pipe
5060          */
5061         tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5062         intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5063 }
5064
5065 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5066 {
5067         struct drm_device *dev = crtc->base.dev;
5068         struct drm_i915_private *dev_priv = to_i915(dev);
5069         enum pipe pipe = crtc->pipe;
5070         i915_reg_t reg;
5071         u32 temp;
5072
5073         /* enable normal train */
5074         reg = FDI_TX_CTL(pipe);
5075         temp = intel_de_read(dev_priv, reg);
5076         if (IS_IVYBRIDGE(dev_priv)) {
5077                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5078                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5079         } else {
5080                 temp &= ~FDI_LINK_TRAIN_NONE;
5081                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5082         }
5083         intel_de_write(dev_priv, reg, temp);
5084
5085         reg = FDI_RX_CTL(pipe);
5086         temp = intel_de_read(dev_priv, reg);
5087         if (HAS_PCH_CPT(dev_priv)) {
5088                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5089                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5090         } else {
5091                 temp &= ~FDI_LINK_TRAIN_NONE;
5092                 temp |= FDI_LINK_TRAIN_NONE;
5093         }
5094         intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5095
5096         /* wait one idle pattern time */
5097         intel_de_posting_read(dev_priv, reg);
5098         udelay(1000);
5099
5100         /* IVB wants error correction enabled */
5101         if (IS_IVYBRIDGE(dev_priv))
5102                 intel_de_write(dev_priv, reg,
5103                                intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5104 }
5105
5106 /* The FDI link training functions for ILK/Ibexpeak. */
5107 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5108                                const struct intel_crtc_state *crtc_state)
5109 {
5110         struct drm_device *dev = crtc->base.dev;
5111         struct drm_i915_private *dev_priv = to_i915(dev);
5112         enum pipe pipe = crtc->pipe;
5113         i915_reg_t reg;
5114         u32 temp, tries;
5115
5116         /* FDI needs bits from pipe first */
5117         assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5118
5119         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5120            for train result */
5121         reg = FDI_RX_IMR(pipe);
5122         temp = intel_de_read(dev_priv, reg);
5123         temp &= ~FDI_RX_SYMBOL_LOCK;
5124         temp &= ~FDI_RX_BIT_LOCK;
5125         intel_de_write(dev_priv, reg, temp);
5126         intel_de_read(dev_priv, reg);
5127         udelay(150);
5128
5129         /* enable CPU FDI TX and PCH FDI RX */
5130         reg = FDI_TX_CTL(pipe);
5131         temp = intel_de_read(dev_priv, reg);
5132         temp &= ~FDI_DP_PORT_WIDTH_MASK;
5133         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5134         temp &= ~FDI_LINK_TRAIN_NONE;
5135         temp |= FDI_LINK_TRAIN_PATTERN_1;
5136         intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5137
5138         reg = FDI_RX_CTL(pipe);
5139         temp = intel_de_read(dev_priv, reg);
5140         temp &= ~FDI_LINK_TRAIN_NONE;
5141         temp |= FDI_LINK_TRAIN_PATTERN_1;
5142         intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5143
5144         intel_de_posting_read(dev_priv, reg);
5145         udelay(150);
5146
5147         /* Ironlake workaround, enable clock pointer after FDI enable*/
5148         intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5149                        FDI_RX_PHASE_SYNC_POINTER_OVR);
5150         intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5151                        FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5152
5153         reg = FDI_RX_IIR(pipe);
5154         for (tries = 0; tries < 5; tries++) {
5155                 temp = intel_de_read(dev_priv, reg);
5156                 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5157
5158                 if ((temp & FDI_RX_BIT_LOCK)) {
5159                         drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5160                         intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5161                         break;
5162                 }
5163         }
5164         if (tries == 5)
5165                 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5166
5167         /* Train 2 */
5168         reg = FDI_TX_CTL(pipe);
5169         temp = intel_de_read(dev_priv, reg);
5170         temp &= ~FDI_LINK_TRAIN_NONE;
5171         temp |= FDI_LINK_TRAIN_PATTERN_2;
5172         intel_de_write(dev_priv, reg, temp);
5173
5174         reg = FDI_RX_CTL(pipe);
5175         temp = intel_de_read(dev_priv, reg);
5176         temp &= ~FDI_LINK_TRAIN_NONE;
5177         temp |= FDI_LINK_TRAIN_PATTERN_2;
5178         intel_de_write(dev_priv, reg, temp);
5179
5180         intel_de_posting_read(dev_priv, reg);
5181         udelay(150);
5182
5183         reg = FDI_RX_IIR(pipe);
5184         for (tries = 0; tries < 5; tries++) {
5185                 temp = intel_de_read(dev_priv, reg);
5186                 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5187
5188                 if (temp & FDI_RX_SYMBOL_LOCK) {
5189                         intel_de_write(dev_priv, reg,
5190                                        temp | FDI_RX_SYMBOL_LOCK);
5191                         drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5192                         break;
5193                 }
5194         }
5195         if (tries == 5)
5196                 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5197
5198         drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5199
5200 }
5201
5202 static const int snb_b_fdi_train_param[] = {
5203         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5204         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5205         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5206         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5207 };
5208
5209 /* The FDI link training functions for SNB/Cougarpoint. */
5210 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5211                                 const struct intel_crtc_state *crtc_state)
5212 {
5213         struct drm_device *dev = crtc->base.dev;
5214         struct drm_i915_private *dev_priv = to_i915(dev);
5215         enum pipe pipe = crtc->pipe;
5216         i915_reg_t reg;
5217         u32 temp, i, retry;
5218
5219         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5220            for train result */
5221         reg = FDI_RX_IMR(pipe);
5222         temp = intel_de_read(dev_priv, reg);
5223         temp &= ~FDI_RX_SYMBOL_LOCK;
5224         temp &= ~FDI_RX_BIT_LOCK;
5225         intel_de_write(dev_priv, reg, temp);
5226
5227         intel_de_posting_read(dev_priv, reg);
5228         udelay(150);
5229
5230         /* enable CPU FDI TX and PCH FDI RX */
5231         reg = FDI_TX_CTL(pipe);
5232         temp = intel_de_read(dev_priv, reg);
5233         temp &= ~FDI_DP_PORT_WIDTH_MASK;
5234         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5235         temp &= ~FDI_LINK_TRAIN_NONE;
5236         temp |= FDI_LINK_TRAIN_PATTERN_1;
5237         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5238         /* SNB-B */
5239         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5240         intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5241
5242         intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5243                        FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5244
5245         reg = FDI_RX_CTL(pipe);
5246         temp = intel_de_read(dev_priv, reg);
5247         if (HAS_PCH_CPT(dev_priv)) {
5248                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5249                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5250         } else {
5251                 temp &= ~FDI_LINK_TRAIN_NONE;
5252                 temp |= FDI_LINK_TRAIN_PATTERN_1;
5253         }
5254         intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5255
5256         intel_de_posting_read(dev_priv, reg);
5257         udelay(150);
5258
5259         for (i = 0; i < 4; i++) {
5260                 reg = FDI_TX_CTL(pipe);
5261                 temp = intel_de_read(dev_priv, reg);
5262                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5263                 temp |= snb_b_fdi_train_param[i];
5264                 intel_de_write(dev_priv, reg, temp);
5265
5266                 intel_de_posting_read(dev_priv, reg);
5267                 udelay(500);
5268
5269                 for (retry = 0; retry < 5; retry++) {
5270                         reg = FDI_RX_IIR(pipe);
5271                         temp = intel_de_read(dev_priv, reg);
5272                         drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5273                         if (temp & FDI_RX_BIT_LOCK) {
5274                                 intel_de_write(dev_priv, reg,
5275                                                temp | FDI_RX_BIT_LOCK);
5276                                 drm_dbg_kms(&dev_priv->drm,
5277                                             "FDI train 1 done.\n");
5278                                 break;
5279                         }
5280                         udelay(50);
5281                 }
5282                 if (retry < 5)
5283                         break;
5284         }
5285         if (i == 4)
5286                 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5287
5288         /* Train 2 */
5289         reg = FDI_TX_CTL(pipe);
5290         temp = intel_de_read(dev_priv, reg);
5291         temp &= ~FDI_LINK_TRAIN_NONE;
5292         temp |= FDI_LINK_TRAIN_PATTERN_2;
5293         if (IS_GEN(dev_priv, 6)) {
5294                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5295                 /* SNB-B */
5296                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5297         }
5298         intel_de_write(dev_priv, reg, temp);
5299
5300         reg = FDI_RX_CTL(pipe);
5301         temp = intel_de_read(dev_priv, reg);
5302         if (HAS_PCH_CPT(dev_priv)) {
5303                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5304                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5305         } else {
5306                 temp &= ~FDI_LINK_TRAIN_NONE;
5307                 temp |= FDI_LINK_TRAIN_PATTERN_2;
5308         }
5309         intel_de_write(dev_priv, reg, temp);
5310
5311         intel_de_posting_read(dev_priv, reg);
5312         udelay(150);
5313
5314         for (i = 0; i < 4; i++) {
5315                 reg = FDI_TX_CTL(pipe);
5316                 temp = intel_de_read(dev_priv, reg);
5317                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5318                 temp |= snb_b_fdi_train_param[i];
5319                 intel_de_write(dev_priv, reg, temp);
5320
5321                 intel_de_posting_read(dev_priv, reg);
5322                 udelay(500);
5323
5324                 for (retry = 0; retry < 5; retry++) {
5325                         reg = FDI_RX_IIR(pipe);
5326                         temp = intel_de_read(dev_priv, reg);
5327                         drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5328                         if (temp & FDI_RX_SYMBOL_LOCK) {
5329                                 intel_de_write(dev_priv, reg,
5330                                                temp | FDI_RX_SYMBOL_LOCK);
5331                                 drm_dbg_kms(&dev_priv->drm,
5332                                             "FDI train 2 done.\n");
5333                                 break;
5334                         }
5335                         udelay(50);
5336                 }
5337                 if (retry < 5)
5338                         break;
5339         }
5340         if (i == 4)
5341                 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5342
5343         drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5344 }
5345
5346 /* Manual link training for Ivy Bridge A0 parts */
5347 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5348                                       const struct intel_crtc_state *crtc_state)
5349 {
5350         struct drm_device *dev = crtc->base.dev;
5351         struct drm_i915_private *dev_priv = to_i915(dev);
5352         enum pipe pipe = crtc->pipe;
5353         i915_reg_t reg;
5354         u32 temp, i, j;
5355
5356         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5357            for train result */
5358         reg = FDI_RX_IMR(pipe);
5359         temp = intel_de_read(dev_priv, reg);
5360         temp &= ~FDI_RX_SYMBOL_LOCK;
5361         temp &= ~FDI_RX_BIT_LOCK;
5362         intel_de_write(dev_priv, reg, temp);
5363
5364         intel_de_posting_read(dev_priv, reg);
5365         udelay(150);
5366
5367         drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5368                     intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5369
5370         /* Try each vswing and preemphasis setting twice before moving on */
5371         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5372                 /* disable first in case we need to retry */
5373                 reg = FDI_TX_CTL(pipe);
5374                 temp = intel_de_read(dev_priv, reg);
5375                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5376                 temp &= ~FDI_TX_ENABLE;
5377                 intel_de_write(dev_priv, reg, temp);
5378
5379                 reg = FDI_RX_CTL(pipe);
5380                 temp = intel_de_read(dev_priv, reg);
5381                 temp &= ~FDI_LINK_TRAIN_AUTO;
5382                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5383                 temp &= ~FDI_RX_ENABLE;
5384                 intel_de_write(dev_priv, reg, temp);
5385
5386                 /* enable CPU FDI TX and PCH FDI RX */
5387                 reg = FDI_TX_CTL(pipe);
5388                 temp = intel_de_read(dev_priv, reg);
5389                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5390                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5391                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5392                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5393                 temp |= snb_b_fdi_train_param[j/2];
5394                 temp |= FDI_COMPOSITE_SYNC;
5395                 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5396
5397                 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5398                                FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5399
5400                 reg = FDI_RX_CTL(pipe);
5401                 temp = intel_de_read(dev_priv, reg);
5402                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5403                 temp |= FDI_COMPOSITE_SYNC;
5404                 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5405
5406                 intel_de_posting_read(dev_priv, reg);
5407                 udelay(1); /* should be 0.5us */
5408
5409                 for (i = 0; i < 4; i++) {
5410                         reg = FDI_RX_IIR(pipe);
5411                         temp = intel_de_read(dev_priv, reg);
5412                         drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5413
5414                         if (temp & FDI_RX_BIT_LOCK ||
5415                             (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5416                                 intel_de_write(dev_priv, reg,
5417                                                temp | FDI_RX_BIT_LOCK);
5418                                 drm_dbg_kms(&dev_priv->drm,
5419                                             "FDI train 1 done, level %i.\n",
5420                                             i);
5421                                 break;
5422                         }
5423                         udelay(1); /* should be 0.5us */
5424                 }
5425                 if (i == 4) {
5426                         drm_dbg_kms(&dev_priv->drm,
5427                                     "FDI train 1 fail on vswing %d\n", j / 2);
5428                         continue;
5429                 }
5430
5431                 /* Train 2 */
5432                 reg = FDI_TX_CTL(pipe);
5433                 temp = intel_de_read(dev_priv, reg);
5434                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5435                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5436                 intel_de_write(dev_priv, reg, temp);
5437
5438                 reg = FDI_RX_CTL(pipe);
5439                 temp = intel_de_read(dev_priv, reg);
5440                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5441                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5442                 intel_de_write(dev_priv, reg, temp);
5443
5444                 intel_de_posting_read(dev_priv, reg);
5445                 udelay(2); /* should be 1.5us */
5446
5447                 for (i = 0; i < 4; i++) {
5448                         reg = FDI_RX_IIR(pipe);
5449                         temp = intel_de_read(dev_priv, reg);
5450                         drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5451
5452                         if (temp & FDI_RX_SYMBOL_LOCK ||
5453                             (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5454                                 intel_de_write(dev_priv, reg,
5455                                                temp | FDI_RX_SYMBOL_LOCK);
5456                                 drm_dbg_kms(&dev_priv->drm,
5457                                             "FDI train 2 done, level %i.\n",
5458                                             i);
5459                                 goto train_done;
5460                         }
5461                         udelay(2); /* should be 1.5us */
5462                 }
5463                 if (i == 4)
5464                         drm_dbg_kms(&dev_priv->drm,
5465                                     "FDI train 2 fail on vswing %d\n", j / 2);
5466         }
5467
5468 train_done:
5469         drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5470 }
5471
5472 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5473 {
5474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5475         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5476         enum pipe pipe = intel_crtc->pipe;
5477         i915_reg_t reg;
5478         u32 temp;
5479
5480         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5481         reg = FDI_RX_CTL(pipe);
5482         temp = intel_de_read(dev_priv, reg);
5483         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5484         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5485         temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5486         intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5487
5488         intel_de_posting_read(dev_priv, reg);
5489         udelay(200);
5490
5491         /* Switch from Rawclk to PCDclk */
5492         temp = intel_de_read(dev_priv, reg);
5493         intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5494
5495         intel_de_posting_read(dev_priv, reg);
5496         udelay(200);
5497
5498         /* Enable CPU FDI TX PLL, always on for Ironlake */
5499         reg = FDI_TX_CTL(pipe);
5500         temp = intel_de_read(dev_priv, reg);
5501         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5502                 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5503
5504                 intel_de_posting_read(dev_priv, reg);
5505                 udelay(100);
5506         }
5507 }
5508
5509 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5510 {
5511         struct drm_device *dev = intel_crtc->base.dev;
5512         struct drm_i915_private *dev_priv = to_i915(dev);
5513         enum pipe pipe = intel_crtc->pipe;
5514         i915_reg_t reg;
5515         u32 temp;
5516
5517         /* Switch from PCDclk to Rawclk */
5518         reg = FDI_RX_CTL(pipe);
5519         temp = intel_de_read(dev_priv, reg);
5520         intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5521
5522         /* Disable CPU FDI TX PLL */
5523         reg = FDI_TX_CTL(pipe);
5524         temp = intel_de_read(dev_priv, reg);
5525         intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5526
5527         intel_de_posting_read(dev_priv, reg);
5528         udelay(100);
5529
5530         reg = FDI_RX_CTL(pipe);
5531         temp = intel_de_read(dev_priv, reg);
5532         intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5533
5534         /* Wait for the clocks to turn off. */
5535         intel_de_posting_read(dev_priv, reg);
5536         udelay(100);
5537 }
5538
5539 static void ilk_fdi_disable(struct intel_crtc *crtc)
5540 {
5541         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5542         enum pipe pipe = crtc->pipe;
5543         i915_reg_t reg;
5544         u32 temp;
5545
5546         /* disable CPU FDI tx and PCH FDI rx */
5547         reg = FDI_TX_CTL(pipe);
5548         temp = intel_de_read(dev_priv, reg);
5549         intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5550         intel_de_posting_read(dev_priv, reg);
5551
5552         reg = FDI_RX_CTL(pipe);
5553         temp = intel_de_read(dev_priv, reg);
5554         temp &= ~(0x7 << 16);
5555         temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5556         intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5557
5558         intel_de_posting_read(dev_priv, reg);
5559         udelay(100);
5560
5561         /* Ironlake workaround, disable clock pointer after downing FDI */
5562         if (HAS_PCH_IBX(dev_priv))
5563                 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5564                                FDI_RX_PHASE_SYNC_POINTER_OVR);
5565
5566         /* still set train pattern 1 */
5567         reg = FDI_TX_CTL(pipe);
5568         temp = intel_de_read(dev_priv, reg);
5569         temp &= ~FDI_LINK_TRAIN_NONE;
5570         temp |= FDI_LINK_TRAIN_PATTERN_1;
5571         intel_de_write(dev_priv, reg, temp);
5572
5573         reg = FDI_RX_CTL(pipe);
5574         temp = intel_de_read(dev_priv, reg);
5575         if (HAS_PCH_CPT(dev_priv)) {
5576                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5577                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5578         } else {
5579                 temp &= ~FDI_LINK_TRAIN_NONE;
5580                 temp |= FDI_LINK_TRAIN_PATTERN_1;
5581         }
5582         /* BPC in FDI rx is consistent with that in PIPECONF */
5583         temp &= ~(0x07 << 16);
5584         temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5585         intel_de_write(dev_priv, reg, temp);
5586
5587         intel_de_posting_read(dev_priv, reg);
5588         udelay(100);
5589 }
5590
5591 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5592 {
5593         struct drm_crtc *crtc;
5594         bool cleanup_done;
5595
5596         drm_for_each_crtc(crtc, &dev_priv->drm) {
5597                 struct drm_crtc_commit *commit;
5598                 spin_lock(&crtc->commit_lock);
5599                 commit = list_first_entry_or_null(&crtc->commit_list,
5600                                                   struct drm_crtc_commit, commit_entry);
5601                 cleanup_done = commit ?
5602                         try_wait_for_completion(&commit->cleanup_done) : true;
5603                 spin_unlock(&crtc->commit_lock);
5604
5605                 if (cleanup_done)
5606                         continue;
5607
5608                 drm_crtc_wait_one_vblank(crtc);
5609
5610                 return true;
5611         }
5612
5613         return false;
5614 }
5615
5616 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5617 {
5618         u32 temp;
5619
5620         intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5621
5622         mutex_lock(&dev_priv->sb_lock);
5623
5624         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5625         temp |= SBI_SSCCTL_DISABLE;
5626         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5627
5628         mutex_unlock(&dev_priv->sb_lock);
5629 }
5630
5631 /* Program iCLKIP clock to the desired frequency */
5632 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5633 {
5634         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5635         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5636         int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5637         u32 divsel, phaseinc, auxdiv, phasedir = 0;
5638         u32 temp;
5639
5640         lpt_disable_iclkip(dev_priv);
5641
5642         /* The iCLK virtual clock root frequency is in MHz,
5643          * but the adjusted_mode->crtc_clock in in KHz. To get the
5644          * divisors, it is necessary to divide one by another, so we
5645          * convert the virtual clock precision to KHz here for higher
5646          * precision.
5647          */
5648         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5649                 u32 iclk_virtual_root_freq = 172800 * 1000;
5650                 u32 iclk_pi_range = 64;
5651                 u32 desired_divisor;
5652
5653                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5654                                                     clock << auxdiv);
5655                 divsel = (desired_divisor / iclk_pi_range) - 2;
5656                 phaseinc = desired_divisor % iclk_pi_range;
5657
5658                 /*
5659                  * Near 20MHz is a corner case which is
5660                  * out of range for the 7-bit divisor
5661                  */
5662                 if (divsel <= 0x7f)
5663                         break;
5664         }
5665
5666         /* This should not happen with any sane values */
5667         drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5668                     ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5669         drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5670                     ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5671
5672         drm_dbg_kms(&dev_priv->drm,
5673                     "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5674                     clock, auxdiv, divsel, phasedir, phaseinc);
5675
5676         mutex_lock(&dev_priv->sb_lock);
5677
5678         /* Program SSCDIVINTPHASE6 */
5679         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5680         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5681         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5682         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5683         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5684         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5685         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5686         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5687
5688         /* Program SSCAUXDIV */
5689         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5690         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5691         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5692         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5693
5694         /* Enable modulator and associated divider */
5695         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5696         temp &= ~SBI_SSCCTL_DISABLE;
5697         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5698
5699         mutex_unlock(&dev_priv->sb_lock);
5700
5701         /* Wait for initialization time */
5702         udelay(24);
5703
5704         intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5705 }
5706
5707 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5708 {
5709         u32 divsel, phaseinc, auxdiv;
5710         u32 iclk_virtual_root_freq = 172800 * 1000;
5711         u32 iclk_pi_range = 64;
5712         u32 desired_divisor;
5713         u32 temp;
5714
5715         if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5716                 return 0;
5717
5718         mutex_lock(&dev_priv->sb_lock);
5719
5720         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5721         if (temp & SBI_SSCCTL_DISABLE) {
5722                 mutex_unlock(&dev_priv->sb_lock);
5723                 return 0;
5724         }
5725
5726         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5727         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5728                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5729         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5730                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5731
5732         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5733         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5734                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5735
5736         mutex_unlock(&dev_priv->sb_lock);
5737
5738         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5739
5740         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5741                                  desired_divisor << auxdiv);
5742 }
5743
5744 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5745                                            enum pipe pch_transcoder)
5746 {
5747         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5748         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5749         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5750
5751         intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5752                        intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5753         intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5754                        intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5755         intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5756                        intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5757
5758         intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5759                        intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5760         intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5761                        intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5762         intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5763                        intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5764         intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5765                        intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5766 }
5767
5768 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5769 {
5770         u32 temp;
5771
5772         temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5773         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5774                 return;
5775
5776         drm_WARN_ON(&dev_priv->drm,
5777                     intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5778                     FDI_RX_ENABLE);
5779         drm_WARN_ON(&dev_priv->drm,
5780                     intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5781                     FDI_RX_ENABLE);
5782
5783         temp &= ~FDI_BC_BIFURCATION_SELECT;
5784         if (enable)
5785                 temp |= FDI_BC_BIFURCATION_SELECT;
5786
5787         drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5788                     enable ? "en" : "dis");
5789         intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5790         intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5791 }
5792
5793 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5794 {
5795         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5796         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5797
5798         switch (crtc->pipe) {
5799         case PIPE_A:
5800                 break;
5801         case PIPE_B:
5802                 if (crtc_state->fdi_lanes > 2)
5803                         cpt_set_fdi_bc_bifurcation(dev_priv, false);
5804                 else
5805                         cpt_set_fdi_bc_bifurcation(dev_priv, true);
5806
5807                 break;
5808         case PIPE_C:
5809                 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5810
5811                 break;
5812         default:
5813                 BUG();
5814         }
5815 }
5816
5817 /*
5818  * Finds the encoder associated with the given CRTC. This can only be
5819  * used when we know that the CRTC isn't feeding multiple encoders!
5820  */
5821 static struct intel_encoder *
5822 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5823                            const struct intel_crtc_state *crtc_state)
5824 {
5825         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5826         const struct drm_connector_state *connector_state;
5827         const struct drm_connector *connector;
5828         struct intel_encoder *encoder = NULL;
5829         int num_encoders = 0;
5830         int i;
5831
5832         for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5833                 if (connector_state->crtc != &crtc->base)
5834                         continue;
5835
5836                 encoder = to_intel_encoder(connector_state->best_encoder);
5837                 num_encoders++;
5838         }
5839
5840         drm_WARN(encoder->base.dev, num_encoders != 1,
5841                  "%d encoders for pipe %c\n",
5842                  num_encoders, pipe_name(crtc->pipe));
5843
5844         return encoder;
5845 }
5846
5847 /*
5848  * Enable PCH resources required for PCH ports:
5849  *   - PCH PLLs
5850  *   - FDI training & RX/TX
5851  *   - update transcoder timings
5852  *   - DP transcoding bits
5853  *   - transcoder
5854  */
5855 static void ilk_pch_enable(const struct intel_atomic_state *state,
5856                            const struct intel_crtc_state *crtc_state)
5857 {
5858         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5859         struct drm_device *dev = crtc->base.dev;
5860         struct drm_i915_private *dev_priv = to_i915(dev);
5861         enum pipe pipe = crtc->pipe;
5862         u32 temp;
5863
5864         assert_pch_transcoder_disabled(dev_priv, pipe);
5865
5866         if (IS_IVYBRIDGE(dev_priv))
5867                 ivb_update_fdi_bc_bifurcation(crtc_state);
5868
5869         /* Write the TU size bits before fdi link training, so that error
5870          * detection works. */
5871         intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5872                        intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5873
5874         /* For PCH output, training FDI link */
5875         dev_priv->display.fdi_link_train(crtc, crtc_state);
5876
5877         /* We need to program the right clock selection before writing the pixel
5878          * mutliplier into the DPLL. */
5879         if (HAS_PCH_CPT(dev_priv)) {
5880                 u32 sel;
5881
5882                 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5883                 temp |= TRANS_DPLL_ENABLE(pipe);
5884                 sel = TRANS_DPLLB_SEL(pipe);
5885                 if (crtc_state->shared_dpll ==
5886                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5887                         temp |= sel;
5888                 else
5889                         temp &= ~sel;
5890                 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5891         }
5892
5893         /* XXX: pch pll's can be enabled any time before we enable the PCH
5894          * transcoder, and we actually should do this to not upset any PCH
5895          * transcoder that already use the clock when we share it.
5896          *
5897          * Note that enable_shared_dpll tries to do the right thing, but
5898          * get_shared_dpll unconditionally resets the pll - we need that to have
5899          * the right LVDS enable sequence. */
5900         intel_enable_shared_dpll(crtc_state);
5901
5902         /* set transcoder timing, panel must allow it */
5903         assert_panel_unlocked(dev_priv, pipe);
5904         ilk_pch_transcoder_set_timings(crtc_state, pipe);
5905
5906         intel_fdi_normal_train(crtc);
5907
5908         /* For PCH DP, enable TRANS_DP_CTL */
5909         if (HAS_PCH_CPT(dev_priv) &&
5910             intel_crtc_has_dp_encoder(crtc_state)) {
5911                 const struct drm_display_mode *adjusted_mode =
5912                         &crtc_state->hw.adjusted_mode;
5913                 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5914                 i915_reg_t reg = TRANS_DP_CTL(pipe);
5915                 enum port port;
5916
5917                 temp = intel_de_read(dev_priv, reg);
5918                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5919                           TRANS_DP_SYNC_MASK |
5920                           TRANS_DP_BPC_MASK);
5921                 temp |= TRANS_DP_OUTPUT_ENABLE;
5922                 temp |= bpc << 9; /* same format but at 11:9 */
5923
5924                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5925                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5926                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5927                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5928
5929                 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5930                 drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5931                 temp |= TRANS_DP_PORT_SEL(port);
5932
5933                 intel_de_write(dev_priv, reg, temp);
5934         }
5935
5936         ilk_enable_pch_transcoder(crtc_state);
5937 }
5938
5939 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5940 {
5941         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5942         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5943         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5944
5945         assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5946
5947         lpt_program_iclkip(crtc_state);
5948
5949         /* Set transcoder timing. */
5950         ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5951
5952         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5953 }
5954
5955 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5956                                enum pipe pipe)
5957 {
5958         i915_reg_t dslreg = PIPEDSL(pipe);
5959         u32 temp;
5960
5961         temp = intel_de_read(dev_priv, dslreg);
5962         udelay(500);
5963         if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5964                 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5965                         drm_err(&dev_priv->drm,
5966                                 "mode set failed: pipe %c stuck\n",
5967                                 pipe_name(pipe));
5968         }
5969 }
5970
5971 /*
5972  * The hardware phase 0.0 refers to the center of the pixel.
5973  * We want to start from the top/left edge which is phase
5974  * -0.5. That matches how the hardware calculates the scaling
5975  * factors (from top-left of the first pixel to bottom-right
5976  * of the last pixel, as opposed to the pixel centers).
5977  *
5978  * For 4:2:0 subsampled chroma planes we obviously have to
5979  * adjust that so that the chroma sample position lands in
5980  * the right spot.
5981  *
5982  * Note that for packed YCbCr 4:2:2 formats there is no way to
5983  * control chroma siting. The hardware simply replicates the
5984  * chroma samples for both of the luma samples, and thus we don't
5985  * actually get the expected MPEG2 chroma siting convention :(
5986  * The same behaviour is observed on pre-SKL platforms as well.
5987  *
5988  * Theory behind the formula (note that we ignore sub-pixel
5989  * source coordinates):
5990  * s = source sample position
5991  * d = destination sample position
5992  *
5993  * Downscaling 4:1:
5994  * -0.5
5995  * | 0.0
5996  * | |     1.5 (initial phase)
5997  * | |     |
5998  * v v     v
5999  * | s | s | s | s |
6000  * |       d       |
6001  *
6002  * Upscaling 1:4:
6003  * -0.5
6004  * | -0.375 (initial phase)
6005  * | |     0.0
6006  * | |     |
6007  * v v     v
6008  * |       s       |
6009  * | d | d | d | d |
6010  */
6011 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6012 {
6013         int phase = -0x8000;
6014         u16 trip = 0;
6015
6016         if (chroma_cosited)
6017                 phase += (sub - 1) * 0x8000 / sub;
6018
6019         phase += scale / (2 * sub);
6020
6021         /*
6022          * Hardware initial phase limited to [-0.5:1.5].
6023          * Since the max hardware scale factor is 3.0, we
6024          * should never actually excdeed 1.0 here.
6025          */
6026         WARN_ON(phase < -0x8000 || phase > 0x18000);
6027
6028         if (phase < 0)
6029                 phase = 0x10000 + phase;
6030         else
6031                 trip = PS_PHASE_TRIP;
6032
6033         return ((phase >> 2) & PS_PHASE_MASK) | trip;
6034 }
6035
6036 #define SKL_MIN_SRC_W 8
6037 #define SKL_MAX_SRC_W 4096
6038 #define SKL_MIN_SRC_H 8
6039 #define SKL_MAX_SRC_H 4096
6040 #define SKL_MIN_DST_W 8
6041 #define SKL_MAX_DST_W 4096
6042 #define SKL_MIN_DST_H 8
6043 #define SKL_MAX_DST_H 4096
6044 #define ICL_MAX_SRC_W 5120
6045 #define ICL_MAX_SRC_H 4096
6046 #define ICL_MAX_DST_W 5120
6047 #define ICL_MAX_DST_H 4096
6048 #define SKL_MIN_YUV_420_SRC_W 16
6049 #define SKL_MIN_YUV_420_SRC_H 16
6050
6051 static int
6052 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6053                   unsigned int scaler_user, int *scaler_id,
6054                   int src_w, int src_h, int dst_w, int dst_h,
6055                   const struct drm_format_info *format,
6056                   u64 modifier, bool need_scaler)
6057 {
6058         struct intel_crtc_scaler_state *scaler_state =
6059                 &crtc_state->scaler_state;
6060         struct intel_crtc *intel_crtc =
6061                 to_intel_crtc(crtc_state->uapi.crtc);
6062         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6063         const struct drm_display_mode *adjusted_mode =
6064                 &crtc_state->hw.adjusted_mode;
6065
6066         /*
6067          * Src coordinates are already rotated by 270 degrees for
6068          * the 90/270 degree plane rotation cases (to match the
6069          * GTT mapping), hence no need to account for rotation here.
6070          */
6071         if (src_w != dst_w || src_h != dst_h)
6072                 need_scaler = true;
6073
6074         /*
6075          * Scaling/fitting not supported in IF-ID mode in GEN9+
6076          * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6077          * Once NV12 is enabled, handle it here while allocating scaler
6078          * for NV12.
6079          */
6080         if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6081             need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6082                 drm_dbg_kms(&dev_priv->drm,
6083                             "Pipe/Plane scaling not supported with IF-ID mode\n");
6084                 return -EINVAL;
6085         }
6086
6087         /*
6088          * if plane is being disabled or scaler is no more required or force detach
6089          *  - free scaler binded to this plane/crtc
6090          *  - in order to do this, update crtc->scaler_usage
6091          *
6092          * Here scaler state in crtc_state is set free so that
6093          * scaler can be assigned to other user. Actual register
6094          * update to free the scaler is done in plane/panel-fit programming.
6095          * For this purpose crtc/plane_state->scaler_id isn't reset here.
6096          */
6097         if (force_detach || !need_scaler) {
6098                 if (*scaler_id >= 0) {
6099                         scaler_state->scaler_users &= ~(1 << scaler_user);
6100                         scaler_state->scalers[*scaler_id].in_use = 0;
6101
6102                         drm_dbg_kms(&dev_priv->drm,
6103                                     "scaler_user index %u.%u: "
6104                                     "Staged freeing scaler id %d scaler_users = 0x%x\n",
6105                                     intel_crtc->pipe, scaler_user, *scaler_id,
6106                                     scaler_state->scaler_users);
6107                         *scaler_id = -1;
6108                 }
6109                 return 0;
6110         }
6111
6112         if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6113             (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6114                 drm_dbg_kms(&dev_priv->drm,
6115                             "Planar YUV: src dimensions not met\n");
6116                 return -EINVAL;
6117         }
6118
6119         /* range checks */
6120         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6121             dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6122             (INTEL_GEN(dev_priv) >= 11 &&
6123              (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6124               dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6125             (INTEL_GEN(dev_priv) < 11 &&
6126              (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6127               dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
6128                 drm_dbg_kms(&dev_priv->drm,
6129                             "scaler_user index %u.%u: src %ux%u dst %ux%u "
6130                             "size is out of scaler range\n",
6131                             intel_crtc->pipe, scaler_user, src_w, src_h,
6132                             dst_w, dst_h);
6133                 return -EINVAL;
6134         }
6135
6136         /* mark this plane as a scaler user in crtc_state */
6137         scaler_state->scaler_users |= (1 << scaler_user);
6138         drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6139                     "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6140                     intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6141                     scaler_state->scaler_users);
6142
6143         return 0;
6144 }
6145
6146 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6147 {
6148         const struct drm_display_mode *adjusted_mode =
6149                 &crtc_state->hw.adjusted_mode;
6150         int width, height;
6151
6152         if (crtc_state->pch_pfit.enabled) {
6153                 width = drm_rect_width(&crtc_state->pch_pfit.dst);
6154                 height = drm_rect_height(&crtc_state->pch_pfit.dst);
6155         } else {
6156                 width = adjusted_mode->crtc_hdisplay;
6157                 height = adjusted_mode->crtc_vdisplay;
6158         }
6159
6160         return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6161                                  SKL_CRTC_INDEX,
6162                                  &crtc_state->scaler_state.scaler_id,
6163                                  crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6164                                  width, height, NULL, 0,
6165                                  crtc_state->pch_pfit.enabled);
6166 }
6167
6168 /**
6169  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6170  * @crtc_state: crtc's scaler state
6171  * @plane_state: atomic plane state to update
6172  *
6173  * Return
6174  *     0 - scaler_usage updated successfully
6175  *    error - requested scaling cannot be supported or other error condition
6176  */
6177 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6178                                    struct intel_plane_state *plane_state)
6179 {
6180         struct intel_plane *intel_plane =
6181                 to_intel_plane(plane_state->uapi.plane);
6182         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6183         struct drm_framebuffer *fb = plane_state->hw.fb;
6184         int ret;
6185         bool force_detach = !fb || !plane_state->uapi.visible;
6186         bool need_scaler = false;
6187
6188         /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6189         if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6190             fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6191                 need_scaler = true;
6192
6193         ret = skl_update_scaler(crtc_state, force_detach,
6194                                 drm_plane_index(&intel_plane->base),
6195                                 &plane_state->scaler_id,
6196                                 drm_rect_width(&plane_state->uapi.src) >> 16,
6197                                 drm_rect_height(&plane_state->uapi.src) >> 16,
6198                                 drm_rect_width(&plane_state->uapi.dst),
6199                                 drm_rect_height(&plane_state->uapi.dst),
6200                                 fb ? fb->format : NULL,
6201                                 fb ? fb->modifier : 0,
6202                                 need_scaler);
6203
6204         if (ret || plane_state->scaler_id < 0)
6205                 return ret;
6206
6207         /* check colorkey */
6208         if (plane_state->ckey.flags) {
6209                 drm_dbg_kms(&dev_priv->drm,
6210                             "[PLANE:%d:%s] scaling with color key not allowed",
6211                             intel_plane->base.base.id,
6212                             intel_plane->base.name);
6213                 return -EINVAL;
6214         }
6215
6216         /* Check src format */
6217         switch (fb->format->format) {
6218         case DRM_FORMAT_RGB565:
6219         case DRM_FORMAT_XBGR8888:
6220         case DRM_FORMAT_XRGB8888:
6221         case DRM_FORMAT_ABGR8888:
6222         case DRM_FORMAT_ARGB8888:
6223         case DRM_FORMAT_XRGB2101010:
6224         case DRM_FORMAT_XBGR2101010:
6225         case DRM_FORMAT_ARGB2101010:
6226         case DRM_FORMAT_ABGR2101010:
6227         case DRM_FORMAT_YUYV:
6228         case DRM_FORMAT_YVYU:
6229         case DRM_FORMAT_UYVY:
6230         case DRM_FORMAT_VYUY:
6231         case DRM_FORMAT_NV12:
6232         case DRM_FORMAT_XYUV8888:
6233         case DRM_FORMAT_P010:
6234         case DRM_FORMAT_P012:
6235         case DRM_FORMAT_P016:
6236         case DRM_FORMAT_Y210:
6237         case DRM_FORMAT_Y212:
6238         case DRM_FORMAT_Y216:
6239         case DRM_FORMAT_XVYU2101010:
6240         case DRM_FORMAT_XVYU12_16161616:
6241         case DRM_FORMAT_XVYU16161616:
6242                 break;
6243         case DRM_FORMAT_XBGR16161616F:
6244         case DRM_FORMAT_ABGR16161616F:
6245         case DRM_FORMAT_XRGB16161616F:
6246         case DRM_FORMAT_ARGB16161616F:
6247                 if (INTEL_GEN(dev_priv) >= 11)
6248                         break;
6249                 fallthrough;
6250         default:
6251                 drm_dbg_kms(&dev_priv->drm,
6252                             "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6253                             intel_plane->base.base.id, intel_plane->base.name,
6254                             fb->base.id, fb->format->format);
6255                 return -EINVAL;
6256         }
6257
6258         return 0;
6259 }
6260
6261 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6262 {
6263         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6264         int i;
6265
6266         for (i = 0; i < crtc->num_scalers; i++)
6267                 skl_detach_scaler(crtc, i);
6268 }
6269
6270 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6271 {
6272         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6273         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6274         const struct intel_crtc_scaler_state *scaler_state =
6275                 &crtc_state->scaler_state;
6276         struct drm_rect src = {
6277                 .x2 = crtc_state->pipe_src_w << 16,
6278                 .y2 = crtc_state->pipe_src_h << 16,
6279         };
6280         const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6281         u16 uv_rgb_hphase, uv_rgb_vphase;
6282         enum pipe pipe = crtc->pipe;
6283         int width = drm_rect_width(dst);
6284         int height = drm_rect_height(dst);
6285         int x = dst->x1;
6286         int y = dst->y1;
6287         int hscale, vscale;
6288         unsigned long irqflags;
6289         int id;
6290
6291         if (!crtc_state->pch_pfit.enabled)
6292                 return;
6293
6294         if (drm_WARN_ON(&dev_priv->drm,
6295                         crtc_state->scaler_state.scaler_id < 0))
6296                 return;
6297
6298         hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6299         vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6300
6301         uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6302         uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6303
6304         id = scaler_state->scaler_id;
6305
6306         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6307
6308         intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6309                           PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6310         intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6311                           PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6312         intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6313                           PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6314         intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6315                           x << 16 | y);
6316         intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6317                           width << 16 | height);
6318
6319         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6320 }
6321
6322 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6323 {
6324         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6325         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6326         const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6327         enum pipe pipe = crtc->pipe;
6328         int width = drm_rect_width(dst);
6329         int height = drm_rect_height(dst);
6330         int x = dst->x1;
6331         int y = dst->y1;
6332
6333         if (!crtc_state->pch_pfit.enabled)
6334                 return;
6335
6336         /* Force use of hard-coded filter coefficients
6337          * as some pre-programmed values are broken,
6338          * e.g. x201.
6339          */
6340         if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6341                 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6342                                PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6343         else
6344                 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6345                                PF_FILTER_MED_3x3);
6346         intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6347         intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6348 }
6349
6350 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6351 {
6352         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6353         struct drm_device *dev = crtc->base.dev;
6354         struct drm_i915_private *dev_priv = to_i915(dev);
6355
6356         if (!crtc_state->ips_enabled)
6357                 return;
6358
6359         /*
6360          * We can only enable IPS after we enable a plane and wait for a vblank
6361          * This function is called from post_plane_update, which is run after
6362          * a vblank wait.
6363          */
6364         drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6365
6366         if (IS_BROADWELL(dev_priv)) {
6367                 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6368                                                          IPS_ENABLE | IPS_PCODE_CONTROL));
6369                 /* Quoting Art Runyan: "its not safe to expect any particular
6370                  * value in IPS_CTL bit 31 after enabling IPS through the
6371                  * mailbox." Moreover, the mailbox may return a bogus state,
6372                  * so we need to just enable it and continue on.
6373                  */
6374         } else {
6375                 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6376                 /* The bit only becomes 1 in the next vblank, so this wait here
6377                  * is essentially intel_wait_for_vblank. If we don't have this
6378                  * and don't wait for vblanks until the end of crtc_enable, then
6379                  * the HW state readout code will complain that the expected
6380                  * IPS_CTL value is not the one we read. */
6381                 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6382                         drm_err(&dev_priv->drm,
6383                                 "Timed out waiting for IPS enable\n");
6384         }
6385 }
6386
6387 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6388 {
6389         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6390         struct drm_device *dev = crtc->base.dev;
6391         struct drm_i915_private *dev_priv = to_i915(dev);
6392
6393         if (!crtc_state->ips_enabled)
6394                 return;
6395
6396         if (IS_BROADWELL(dev_priv)) {
6397                 drm_WARN_ON(dev,
6398                             sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6399                 /*
6400                  * Wait for PCODE to finish disabling IPS. The BSpec specified
6401                  * 42ms timeout value leads to occasional timeouts so use 100ms
6402                  * instead.
6403                  */
6404                 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6405                         drm_err(&dev_priv->drm,
6406                                 "Timed out waiting for IPS disable\n");
6407         } else {
6408                 intel_de_write(dev_priv, IPS_CTL, 0);
6409                 intel_de_posting_read(dev_priv, IPS_CTL);
6410         }
6411
6412         /* We need to wait for a vblank before we can disable the plane. */
6413         intel_wait_for_vblank(dev_priv, crtc->pipe);
6414 }
6415
6416 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6417 {
6418         if (intel_crtc->overlay)
6419                 (void) intel_overlay_switch_off(intel_crtc->overlay);
6420
6421         /* Let userspace switch the overlay on again. In most cases userspace
6422          * has to recompute where to put it anyway.
6423          */
6424 }
6425
6426 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6427                                        const struct intel_crtc_state *new_crtc_state)
6428 {
6429         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6430         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6431
6432         if (!old_crtc_state->ips_enabled)
6433                 return false;
6434
6435         if (needs_modeset(new_crtc_state))
6436                 return true;
6437
6438         /*
6439          * Workaround : Do not read or write the pipe palette/gamma data while
6440          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6441          *
6442          * Disable IPS before we program the LUT.
6443          */
6444         if (IS_HASWELL(dev_priv) &&
6445             (new_crtc_state->uapi.color_mgmt_changed ||
6446              new_crtc_state->update_pipe) &&
6447             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6448                 return true;
6449
6450         return !new_crtc_state->ips_enabled;
6451 }
6452
6453 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6454                                        const struct intel_crtc_state *new_crtc_state)
6455 {
6456         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6457         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6458
6459         if (!new_crtc_state->ips_enabled)
6460                 return false;
6461
6462         if (needs_modeset(new_crtc_state))
6463                 return true;
6464
6465         /*
6466          * Workaround : Do not read or write the pipe palette/gamma data while
6467          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6468          *
6469          * Re-enable IPS after the LUT has been programmed.
6470          */
6471         if (IS_HASWELL(dev_priv) &&
6472             (new_crtc_state->uapi.color_mgmt_changed ||
6473              new_crtc_state->update_pipe) &&
6474             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6475                 return true;
6476
6477         /*
6478          * We can't read out IPS on broadwell, assume the worst and
6479          * forcibly enable IPS on the first fastset.
6480          */
6481         if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6482                 return true;
6483
6484         return !old_crtc_state->ips_enabled;
6485 }
6486
6487 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6488 {
6489         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6490
6491         if (!crtc_state->nv12_planes)
6492                 return false;
6493
6494         /* WA Display #0827: Gen9:all */
6495         if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6496                 return true;
6497
6498         return false;
6499 }
6500
6501 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6502 {
6503         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6504
6505         /* Wa_2006604312:icl,ehl */
6506         if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6507                 return true;
6508
6509         return false;
6510 }
6511
6512 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6513                             const struct intel_crtc_state *new_crtc_state)
6514 {
6515         return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6516                 new_crtc_state->active_planes;
6517 }
6518
6519 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6520                              const struct intel_crtc_state *new_crtc_state)
6521 {
6522         return old_crtc_state->active_planes &&
6523                 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6524 }
6525
6526 static void intel_post_plane_update(struct intel_atomic_state *state,
6527                                     struct intel_crtc *crtc)
6528 {
6529         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6530         const struct intel_crtc_state *old_crtc_state =
6531                 intel_atomic_get_old_crtc_state(state, crtc);
6532         const struct intel_crtc_state *new_crtc_state =
6533                 intel_atomic_get_new_crtc_state(state, crtc);
6534         enum pipe pipe = crtc->pipe;
6535
6536         intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6537
6538         if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6539                 intel_update_watermarks(crtc);
6540
6541         if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6542                 hsw_enable_ips(new_crtc_state);
6543
6544         intel_fbc_post_update(state, crtc);
6545
6546         if (needs_nv12_wa(old_crtc_state) &&
6547             !needs_nv12_wa(new_crtc_state))
6548                 skl_wa_827(dev_priv, pipe, false);
6549
6550         if (needs_scalerclk_wa(old_crtc_state) &&
6551             !needs_scalerclk_wa(new_crtc_state))
6552                 icl_wa_scalerclkgating(dev_priv, pipe, false);
6553 }
6554
6555 static void intel_pre_plane_update(struct intel_atomic_state *state,
6556                                    struct intel_crtc *crtc)
6557 {
6558         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6559         const struct intel_crtc_state *old_crtc_state =
6560                 intel_atomic_get_old_crtc_state(state, crtc);
6561         const struct intel_crtc_state *new_crtc_state =
6562                 intel_atomic_get_new_crtc_state(state, crtc);
6563         enum pipe pipe = crtc->pipe;
6564
6565         if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6566                 hsw_disable_ips(old_crtc_state);
6567
6568         if (intel_fbc_pre_update(state, crtc))
6569                 intel_wait_for_vblank(dev_priv, pipe);
6570
6571         /* Display WA 827 */
6572         if (!needs_nv12_wa(old_crtc_state) &&
6573             needs_nv12_wa(new_crtc_state))
6574                 skl_wa_827(dev_priv, pipe, true);
6575
6576         /* Wa_2006604312:icl,ehl */
6577         if (!needs_scalerclk_wa(old_crtc_state) &&
6578             needs_scalerclk_wa(new_crtc_state))
6579                 icl_wa_scalerclkgating(dev_priv, pipe, true);
6580
6581         /*
6582          * Vblank time updates from the shadow to live plane control register
6583          * are blocked if the memory self-refresh mode is active at that
6584          * moment. So to make sure the plane gets truly disabled, disable
6585          * first the self-refresh mode. The self-refresh enable bit in turn
6586          * will be checked/applied by the HW only at the next frame start
6587          * event which is after the vblank start event, so we need to have a
6588          * wait-for-vblank between disabling the plane and the pipe.
6589          */
6590         if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6591             new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6592                 intel_wait_for_vblank(dev_priv, pipe);
6593
6594         /*
6595          * IVB workaround: must disable low power watermarks for at least
6596          * one frame before enabling scaling.  LP watermarks can be re-enabled
6597          * when scaling is disabled.
6598          *
6599          * WaCxSRDisabledForSpriteScaling:ivb
6600          */
6601         if (old_crtc_state->hw.active &&
6602             new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6603                 intel_wait_for_vblank(dev_priv, pipe);
6604
6605         /*
6606          * If we're doing a modeset we don't need to do any
6607          * pre-vblank watermark programming here.
6608          */
6609         if (!needs_modeset(new_crtc_state)) {
6610                 /*
6611                  * For platforms that support atomic watermarks, program the
6612                  * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6613                  * will be the intermediate values that are safe for both pre- and
6614                  * post- vblank; when vblank happens, the 'active' values will be set
6615                  * to the final 'target' values and we'll do this again to get the
6616                  * optimal watermarks.  For gen9+ platforms, the values we program here
6617                  * will be the final target values which will get automatically latched
6618                  * at vblank time; no further programming will be necessary.
6619                  *
6620                  * If a platform hasn't been transitioned to atomic watermarks yet,
6621                  * we'll continue to update watermarks the old way, if flags tell
6622                  * us to.
6623                  */
6624                 if (dev_priv->display.initial_watermarks)
6625                         dev_priv->display.initial_watermarks(state, crtc);
6626                 else if (new_crtc_state->update_wm_pre)
6627                         intel_update_watermarks(crtc);
6628         }
6629
6630         /*
6631          * Gen2 reports pipe underruns whenever all planes are disabled.
6632          * So disable underrun reporting before all the planes get disabled.
6633          *
6634          * We do this after .initial_watermarks() so that we have a
6635          * chance of catching underruns with the intermediate watermarks
6636          * vs. the old plane configuration.
6637          */
6638         if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6639                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6640 }
6641
6642 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6643                                       struct intel_crtc *crtc)
6644 {
6645         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6646         const struct intel_crtc_state *new_crtc_state =
6647                 intel_atomic_get_new_crtc_state(state, crtc);
6648         unsigned int update_mask = new_crtc_state->update_planes;
6649         const struct intel_plane_state *old_plane_state;
6650         struct intel_plane *plane;
6651         unsigned fb_bits = 0;
6652         int i;
6653
6654         intel_crtc_dpms_overlay_disable(crtc);
6655
6656         for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6657                 if (crtc->pipe != plane->pipe ||
6658                     !(update_mask & BIT(plane->id)))
6659                         continue;
6660
6661                 intel_disable_plane(plane, new_crtc_state);
6662
6663                 if (old_plane_state->uapi.visible)
6664                         fb_bits |= plane->frontbuffer_bit;
6665         }
6666
6667         intel_frontbuffer_flip(dev_priv, fb_bits);
6668 }
6669
6670 /*
6671  * intel_connector_primary_encoder - get the primary encoder for a connector
6672  * @connector: connector for which to return the encoder
6673  *
6674  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6675  * all connectors to their encoder, except for DP-MST connectors which have
6676  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6677  * pointed to by as many DP-MST connectors as there are pipes.
6678  */
6679 static struct intel_encoder *
6680 intel_connector_primary_encoder(struct intel_connector *connector)
6681 {
6682         struct intel_encoder *encoder;
6683
6684         if (connector->mst_port)
6685                 return &dp_to_dig_port(connector->mst_port)->base;
6686
6687         encoder = intel_attached_encoder(connector);
6688         drm_WARN_ON(connector->base.dev, !encoder);
6689
6690         return encoder;
6691 }
6692
6693 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6694 {
6695         struct drm_connector_state *new_conn_state;
6696         struct drm_connector *connector;
6697         int i;
6698
6699         for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6700                                         i) {
6701                 struct intel_connector *intel_connector;
6702                 struct intel_encoder *encoder;
6703                 struct intel_crtc *crtc;
6704
6705                 if (!intel_connector_needs_modeset(state, connector))
6706                         continue;
6707
6708                 intel_connector = to_intel_connector(connector);
6709                 encoder = intel_connector_primary_encoder(intel_connector);
6710                 if (!encoder->update_prepare)
6711                         continue;
6712
6713                 crtc = new_conn_state->crtc ?
6714                         to_intel_crtc(new_conn_state->crtc) : NULL;
6715                 encoder->update_prepare(state, encoder, crtc);
6716         }
6717 }
6718
6719 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6720 {
6721         struct drm_connector_state *new_conn_state;
6722         struct drm_connector *connector;
6723         int i;
6724
6725         for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6726                                         i) {
6727                 struct intel_connector *intel_connector;
6728                 struct intel_encoder *encoder;
6729                 struct intel_crtc *crtc;
6730
6731                 if (!intel_connector_needs_modeset(state, connector))
6732                         continue;
6733
6734                 intel_connector = to_intel_connector(connector);
6735                 encoder = intel_connector_primary_encoder(intel_connector);
6736                 if (!encoder->update_complete)
6737                         continue;
6738
6739                 crtc = new_conn_state->crtc ?
6740                         to_intel_crtc(new_conn_state->crtc) : NULL;
6741                 encoder->update_complete(state, encoder, crtc);
6742         }
6743 }
6744
6745 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6746                                           struct intel_crtc *crtc)
6747 {
6748         const struct intel_crtc_state *crtc_state =
6749                 intel_atomic_get_new_crtc_state(state, crtc);
6750         const struct drm_connector_state *conn_state;
6751         struct drm_connector *conn;
6752         int i;
6753
6754         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6755                 struct intel_encoder *encoder =
6756                         to_intel_encoder(conn_state->best_encoder);
6757
6758                 if (conn_state->crtc != &crtc->base)
6759                         continue;
6760
6761                 if (encoder->pre_pll_enable)
6762                         encoder->pre_pll_enable(state, encoder,
6763                                                 crtc_state, conn_state);
6764         }
6765 }
6766
6767 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6768                                       struct intel_crtc *crtc)
6769 {
6770         const struct intel_crtc_state *crtc_state =
6771                 intel_atomic_get_new_crtc_state(state, crtc);
6772         const struct drm_connector_state *conn_state;
6773         struct drm_connector *conn;
6774         int i;
6775
6776         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6777                 struct intel_encoder *encoder =
6778                         to_intel_encoder(conn_state->best_encoder);
6779
6780                 if (conn_state->crtc != &crtc->base)
6781                         continue;
6782
6783                 if (encoder->pre_enable)
6784                         encoder->pre_enable(state, encoder,
6785                                             crtc_state, conn_state);
6786         }
6787 }
6788
6789 static void intel_encoders_enable(struct intel_atomic_state *state,
6790                                   struct intel_crtc *crtc)
6791 {
6792         const struct intel_crtc_state *crtc_state =
6793                 intel_atomic_get_new_crtc_state(state, crtc);
6794         const struct drm_connector_state *conn_state;
6795         struct drm_connector *conn;
6796         int i;
6797
6798         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6799                 struct intel_encoder *encoder =
6800                         to_intel_encoder(conn_state->best_encoder);
6801
6802                 if (conn_state->crtc != &crtc->base)
6803                         continue;
6804
6805                 if (encoder->enable)
6806                         encoder->enable(state, encoder,
6807                                         crtc_state, conn_state);
6808                 intel_opregion_notify_encoder(encoder, true);
6809         }
6810 }
6811
6812 static void intel_encoders_disable(struct intel_atomic_state *state,
6813                                    struct intel_crtc *crtc)
6814 {
6815         const struct intel_crtc_state *old_crtc_state =
6816                 intel_atomic_get_old_crtc_state(state, crtc);
6817         const struct drm_connector_state *old_conn_state;
6818         struct drm_connector *conn;
6819         int i;
6820
6821         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6822                 struct intel_encoder *encoder =
6823                         to_intel_encoder(old_conn_state->best_encoder);
6824
6825                 if (old_conn_state->crtc != &crtc->base)
6826                         continue;
6827
6828                 intel_opregion_notify_encoder(encoder, false);
6829                 if (encoder->disable)
6830                         encoder->disable(state, encoder,
6831                                          old_crtc_state, old_conn_state);
6832         }
6833 }
6834
6835 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6836                                         struct intel_crtc *crtc)
6837 {
6838         const struct intel_crtc_state *old_crtc_state =
6839                 intel_atomic_get_old_crtc_state(state, crtc);
6840         const struct drm_connector_state *old_conn_state;
6841         struct drm_connector *conn;
6842         int i;
6843
6844         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6845                 struct intel_encoder *encoder =
6846                         to_intel_encoder(old_conn_state->best_encoder);
6847
6848                 if (old_conn_state->crtc != &crtc->base)
6849                         continue;
6850
6851                 if (encoder->post_disable)
6852                         encoder->post_disable(state, encoder,
6853                                               old_crtc_state, old_conn_state);
6854         }
6855 }
6856
6857 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6858                                             struct intel_crtc *crtc)
6859 {
6860         const struct intel_crtc_state *old_crtc_state =
6861                 intel_atomic_get_old_crtc_state(state, crtc);
6862         const struct drm_connector_state *old_conn_state;
6863         struct drm_connector *conn;
6864         int i;
6865
6866         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6867                 struct intel_encoder *encoder =
6868                         to_intel_encoder(old_conn_state->best_encoder);
6869
6870                 if (old_conn_state->crtc != &crtc->base)
6871                         continue;
6872
6873                 if (encoder->post_pll_disable)
6874                         encoder->post_pll_disable(state, encoder,
6875                                                   old_crtc_state, old_conn_state);
6876         }
6877 }
6878
6879 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6880                                        struct intel_crtc *crtc)
6881 {
6882         const struct intel_crtc_state *crtc_state =
6883                 intel_atomic_get_new_crtc_state(state, crtc);
6884         const struct drm_connector_state *conn_state;
6885         struct drm_connector *conn;
6886         int i;
6887
6888         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6889                 struct intel_encoder *encoder =
6890                         to_intel_encoder(conn_state->best_encoder);
6891
6892                 if (conn_state->crtc != &crtc->base)
6893                         continue;
6894
6895                 if (encoder->update_pipe)
6896                         encoder->update_pipe(state, encoder,
6897                                              crtc_state, conn_state);
6898         }
6899 }
6900
6901 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6902 {
6903         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6904         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6905
6906         plane->disable_plane(plane, crtc_state);
6907 }
6908
6909 static void ilk_crtc_enable(struct intel_atomic_state *state,
6910                             struct intel_crtc *crtc)
6911 {
6912         const struct intel_crtc_state *new_crtc_state =
6913                 intel_atomic_get_new_crtc_state(state, crtc);
6914         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6915         enum pipe pipe = crtc->pipe;
6916
6917         if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6918                 return;
6919
6920         /*
6921          * Sometimes spurious CPU pipe underruns happen during FDI
6922          * training, at least with VGA+HDMI cloning. Suppress them.
6923          *
6924          * On ILK we get an occasional spurious CPU pipe underruns
6925          * between eDP port A enable and vdd enable. Also PCH port
6926          * enable seems to result in the occasional CPU pipe underrun.
6927          *
6928          * Spurious PCH underruns also occur during PCH enabling.
6929          */
6930         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6931         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6932
6933         if (new_crtc_state->has_pch_encoder)
6934                 intel_prepare_shared_dpll(new_crtc_state);
6935
6936         if (intel_crtc_has_dp_encoder(new_crtc_state))
6937                 intel_dp_set_m_n(new_crtc_state, M1_N1);
6938
6939         intel_set_pipe_timings(new_crtc_state);
6940         intel_set_pipe_src_size(new_crtc_state);
6941
6942         if (new_crtc_state->has_pch_encoder)
6943                 intel_cpu_transcoder_set_m_n(new_crtc_state,
6944                                              &new_crtc_state->fdi_m_n, NULL);
6945
6946         ilk_set_pipeconf(new_crtc_state);
6947
6948         crtc->active = true;
6949
6950         intel_encoders_pre_enable(state, crtc);
6951
6952         if (new_crtc_state->has_pch_encoder) {
6953                 /* Note: FDI PLL enabling _must_ be done before we enable the
6954                  * cpu pipes, hence this is separate from all the other fdi/pch
6955                  * enabling. */
6956                 ilk_fdi_pll_enable(new_crtc_state);
6957         } else {
6958                 assert_fdi_tx_disabled(dev_priv, pipe);
6959                 assert_fdi_rx_disabled(dev_priv, pipe);
6960         }
6961
6962         ilk_pfit_enable(new_crtc_state);
6963
6964         /*
6965          * On ILK+ LUT must be loaded before the pipe is running but with
6966          * clocks enabled
6967          */
6968         intel_color_load_luts(new_crtc_state);
6969         intel_color_commit(new_crtc_state);
6970         /* update DSPCNTR to configure gamma for pipe bottom color */
6971         intel_disable_primary_plane(new_crtc_state);
6972
6973         if (dev_priv->display.initial_watermarks)
6974                 dev_priv->display.initial_watermarks(state, crtc);
6975         intel_enable_pipe(new_crtc_state);
6976
6977         if (new_crtc_state->has_pch_encoder)
6978                 ilk_pch_enable(state, new_crtc_state);
6979
6980         intel_crtc_vblank_on(new_crtc_state);
6981
6982         intel_encoders_enable(state, crtc);
6983
6984         if (HAS_PCH_CPT(dev_priv))
6985                 cpt_verify_modeset(dev_priv, pipe);
6986
6987         /*
6988          * Must wait for vblank to avoid spurious PCH FIFO underruns.
6989          * And a second vblank wait is needed at least on ILK with
6990          * some interlaced HDMI modes. Let's do the double wait always
6991          * in case there are more corner cases we don't know about.
6992          */
6993         if (new_crtc_state->has_pch_encoder) {
6994                 intel_wait_for_vblank(dev_priv, pipe);
6995                 intel_wait_for_vblank(dev_priv, pipe);
6996         }
6997         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6998         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6999 }
7000
7001 /* IPS only exists on ULT machines and is tied to pipe A. */
7002 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7003 {
7004         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7005 }
7006
7007 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7008                                             enum pipe pipe, bool apply)
7009 {
7010         u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7011         u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7012
7013         if (apply)
7014                 val |= mask;
7015         else
7016                 val &= ~mask;
7017
7018         intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7019 }
7020
7021 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7022 {
7023         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7024         enum pipe pipe = crtc->pipe;
7025         u32 val;
7026
7027         val = MBUS_DBOX_A_CREDIT(2);
7028
7029         if (INTEL_GEN(dev_priv) >= 12) {
7030                 val |= MBUS_DBOX_BW_CREDIT(2);
7031                 val |= MBUS_DBOX_B_CREDIT(12);
7032         } else {
7033                 val |= MBUS_DBOX_BW_CREDIT(1);
7034                 val |= MBUS_DBOX_B_CREDIT(8);
7035         }
7036
7037         intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7038 }
7039
7040 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7041 {
7042         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7043         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7044
7045         intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7046                        HSW_LINETIME(crtc_state->linetime) |
7047                        HSW_IPS_LINETIME(crtc_state->ips_linetime));
7048 }
7049
7050 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7051 {
7052         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7053         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7054         i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7055         u32 val;
7056
7057         val = intel_de_read(dev_priv, reg);
7058         val &= ~HSW_FRAME_START_DELAY_MASK;
7059         val |= HSW_FRAME_START_DELAY(0);
7060         intel_de_write(dev_priv, reg, val);
7061 }
7062
7063 static void hsw_crtc_enable(struct intel_atomic_state *state,
7064                             struct intel_crtc *crtc)
7065 {
7066         const struct intel_crtc_state *new_crtc_state =
7067                 intel_atomic_get_new_crtc_state(state, crtc);
7068         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7069         enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7070         enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7071         bool psl_clkgate_wa;
7072
7073         if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7074                 return;
7075
7076         intel_encoders_pre_pll_enable(state, crtc);
7077
7078         if (new_crtc_state->shared_dpll)
7079                 intel_enable_shared_dpll(new_crtc_state);
7080
7081         intel_encoders_pre_enable(state, crtc);
7082
7083         if (!transcoder_is_dsi(cpu_transcoder))
7084                 intel_set_pipe_timings(new_crtc_state);
7085
7086         intel_set_pipe_src_size(new_crtc_state);
7087
7088         if (cpu_transcoder != TRANSCODER_EDP &&
7089             !transcoder_is_dsi(cpu_transcoder))
7090                 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7091                                new_crtc_state->pixel_multiplier - 1);
7092
7093         if (new_crtc_state->has_pch_encoder)
7094                 intel_cpu_transcoder_set_m_n(new_crtc_state,
7095                                              &new_crtc_state->fdi_m_n, NULL);
7096
7097         if (!transcoder_is_dsi(cpu_transcoder)) {
7098                 hsw_set_frame_start_delay(new_crtc_state);
7099                 hsw_set_pipeconf(new_crtc_state);
7100         }
7101
7102         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7103                 bdw_set_pipemisc(new_crtc_state);
7104
7105         crtc->active = true;
7106
7107         /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7108         psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7109                 new_crtc_state->pch_pfit.enabled;
7110         if (psl_clkgate_wa)
7111                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7112
7113         if (INTEL_GEN(dev_priv) >= 9)
7114                 skl_pfit_enable(new_crtc_state);
7115         else
7116                 ilk_pfit_enable(new_crtc_state);
7117
7118         /*
7119          * On ILK+ LUT must be loaded before the pipe is running but with
7120          * clocks enabled
7121          */
7122         intel_color_load_luts(new_crtc_state);
7123         intel_color_commit(new_crtc_state);
7124         /* update DSPCNTR to configure gamma/csc for pipe bottom color */
7125         if (INTEL_GEN(dev_priv) < 9)
7126                 intel_disable_primary_plane(new_crtc_state);
7127
7128         hsw_set_linetime_wm(new_crtc_state);
7129
7130         if (INTEL_GEN(dev_priv) >= 11)
7131                 icl_set_pipe_chicken(crtc);
7132
7133         if (dev_priv->display.initial_watermarks)
7134                 dev_priv->display.initial_watermarks(state, crtc);
7135
7136         if (INTEL_GEN(dev_priv) >= 11)
7137                 icl_pipe_mbus_enable(crtc);
7138
7139         intel_encoders_enable(state, crtc);
7140
7141         if (psl_clkgate_wa) {
7142                 intel_wait_for_vblank(dev_priv, pipe);
7143                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7144         }
7145
7146         /* If we change the relative order between pipe/planes enabling, we need
7147          * to change the workaround. */
7148         hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7149         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7150                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7151                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7152         }
7153 }
7154
7155 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7156 {
7157         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7158         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7159         enum pipe pipe = crtc->pipe;
7160
7161         /* To avoid upsetting the power well on haswell only disable the pfit if
7162          * it's in use. The hw state code will make sure we get this right. */
7163         if (!old_crtc_state->pch_pfit.enabled)
7164                 return;
7165
7166         intel_de_write(dev_priv, PF_CTL(pipe), 0);
7167         intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7168         intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7169 }
7170
7171 static void ilk_crtc_disable(struct intel_atomic_state *state,
7172                              struct intel_crtc *crtc)
7173 {
7174         const struct intel_crtc_state *old_crtc_state =
7175                 intel_atomic_get_old_crtc_state(state, crtc);
7176         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7177         enum pipe pipe = crtc->pipe;
7178
7179         /*
7180          * Sometimes spurious CPU pipe underruns happen when the
7181          * pipe is already disabled, but FDI RX/TX is still enabled.
7182          * Happens at least with VGA+HDMI cloning. Suppress them.
7183          */
7184         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7185         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7186
7187         intel_encoders_disable(state, crtc);
7188
7189         intel_crtc_vblank_off(old_crtc_state);
7190
7191         intel_disable_pipe(old_crtc_state);
7192
7193         ilk_pfit_disable(old_crtc_state);
7194
7195         if (old_crtc_state->has_pch_encoder)
7196                 ilk_fdi_disable(crtc);
7197
7198         intel_encoders_post_disable(state, crtc);
7199
7200         if (old_crtc_state->has_pch_encoder) {
7201                 ilk_disable_pch_transcoder(dev_priv, pipe);
7202
7203                 if (HAS_PCH_CPT(dev_priv)) {
7204                         i915_reg_t reg;
7205                         u32 temp;
7206
7207                         /* disable TRANS_DP_CTL */
7208                         reg = TRANS_DP_CTL(pipe);
7209                         temp = intel_de_read(dev_priv, reg);
7210                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7211                                   TRANS_DP_PORT_SEL_MASK);
7212                         temp |= TRANS_DP_PORT_SEL_NONE;
7213                         intel_de_write(dev_priv, reg, temp);
7214
7215                         /* disable DPLL_SEL */
7216                         temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7217                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7218                         intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7219                 }
7220
7221                 ilk_fdi_pll_disable(crtc);
7222         }
7223
7224         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7225         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7226 }
7227
7228 static void hsw_crtc_disable(struct intel_atomic_state *state,
7229                              struct intel_crtc *crtc)
7230 {
7231         /*
7232          * FIXME collapse everything to one hook.
7233          * Need care with mst->ddi interactions.
7234          */
7235         intel_encoders_disable(state, crtc);
7236         intel_encoders_post_disable(state, crtc);
7237 }
7238
7239 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7240 {
7241         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7242         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7243
7244         if (!crtc_state->gmch_pfit.control)
7245                 return;
7246
7247         /*
7248          * The panel fitter should only be adjusted whilst the pipe is disabled,
7249          * according to register description and PRM.
7250          */
7251         drm_WARN_ON(&dev_priv->drm,
7252                     intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7253         assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7254
7255         intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7256                        crtc_state->gmch_pfit.pgm_ratios);
7257         intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7258
7259         /* Border color in case we don't scale up to the full screen. Black by
7260          * default, change to something else for debugging. */
7261         intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7262 }
7263
7264 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7265 {
7266         if (phy == PHY_NONE)
7267                 return false;
7268         else if (IS_ROCKETLAKE(dev_priv))
7269                 return phy <= PHY_D;
7270         else if (IS_ELKHARTLAKE(dev_priv))
7271                 return phy <= PHY_C;
7272         else if (INTEL_GEN(dev_priv) >= 11)
7273                 return phy <= PHY_B;
7274         else
7275                 return false;
7276 }
7277
7278 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7279 {
7280         if (IS_ROCKETLAKE(dev_priv))
7281                 return false;
7282         else if (INTEL_GEN(dev_priv) >= 12)
7283                 return phy >= PHY_D && phy <= PHY_I;
7284         else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7285                 return phy >= PHY_C && phy <= PHY_F;
7286         else
7287                 return false;
7288 }
7289
7290 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7291 {
7292         if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7293                 return (enum phy)port - 1;
7294         else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7295                 return PHY_A;
7296
7297         return (enum phy)port;
7298 }
7299
7300 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7301 {
7302         if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7303                 return PORT_TC_NONE;
7304
7305         if (INTEL_GEN(dev_priv) >= 12)
7306                 return port - PORT_D;
7307
7308         return port - PORT_C;
7309 }
7310
7311 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7312 {
7313         switch (port) {
7314         case PORT_A:
7315                 return POWER_DOMAIN_PORT_DDI_A_LANES;
7316         case PORT_B:
7317                 return POWER_DOMAIN_PORT_DDI_B_LANES;
7318         case PORT_C:
7319                 return POWER_DOMAIN_PORT_DDI_C_LANES;
7320         case PORT_D:
7321                 return POWER_DOMAIN_PORT_DDI_D_LANES;
7322         case PORT_E:
7323                 return POWER_DOMAIN_PORT_DDI_E_LANES;
7324         case PORT_F:
7325                 return POWER_DOMAIN_PORT_DDI_F_LANES;
7326         case PORT_G:
7327                 return POWER_DOMAIN_PORT_DDI_G_LANES;
7328         case PORT_H:
7329                 return POWER_DOMAIN_PORT_DDI_H_LANES;
7330         case PORT_I:
7331                 return POWER_DOMAIN_PORT_DDI_I_LANES;
7332         default:
7333                 MISSING_CASE(port);
7334                 return POWER_DOMAIN_PORT_OTHER;
7335         }
7336 }
7337
7338 enum intel_display_power_domain
7339 intel_aux_power_domain(struct intel_digital_port *dig_port)
7340 {
7341         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7342         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7343
7344         if (intel_phy_is_tc(dev_priv, phy) &&
7345             dig_port->tc_mode == TC_PORT_TBT_ALT) {
7346                 switch (dig_port->aux_ch) {
7347                 case AUX_CH_C:
7348                         return POWER_DOMAIN_AUX_C_TBT;
7349                 case AUX_CH_D:
7350                         return POWER_DOMAIN_AUX_D_TBT;
7351                 case AUX_CH_E:
7352                         return POWER_DOMAIN_AUX_E_TBT;
7353                 case AUX_CH_F:
7354                         return POWER_DOMAIN_AUX_F_TBT;
7355                 case AUX_CH_G:
7356                         return POWER_DOMAIN_AUX_G_TBT;
7357                 case AUX_CH_H:
7358                         return POWER_DOMAIN_AUX_H_TBT;
7359                 case AUX_CH_I:
7360                         return POWER_DOMAIN_AUX_I_TBT;
7361                 default:
7362                         MISSING_CASE(dig_port->aux_ch);
7363                         return POWER_DOMAIN_AUX_C_TBT;
7364                 }
7365         }
7366
7367         return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7368 }
7369
7370 /*
7371  * Converts aux_ch to power_domain without caring about TBT ports for that use
7372  * intel_aux_power_domain()
7373  */
7374 enum intel_display_power_domain
7375 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7376 {
7377         switch (aux_ch) {
7378         case AUX_CH_A:
7379                 return POWER_DOMAIN_AUX_A;
7380         case AUX_CH_B:
7381                 return POWER_DOMAIN_AUX_B;
7382         case AUX_CH_C:
7383                 return POWER_DOMAIN_AUX_C;
7384         case AUX_CH_D:
7385                 return POWER_DOMAIN_AUX_D;
7386         case AUX_CH_E:
7387                 return POWER_DOMAIN_AUX_E;
7388         case AUX_CH_F:
7389                 return POWER_DOMAIN_AUX_F;
7390         case AUX_CH_G:
7391                 return POWER_DOMAIN_AUX_G;
7392         case AUX_CH_H:
7393                 return POWER_DOMAIN_AUX_H;
7394         case AUX_CH_I:
7395                 return POWER_DOMAIN_AUX_I;
7396         default:
7397                 MISSING_CASE(aux_ch);
7398                 return POWER_DOMAIN_AUX_A;
7399         }
7400 }
7401
7402 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7403 {
7404         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7405         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7406         struct drm_encoder *encoder;
7407         enum pipe pipe = crtc->pipe;
7408         u64 mask;
7409         enum transcoder transcoder = crtc_state->cpu_transcoder;
7410
7411         if (!crtc_state->hw.active)
7412                 return 0;
7413
7414         mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7415         mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7416         if (crtc_state->pch_pfit.enabled ||
7417             crtc_state->pch_pfit.force_thru)
7418                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7419
7420         drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7421                                   crtc_state->uapi.encoder_mask) {
7422                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7423
7424                 mask |= BIT_ULL(intel_encoder->power_domain);
7425         }
7426
7427         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7428                 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7429
7430         if (crtc_state->shared_dpll)
7431                 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7432
7433         return mask;
7434 }
7435
7436 static u64
7437 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7438 {
7439         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7440         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7441         enum intel_display_power_domain domain;
7442         u64 domains, new_domains, old_domains;
7443
7444         old_domains = crtc->enabled_power_domains;
7445         crtc->enabled_power_domains = new_domains =
7446                 get_crtc_power_domains(crtc_state);
7447
7448         domains = new_domains & ~old_domains;
7449
7450         for_each_power_domain(domain, domains)
7451                 intel_display_power_get(dev_priv, domain);
7452
7453         return old_domains & ~new_domains;
7454 }
7455
7456 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7457                                       u64 domains)
7458 {
7459         enum intel_display_power_domain domain;
7460
7461         for_each_power_domain(domain, domains)
7462                 intel_display_power_put_unchecked(dev_priv, domain);
7463 }
7464
7465 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7466                                    struct intel_crtc *crtc)
7467 {
7468         const struct intel_crtc_state *new_crtc_state =
7469                 intel_atomic_get_new_crtc_state(state, crtc);
7470         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7471         enum pipe pipe = crtc->pipe;
7472
7473         if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7474                 return;
7475
7476         if (intel_crtc_has_dp_encoder(new_crtc_state))
7477                 intel_dp_set_m_n(new_crtc_state, M1_N1);
7478
7479         intel_set_pipe_timings(new_crtc_state);
7480         intel_set_pipe_src_size(new_crtc_state);
7481
7482         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7483                 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7484                 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7485         }
7486
7487         i9xx_set_pipeconf(new_crtc_state);
7488
7489         crtc->active = true;
7490
7491         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7492
7493         intel_encoders_pre_pll_enable(state, crtc);
7494
7495         if (IS_CHERRYVIEW(dev_priv)) {
7496                 chv_prepare_pll(crtc, new_crtc_state);
7497                 chv_enable_pll(crtc, new_crtc_state);
7498         } else {
7499                 vlv_prepare_pll(crtc, new_crtc_state);
7500                 vlv_enable_pll(crtc, new_crtc_state);
7501         }
7502
7503         intel_encoders_pre_enable(state, crtc);
7504
7505         i9xx_pfit_enable(new_crtc_state);
7506
7507         intel_color_load_luts(new_crtc_state);
7508         intel_color_commit(new_crtc_state);
7509         /* update DSPCNTR to configure gamma for pipe bottom color */
7510         intel_disable_primary_plane(new_crtc_state);
7511
7512         dev_priv->display.initial_watermarks(state, crtc);
7513         intel_enable_pipe(new_crtc_state);
7514
7515         intel_crtc_vblank_on(new_crtc_state);
7516
7517         intel_encoders_enable(state, crtc);
7518 }
7519
7520 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7521 {
7522         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7523         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7524
7525         intel_de_write(dev_priv, FP0(crtc->pipe),
7526                        crtc_state->dpll_hw_state.fp0);
7527         intel_de_write(dev_priv, FP1(crtc->pipe),
7528                        crtc_state->dpll_hw_state.fp1);
7529 }
7530
7531 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7532                              struct intel_crtc *crtc)
7533 {
7534         const struct intel_crtc_state *new_crtc_state =
7535                 intel_atomic_get_new_crtc_state(state, crtc);
7536         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7537         enum pipe pipe = crtc->pipe;
7538
7539         if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7540                 return;
7541
7542         i9xx_set_pll_dividers(new_crtc_state);
7543
7544         if (intel_crtc_has_dp_encoder(new_crtc_state))
7545                 intel_dp_set_m_n(new_crtc_state, M1_N1);
7546
7547         intel_set_pipe_timings(new_crtc_state);
7548         intel_set_pipe_src_size(new_crtc_state);
7549
7550         i9xx_set_pipeconf(new_crtc_state);
7551
7552         crtc->active = true;
7553
7554         if (!IS_GEN(dev_priv, 2))
7555                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7556
7557         intel_encoders_pre_enable(state, crtc);
7558
7559         i9xx_enable_pll(crtc, new_crtc_state);
7560
7561         i9xx_pfit_enable(new_crtc_state);
7562
7563         intel_color_load_luts(new_crtc_state);
7564         intel_color_commit(new_crtc_state);
7565         /* update DSPCNTR to configure gamma for pipe bottom color */
7566         intel_disable_primary_plane(new_crtc_state);
7567
7568         if (dev_priv->display.initial_watermarks)
7569                 dev_priv->display.initial_watermarks(state, crtc);
7570         else
7571                 intel_update_watermarks(crtc);
7572         intel_enable_pipe(new_crtc_state);
7573
7574         intel_crtc_vblank_on(new_crtc_state);
7575
7576         intel_encoders_enable(state, crtc);
7577
7578         /* prevents spurious underruns */
7579         if (IS_GEN(dev_priv, 2))
7580                 intel_wait_for_vblank(dev_priv, pipe);
7581 }
7582
7583 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7584 {
7585         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7586         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7587
7588         if (!old_crtc_state->gmch_pfit.control)
7589                 return;
7590
7591         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7592
7593         drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7594                     intel_de_read(dev_priv, PFIT_CONTROL));
7595         intel_de_write(dev_priv, PFIT_CONTROL, 0);
7596 }
7597
7598 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7599                               struct intel_crtc *crtc)
7600 {
7601         struct intel_crtc_state *old_crtc_state =
7602                 intel_atomic_get_old_crtc_state(state, crtc);
7603         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7604         enum pipe pipe = crtc->pipe;
7605
7606         /*
7607          * On gen2 planes are double buffered but the pipe isn't, so we must
7608          * wait for planes to fully turn off before disabling the pipe.
7609          */
7610         if (IS_GEN(dev_priv, 2))
7611                 intel_wait_for_vblank(dev_priv, pipe);
7612
7613         intel_encoders_disable(state, crtc);
7614
7615         intel_crtc_vblank_off(old_crtc_state);
7616
7617         intel_disable_pipe(old_crtc_state);
7618
7619         i9xx_pfit_disable(old_crtc_state);
7620
7621         intel_encoders_post_disable(state, crtc);
7622
7623         if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7624                 if (IS_CHERRYVIEW(dev_priv))
7625                         chv_disable_pll(dev_priv, pipe);
7626                 else if (IS_VALLEYVIEW(dev_priv))
7627                         vlv_disable_pll(dev_priv, pipe);
7628                 else
7629                         i9xx_disable_pll(old_crtc_state);
7630         }
7631
7632         intel_encoders_post_pll_disable(state, crtc);
7633
7634         if (!IS_GEN(dev_priv, 2))
7635                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7636
7637         if (!dev_priv->display.initial_watermarks)
7638                 intel_update_watermarks(crtc);
7639
7640         /* clock the pipe down to 640x480@60 to potentially save power */
7641         if (IS_I830(dev_priv))
7642                 i830_enable_pipe(dev_priv, pipe);
7643 }
7644
7645 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7646                                         struct drm_modeset_acquire_ctx *ctx)
7647 {
7648         struct intel_encoder *encoder;
7649         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7650         struct intel_bw_state *bw_state =
7651                 to_intel_bw_state(dev_priv->bw_obj.state);
7652         struct intel_cdclk_state *cdclk_state =
7653                 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7654         struct intel_dbuf_state *dbuf_state =
7655                 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7656         struct intel_crtc_state *crtc_state =
7657                 to_intel_crtc_state(crtc->base.state);
7658         enum intel_display_power_domain domain;
7659         struct intel_plane *plane;
7660         struct drm_atomic_state *state;
7661         struct intel_crtc_state *temp_crtc_state;
7662         enum pipe pipe = crtc->pipe;
7663         u64 domains;
7664         int ret;
7665
7666         if (!crtc_state->hw.active)
7667                 return;
7668
7669         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7670                 const struct intel_plane_state *plane_state =
7671                         to_intel_plane_state(plane->base.state);
7672
7673                 if (plane_state->uapi.visible)
7674                         intel_plane_disable_noatomic(crtc, plane);
7675         }
7676
7677         state = drm_atomic_state_alloc(&dev_priv->drm);
7678         if (!state) {
7679                 drm_dbg_kms(&dev_priv->drm,
7680                             "failed to disable [CRTC:%d:%s], out of memory",
7681                             crtc->base.base.id, crtc->base.name);
7682                 return;
7683         }
7684
7685         state->acquire_ctx = ctx;
7686
7687         /* Everything's already locked, -EDEADLK can't happen. */
7688         temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7689         ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7690
7691         drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7692
7693         dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7694
7695         drm_atomic_state_put(state);
7696
7697         drm_dbg_kms(&dev_priv->drm,
7698                     "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7699                     crtc->base.base.id, crtc->base.name);
7700
7701         crtc->active = false;
7702         crtc->base.enabled = false;
7703
7704         drm_WARN_ON(&dev_priv->drm,
7705                     drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7706         crtc_state->uapi.active = false;
7707         crtc_state->uapi.connector_mask = 0;
7708         crtc_state->uapi.encoder_mask = 0;
7709         intel_crtc_free_hw_state(crtc_state);
7710         memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7711
7712         for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7713                 encoder->base.crtc = NULL;
7714
7715         intel_fbc_disable(crtc);
7716         intel_update_watermarks(crtc);
7717         intel_disable_shared_dpll(crtc_state);
7718
7719         domains = crtc->enabled_power_domains;
7720         for_each_power_domain(domain, domains)
7721                 intel_display_power_put_unchecked(dev_priv, domain);
7722         crtc->enabled_power_domains = 0;
7723
7724         dev_priv->active_pipes &= ~BIT(pipe);
7725         cdclk_state->min_cdclk[pipe] = 0;
7726         cdclk_state->min_voltage_level[pipe] = 0;
7727         cdclk_state->active_pipes &= ~BIT(pipe);
7728
7729         dbuf_state->active_pipes &= ~BIT(pipe);
7730
7731         bw_state->data_rate[pipe] = 0;
7732         bw_state->num_active_planes[pipe] = 0;
7733 }
7734
7735 /*
7736  * turn all crtc's off, but do not adjust state
7737  * This has to be paired with a call to intel_modeset_setup_hw_state.
7738  */
7739 int intel_display_suspend(struct drm_device *dev)
7740 {
7741         struct drm_i915_private *dev_priv = to_i915(dev);
7742         struct drm_atomic_state *state;
7743         int ret;
7744
7745         state = drm_atomic_helper_suspend(dev);
7746         ret = PTR_ERR_OR_ZERO(state);
7747         if (ret)
7748                 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7749                         ret);
7750         else
7751                 dev_priv->modeset_restore_state = state;
7752         return ret;
7753 }
7754
7755 void intel_encoder_destroy(struct drm_encoder *encoder)
7756 {
7757         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7758
7759         drm_encoder_cleanup(encoder);
7760         kfree(intel_encoder);
7761 }
7762
7763 /* Cross check the actual hw state with our own modeset state tracking (and it's
7764  * internal consistency). */
7765 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7766                                          struct drm_connector_state *conn_state)
7767 {
7768         struct intel_connector *connector = to_intel_connector(conn_state->connector);
7769         struct drm_i915_private *i915 = to_i915(connector->base.dev);
7770
7771         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7772                     connector->base.base.id, connector->base.name);
7773
7774         if (connector->get_hw_state(connector)) {
7775                 struct intel_encoder *encoder = intel_attached_encoder(connector);
7776
7777                 I915_STATE_WARN(!crtc_state,
7778                          "connector enabled without attached crtc\n");
7779
7780                 if (!crtc_state)
7781                         return;
7782
7783                 I915_STATE_WARN(!crtc_state->hw.active,
7784                                 "connector is active, but attached crtc isn't\n");
7785
7786                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7787                         return;
7788
7789                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7790                         "atomic encoder doesn't match attached encoder\n");
7791
7792                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7793                         "attached encoder crtc differs from connector crtc\n");
7794         } else {
7795                 I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7796                                 "attached crtc is active, but connector isn't\n");
7797                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7798                         "best encoder set without crtc!\n");
7799         }
7800 }
7801
7802 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7803 {
7804         if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7805                 return crtc_state->fdi_lanes;
7806
7807         return 0;
7808 }
7809
7810 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7811                                struct intel_crtc_state *pipe_config)
7812 {
7813         struct drm_i915_private *dev_priv = to_i915(dev);
7814         struct drm_atomic_state *state = pipe_config->uapi.state;
7815         struct intel_crtc *other_crtc;
7816         struct intel_crtc_state *other_crtc_state;
7817
7818         drm_dbg_kms(&dev_priv->drm,
7819                     "checking fdi config on pipe %c, lanes %i\n",
7820                     pipe_name(pipe), pipe_config->fdi_lanes);
7821         if (pipe_config->fdi_lanes > 4) {
7822                 drm_dbg_kms(&dev_priv->drm,
7823                             "invalid fdi lane config on pipe %c: %i lanes\n",
7824                             pipe_name(pipe), pipe_config->fdi_lanes);
7825                 return -EINVAL;
7826         }
7827
7828         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7829                 if (pipe_config->fdi_lanes > 2) {
7830                         drm_dbg_kms(&dev_priv->drm,
7831                                     "only 2 lanes on haswell, required: %i lanes\n",
7832                                     pipe_config->fdi_lanes);
7833                         return -EINVAL;
7834                 } else {
7835                         return 0;
7836                 }
7837         }
7838
7839         if (INTEL_NUM_PIPES(dev_priv) == 2)
7840                 return 0;
7841
7842         /* Ivybridge 3 pipe is really complicated */
7843         switch (pipe) {
7844         case PIPE_A:
7845                 return 0;
7846         case PIPE_B:
7847                 if (pipe_config->fdi_lanes <= 2)
7848                         return 0;
7849
7850                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7851                 other_crtc_state =
7852                         intel_atomic_get_crtc_state(state, other_crtc);
7853                 if (IS_ERR(other_crtc_state))
7854                         return PTR_ERR(other_crtc_state);
7855
7856                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7857                         drm_dbg_kms(&dev_priv->drm,
7858                                     "invalid shared fdi lane config on pipe %c: %i lanes\n",
7859                                     pipe_name(pipe), pipe_config->fdi_lanes);
7860                         return -EINVAL;
7861                 }
7862                 return 0;
7863         case PIPE_C:
7864                 if (pipe_config->fdi_lanes > 2) {
7865                         drm_dbg_kms(&dev_priv->drm,
7866                                     "only 2 lanes on pipe %c: required %i lanes\n",
7867                                     pipe_name(pipe), pipe_config->fdi_lanes);
7868                         return -EINVAL;
7869                 }
7870
7871                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7872                 other_crtc_state =
7873                         intel_atomic_get_crtc_state(state, other_crtc);
7874                 if (IS_ERR(other_crtc_state))
7875                         return PTR_ERR(other_crtc_state);
7876
7877                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7878                         drm_dbg_kms(&dev_priv->drm,
7879                                     "fdi link B uses too many lanes to enable link C\n");
7880                         return -EINVAL;
7881                 }
7882                 return 0;
7883         default:
7884                 BUG();
7885         }
7886 }
7887
7888 #define RETRY 1
7889 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7890                                   struct intel_crtc_state *pipe_config)
7891 {
7892         struct drm_device *dev = intel_crtc->base.dev;
7893         struct drm_i915_private *i915 = to_i915(dev);
7894         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7895         int lane, link_bw, fdi_dotclock, ret;
7896         bool needs_recompute = false;
7897
7898 retry:
7899         /* FDI is a binary signal running at ~2.7GHz, encoding
7900          * each output octet as 10 bits. The actual frequency
7901          * is stored as a divider into a 100MHz clock, and the
7902          * mode pixel clock is stored in units of 1KHz.
7903          * Hence the bw of each lane in terms of the mode signal
7904          * is:
7905          */
7906         link_bw = intel_fdi_link_freq(i915, pipe_config);
7907
7908         fdi_dotclock = adjusted_mode->crtc_clock;
7909
7910         lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7911                                       pipe_config->pipe_bpp);
7912
7913         pipe_config->fdi_lanes = lane;
7914
7915         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7916                                link_bw, &pipe_config->fdi_m_n, false, false);
7917
7918         ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7919         if (ret == -EDEADLK)
7920                 return ret;
7921
7922         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7923                 pipe_config->pipe_bpp -= 2*3;
7924                 drm_dbg_kms(&i915->drm,
7925                             "fdi link bw constraint, reducing pipe bpp to %i\n",
7926                             pipe_config->pipe_bpp);
7927                 needs_recompute = true;
7928                 pipe_config->bw_constrained = true;
7929
7930                 goto retry;
7931         }
7932
7933         if (needs_recompute)
7934                 return RETRY;
7935
7936         return ret;
7937 }
7938
7939 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7940 {
7941         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7942         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7943
7944         /* IPS only exists on ULT machines and is tied to pipe A. */
7945         if (!hsw_crtc_supports_ips(crtc))
7946                 return false;
7947
7948         if (!dev_priv->params.enable_ips)
7949                 return false;
7950
7951         if (crtc_state->pipe_bpp > 24)
7952                 return false;
7953
7954         /*
7955          * We compare against max which means we must take
7956          * the increased cdclk requirement into account when
7957          * calculating the new cdclk.
7958          *
7959          * Should measure whether using a lower cdclk w/o IPS
7960          */
7961         if (IS_BROADWELL(dev_priv) &&
7962             crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7963                 return false;
7964
7965         return true;
7966 }
7967
7968 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7969 {
7970         struct drm_i915_private *dev_priv =
7971                 to_i915(crtc_state->uapi.crtc->dev);
7972         struct intel_atomic_state *state =
7973                 to_intel_atomic_state(crtc_state->uapi.state);
7974
7975         crtc_state->ips_enabled = false;
7976
7977         if (!hsw_crtc_state_ips_capable(crtc_state))
7978                 return 0;
7979
7980         /*
7981          * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7982          * enabled and disabled dynamically based on package C states,
7983          * user space can't make reliable use of the CRCs, so let's just
7984          * completely disable it.
7985          */
7986         if (crtc_state->crc_enabled)
7987                 return 0;
7988
7989         /* IPS should be fine as long as at least one plane is enabled. */
7990         if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7991                 return 0;
7992
7993         if (IS_BROADWELL(dev_priv)) {
7994                 const struct intel_cdclk_state *cdclk_state;
7995
7996                 cdclk_state = intel_atomic_get_cdclk_state(state);
7997                 if (IS_ERR(cdclk_state))
7998                         return PTR_ERR(cdclk_state);
7999
8000                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8001                 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8002                         return 0;
8003         }
8004
8005         crtc_state->ips_enabled = true;
8006
8007         return 0;
8008 }
8009
8010 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8011 {
8012         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8013
8014         /* GDG double wide on either pipe, otherwise pipe A only */
8015         return INTEL_GEN(dev_priv) < 4 &&
8016                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8017 }
8018
8019 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8020 {
8021         u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8022         unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8023
8024         /*
8025          * We only use IF-ID interlacing. If we ever use
8026          * PF-ID we'll need to adjust the pixel_rate here.
8027          */
8028
8029         if (!crtc_state->pch_pfit.enabled)
8030                 return pixel_rate;
8031
8032         pipe_w = crtc_state->pipe_src_w;
8033         pipe_h = crtc_state->pipe_src_h;
8034
8035         pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8036         pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8037
8038         if (pipe_w < pfit_w)
8039                 pipe_w = pfit_w;
8040         if (pipe_h < pfit_h)
8041                 pipe_h = pfit_h;
8042
8043         if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8044                         !pfit_w || !pfit_h))
8045                 return pixel_rate;
8046
8047         return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8048                        pfit_w * pfit_h);
8049 }
8050
8051 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8052 {
8053         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8054
8055         if (HAS_GMCH(dev_priv))
8056                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
8057                 crtc_state->pixel_rate =
8058                         crtc_state->hw.adjusted_mode.crtc_clock;
8059         else
8060                 crtc_state->pixel_rate =
8061                         ilk_pipe_pixel_rate(crtc_state);
8062 }
8063
8064 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8065                                      struct intel_crtc_state *pipe_config)
8066 {
8067         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8068         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8069         int clock_limit = dev_priv->max_dotclk_freq;
8070
8071         if (INTEL_GEN(dev_priv) < 4) {
8072                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8073
8074                 /*
8075                  * Enable double wide mode when the dot clock
8076                  * is > 90% of the (display) core speed.
8077                  */
8078                 if (intel_crtc_supports_double_wide(crtc) &&
8079                     adjusted_mode->crtc_clock > clock_limit) {
8080                         clock_limit = dev_priv->max_dotclk_freq;
8081                         pipe_config->double_wide = true;
8082                 }
8083         }
8084
8085         if (adjusted_mode->crtc_clock > clock_limit) {
8086                 drm_dbg_kms(&dev_priv->drm,
8087                             "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8088                             adjusted_mode->crtc_clock, clock_limit,
8089                             yesno(pipe_config->double_wide));
8090                 return -EINVAL;
8091         }
8092
8093         if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8094              pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8095              pipe_config->hw.ctm) {
8096                 /*
8097                  * There is only one pipe CSC unit per pipe, and we need that
8098                  * for output conversion from RGB->YCBCR. So if CTM is already
8099                  * applied we can't support YCBCR420 output.
8100                  */
8101                 drm_dbg_kms(&dev_priv->drm,
8102                             "YCBCR420 and CTM together are not possible\n");
8103                 return -EINVAL;
8104         }
8105
8106         /*
8107          * Pipe horizontal size must be even in:
8108          * - DVO ganged mode
8109          * - LVDS dual channel mode
8110          * - Double wide pipe
8111          */
8112         if (pipe_config->pipe_src_w & 1) {
8113                 if (pipe_config->double_wide) {
8114                         drm_dbg_kms(&dev_priv->drm,
8115                                     "Odd pipe source width not supported with double wide pipe\n");
8116                         return -EINVAL;
8117                 }
8118
8119                 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8120                     intel_is_dual_link_lvds(dev_priv)) {
8121                         drm_dbg_kms(&dev_priv->drm,
8122                                     "Odd pipe source width not supported with dual link LVDS\n");
8123                         return -EINVAL;
8124                 }
8125         }
8126
8127         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
8128          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8129          */
8130         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8131                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8132                 return -EINVAL;
8133
8134         intel_crtc_compute_pixel_rate(pipe_config);
8135
8136         if (pipe_config->has_pch_encoder)
8137                 return ilk_fdi_compute_config(crtc, pipe_config);
8138
8139         return 0;
8140 }
8141
8142 static void
8143 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8144 {
8145         while (*num > DATA_LINK_M_N_MASK ||
8146                *den > DATA_LINK_M_N_MASK) {
8147                 *num >>= 1;
8148                 *den >>= 1;
8149         }
8150 }
8151
8152 static void compute_m_n(unsigned int m, unsigned int n,
8153                         u32 *ret_m, u32 *ret_n,
8154                         bool constant_n)
8155 {
8156         /*
8157          * Several DP dongles in particular seem to be fussy about
8158          * too large link M/N values. Give N value as 0x8000 that
8159          * should be acceptable by specific devices. 0x8000 is the
8160          * specified fixed N value for asynchronous clock mode,
8161          * which the devices expect also in synchronous clock mode.
8162          */
8163         if (constant_n)
8164                 *ret_n = DP_LINK_CONSTANT_N_VALUE;
8165         else
8166                 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8167
8168         *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8169         intel_reduce_m_n_ratio(ret_m, ret_n);
8170 }
8171
8172 void
8173 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8174                        int pixel_clock, int link_clock,
8175                        struct intel_link_m_n *m_n,
8176                        bool constant_n, bool fec_enable)
8177 {
8178         u32 data_clock = bits_per_pixel * pixel_clock;
8179
8180         if (fec_enable)
8181                 data_clock = intel_dp_mode_to_fec_clock(data_clock);
8182
8183         m_n->tu = 64;
8184         compute_m_n(data_clock,
8185                     link_clock * nlanes * 8,
8186                     &m_n->gmch_m, &m_n->gmch_n,
8187                     constant_n);
8188
8189         compute_m_n(pixel_clock, link_clock,
8190                     &m_n->link_m, &m_n->link_n,
8191                     constant_n);
8192 }
8193
8194 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8195 {
8196         /*
8197          * There may be no VBT; and if the BIOS enabled SSC we can
8198          * just keep using it to avoid unnecessary flicker.  Whereas if the
8199          * BIOS isn't using it, don't assume it will work even if the VBT
8200          * indicates as much.
8201          */
8202         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8203                 bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8204                                                        PCH_DREF_CONTROL) &
8205                         DREF_SSC1_ENABLE;
8206
8207                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8208                         drm_dbg_kms(&dev_priv->drm,
8209                                     "SSC %s by BIOS, overriding VBT which says %s\n",
8210                                     enableddisabled(bios_lvds_use_ssc),
8211                                     enableddisabled(dev_priv->vbt.lvds_use_ssc));
8212                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8213                 }
8214         }
8215 }
8216
8217 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8218 {
8219         if (dev_priv->params.panel_use_ssc >= 0)
8220                 return dev_priv->params.panel_use_ssc != 0;
8221         return dev_priv->vbt.lvds_use_ssc
8222                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8223 }
8224
8225 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8226 {
8227         return (1 << dpll->n) << 16 | dpll->m2;
8228 }
8229
8230 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8231 {
8232         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8233 }
8234
8235 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8236                                      struct intel_crtc_state *crtc_state,
8237                                      struct dpll *reduced_clock)
8238 {
8239         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8240         u32 fp, fp2 = 0;
8241
8242         if (IS_PINEVIEW(dev_priv)) {
8243                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8244                 if (reduced_clock)
8245                         fp2 = pnv_dpll_compute_fp(reduced_clock);
8246         } else {
8247                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8248                 if (reduced_clock)
8249                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
8250         }
8251
8252         crtc_state->dpll_hw_state.fp0 = fp;
8253
8254         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8255             reduced_clock) {
8256                 crtc_state->dpll_hw_state.fp1 = fp2;
8257         } else {
8258                 crtc_state->dpll_hw_state.fp1 = fp;
8259         }
8260 }
8261
8262 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8263                 pipe)
8264 {
8265         u32 reg_val;
8266
8267         /*
8268          * PLLB opamp always calibrates to max value of 0x3f, force enable it
8269          * and set it to a reasonable value instead.
8270          */
8271         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8272         reg_val &= 0xffffff00;
8273         reg_val |= 0x00000030;
8274         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8275
8276         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8277         reg_val &= 0x00ffffff;
8278         reg_val |= 0x8c000000;
8279         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8280
8281         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8282         reg_val &= 0xffffff00;
8283         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8284
8285         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8286         reg_val &= 0x00ffffff;
8287         reg_val |= 0xb0000000;
8288         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8289 }
8290
8291 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8292                                          const struct intel_link_m_n *m_n)
8293 {
8294         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8295         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8296         enum pipe pipe = crtc->pipe;
8297
8298         intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8299                        TU_SIZE(m_n->tu) | m_n->gmch_m);
8300         intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8301         intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8302         intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8303 }
8304
8305 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8306                                  enum transcoder transcoder)
8307 {
8308         if (IS_HASWELL(dev_priv))
8309                 return transcoder == TRANSCODER_EDP;
8310
8311         /*
8312          * Strictly speaking some registers are available before
8313          * gen7, but we only support DRRS on gen7+
8314          */
8315         return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8316 }
8317
8318 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8319                                          const struct intel_link_m_n *m_n,
8320                                          const struct intel_link_m_n *m2_n2)
8321 {
8322         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8323         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8324         enum pipe pipe = crtc->pipe;
8325         enum transcoder transcoder = crtc_state->cpu_transcoder;
8326
8327         if (INTEL_GEN(dev_priv) >= 5) {
8328                 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8329                                TU_SIZE(m_n->tu) | m_n->gmch_m);
8330                 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8331                                m_n->gmch_n);
8332                 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8333                                m_n->link_m);
8334                 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8335                                m_n->link_n);
8336                 /*
8337                  *  M2_N2 registers are set only if DRRS is supported
8338                  * (to make sure the registers are not unnecessarily accessed).
8339                  */
8340                 if (m2_n2 && crtc_state->has_drrs &&
8341                     transcoder_has_m2_n2(dev_priv, transcoder)) {
8342                         intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8343                                        TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8344                         intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8345                                        m2_n2->gmch_n);
8346                         intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8347                                        m2_n2->link_m);
8348                         intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8349                                        m2_n2->link_n);
8350                 }
8351         } else {
8352                 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8353                                TU_SIZE(m_n->tu) | m_n->gmch_m);
8354                 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8355                 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8356                 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8357         }
8358 }
8359
8360 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8361 {
8362         const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8363         struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8364
8365         if (m_n == M1_N1) {
8366                 dp_m_n = &crtc_state->dp_m_n;
8367                 dp_m2_n2 = &crtc_state->dp_m2_n2;
8368         } else if (m_n == M2_N2) {
8369
8370                 /*
8371                  * M2_N2 registers are not supported. Hence m2_n2 divider value
8372                  * needs to be programmed into M1_N1.
8373                  */
8374                 dp_m_n = &crtc_state->dp_m2_n2;
8375         } else {
8376                 drm_err(&i915->drm, "Unsupported divider value\n");
8377                 return;
8378         }
8379
8380         if (crtc_state->has_pch_encoder)
8381                 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8382         else
8383                 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8384 }
8385
8386 static void vlv_compute_dpll(struct intel_crtc *crtc,
8387                              struct intel_crtc_state *pipe_config)
8388 {
8389         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8390                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8391         if (crtc->pipe != PIPE_A)
8392                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8393
8394         /* DPLL not used with DSI, but still need the rest set up */
8395         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8396                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8397                         DPLL_EXT_BUFFER_ENABLE_VLV;
8398
8399         pipe_config->dpll_hw_state.dpll_md =
8400                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8401 }
8402
8403 static void chv_compute_dpll(struct intel_crtc *crtc,
8404                              struct intel_crtc_state *pipe_config)
8405 {
8406         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8407                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8408         if (crtc->pipe != PIPE_A)
8409                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8410
8411         /* DPLL not used with DSI, but still need the rest set up */
8412         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8413                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8414
8415         pipe_config->dpll_hw_state.dpll_md =
8416                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8417 }
8418
8419 static void vlv_prepare_pll(struct intel_crtc *crtc,
8420                             const struct intel_crtc_state *pipe_config)
8421 {
8422         struct drm_device *dev = crtc->base.dev;
8423         struct drm_i915_private *dev_priv = to_i915(dev);
8424         enum pipe pipe = crtc->pipe;
8425         u32 mdiv;
8426         u32 bestn, bestm1, bestm2, bestp1, bestp2;
8427         u32 coreclk, reg_val;
8428
8429         /* Enable Refclk */
8430         intel_de_write(dev_priv, DPLL(pipe),
8431                        pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8432
8433         /* No need to actually set up the DPLL with DSI */
8434         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8435                 return;
8436
8437         vlv_dpio_get(dev_priv);
8438
8439         bestn = pipe_config->dpll.n;
8440         bestm1 = pipe_config->dpll.m1;
8441         bestm2 = pipe_config->dpll.m2;
8442         bestp1 = pipe_config->dpll.p1;
8443         bestp2 = pipe_config->dpll.p2;
8444
8445         /* See eDP HDMI DPIO driver vbios notes doc */
8446
8447         /* PLL B needs special handling */
8448         if (pipe == PIPE_B)
8449                 vlv_pllb_recal_opamp(dev_priv, pipe);
8450
8451         /* Set up Tx target for periodic Rcomp update */
8452         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8453
8454         /* Disable target IRef on PLL */
8455         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8456         reg_val &= 0x00ffffff;
8457         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8458
8459         /* Disable fast lock */
8460         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8461
8462         /* Set idtafcrecal before PLL is enabled */
8463         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8464         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8465         mdiv |= ((bestn << DPIO_N_SHIFT));
8466         mdiv |= (1 << DPIO_K_SHIFT);
8467
8468         /*
8469          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8470          * but we don't support that).
8471          * Note: don't use the DAC post divider as it seems unstable.
8472          */
8473         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8474         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8475
8476         mdiv |= DPIO_ENABLE_CALIBRATION;
8477         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8478
8479         /* Set HBR and RBR LPF coefficients */
8480         if (pipe_config->port_clock == 162000 ||
8481             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8482             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8483                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8484                                  0x009f0003);
8485         else
8486                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8487                                  0x00d0000f);
8488
8489         if (intel_crtc_has_dp_encoder(pipe_config)) {
8490                 /* Use SSC source */
8491                 if (pipe == PIPE_A)
8492                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8493                                          0x0df40000);
8494                 else
8495                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8496                                          0x0df70000);
8497         } else { /* HDMI or VGA */
8498                 /* Use bend source */
8499                 if (pipe == PIPE_A)
8500                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8501                                          0x0df70000);
8502                 else
8503                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8504                                          0x0df40000);
8505         }
8506
8507         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8508         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8509         if (intel_crtc_has_dp_encoder(pipe_config))
8510                 coreclk |= 0x01000000;
8511         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8512
8513         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8514
8515         vlv_dpio_put(dev_priv);
8516 }
8517
8518 static void chv_prepare_pll(struct intel_crtc *crtc,
8519                             const struct intel_crtc_state *pipe_config)
8520 {
8521         struct drm_device *dev = crtc->base.dev;
8522         struct drm_i915_private *dev_priv = to_i915(dev);
8523         enum pipe pipe = crtc->pipe;
8524         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8525         u32 loopfilter, tribuf_calcntr;
8526         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8527         u32 dpio_val;
8528         int vco;
8529
8530         /* Enable Refclk and SSC */
8531         intel_de_write(dev_priv, DPLL(pipe),
8532                        pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8533
8534         /* No need to actually set up the DPLL with DSI */
8535         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8536                 return;
8537
8538         bestn = pipe_config->dpll.n;
8539         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8540         bestm1 = pipe_config->dpll.m1;
8541         bestm2 = pipe_config->dpll.m2 >> 22;
8542         bestp1 = pipe_config->dpll.p1;
8543         bestp2 = pipe_config->dpll.p2;
8544         vco = pipe_config->dpll.vco;
8545         dpio_val = 0;
8546         loopfilter = 0;
8547
8548         vlv_dpio_get(dev_priv);
8549
8550         /* p1 and p2 divider */
8551         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8552                         5 << DPIO_CHV_S1_DIV_SHIFT |
8553                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8554                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8555                         1 << DPIO_CHV_K_DIV_SHIFT);
8556
8557         /* Feedback post-divider - m2 */
8558         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8559
8560         /* Feedback refclk divider - n and m1 */
8561         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8562                         DPIO_CHV_M1_DIV_BY_2 |
8563                         1 << DPIO_CHV_N_DIV_SHIFT);
8564
8565         /* M2 fraction division */
8566         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8567
8568         /* M2 fraction division enable */
8569         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8570         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8571         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8572         if (bestm2_frac)
8573                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8574         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8575
8576         /* Program digital lock detect threshold */
8577         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8578         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8579                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8580         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8581         if (!bestm2_frac)
8582                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8583         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8584
8585         /* Loop filter */
8586         if (vco == 5400000) {
8587                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8588                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8589                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8590                 tribuf_calcntr = 0x9;
8591         } else if (vco <= 6200000) {
8592                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8593                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8594                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8595                 tribuf_calcntr = 0x9;
8596         } else if (vco <= 6480000) {
8597                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8598                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8599                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8600                 tribuf_calcntr = 0x8;
8601         } else {
8602                 /* Not supported. Apply the same limits as in the max case */
8603                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8604                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8605                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8606                 tribuf_calcntr = 0;
8607         }
8608         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8609
8610         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8611         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8612         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8613         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8614
8615         /* AFC Recal */
8616         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8617                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8618                         DPIO_AFC_RECAL);
8619
8620         vlv_dpio_put(dev_priv);
8621 }
8622
8623 /**
8624  * vlv_force_pll_on - forcibly enable just the PLL
8625  * @dev_priv: i915 private structure
8626  * @pipe: pipe PLL to enable
8627  * @dpll: PLL configuration
8628  *
8629  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8630  * in cases where we need the PLL enabled even when @pipe is not going to
8631  * be enabled.
8632  */
8633 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8634                      const struct dpll *dpll)
8635 {
8636         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8637         struct intel_crtc_state *pipe_config;
8638
8639         pipe_config = intel_crtc_state_alloc(crtc);
8640         if (!pipe_config)
8641                 return -ENOMEM;
8642
8643         pipe_config->cpu_transcoder = (enum transcoder)pipe;
8644         pipe_config->pixel_multiplier = 1;
8645         pipe_config->dpll = *dpll;
8646
8647         if (IS_CHERRYVIEW(dev_priv)) {
8648                 chv_compute_dpll(crtc, pipe_config);
8649                 chv_prepare_pll(crtc, pipe_config);
8650                 chv_enable_pll(crtc, pipe_config);
8651         } else {
8652                 vlv_compute_dpll(crtc, pipe_config);
8653                 vlv_prepare_pll(crtc, pipe_config);
8654                 vlv_enable_pll(crtc, pipe_config);
8655         }
8656
8657         kfree(pipe_config);
8658
8659         return 0;
8660 }
8661
8662 /**
8663  * vlv_force_pll_off - forcibly disable just the PLL
8664  * @dev_priv: i915 private structure
8665  * @pipe: pipe PLL to disable
8666  *
8667  * Disable the PLL for @pipe. To be used in cases where we need
8668  * the PLL enabled even when @pipe is not going to be enabled.
8669  */
8670 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8671 {
8672         if (IS_CHERRYVIEW(dev_priv))
8673                 chv_disable_pll(dev_priv, pipe);
8674         else
8675                 vlv_disable_pll(dev_priv, pipe);
8676 }
8677
8678 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8679                               struct intel_crtc_state *crtc_state,
8680                               struct dpll *reduced_clock)
8681 {
8682         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8683         u32 dpll;
8684         struct dpll *clock = &crtc_state->dpll;
8685
8686         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8687
8688         dpll = DPLL_VGA_MODE_DIS;
8689
8690         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8691                 dpll |= DPLLB_MODE_LVDS;
8692         else
8693                 dpll |= DPLLB_MODE_DAC_SERIAL;
8694
8695         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8696             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8697                 dpll |= (crtc_state->pixel_multiplier - 1)
8698                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8699         }
8700
8701         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8702             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8703                 dpll |= DPLL_SDVO_HIGH_SPEED;
8704
8705         if (intel_crtc_has_dp_encoder(crtc_state))
8706                 dpll |= DPLL_SDVO_HIGH_SPEED;
8707
8708         /* compute bitmask from p1 value */
8709         if (IS_PINEVIEW(dev_priv))
8710                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8711         else {
8712                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8713                 if (IS_G4X(dev_priv) && reduced_clock)
8714                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8715         }
8716         switch (clock->p2) {
8717         case 5:
8718                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8719                 break;
8720         case 7:
8721                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8722                 break;
8723         case 10:
8724                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8725                 break;
8726         case 14:
8727                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8728                 break;
8729         }
8730         if (INTEL_GEN(dev_priv) >= 4)
8731                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8732
8733         if (crtc_state->sdvo_tv_clock)
8734                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8735         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8736                  intel_panel_use_ssc(dev_priv))
8737                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8738         else
8739                 dpll |= PLL_REF_INPUT_DREFCLK;
8740
8741         dpll |= DPLL_VCO_ENABLE;
8742         crtc_state->dpll_hw_state.dpll = dpll;
8743
8744         if (INTEL_GEN(dev_priv) >= 4) {
8745                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8746                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8747                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8748         }
8749 }
8750
8751 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8752                               struct intel_crtc_state *crtc_state,
8753                               struct dpll *reduced_clock)
8754 {
8755         struct drm_device *dev = crtc->base.dev;
8756         struct drm_i915_private *dev_priv = to_i915(dev);
8757         u32 dpll;
8758         struct dpll *clock = &crtc_state->dpll;
8759
8760         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8761
8762         dpll = DPLL_VGA_MODE_DIS;
8763
8764         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8765                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8766         } else {
8767                 if (clock->p1 == 2)
8768                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8769                 else
8770                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8771                 if (clock->p2 == 4)
8772                         dpll |= PLL_P2_DIVIDE_BY_4;
8773         }
8774
8775         /*
8776          * Bspec:
8777          * "[Almador Errata}: For the correct operation of the muxed DVO pins
8778          *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8779          *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8780          *  Enable) must be set to “1” in both the DPLL A Control Register
8781          *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8782          *
8783          * For simplicity We simply keep both bits always enabled in
8784          * both DPLLS. The spec says we should disable the DVO 2X clock
8785          * when not needed, but this seems to work fine in practice.
8786          */
8787         if (IS_I830(dev_priv) ||
8788             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8789                 dpll |= DPLL_DVO_2X_MODE;
8790
8791         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8792             intel_panel_use_ssc(dev_priv))
8793                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8794         else
8795                 dpll |= PLL_REF_INPUT_DREFCLK;
8796
8797         dpll |= DPLL_VCO_ENABLE;
8798         crtc_state->dpll_hw_state.dpll = dpll;
8799 }
8800
8801 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8802 {
8803         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8804         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8805         enum pipe pipe = crtc->pipe;
8806         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8807         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8808         u32 crtc_vtotal, crtc_vblank_end;
8809         int vsyncshift = 0;
8810
8811         /* We need to be careful not to changed the adjusted mode, for otherwise
8812          * the hw state checker will get angry at the mismatch. */
8813         crtc_vtotal = adjusted_mode->crtc_vtotal;
8814         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8815
8816         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8817                 /* the chip adds 2 halflines automatically */
8818                 crtc_vtotal -= 1;
8819                 crtc_vblank_end -= 1;
8820
8821                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8822                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8823                 else
8824                         vsyncshift = adjusted_mode->crtc_hsync_start -
8825                                 adjusted_mode->crtc_htotal / 2;
8826                 if (vsyncshift < 0)
8827                         vsyncshift += adjusted_mode->crtc_htotal;
8828         }
8829
8830         if (INTEL_GEN(dev_priv) > 3)
8831                 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8832                                vsyncshift);
8833
8834         intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8835                        (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8836         intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8837                        (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8838         intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8839                        (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8840
8841         intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8842                        (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8843         intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8844                        (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8845         intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8846                        (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8847
8848         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8849          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8850          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8851          * bits. */
8852         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8853             (pipe == PIPE_B || pipe == PIPE_C))
8854                 intel_de_write(dev_priv, VTOTAL(pipe),
8855                                intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8856
8857 }
8858
8859 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8860 {
8861         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8862         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8863         enum pipe pipe = crtc->pipe;
8864
8865         /* pipesrc controls the size that is scaled from, which should
8866          * always be the user's requested size.
8867          */
8868         intel_de_write(dev_priv, PIPESRC(pipe),
8869                        ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8870 }
8871
8872 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8873 {
8874         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8875         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8876
8877         if (IS_GEN(dev_priv, 2))
8878                 return false;
8879
8880         if (INTEL_GEN(dev_priv) >= 9 ||
8881             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8882                 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8883         else
8884                 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8885 }
8886
8887 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8888                                    struct intel_crtc_state *pipe_config)
8889 {
8890         struct drm_device *dev = crtc->base.dev;
8891         struct drm_i915_private *dev_priv = to_i915(dev);
8892         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8893         u32 tmp;
8894
8895         tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8896         pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8897         pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8898
8899         if (!transcoder_is_dsi(cpu_transcoder)) {
8900                 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8901                 pipe_config->hw.adjusted_mode.crtc_hblank_start =
8902                                                         (tmp & 0xffff) + 1;
8903                 pipe_config->hw.adjusted_mode.crtc_hblank_end =
8904                                                 ((tmp >> 16) & 0xffff) + 1;
8905         }
8906         tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8907         pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8908         pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8909
8910         tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8911         pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8912         pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8913
8914         if (!transcoder_is_dsi(cpu_transcoder)) {
8915                 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8916                 pipe_config->hw.adjusted_mode.crtc_vblank_start =
8917                                                         (tmp & 0xffff) + 1;
8918                 pipe_config->hw.adjusted_mode.crtc_vblank_end =
8919                                                 ((tmp >> 16) & 0xffff) + 1;
8920         }
8921         tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8922         pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8923         pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8924
8925         if (intel_pipe_is_interlaced(pipe_config)) {
8926                 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8927                 pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8928                 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8929         }
8930 }
8931
8932 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8933                                     struct intel_crtc_state *pipe_config)
8934 {
8935         struct drm_device *dev = crtc->base.dev;
8936         struct drm_i915_private *dev_priv = to_i915(dev);
8937         u32 tmp;
8938
8939         tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8940         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8941         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8942
8943         pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8944         pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8945 }
8946
8947 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8948                                  struct intel_crtc_state *pipe_config)
8949 {
8950         mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8951         mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8952         mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8953         mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8954
8955         mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8956         mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8957         mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8958         mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8959
8960         mode->flags = pipe_config->hw.adjusted_mode.flags;
8961         mode->type = DRM_MODE_TYPE_DRIVER;
8962
8963         mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8964
8965         drm_mode_set_name(mode);
8966 }
8967
8968 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8969 {
8970         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8971         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8972         u32 pipeconf;
8973
8974         pipeconf = 0;
8975
8976         /* we keep both pipes enabled on 830 */
8977         if (IS_I830(dev_priv))
8978                 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8979
8980         if (crtc_state->double_wide)
8981                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8982
8983         /* only g4x and later have fancy bpc/dither controls */
8984         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8985             IS_CHERRYVIEW(dev_priv)) {
8986                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8987                 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8988                         pipeconf |= PIPECONF_DITHER_EN |
8989                                     PIPECONF_DITHER_TYPE_SP;
8990
8991                 switch (crtc_state->pipe_bpp) {
8992                 case 18:
8993                         pipeconf |= PIPECONF_6BPC;
8994                         break;
8995                 case 24:
8996                         pipeconf |= PIPECONF_8BPC;
8997                         break;
8998                 case 30:
8999                         pipeconf |= PIPECONF_10BPC;
9000                         break;
9001                 default:
9002                         /* Case prevented by intel_choose_pipe_bpp_dither. */
9003                         BUG();
9004                 }
9005         }
9006
9007         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9008                 if (INTEL_GEN(dev_priv) < 4 ||
9009                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9010                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9011                 else
9012                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9013         } else {
9014                 pipeconf |= PIPECONF_PROGRESSIVE;
9015         }
9016
9017         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9018              crtc_state->limited_color_range)
9019                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9020
9021         pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9022
9023         pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9024
9025         intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9026         intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9027 }
9028
9029 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9030                                    struct intel_crtc_state *crtc_state)
9031 {
9032         struct drm_device *dev = crtc->base.dev;
9033         struct drm_i915_private *dev_priv = to_i915(dev);
9034         const struct intel_limit *limit;
9035         int refclk = 48000;
9036
9037         memset(&crtc_state->dpll_hw_state, 0,
9038                sizeof(crtc_state->dpll_hw_state));
9039
9040         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9041                 if (intel_panel_use_ssc(dev_priv)) {
9042                         refclk = dev_priv->vbt.lvds_ssc_freq;
9043                         drm_dbg_kms(&dev_priv->drm,
9044                                     "using SSC reference clock of %d kHz\n",
9045                                     refclk);
9046                 }
9047
9048                 limit = &intel_limits_i8xx_lvds;
9049         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9050                 limit = &intel_limits_i8xx_dvo;
9051         } else {
9052                 limit = &intel_limits_i8xx_dac;
9053         }
9054
9055         if (!crtc_state->clock_set &&
9056             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9057                                  refclk, NULL, &crtc_state->dpll)) {
9058                 drm_err(&dev_priv->drm,
9059                         "Couldn't find PLL settings for mode!\n");
9060                 return -EINVAL;
9061         }
9062
9063         i8xx_compute_dpll(crtc, crtc_state, NULL);
9064
9065         return 0;
9066 }
9067
9068 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9069                                   struct intel_crtc_state *crtc_state)
9070 {
9071         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9072         const struct intel_limit *limit;
9073         int refclk = 96000;
9074
9075         memset(&crtc_state->dpll_hw_state, 0,
9076                sizeof(crtc_state->dpll_hw_state));
9077
9078         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9079                 if (intel_panel_use_ssc(dev_priv)) {
9080                         refclk = dev_priv->vbt.lvds_ssc_freq;
9081                         drm_dbg_kms(&dev_priv->drm,
9082                                     "using SSC reference clock of %d kHz\n",
9083                                     refclk);
9084                 }
9085
9086                 if (intel_is_dual_link_lvds(dev_priv))
9087                         limit = &intel_limits_g4x_dual_channel_lvds;
9088                 else
9089                         limit = &intel_limits_g4x_single_channel_lvds;
9090         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9091                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9092                 limit = &intel_limits_g4x_hdmi;
9093         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9094                 limit = &intel_limits_g4x_sdvo;
9095         } else {
9096                 /* The option is for other outputs */
9097                 limit = &intel_limits_i9xx_sdvo;
9098         }
9099
9100         if (!crtc_state->clock_set &&
9101             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9102                                 refclk, NULL, &crtc_state->dpll)) {
9103                 drm_err(&dev_priv->drm,
9104                         "Couldn't find PLL settings for mode!\n");
9105                 return -EINVAL;
9106         }
9107
9108         i9xx_compute_dpll(crtc, crtc_state, NULL);
9109
9110         return 0;
9111 }
9112
9113 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9114                                   struct intel_crtc_state *crtc_state)
9115 {
9116         struct drm_device *dev = crtc->base.dev;
9117         struct drm_i915_private *dev_priv = to_i915(dev);
9118         const struct intel_limit *limit;
9119         int refclk = 96000;
9120
9121         memset(&crtc_state->dpll_hw_state, 0,
9122                sizeof(crtc_state->dpll_hw_state));
9123
9124         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9125                 if (intel_panel_use_ssc(dev_priv)) {
9126                         refclk = dev_priv->vbt.lvds_ssc_freq;
9127                         drm_dbg_kms(&dev_priv->drm,
9128                                     "using SSC reference clock of %d kHz\n",
9129                                     refclk);
9130                 }
9131
9132                 limit = &pnv_limits_lvds;
9133         } else {
9134                 limit = &pnv_limits_sdvo;
9135         }
9136
9137         if (!crtc_state->clock_set &&
9138             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9139                                 refclk, NULL, &crtc_state->dpll)) {
9140                 drm_err(&dev_priv->drm,
9141                         "Couldn't find PLL settings for mode!\n");
9142                 return -EINVAL;
9143         }
9144
9145         i9xx_compute_dpll(crtc, crtc_state, NULL);
9146
9147         return 0;
9148 }
9149
9150 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9151                                    struct intel_crtc_state *crtc_state)
9152 {
9153         struct drm_device *dev = crtc->base.dev;
9154         struct drm_i915_private *dev_priv = to_i915(dev);
9155         const struct intel_limit *limit;
9156         int refclk = 96000;
9157
9158         memset(&crtc_state->dpll_hw_state, 0,
9159                sizeof(crtc_state->dpll_hw_state));
9160
9161         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9162                 if (intel_panel_use_ssc(dev_priv)) {
9163                         refclk = dev_priv->vbt.lvds_ssc_freq;
9164                         drm_dbg_kms(&dev_priv->drm,
9165                                     "using SSC reference clock of %d kHz\n",
9166                                     refclk);
9167                 }
9168
9169                 limit = &intel_limits_i9xx_lvds;
9170         } else {
9171                 limit = &intel_limits_i9xx_sdvo;
9172         }
9173
9174         if (!crtc_state->clock_set &&
9175             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9176                                  refclk, NULL, &crtc_state->dpll)) {
9177                 drm_err(&dev_priv->drm,
9178                         "Couldn't find PLL settings for mode!\n");
9179                 return -EINVAL;
9180         }
9181
9182         i9xx_compute_dpll(crtc, crtc_state, NULL);
9183
9184         return 0;
9185 }
9186
9187 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9188                                   struct intel_crtc_state *crtc_state)
9189 {
9190         int refclk = 100000;
9191         const struct intel_limit *limit = &intel_limits_chv;
9192         struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9193
9194         memset(&crtc_state->dpll_hw_state, 0,
9195                sizeof(crtc_state->dpll_hw_state));
9196
9197         if (!crtc_state->clock_set &&
9198             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9199                                 refclk, NULL, &crtc_state->dpll)) {
9200                 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9201                 return -EINVAL;
9202         }
9203
9204         chv_compute_dpll(crtc, crtc_state);
9205
9206         return 0;
9207 }
9208
9209 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9210                                   struct intel_crtc_state *crtc_state)
9211 {
9212         int refclk = 100000;
9213         const struct intel_limit *limit = &intel_limits_vlv;
9214         struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9215
9216         memset(&crtc_state->dpll_hw_state, 0,
9217                sizeof(crtc_state->dpll_hw_state));
9218
9219         if (!crtc_state->clock_set &&
9220             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9221                                 refclk, NULL, &crtc_state->dpll)) {
9222                 drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
9223                 return -EINVAL;
9224         }
9225
9226         vlv_compute_dpll(crtc, crtc_state);
9227
9228         return 0;
9229 }
9230
9231 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9232 {
9233         if (IS_I830(dev_priv))
9234                 return false;
9235
9236         return INTEL_GEN(dev_priv) >= 4 ||
9237                 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9238 }
9239
9240 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9241 {
9242         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9243         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9244         u32 tmp;
9245
9246         if (!i9xx_has_pfit(dev_priv))
9247                 return;
9248
9249         tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9250         if (!(tmp & PFIT_ENABLE))
9251                 return;
9252
9253         /* Check whether the pfit is attached to our pipe. */
9254         if (INTEL_GEN(dev_priv) < 4) {
9255                 if (crtc->pipe != PIPE_B)
9256                         return;
9257         } else {
9258                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9259                         return;
9260         }
9261
9262         crtc_state->gmch_pfit.control = tmp;
9263         crtc_state->gmch_pfit.pgm_ratios =
9264                 intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9265 }
9266
9267 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9268                                struct intel_crtc_state *pipe_config)
9269 {
9270         struct drm_device *dev = crtc->base.dev;
9271         struct drm_i915_private *dev_priv = to_i915(dev);
9272         enum pipe pipe = crtc->pipe;
9273         struct dpll clock;
9274         u32 mdiv;
9275         int refclk = 100000;
9276
9277         /* In case of DSI, DPLL will not be used */
9278         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9279                 return;
9280
9281         vlv_dpio_get(dev_priv);
9282         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9283         vlv_dpio_put(dev_priv);
9284
9285         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9286         clock.m2 = mdiv & DPIO_M2DIV_MASK;
9287         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9288         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9289         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9290
9291         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9292 }
9293
9294 static void
9295 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9296                               struct intel_initial_plane_config *plane_config)
9297 {
9298         struct drm_device *dev = crtc->base.dev;
9299         struct drm_i915_private *dev_priv = to_i915(dev);
9300         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9301         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9302         enum pipe pipe;
9303         u32 val, base, offset;
9304         int fourcc, pixel_format;
9305         unsigned int aligned_height;
9306         struct drm_framebuffer *fb;
9307         struct intel_framebuffer *intel_fb;
9308
9309         if (!plane->get_hw_state(plane, &pipe))
9310                 return;
9311
9312         drm_WARN_ON(dev, pipe != crtc->pipe);
9313
9314         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9315         if (!intel_fb) {
9316                 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9317                 return;
9318         }
9319
9320         fb = &intel_fb->base;
9321
9322         fb->dev = dev;
9323
9324         val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9325
9326         if (INTEL_GEN(dev_priv) >= 4) {
9327                 if (val & DISPPLANE_TILED) {
9328                         plane_config->tiling = I915_TILING_X;
9329                         fb->modifier = I915_FORMAT_MOD_X_TILED;
9330                 }
9331
9332                 if (val & DISPPLANE_ROTATE_180)
9333                         plane_config->rotation = DRM_MODE_ROTATE_180;
9334         }
9335
9336         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9337             val & DISPPLANE_MIRROR)
9338                 plane_config->rotation |= DRM_MODE_REFLECT_X;
9339
9340         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9341         fourcc = i9xx_format_to_fourcc(pixel_format);
9342         fb->format = drm_format_info(fourcc);
9343
9344         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9345                 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9346                 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9347         } else if (INTEL_GEN(dev_priv) >= 4) {
9348                 if (plane_config->tiling)
9349                         offset = intel_de_read(dev_priv,
9350                                                DSPTILEOFF(i9xx_plane));
9351                 else
9352                         offset = intel_de_read(dev_priv,
9353                                                DSPLINOFF(i9xx_plane));
9354                 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9355         } else {
9356                 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9357         }
9358         plane_config->base = base;
9359
9360         val = intel_de_read(dev_priv, PIPESRC(pipe));
9361         fb->width = ((val >> 16) & 0xfff) + 1;
9362         fb->height = ((val >> 0) & 0xfff) + 1;
9363
9364         val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9365         fb->pitches[0] = val & 0xffffffc0;
9366
9367         aligned_height = intel_fb_align_height(fb, 0, fb->height);
9368
9369         plane_config->size = fb->pitches[0] * aligned_height;
9370
9371         drm_dbg_kms(&dev_priv->drm,
9372                     "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9373                     crtc->base.name, plane->base.name, fb->width, fb->height,
9374                     fb->format->cpp[0] * 8, base, fb->pitches[0],
9375                     plane_config->size);
9376
9377         plane_config->fb = intel_fb;
9378 }
9379
9380 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9381                                struct intel_crtc_state *pipe_config)
9382 {
9383         struct drm_device *dev = crtc->base.dev;
9384         struct drm_i915_private *dev_priv = to_i915(dev);
9385         enum pipe pipe = crtc->pipe;
9386         enum dpio_channel port = vlv_pipe_to_channel(pipe);
9387         struct dpll clock;
9388         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9389         int refclk = 100000;
9390
9391         /* In case of DSI, DPLL will not be used */
9392         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9393                 return;
9394
9395         vlv_dpio_get(dev_priv);
9396         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9397         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9398         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9399         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9400         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9401         vlv_dpio_put(dev_priv);
9402
9403         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9404         clock.m2 = (pll_dw0 & 0xff) << 22;
9405         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9406                 clock.m2 |= pll_dw2 & 0x3fffff;
9407         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9408         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9409         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9410
9411         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9412 }
9413
9414 static enum intel_output_format
9415 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9416 {
9417         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9418         u32 tmp;
9419
9420         tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9421
9422         if (tmp & PIPEMISC_YUV420_ENABLE) {
9423                 /* We support 4:2:0 in full blend mode only */
9424                 drm_WARN_ON(&dev_priv->drm,
9425                             (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9426
9427                 return INTEL_OUTPUT_FORMAT_YCBCR420;
9428         } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9429                 return INTEL_OUTPUT_FORMAT_YCBCR444;
9430         } else {
9431                 return INTEL_OUTPUT_FORMAT_RGB;
9432         }
9433 }
9434
9435 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9436 {
9437         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9438         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9439         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9440         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9441         u32 tmp;
9442
9443         tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9444
9445         if (tmp & DISPPLANE_GAMMA_ENABLE)
9446                 crtc_state->gamma_enable = true;
9447
9448         if (!HAS_GMCH(dev_priv) &&
9449             tmp & DISPPLANE_PIPE_CSC_ENABLE)
9450                 crtc_state->csc_enable = true;
9451 }
9452
9453 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9454                                  struct intel_crtc_state *pipe_config)
9455 {
9456         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9457         enum intel_display_power_domain power_domain;
9458         intel_wakeref_t wakeref;
9459         u32 tmp;
9460         bool ret;
9461
9462         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9463         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9464         if (!wakeref)
9465                 return false;
9466
9467         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9468         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9469         pipe_config->shared_dpll = NULL;
9470
9471         ret = false;
9472
9473         tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9474         if (!(tmp & PIPECONF_ENABLE))
9475                 goto out;
9476
9477         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9478             IS_CHERRYVIEW(dev_priv)) {
9479                 switch (tmp & PIPECONF_BPC_MASK) {
9480                 case PIPECONF_6BPC:
9481                         pipe_config->pipe_bpp = 18;
9482                         break;
9483                 case PIPECONF_8BPC:
9484                         pipe_config->pipe_bpp = 24;
9485                         break;
9486                 case PIPECONF_10BPC:
9487                         pipe_config->pipe_bpp = 30;
9488                         break;
9489                 default:
9490                         break;
9491                 }
9492         }
9493
9494         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9495             (tmp & PIPECONF_COLOR_RANGE_SELECT))
9496                 pipe_config->limited_color_range = true;
9497
9498         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9499                 PIPECONF_GAMMA_MODE_SHIFT;
9500
9501         if (IS_CHERRYVIEW(dev_priv))
9502                 pipe_config->cgm_mode = intel_de_read(dev_priv,
9503                                                       CGM_PIPE_MODE(crtc->pipe));
9504
9505         i9xx_get_pipe_color_config(pipe_config);
9506         intel_color_get_config(pipe_config);
9507
9508         if (INTEL_GEN(dev_priv) < 4)
9509                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9510
9511         intel_get_pipe_timings(crtc, pipe_config);
9512         intel_get_pipe_src_size(crtc, pipe_config);
9513
9514         i9xx_get_pfit_config(pipe_config);
9515
9516         if (INTEL_GEN(dev_priv) >= 4) {
9517                 /* No way to read it out on pipes B and C */
9518                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9519                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
9520                 else
9521                         tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9522                 pipe_config->pixel_multiplier =
9523                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9524                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9525                 pipe_config->dpll_hw_state.dpll_md = tmp;
9526         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9527                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9528                 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9529                 pipe_config->pixel_multiplier =
9530                         ((tmp & SDVO_MULTIPLIER_MASK)
9531                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9532         } else {
9533                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
9534                  * port and will be fixed up in the encoder->get_config
9535                  * function. */
9536                 pipe_config->pixel_multiplier = 1;
9537         }
9538         pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9539                                                         DPLL(crtc->pipe));
9540         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9541                 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9542                                                                FP0(crtc->pipe));
9543                 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9544                                                                FP1(crtc->pipe));
9545         } else {
9546                 /* Mask out read-only status bits. */
9547                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9548                                                      DPLL_PORTC_READY_MASK |
9549                                                      DPLL_PORTB_READY_MASK);
9550         }
9551
9552         if (IS_CHERRYVIEW(dev_priv))
9553                 chv_crtc_clock_get(crtc, pipe_config);
9554         else if (IS_VALLEYVIEW(dev_priv))
9555                 vlv_crtc_clock_get(crtc, pipe_config);
9556         else
9557                 i9xx_crtc_clock_get(crtc, pipe_config);
9558
9559         /*
9560          * Normally the dotclock is filled in by the encoder .get_config()
9561          * but in case the pipe is enabled w/o any ports we need a sane
9562          * default.
9563          */
9564         pipe_config->hw.adjusted_mode.crtc_clock =
9565                 pipe_config->port_clock / pipe_config->pixel_multiplier;
9566
9567         ret = true;
9568
9569 out:
9570         intel_display_power_put(dev_priv, power_domain, wakeref);
9571
9572         return ret;
9573 }
9574
9575 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9576 {
9577         struct intel_encoder *encoder;
9578         int i;
9579         u32 val, final;
9580         bool has_lvds = false;
9581         bool has_cpu_edp = false;
9582         bool has_panel = false;
9583         bool has_ck505 = false;
9584         bool can_ssc = false;
9585         bool using_ssc_source = false;
9586
9587         /* We need to take the global config into account */
9588         for_each_intel_encoder(&dev_priv->drm, encoder) {
9589                 switch (encoder->type) {
9590                 case INTEL_OUTPUT_LVDS:
9591                         has_panel = true;
9592                         has_lvds = true;
9593                         break;
9594                 case INTEL_OUTPUT_EDP:
9595                         has_panel = true;
9596                         if (encoder->port == PORT_A)
9597                                 has_cpu_edp = true;
9598                         break;
9599                 default:
9600                         break;
9601                 }
9602         }
9603
9604         if (HAS_PCH_IBX(dev_priv)) {
9605                 has_ck505 = dev_priv->vbt.display_clock_mode;
9606                 can_ssc = has_ck505;
9607         } else {
9608                 has_ck505 = false;
9609                 can_ssc = true;
9610         }
9611
9612         /* Check if any DPLLs are using the SSC source */
9613         for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9614                 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9615
9616                 if (!(temp & DPLL_VCO_ENABLE))
9617                         continue;
9618
9619                 if ((temp & PLL_REF_INPUT_MASK) ==
9620                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9621                         using_ssc_source = true;
9622                         break;
9623                 }
9624         }
9625
9626         drm_dbg_kms(&dev_priv->drm,
9627                     "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9628                     has_panel, has_lvds, has_ck505, using_ssc_source);
9629
9630         /* Ironlake: try to setup display ref clock before DPLL
9631          * enabling. This is only under driver's control after
9632          * PCH B stepping, previous chipset stepping should be
9633          * ignoring this setting.
9634          */
9635         val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9636
9637         /* As we must carefully and slowly disable/enable each source in turn,
9638          * compute the final state we want first and check if we need to
9639          * make any changes at all.
9640          */
9641         final = val;
9642         final &= ~DREF_NONSPREAD_SOURCE_MASK;
9643         if (has_ck505)
9644                 final |= DREF_NONSPREAD_CK505_ENABLE;
9645         else
9646                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9647
9648         final &= ~DREF_SSC_SOURCE_MASK;
9649         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9650         final &= ~DREF_SSC1_ENABLE;
9651
9652         if (has_panel) {
9653                 final |= DREF_SSC_SOURCE_ENABLE;
9654
9655                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9656                         final |= DREF_SSC1_ENABLE;
9657
9658                 if (has_cpu_edp) {
9659                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
9660                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9661                         else
9662                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9663                 } else
9664                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9665         } else if (using_ssc_source) {
9666                 final |= DREF_SSC_SOURCE_ENABLE;
9667                 final |= DREF_SSC1_ENABLE;
9668         }
9669
9670         if (final == val)
9671                 return;
9672
9673         /* Always enable nonspread source */
9674         val &= ~DREF_NONSPREAD_SOURCE_MASK;
9675
9676         if (has_ck505)
9677                 val |= DREF_NONSPREAD_CK505_ENABLE;
9678         else
9679                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9680
9681         if (has_panel) {
9682                 val &= ~DREF_SSC_SOURCE_MASK;
9683                 val |= DREF_SSC_SOURCE_ENABLE;
9684
9685                 /* SSC must be turned on before enabling the CPU output  */
9686                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9687                         drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9688                         val |= DREF_SSC1_ENABLE;
9689                 } else
9690                         val &= ~DREF_SSC1_ENABLE;
9691
9692                 /* Get SSC going before enabling the outputs */
9693                 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9694                 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9695                 udelay(200);
9696
9697                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9698
9699                 /* Enable CPU source on CPU attached eDP */
9700                 if (has_cpu_edp) {
9701                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9702                                 drm_dbg_kms(&dev_priv->drm,
9703                                             "Using SSC on eDP\n");
9704                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9705                         } else
9706                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9707                 } else
9708                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9709
9710                 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9711                 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9712                 udelay(200);
9713         } else {
9714                 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9715
9716                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9717
9718                 /* Turn off CPU output */
9719                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9720
9721                 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9722                 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9723                 udelay(200);
9724
9725                 if (!using_ssc_source) {
9726                         drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9727
9728                         /* Turn off the SSC source */
9729                         val &= ~DREF_SSC_SOURCE_MASK;
9730                         val |= DREF_SSC_SOURCE_DISABLE;
9731
9732                         /* Turn off SSC1 */
9733                         val &= ~DREF_SSC1_ENABLE;
9734
9735                         intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9736                         intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9737                         udelay(200);
9738                 }
9739         }
9740
9741         BUG_ON(val != final);
9742 }
9743
9744 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9745 {
9746         u32 tmp;
9747
9748         tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9749         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9750         intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9751
9752         if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9753                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9754                 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9755
9756         tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9757         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9758         intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9759
9760         if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9761                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9762                 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9763 }
9764
9765 /* WaMPhyProgramming:hsw */
9766 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9767 {
9768         u32 tmp;
9769
9770         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9771         tmp &= ~(0xFF << 24);
9772         tmp |= (0x12 << 24);
9773         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9774
9775         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9776         tmp |= (1 << 11);
9777         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9778
9779         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9780         tmp |= (1 << 11);
9781         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9782
9783         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9784         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9785         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9786
9787         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9788         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9789         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9790
9791         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9792         tmp &= ~(7 << 13);
9793         tmp |= (5 << 13);
9794         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9795
9796         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9797         tmp &= ~(7 << 13);
9798         tmp |= (5 << 13);
9799         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9800
9801         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9802         tmp &= ~0xFF;
9803         tmp |= 0x1C;
9804         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9805
9806         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9807         tmp &= ~0xFF;
9808         tmp |= 0x1C;
9809         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9810
9811         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9812         tmp &= ~(0xFF << 16);
9813         tmp |= (0x1C << 16);
9814         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9815
9816         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9817         tmp &= ~(0xFF << 16);
9818         tmp |= (0x1C << 16);
9819         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9820
9821         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9822         tmp |= (1 << 27);
9823         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9824
9825         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9826         tmp |= (1 << 27);
9827         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9828
9829         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9830         tmp &= ~(0xF << 28);
9831         tmp |= (4 << 28);
9832         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9833
9834         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9835         tmp &= ~(0xF << 28);
9836         tmp |= (4 << 28);
9837         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9838 }
9839
9840 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9841  * Programming" based on the parameters passed:
9842  * - Sequence to enable CLKOUT_DP
9843  * - Sequence to enable CLKOUT_DP without spread
9844  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9845  */
9846 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9847                                  bool with_spread, bool with_fdi)
9848 {
9849         u32 reg, tmp;
9850
9851         if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9852                      "FDI requires downspread\n"))
9853                 with_spread = true;
9854         if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9855                      with_fdi, "LP PCH doesn't have FDI\n"))
9856                 with_fdi = false;
9857
9858         mutex_lock(&dev_priv->sb_lock);
9859
9860         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9861         tmp &= ~SBI_SSCCTL_DISABLE;
9862         tmp |= SBI_SSCCTL_PATHALT;
9863         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9864
9865         udelay(24);
9866
9867         if (with_spread) {
9868                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9869                 tmp &= ~SBI_SSCCTL_PATHALT;
9870                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9871
9872                 if (with_fdi) {
9873                         lpt_reset_fdi_mphy(dev_priv);
9874                         lpt_program_fdi_mphy(dev_priv);
9875                 }
9876         }
9877
9878         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9879         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9880         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9881         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9882
9883         mutex_unlock(&dev_priv->sb_lock);
9884 }
9885
9886 /* Sequence to disable CLKOUT_DP */
9887 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9888 {
9889         u32 reg, tmp;
9890
9891         mutex_lock(&dev_priv->sb_lock);
9892
9893         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9894         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9895         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9896         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9897
9898         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9899         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9900                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9901                         tmp |= SBI_SSCCTL_PATHALT;
9902                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9903                         udelay(32);
9904                 }
9905                 tmp |= SBI_SSCCTL_DISABLE;
9906                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9907         }
9908
9909         mutex_unlock(&dev_priv->sb_lock);
9910 }
9911
9912 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9913
9914 static const u16 sscdivintphase[] = {
9915         [BEND_IDX( 50)] = 0x3B23,
9916         [BEND_IDX( 45)] = 0x3B23,
9917         [BEND_IDX( 40)] = 0x3C23,
9918         [BEND_IDX( 35)] = 0x3C23,
9919         [BEND_IDX( 30)] = 0x3D23,
9920         [BEND_IDX( 25)] = 0x3D23,
9921         [BEND_IDX( 20)] = 0x3E23,
9922         [BEND_IDX( 15)] = 0x3E23,
9923         [BEND_IDX( 10)] = 0x3F23,
9924         [BEND_IDX(  5)] = 0x3F23,
9925         [BEND_IDX(  0)] = 0x0025,
9926         [BEND_IDX( -5)] = 0x0025,
9927         [BEND_IDX(-10)] = 0x0125,
9928         [BEND_IDX(-15)] = 0x0125,
9929         [BEND_IDX(-20)] = 0x0225,
9930         [BEND_IDX(-25)] = 0x0225,
9931         [BEND_IDX(-30)] = 0x0325,
9932         [BEND_IDX(-35)] = 0x0325,
9933         [BEND_IDX(-40)] = 0x0425,
9934         [BEND_IDX(-45)] = 0x0425,
9935         [BEND_IDX(-50)] = 0x0525,
9936 };
9937
9938 /*
9939  * Bend CLKOUT_DP
9940  * steps -50 to 50 inclusive, in steps of 5
9941  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9942  * change in clock period = -(steps / 10) * 5.787 ps
9943  */
9944 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9945 {
9946         u32 tmp;
9947         int idx = BEND_IDX(steps);
9948
9949         if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9950                 return;
9951
9952         if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9953                 return;
9954
9955         mutex_lock(&dev_priv->sb_lock);
9956
9957         if (steps % 10 != 0)
9958                 tmp = 0xAAAAAAAB;
9959         else
9960                 tmp = 0x00000000;
9961         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9962
9963         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9964         tmp &= 0xffff0000;
9965         tmp |= sscdivintphase[idx];
9966         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9967
9968         mutex_unlock(&dev_priv->sb_lock);
9969 }
9970
9971 #undef BEND_IDX
9972
9973 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9974 {
9975         u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9976         u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9977
9978         if ((ctl & SPLL_PLL_ENABLE) == 0)
9979                 return false;
9980
9981         if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9982             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9983                 return true;
9984
9985         if (IS_BROADWELL(dev_priv) &&
9986             (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9987                 return true;
9988
9989         return false;
9990 }
9991
9992 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9993                                enum intel_dpll_id id)
9994 {
9995         u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9996         u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
9997
9998         if ((ctl & WRPLL_PLL_ENABLE) == 0)
9999                 return false;
10000
10001         if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10002                 return true;
10003
10004         if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10005             (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10006             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10007                 return true;
10008
10009         return false;
10010 }
10011
10012 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10013 {
10014         struct intel_encoder *encoder;
10015         bool has_fdi = false;
10016
10017         for_each_intel_encoder(&dev_priv->drm, encoder) {
10018                 switch (encoder->type) {
10019                 case INTEL_OUTPUT_ANALOG:
10020                         has_fdi = true;
10021                         break;
10022                 default:
10023                         break;
10024                 }
10025         }
10026
10027         /*
10028          * The BIOS may have decided to use the PCH SSC
10029          * reference so we must not disable it until the
10030          * relevant PLLs have stopped relying on it. We'll
10031          * just leave the PCH SSC reference enabled in case
10032          * any active PLL is using it. It will get disabled
10033          * after runtime suspend if we don't have FDI.
10034          *
10035          * TODO: Move the whole reference clock handling
10036          * to the modeset sequence proper so that we can
10037          * actually enable/disable/reconfigure these things
10038          * safely. To do that we need to introduce a real
10039          * clock hierarchy. That would also allow us to do
10040          * clock bending finally.
10041          */
10042         dev_priv->pch_ssc_use = 0;
10043
10044         if (spll_uses_pch_ssc(dev_priv)) {
10045                 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10046                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10047         }
10048
10049         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10050                 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10051                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10052         }
10053
10054         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10055                 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10056                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10057         }
10058
10059         if (dev_priv->pch_ssc_use)
10060                 return;
10061
10062         if (has_fdi) {
10063                 lpt_bend_clkout_dp(dev_priv, 0);
10064                 lpt_enable_clkout_dp(dev_priv, true, true);
10065         } else {
10066                 lpt_disable_clkout_dp(dev_priv);
10067         }
10068 }
10069
10070 /*
10071  * Initialize reference clocks when the driver loads
10072  */
10073 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10074 {
10075         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10076                 ilk_init_pch_refclk(dev_priv);
10077         else if (HAS_PCH_LPT(dev_priv))
10078                 lpt_init_pch_refclk(dev_priv);
10079 }
10080
10081 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10082 {
10083         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10084         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10085         enum pipe pipe = crtc->pipe;
10086         u32 val;
10087
10088         val = 0;
10089
10090         switch (crtc_state->pipe_bpp) {
10091         case 18:
10092                 val |= PIPECONF_6BPC;
10093                 break;
10094         case 24:
10095                 val |= PIPECONF_8BPC;
10096                 break;
10097         case 30:
10098                 val |= PIPECONF_10BPC;
10099                 break;
10100         case 36:
10101                 val |= PIPECONF_12BPC;
10102                 break;
10103         default:
10104                 /* Case prevented by intel_choose_pipe_bpp_dither. */
10105                 BUG();
10106         }
10107
10108         if (crtc_state->dither)
10109                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10110
10111         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10112                 val |= PIPECONF_INTERLACED_ILK;
10113         else
10114                 val |= PIPECONF_PROGRESSIVE;
10115
10116         /*
10117          * This would end up with an odd purple hue over
10118          * the entire display. Make sure we don't do it.
10119          */
10120         drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10121                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10122
10123         if (crtc_state->limited_color_range &&
10124             !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10125                 val |= PIPECONF_COLOR_RANGE_SELECT;
10126
10127         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10128                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10129
10130         val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10131
10132         val |= PIPECONF_FRAME_START_DELAY(0);
10133
10134         intel_de_write(dev_priv, PIPECONF(pipe), val);
10135         intel_de_posting_read(dev_priv, PIPECONF(pipe));
10136 }
10137
10138 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10139 {
10140         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10141         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10142         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10143         u32 val = 0;
10144
10145         if (IS_HASWELL(dev_priv) && crtc_state->dither)
10146                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10147
10148         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10149                 val |= PIPECONF_INTERLACED_ILK;
10150         else
10151                 val |= PIPECONF_PROGRESSIVE;
10152
10153         if (IS_HASWELL(dev_priv) &&
10154             crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10155                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10156
10157         intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10158         intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10159 }
10160
10161 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10162 {
10163         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10164         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10165         u32 val = 0;
10166
10167         switch (crtc_state->pipe_bpp) {
10168         case 18:
10169                 val |= PIPEMISC_DITHER_6_BPC;
10170                 break;
10171         case 24:
10172                 val |= PIPEMISC_DITHER_8_BPC;
10173                 break;
10174         case 30:
10175                 val |= PIPEMISC_DITHER_10_BPC;
10176                 break;
10177         case 36:
10178                 val |= PIPEMISC_DITHER_12_BPC;
10179                 break;
10180         default:
10181                 MISSING_CASE(crtc_state->pipe_bpp);
10182                 break;
10183         }
10184
10185         if (crtc_state->dither)
10186                 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10187
10188         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10189             crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10190                 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10191
10192         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10193                 val |= PIPEMISC_YUV420_ENABLE |
10194                         PIPEMISC_YUV420_MODE_FULL_BLEND;
10195
10196         if (INTEL_GEN(dev_priv) >= 11 &&
10197             (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10198                                            BIT(PLANE_CURSOR))) == 0)
10199                 val |= PIPEMISC_HDR_MODE_PRECISION;
10200
10201         if (INTEL_GEN(dev_priv) >= 12)
10202                 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10203
10204         intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10205 }
10206
10207 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10208 {
10209         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10210         u32 tmp;
10211
10212         tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10213
10214         switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10215         case PIPEMISC_DITHER_6_BPC:
10216                 return 18;
10217         case PIPEMISC_DITHER_8_BPC:
10218                 return 24;
10219         case PIPEMISC_DITHER_10_BPC:
10220                 return 30;
10221         case PIPEMISC_DITHER_12_BPC:
10222                 return 36;
10223         default:
10224                 MISSING_CASE(tmp);
10225                 return 0;
10226         }
10227 }
10228
10229 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10230 {
10231         /*
10232          * Account for spread spectrum to avoid
10233          * oversubscribing the link. Max center spread
10234          * is 2.5%; use 5% for safety's sake.
10235          */
10236         u32 bps = target_clock * bpp * 21 / 20;
10237         return DIV_ROUND_UP(bps, link_bw * 8);
10238 }
10239
10240 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10241 {
10242         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10243 }
10244
10245 static void ilk_compute_dpll(struct intel_crtc *crtc,
10246                              struct intel_crtc_state *crtc_state,
10247                              struct dpll *reduced_clock)
10248 {
10249         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10250         u32 dpll, fp, fp2;
10251         int factor;
10252
10253         /* Enable autotuning of the PLL clock (if permissible) */
10254         factor = 21;
10255         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10256                 if ((intel_panel_use_ssc(dev_priv) &&
10257                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
10258                     (HAS_PCH_IBX(dev_priv) &&
10259                      intel_is_dual_link_lvds(dev_priv)))
10260                         factor = 25;
10261         } else if (crtc_state->sdvo_tv_clock) {
10262                 factor = 20;
10263         }
10264
10265         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10266
10267         if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10268                 fp |= FP_CB_TUNE;
10269
10270         if (reduced_clock) {
10271                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
10272
10273                 if (reduced_clock->m < factor * reduced_clock->n)
10274                         fp2 |= FP_CB_TUNE;
10275         } else {
10276                 fp2 = fp;
10277         }
10278
10279         dpll = 0;
10280
10281         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10282                 dpll |= DPLLB_MODE_LVDS;
10283         else
10284                 dpll |= DPLLB_MODE_DAC_SERIAL;
10285
10286         dpll |= (crtc_state->pixel_multiplier - 1)
10287                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10288
10289         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10290             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10291                 dpll |= DPLL_SDVO_HIGH_SPEED;
10292
10293         if (intel_crtc_has_dp_encoder(crtc_state))
10294                 dpll |= DPLL_SDVO_HIGH_SPEED;
10295
10296         /*
10297          * The high speed IO clock is only really required for
10298          * SDVO/HDMI/DP, but we also enable it for CRT to make it
10299          * possible to share the DPLL between CRT and HDMI. Enabling
10300          * the clock needlessly does no real harm, except use up a
10301          * bit of power potentially.
10302          *
10303          * We'll limit this to IVB with 3 pipes, since it has only two
10304          * DPLLs and so DPLL sharing is the only way to get three pipes
10305          * driving PCH ports at the same time. On SNB we could do this,
10306          * and potentially avoid enabling the second DPLL, but it's not
10307          * clear if it''s a win or loss power wise. No point in doing
10308          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10309          */
10310         if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10311             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10312                 dpll |= DPLL_SDVO_HIGH_SPEED;
10313
10314         /* compute bitmask from p1 value */
10315         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10316         /* also FPA1 */
10317         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10318
10319         switch (crtc_state->dpll.p2) {
10320         case 5:
10321                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10322                 break;
10323         case 7:
10324                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10325                 break;
10326         case 10:
10327                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10328                 break;
10329         case 14:
10330                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10331                 break;
10332         }
10333
10334         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10335             intel_panel_use_ssc(dev_priv))
10336                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10337         else
10338                 dpll |= PLL_REF_INPUT_DREFCLK;
10339
10340         dpll |= DPLL_VCO_ENABLE;
10341
10342         crtc_state->dpll_hw_state.dpll = dpll;
10343         crtc_state->dpll_hw_state.fp0 = fp;
10344         crtc_state->dpll_hw_state.fp1 = fp2;
10345 }
10346
10347 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10348                                   struct intel_crtc_state *crtc_state)
10349 {
10350         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10351         struct intel_atomic_state *state =
10352                 to_intel_atomic_state(crtc_state->uapi.state);
10353         const struct intel_limit *limit;
10354         int refclk = 120000;
10355
10356         memset(&crtc_state->dpll_hw_state, 0,
10357                sizeof(crtc_state->dpll_hw_state));
10358
10359         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10360         if (!crtc_state->has_pch_encoder)
10361                 return 0;
10362
10363         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10364                 if (intel_panel_use_ssc(dev_priv)) {
10365                         drm_dbg_kms(&dev_priv->drm,
10366                                     "using SSC reference clock of %d kHz\n",
10367                                     dev_priv->vbt.lvds_ssc_freq);
10368                         refclk = dev_priv->vbt.lvds_ssc_freq;
10369                 }
10370
10371                 if (intel_is_dual_link_lvds(dev_priv)) {
10372                         if (refclk == 100000)
10373                                 limit = &ilk_limits_dual_lvds_100m;
10374                         else
10375                                 limit = &ilk_limits_dual_lvds;
10376                 } else {
10377                         if (refclk == 100000)
10378                                 limit = &ilk_limits_single_lvds_100m;
10379                         else
10380                                 limit = &ilk_limits_single_lvds;
10381                 }
10382         } else {
10383                 limit = &ilk_limits_dac;
10384         }
10385
10386         if (!crtc_state->clock_set &&
10387             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10388                                 refclk, NULL, &crtc_state->dpll)) {
10389                 drm_err(&dev_priv->drm,
10390                         "Couldn't find PLL settings for mode!\n");
10391                 return -EINVAL;
10392         }
10393
10394         ilk_compute_dpll(crtc, crtc_state, NULL);
10395
10396         if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10397                 drm_dbg_kms(&dev_priv->drm,
10398                             "failed to find PLL for pipe %c\n",
10399                             pipe_name(crtc->pipe));
10400                 return -EINVAL;
10401         }
10402
10403         return 0;
10404 }
10405
10406 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10407                                          struct intel_link_m_n *m_n)
10408 {
10409         struct drm_device *dev = crtc->base.dev;
10410         struct drm_i915_private *dev_priv = to_i915(dev);
10411         enum pipe pipe = crtc->pipe;
10412
10413         m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10414         m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10415         m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10416                 & ~TU_SIZE_MASK;
10417         m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10418         m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10419                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10420 }
10421
10422 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10423                                          enum transcoder transcoder,
10424                                          struct intel_link_m_n *m_n,
10425                                          struct intel_link_m_n *m2_n2)
10426 {
10427         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10428         enum pipe pipe = crtc->pipe;
10429
10430         if (INTEL_GEN(dev_priv) >= 5) {
10431                 m_n->link_m = intel_de_read(dev_priv,
10432                                             PIPE_LINK_M1(transcoder));
10433                 m_n->link_n = intel_de_read(dev_priv,
10434                                             PIPE_LINK_N1(transcoder));
10435                 m_n->gmch_m = intel_de_read(dev_priv,
10436                                             PIPE_DATA_M1(transcoder))
10437                         & ~TU_SIZE_MASK;
10438                 m_n->gmch_n = intel_de_read(dev_priv,
10439                                             PIPE_DATA_N1(transcoder));
10440                 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10441                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10442
10443                 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10444                         m2_n2->link_m = intel_de_read(dev_priv,
10445                                                       PIPE_LINK_M2(transcoder));
10446                         m2_n2->link_n = intel_de_read(dev_priv,
10447                                                              PIPE_LINK_N2(transcoder));
10448                         m2_n2->gmch_m = intel_de_read(dev_priv,
10449                                                              PIPE_DATA_M2(transcoder))
10450                                         & ~TU_SIZE_MASK;
10451                         m2_n2->gmch_n = intel_de_read(dev_priv,
10452                                                              PIPE_DATA_N2(transcoder));
10453                         m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10454                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10455                 }
10456         } else {
10457                 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10458                 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10459                 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10460                         & ~TU_SIZE_MASK;
10461                 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10462                 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10463                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10464         }
10465 }
10466
10467 void intel_dp_get_m_n(struct intel_crtc *crtc,
10468                       struct intel_crtc_state *pipe_config)
10469 {
10470         if (pipe_config->has_pch_encoder)
10471                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10472         else
10473                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10474                                              &pipe_config->dp_m_n,
10475                                              &pipe_config->dp_m2_n2);
10476 }
10477
10478 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10479                                    struct intel_crtc_state *pipe_config)
10480 {
10481         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10482                                      &pipe_config->fdi_m_n, NULL);
10483 }
10484
10485 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10486                                   u32 pos, u32 size)
10487 {
10488         drm_rect_init(&crtc_state->pch_pfit.dst,
10489                       pos >> 16, pos & 0xffff,
10490                       size >> 16, size & 0xffff);
10491 }
10492
10493 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10494 {
10495         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10496         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10497         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10498         int id = -1;
10499         int i;
10500
10501         /* find scaler attached to this pipe */
10502         for (i = 0; i < crtc->num_scalers; i++) {
10503                 u32 ctl, pos, size;
10504
10505                 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10506                 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10507                         continue;
10508
10509                 id = i;
10510                 crtc_state->pch_pfit.enabled = true;
10511
10512                 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10513                 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10514
10515                 ilk_get_pfit_pos_size(crtc_state, pos, size);
10516
10517                 scaler_state->scalers[i].in_use = true;
10518                 break;
10519         }
10520
10521         scaler_state->scaler_id = id;
10522         if (id >= 0)
10523                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10524         else
10525                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10526 }
10527
10528 static void
10529 skl_get_initial_plane_config(struct intel_crtc *crtc,
10530                              struct intel_initial_plane_config *plane_config)
10531 {
10532         struct drm_device *dev = crtc->base.dev;
10533         struct drm_i915_private *dev_priv = to_i915(dev);
10534         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10535         enum plane_id plane_id = plane->id;
10536         enum pipe pipe;
10537         u32 val, base, offset, stride_mult, tiling, alpha;
10538         int fourcc, pixel_format;
10539         unsigned int aligned_height;
10540         struct drm_framebuffer *fb;
10541         struct intel_framebuffer *intel_fb;
10542
10543         if (!plane->get_hw_state(plane, &pipe))
10544                 return;
10545
10546         drm_WARN_ON(dev, pipe != crtc->pipe);
10547
10548         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10549         if (!intel_fb) {
10550                 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10551                 return;
10552         }
10553
10554         fb = &intel_fb->base;
10555
10556         fb->dev = dev;
10557
10558         val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10559
10560         if (INTEL_GEN(dev_priv) >= 11)
10561                 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10562         else
10563                 pixel_format = val & PLANE_CTL_FORMAT_MASK;
10564
10565         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10566                 alpha = intel_de_read(dev_priv,
10567                                       PLANE_COLOR_CTL(pipe, plane_id));
10568                 alpha &= PLANE_COLOR_ALPHA_MASK;
10569         } else {
10570                 alpha = val & PLANE_CTL_ALPHA_MASK;
10571         }
10572
10573         fourcc = skl_format_to_fourcc(pixel_format,
10574                                       val & PLANE_CTL_ORDER_RGBX, alpha);
10575         fb->format = drm_format_info(fourcc);
10576
10577         tiling = val & PLANE_CTL_TILED_MASK;
10578         switch (tiling) {
10579         case PLANE_CTL_TILED_LINEAR:
10580                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
10581                 break;
10582         case PLANE_CTL_TILED_X:
10583                 plane_config->tiling = I915_TILING_X;
10584                 fb->modifier = I915_FORMAT_MOD_X_TILED;
10585                 break;
10586         case PLANE_CTL_TILED_Y:
10587                 plane_config->tiling = I915_TILING_Y;
10588                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10589                         fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10590                                 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10591                                 I915_FORMAT_MOD_Y_TILED_CCS;
10592                 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10593                         fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10594                 else
10595                         fb->modifier = I915_FORMAT_MOD_Y_TILED;
10596                 break;
10597         case PLANE_CTL_TILED_YF:
10598                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10599                         fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10600                 else
10601                         fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10602                 break;
10603         default:
10604                 MISSING_CASE(tiling);
10605                 goto error;
10606         }
10607
10608         /*
10609          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10610          * while i915 HW rotation is clockwise, thats why this swapping.
10611          */
10612         switch (val & PLANE_CTL_ROTATE_MASK) {
10613         case PLANE_CTL_ROTATE_0:
10614                 plane_config->rotation = DRM_MODE_ROTATE_0;
10615                 break;
10616         case PLANE_CTL_ROTATE_90:
10617                 plane_config->rotation = DRM_MODE_ROTATE_270;
10618                 break;
10619         case PLANE_CTL_ROTATE_180:
10620                 plane_config->rotation = DRM_MODE_ROTATE_180;
10621                 break;
10622         case PLANE_CTL_ROTATE_270:
10623                 plane_config->rotation = DRM_MODE_ROTATE_90;
10624                 break;
10625         }
10626
10627         if (INTEL_GEN(dev_priv) >= 10 &&
10628             val & PLANE_CTL_FLIP_HORIZONTAL)
10629                 plane_config->rotation |= DRM_MODE_REFLECT_X;
10630
10631         base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10632         plane_config->base = base;
10633
10634         offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10635
10636         val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10637         fb->height = ((val >> 16) & 0xffff) + 1;
10638         fb->width = ((val >> 0) & 0xffff) + 1;
10639
10640         val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10641         stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10642         fb->pitches[0] = (val & 0x3ff) * stride_mult;
10643
10644         aligned_height = intel_fb_align_height(fb, 0, fb->height);
10645
10646         plane_config->size = fb->pitches[0] * aligned_height;
10647
10648         drm_dbg_kms(&dev_priv->drm,
10649                     "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10650                     crtc->base.name, plane->base.name, fb->width, fb->height,
10651                     fb->format->cpp[0] * 8, base, fb->pitches[0],
10652                     plane_config->size);
10653
10654         plane_config->fb = intel_fb;
10655         return;
10656
10657 error:
10658         kfree(intel_fb);
10659 }
10660
10661 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10662 {
10663         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10664         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10665         u32 ctl, pos, size;
10666
10667         ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10668         if ((ctl & PF_ENABLE) == 0)
10669                 return;
10670
10671         crtc_state->pch_pfit.enabled = true;
10672
10673         pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10674         size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10675
10676         ilk_get_pfit_pos_size(crtc_state, pos, size);
10677
10678         /*
10679          * We currently do not free assignements of panel fitters on
10680          * ivb/hsw (since we don't use the higher upscaling modes which
10681          * differentiates them) so just WARN about this case for now.
10682          */
10683         drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10684                     (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10685 }
10686
10687 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10688                                 struct intel_crtc_state *pipe_config)
10689 {
10690         struct drm_device *dev = crtc->base.dev;
10691         struct drm_i915_private *dev_priv = to_i915(dev);
10692         enum intel_display_power_domain power_domain;
10693         intel_wakeref_t wakeref;
10694         u32 tmp;
10695         bool ret;
10696
10697         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10698         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10699         if (!wakeref)
10700                 return false;
10701
10702         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10703         pipe_config->shared_dpll = NULL;
10704
10705         ret = false;
10706         tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10707         if (!(tmp & PIPECONF_ENABLE))
10708                 goto out;
10709
10710         switch (tmp & PIPECONF_BPC_MASK) {
10711         case PIPECONF_6BPC:
10712                 pipe_config->pipe_bpp = 18;
10713                 break;
10714         case PIPECONF_8BPC:
10715                 pipe_config->pipe_bpp = 24;
10716                 break;
10717         case PIPECONF_10BPC:
10718                 pipe_config->pipe_bpp = 30;
10719                 break;
10720         case PIPECONF_12BPC:
10721                 pipe_config->pipe_bpp = 36;
10722                 break;
10723         default:
10724                 break;
10725         }
10726
10727         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10728                 pipe_config->limited_color_range = true;
10729
10730         switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10731         case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10732         case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10733                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10734                 break;
10735         default:
10736                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10737                 break;
10738         }
10739
10740         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10741                 PIPECONF_GAMMA_MODE_SHIFT;
10742
10743         pipe_config->csc_mode = intel_de_read(dev_priv,
10744                                               PIPE_CSC_MODE(crtc->pipe));
10745
10746         i9xx_get_pipe_color_config(pipe_config);
10747         intel_color_get_config(pipe_config);
10748
10749         if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10750                 struct intel_shared_dpll *pll;
10751                 enum intel_dpll_id pll_id;
10752
10753                 pipe_config->has_pch_encoder = true;
10754
10755                 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10756                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10757                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10758
10759                 ilk_get_fdi_m_n_config(crtc, pipe_config);
10760
10761                 if (HAS_PCH_IBX(dev_priv)) {
10762                         /*
10763                          * The pipe->pch transcoder and pch transcoder->pll
10764                          * mapping is fixed.
10765                          */
10766                         pll_id = (enum intel_dpll_id) crtc->pipe;
10767                 } else {
10768                         tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10769                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10770                                 pll_id = DPLL_ID_PCH_PLL_B;
10771                         else
10772                                 pll_id= DPLL_ID_PCH_PLL_A;
10773                 }
10774
10775                 pipe_config->shared_dpll =
10776                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
10777                 pll = pipe_config->shared_dpll;
10778
10779                 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10780                                                  &pipe_config->dpll_hw_state));
10781
10782                 tmp = pipe_config->dpll_hw_state.dpll;
10783                 pipe_config->pixel_multiplier =
10784                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10785                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10786
10787                 ilk_pch_clock_get(crtc, pipe_config);
10788         } else {
10789                 pipe_config->pixel_multiplier = 1;
10790         }
10791
10792         intel_get_pipe_timings(crtc, pipe_config);
10793         intel_get_pipe_src_size(crtc, pipe_config);
10794
10795         ilk_get_pfit_config(pipe_config);
10796
10797         ret = true;
10798
10799 out:
10800         intel_display_power_put(dev_priv, power_domain, wakeref);
10801
10802         return ret;
10803 }
10804
10805 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10806                                   struct intel_crtc_state *crtc_state)
10807 {
10808         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10809         struct intel_atomic_state *state =
10810                 to_intel_atomic_state(crtc_state->uapi.state);
10811
10812         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10813             INTEL_GEN(dev_priv) >= 11) {
10814                 struct intel_encoder *encoder =
10815                         intel_get_crtc_new_encoder(state, crtc_state);
10816
10817                 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10818                         drm_dbg_kms(&dev_priv->drm,
10819                                     "failed to find PLL for pipe %c\n",
10820                                     pipe_name(crtc->pipe));
10821                         return -EINVAL;
10822                 }
10823         }
10824
10825         return 0;
10826 }
10827
10828 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10829                             struct intel_crtc_state *pipe_config)
10830 {
10831         enum intel_dpll_id id;
10832         u32 temp;
10833
10834         temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10835         id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10836
10837         if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10838                 return;
10839
10840         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10841 }
10842
10843 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10844                             struct intel_crtc_state *pipe_config)
10845 {
10846         enum phy phy = intel_port_to_phy(dev_priv, port);
10847         enum icl_port_dpll_id port_dpll_id;
10848         enum intel_dpll_id id;
10849         u32 temp;
10850
10851         if (intel_phy_is_combo(dev_priv, phy)) {
10852                 u32 mask, shift;
10853
10854                 if (IS_ROCKETLAKE(dev_priv)) {
10855                         mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10856                         shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10857                 } else {
10858                         mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10859                         shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10860                 }
10861
10862                 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10863                 id = temp >> shift;
10864                 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10865         } else if (intel_phy_is_tc(dev_priv, phy)) {
10866                 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10867
10868                 if (clk_sel == DDI_CLK_SEL_MG) {
10869                         id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10870                                                                     port));
10871                         port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10872                 } else {
10873                         drm_WARN_ON(&dev_priv->drm,
10874                                     clk_sel < DDI_CLK_SEL_TBT_162);
10875                         id = DPLL_ID_ICL_TBTPLL;
10876                         port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10877                 }
10878         } else {
10879                 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10880                 return;
10881         }
10882
10883         pipe_config->icl_port_dplls[port_dpll_id].pll =
10884                 intel_get_shared_dpll_by_id(dev_priv, id);
10885
10886         icl_set_active_port_dpll(pipe_config, port_dpll_id);
10887 }
10888
10889 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10890                                 enum port port,
10891                                 struct intel_crtc_state *pipe_config)
10892 {
10893         enum intel_dpll_id id;
10894
10895         switch (port) {
10896         case PORT_A:
10897                 id = DPLL_ID_SKL_DPLL0;
10898                 break;
10899         case PORT_B:
10900                 id = DPLL_ID_SKL_DPLL1;
10901                 break;
10902         case PORT_C:
10903                 id = DPLL_ID_SKL_DPLL2;
10904                 break;
10905         default:
10906                 drm_err(&dev_priv->drm, "Incorrect port type\n");
10907                 return;
10908         }
10909
10910         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10911 }
10912
10913 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10914                             struct intel_crtc_state *pipe_config)
10915 {
10916         enum intel_dpll_id id;
10917         u32 temp;
10918
10919         temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10920         id = temp >> (port * 3 + 1);
10921
10922         if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10923                 return;
10924
10925         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10926 }
10927
10928 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10929                             struct intel_crtc_state *pipe_config)
10930 {
10931         enum intel_dpll_id id;
10932         u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10933
10934         switch (ddi_pll_sel) {
10935         case PORT_CLK_SEL_WRPLL1:
10936                 id = DPLL_ID_WRPLL1;
10937                 break;
10938         case PORT_CLK_SEL_WRPLL2:
10939                 id = DPLL_ID_WRPLL2;
10940                 break;
10941         case PORT_CLK_SEL_SPLL:
10942                 id = DPLL_ID_SPLL;
10943                 break;
10944         case PORT_CLK_SEL_LCPLL_810:
10945                 id = DPLL_ID_LCPLL_810;
10946                 break;
10947         case PORT_CLK_SEL_LCPLL_1350:
10948                 id = DPLL_ID_LCPLL_1350;
10949                 break;
10950         case PORT_CLK_SEL_LCPLL_2700:
10951                 id = DPLL_ID_LCPLL_2700;
10952                 break;
10953         default:
10954                 MISSING_CASE(ddi_pll_sel);
10955                 fallthrough;
10956         case PORT_CLK_SEL_NONE:
10957                 return;
10958         }
10959
10960         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10961 }
10962
10963 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10964                                      struct intel_crtc_state *pipe_config,
10965                                      u64 *power_domain_mask,
10966                                      intel_wakeref_t *wakerefs)
10967 {
10968         struct drm_device *dev = crtc->base.dev;
10969         struct drm_i915_private *dev_priv = to_i915(dev);
10970         enum intel_display_power_domain power_domain;
10971         unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10972         unsigned long enabled_panel_transcoders = 0;
10973         enum transcoder panel_transcoder;
10974         intel_wakeref_t wf;
10975         u32 tmp;
10976
10977         if (INTEL_GEN(dev_priv) >= 11)
10978                 panel_transcoder_mask |=
10979                         BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10980
10981         /*
10982          * The pipe->transcoder mapping is fixed with the exception of the eDP
10983          * and DSI transcoders handled below.
10984          */
10985         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10986
10987         /*
10988          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10989          * consistency and less surprising code; it's in always on power).
10990          */
10991         for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
10992                                        panel_transcoder_mask) {
10993                 bool force_thru = false;
10994                 enum pipe trans_pipe;
10995
10996                 tmp = intel_de_read(dev_priv,
10997                                     TRANS_DDI_FUNC_CTL(panel_transcoder));
10998                 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10999                         continue;
11000
11001                 /*
11002                  * Log all enabled ones, only use the first one.
11003                  *
11004                  * FIXME: This won't work for two separate DSI displays.
11005                  */
11006                 enabled_panel_transcoders |= BIT(panel_transcoder);
11007                 if (enabled_panel_transcoders != BIT(panel_transcoder))
11008                         continue;
11009
11010                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11011                 default:
11012                         drm_WARN(dev, 1,
11013                                  "unknown pipe linked to transcoder %s\n",
11014                                  transcoder_name(panel_transcoder));
11015                         fallthrough;
11016                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
11017                         force_thru = true;
11018                         fallthrough;
11019                 case TRANS_DDI_EDP_INPUT_A_ON:
11020                         trans_pipe = PIPE_A;
11021                         break;
11022                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
11023                         trans_pipe = PIPE_B;
11024                         break;
11025                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
11026                         trans_pipe = PIPE_C;
11027                         break;
11028                 case TRANS_DDI_EDP_INPUT_D_ONOFF:
11029                         trans_pipe = PIPE_D;
11030                         break;
11031                 }
11032
11033                 if (trans_pipe == crtc->pipe) {
11034                         pipe_config->cpu_transcoder = panel_transcoder;
11035                         pipe_config->pch_pfit.force_thru = force_thru;
11036                 }
11037         }
11038
11039         /*
11040          * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11041          */
11042         drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11043                     enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11044
11045         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11046         drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11047
11048         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11049         if (!wf)
11050                 return false;
11051
11052         wakerefs[power_domain] = wf;
11053         *power_domain_mask |= BIT_ULL(power_domain);
11054
11055         tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11056
11057         return tmp & PIPECONF_ENABLE;
11058 }
11059
11060 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11061                                          struct intel_crtc_state *pipe_config,
11062                                          u64 *power_domain_mask,
11063                                          intel_wakeref_t *wakerefs)
11064 {
11065         struct drm_device *dev = crtc->base.dev;
11066         struct drm_i915_private *dev_priv = to_i915(dev);
11067         enum intel_display_power_domain power_domain;
11068         enum transcoder cpu_transcoder;
11069         intel_wakeref_t wf;
11070         enum port port;
11071         u32 tmp;
11072
11073         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11074                 if (port == PORT_A)
11075                         cpu_transcoder = TRANSCODER_DSI_A;
11076                 else
11077                         cpu_transcoder = TRANSCODER_DSI_C;
11078
11079                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11080                 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11081
11082                 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11083                 if (!wf)
11084                         continue;
11085
11086                 wakerefs[power_domain] = wf;
11087                 *power_domain_mask |= BIT_ULL(power_domain);
11088
11089                 /*
11090                  * The PLL needs to be enabled with a valid divider
11091                  * configuration, otherwise accessing DSI registers will hang
11092                  * the machine. See BSpec North Display Engine
11093                  * registers/MIPI[BXT]. We can break out here early, since we
11094                  * need the same DSI PLL to be enabled for both DSI ports.
11095                  */
11096                 if (!bxt_dsi_pll_is_enabled(dev_priv))
11097                         break;
11098
11099                 /* XXX: this works for video mode only */
11100                 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11101                 if (!(tmp & DPI_ENABLE))
11102                         continue;
11103
11104                 tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11105                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11106                         continue;
11107
11108                 pipe_config->cpu_transcoder = cpu_transcoder;
11109                 break;
11110         }
11111
11112         return transcoder_is_dsi(pipe_config->cpu_transcoder);
11113 }
11114
11115 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11116                                    struct intel_crtc_state *pipe_config)
11117 {
11118         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11119         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11120         struct intel_shared_dpll *pll;
11121         enum port port;
11122         u32 tmp;
11123
11124         if (transcoder_is_dsi(cpu_transcoder)) {
11125                 port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11126                                                 PORT_A : PORT_B;
11127         } else {
11128                 tmp = intel_de_read(dev_priv,
11129                                     TRANS_DDI_FUNC_CTL(cpu_transcoder));
11130                 if (INTEL_GEN(dev_priv) >= 12)
11131                         port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11132                 else
11133                         port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11134         }
11135
11136         if (INTEL_GEN(dev_priv) >= 11)
11137                 icl_get_ddi_pll(dev_priv, port, pipe_config);
11138         else if (IS_CANNONLAKE(dev_priv))
11139                 cnl_get_ddi_pll(dev_priv, port, pipe_config);
11140         else if (IS_GEN9_BC(dev_priv))
11141                 skl_get_ddi_pll(dev_priv, port, pipe_config);
11142         else if (IS_GEN9_LP(dev_priv))
11143                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
11144         else
11145                 hsw_get_ddi_pll(dev_priv, port, pipe_config);
11146
11147         pll = pipe_config->shared_dpll;
11148         if (pll) {
11149                 drm_WARN_ON(&dev_priv->drm,
11150                             !pll->info->funcs->get_hw_state(dev_priv, pll,
11151                                                 &pipe_config->dpll_hw_state));
11152         }
11153
11154         /*
11155          * Haswell has only FDI/PCH transcoder A. It is which is connected to
11156          * DDI E. So just check whether this pipe is wired to DDI E and whether
11157          * the PCH transcoder is on.
11158          */
11159         if (INTEL_GEN(dev_priv) < 9 &&
11160             (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11161                 pipe_config->has_pch_encoder = true;
11162
11163                 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11164                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11165                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
11166
11167                 ilk_get_fdi_m_n_config(crtc, pipe_config);
11168         }
11169 }
11170
11171 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11172                                 struct intel_crtc_state *pipe_config)
11173 {
11174         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11175         intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11176         enum intel_display_power_domain power_domain;
11177         u64 power_domain_mask;
11178         bool active;
11179         u32 tmp;
11180
11181         pipe_config->master_transcoder = INVALID_TRANSCODER;
11182
11183         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11184         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11185         if (!wf)
11186                 return false;
11187
11188         wakerefs[power_domain] = wf;
11189         power_domain_mask = BIT_ULL(power_domain);
11190
11191         pipe_config->shared_dpll = NULL;
11192
11193         active = hsw_get_transcoder_state(crtc, pipe_config,
11194                                           &power_domain_mask, wakerefs);
11195
11196         if (IS_GEN9_LP(dev_priv) &&
11197             bxt_get_dsi_transcoder_state(crtc, pipe_config,
11198                                          &power_domain_mask, wakerefs)) {
11199                 drm_WARN_ON(&dev_priv->drm, active);
11200                 active = true;
11201         }
11202
11203         if (!active)
11204                 goto out;
11205
11206         if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11207             INTEL_GEN(dev_priv) >= 11) {
11208                 hsw_get_ddi_port_state(crtc, pipe_config);
11209                 intel_get_pipe_timings(crtc, pipe_config);
11210         }
11211
11212         intel_get_pipe_src_size(crtc, pipe_config);
11213
11214         if (IS_HASWELL(dev_priv)) {
11215                 u32 tmp = intel_de_read(dev_priv,
11216                                         PIPECONF(pipe_config->cpu_transcoder));
11217
11218                 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11219                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11220                 else
11221                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11222         } else {
11223                 pipe_config->output_format =
11224                         bdw_get_pipemisc_output_format(crtc);
11225
11226                 /*
11227                  * Currently there is no interface defined to
11228                  * check user preference between RGB/YCBCR444
11229                  * or YCBCR420. So the only possible case for
11230                  * YCBCR444 usage is driving YCBCR420 output
11231                  * with LSPCON, when pipe is configured for
11232                  * YCBCR444 output and LSPCON takes care of
11233                  * downsampling it.
11234                  */
11235                 pipe_config->lspcon_downsampling =
11236                         pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11237         }
11238
11239         pipe_config->gamma_mode = intel_de_read(dev_priv,
11240                                                 GAMMA_MODE(crtc->pipe));
11241
11242         pipe_config->csc_mode = intel_de_read(dev_priv,
11243                                               PIPE_CSC_MODE(crtc->pipe));
11244
11245         if (INTEL_GEN(dev_priv) >= 9) {
11246                 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11247
11248                 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11249                         pipe_config->gamma_enable = true;
11250
11251                 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11252                         pipe_config->csc_enable = true;
11253         } else {
11254                 i9xx_get_pipe_color_config(pipe_config);
11255         }
11256
11257         intel_color_get_config(pipe_config);
11258
11259         tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11260         pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11261         if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11262                 pipe_config->ips_linetime =
11263                         REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11264
11265         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11266         drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11267
11268         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11269         if (wf) {
11270                 wakerefs[power_domain] = wf;
11271                 power_domain_mask |= BIT_ULL(power_domain);
11272
11273                 if (INTEL_GEN(dev_priv) >= 9)
11274                         skl_get_pfit_config(pipe_config);
11275                 else
11276                         ilk_get_pfit_config(pipe_config);
11277         }
11278
11279         if (hsw_crtc_supports_ips(crtc)) {
11280                 if (IS_HASWELL(dev_priv))
11281                         pipe_config->ips_enabled = intel_de_read(dev_priv,
11282                                                                  IPS_CTL) & IPS_ENABLE;
11283                 else {
11284                         /*
11285                          * We cannot readout IPS state on broadwell, set to
11286                          * true so we can set it to a defined state on first
11287                          * commit.
11288                          */
11289                         pipe_config->ips_enabled = true;
11290                 }
11291         }
11292
11293         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11294             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11295                 pipe_config->pixel_multiplier =
11296                         intel_de_read(dev_priv,
11297                                       PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11298         } else {
11299                 pipe_config->pixel_multiplier = 1;
11300         }
11301
11302 out:
11303         for_each_power_domain(power_domain, power_domain_mask)
11304                 intel_display_power_put(dev_priv,
11305                                         power_domain, wakerefs[power_domain]);
11306
11307         return active;
11308 }
11309
11310 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11311 {
11312         struct drm_i915_private *dev_priv =
11313                 to_i915(plane_state->uapi.plane->dev);
11314         const struct drm_framebuffer *fb = plane_state->hw.fb;
11315         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11316         u32 base;
11317
11318         if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11319                 base = sg_dma_address(obj->mm.pages->sgl);
11320         else
11321                 base = intel_plane_ggtt_offset(plane_state);
11322
11323         return base + plane_state->color_plane[0].offset;
11324 }
11325
11326 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11327 {
11328         int x = plane_state->uapi.dst.x1;
11329         int y = plane_state->uapi.dst.y1;
11330         u32 pos = 0;
11331
11332         if (x < 0) {
11333                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11334                 x = -x;
11335         }
11336         pos |= x << CURSOR_X_SHIFT;
11337
11338         if (y < 0) {
11339                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11340                 y = -y;
11341         }
11342         pos |= y << CURSOR_Y_SHIFT;
11343
11344         return pos;
11345 }
11346
11347 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11348 {
11349         const struct drm_mode_config *config =
11350                 &plane_state->uapi.plane->dev->mode_config;
11351         int width = drm_rect_width(&plane_state->uapi.dst);
11352         int height = drm_rect_height(&plane_state->uapi.dst);
11353
11354         return width > 0 && width <= config->cursor_width &&
11355                 height > 0 && height <= config->cursor_height;
11356 }
11357
11358 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11359 {
11360         struct drm_i915_private *dev_priv =
11361                 to_i915(plane_state->uapi.plane->dev);
11362         unsigned int rotation = plane_state->hw.rotation;
11363         int src_x, src_y;
11364         u32 offset;
11365         int ret;
11366
11367         ret = intel_plane_compute_gtt(plane_state);
11368         if (ret)
11369                 return ret;
11370
11371         if (!plane_state->uapi.visible)
11372                 return 0;
11373
11374         src_x = plane_state->uapi.src.x1 >> 16;
11375         src_y = plane_state->uapi.src.y1 >> 16;
11376
11377         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11378         offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11379                                                     plane_state, 0);
11380
11381         if (src_x != 0 || src_y != 0) {
11382                 drm_dbg_kms(&dev_priv->drm,
11383                             "Arbitrary cursor panning not supported\n");
11384                 return -EINVAL;
11385         }
11386
11387         /*
11388          * Put the final coordinates back so that the src
11389          * coordinate checks will see the right values.
11390          */
11391         drm_rect_translate_to(&plane_state->uapi.src,
11392                               src_x << 16, src_y << 16);
11393
11394         /* ILK+ do this automagically in hardware */
11395         if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11396                 const struct drm_framebuffer *fb = plane_state->hw.fb;
11397                 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11398                 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11399
11400                 offset += (src_h * src_w - 1) * fb->format->cpp[0];
11401         }
11402
11403         plane_state->color_plane[0].offset = offset;
11404         plane_state->color_plane[0].x = src_x;
11405         plane_state->color_plane[0].y = src_y;
11406
11407         return 0;
11408 }
11409
11410 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11411                               struct intel_plane_state *plane_state)
11412 {
11413         const struct drm_framebuffer *fb = plane_state->hw.fb;
11414         struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11415         int ret;
11416
11417         if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11418                 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11419                 return -EINVAL;
11420         }
11421
11422         ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11423                                                   &crtc_state->uapi,
11424                                                   DRM_PLANE_HELPER_NO_SCALING,
11425                                                   DRM_PLANE_HELPER_NO_SCALING,
11426                                                   true, true);
11427         if (ret)
11428                 return ret;
11429
11430         /* Use the unclipped src/dst rectangles, which we program to hw */
11431         plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11432         plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11433
11434         ret = intel_cursor_check_surface(plane_state);
11435         if (ret)
11436                 return ret;
11437
11438         if (!plane_state->uapi.visible)
11439                 return 0;
11440
11441         ret = intel_plane_check_src_coordinates(plane_state);
11442         if (ret)
11443                 return ret;
11444
11445         return 0;
11446 }
11447
11448 static unsigned int
11449 i845_cursor_max_stride(struct intel_plane *plane,
11450                        u32 pixel_format, u64 modifier,
11451                        unsigned int rotation)
11452 {
11453         return 2048;
11454 }
11455
11456 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11457 {
11458         u32 cntl = 0;
11459
11460         if (crtc_state->gamma_enable)
11461                 cntl |= CURSOR_GAMMA_ENABLE;
11462
11463         return cntl;
11464 }
11465
11466 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11467                            const struct intel_plane_state *plane_state)
11468 {
11469         return CURSOR_ENABLE |
11470                 CURSOR_FORMAT_ARGB |
11471                 CURSOR_STRIDE(plane_state->color_plane[0].stride);
11472 }
11473
11474 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11475 {
11476         int width = drm_rect_width(&plane_state->uapi.dst);
11477
11478         /*
11479          * 845g/865g are only limited by the width of their cursors,
11480          * the height is arbitrary up to the precision of the register.
11481          */
11482         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11483 }
11484
11485 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11486                              struct intel_plane_state *plane_state)
11487 {
11488         const struct drm_framebuffer *fb = plane_state->hw.fb;
11489         struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11490         int ret;
11491
11492         ret = intel_check_cursor(crtc_state, plane_state);
11493         if (ret)
11494                 return ret;
11495
11496         /* if we want to turn off the cursor ignore width and height */
11497         if (!fb)
11498                 return 0;
11499
11500         /* Check for which cursor types we support */
11501         if (!i845_cursor_size_ok(plane_state)) {
11502                 drm_dbg_kms(&i915->drm,
11503                             "Cursor dimension %dx%d not supported\n",
11504                             drm_rect_width(&plane_state->uapi.dst),
11505                             drm_rect_height(&plane_state->uapi.dst));
11506                 return -EINVAL;
11507         }
11508
11509         drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11510                     plane_state->color_plane[0].stride != fb->pitches[0]);
11511
11512         switch (fb->pitches[0]) {
11513         case 256:
11514         case 512:
11515         case 1024:
11516         case 2048:
11517                 break;
11518         default:
11519                  drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11520                              fb->pitches[0]);
11521                 return -EINVAL;
11522         }
11523
11524         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11525
11526         return 0;
11527 }
11528
11529 static void i845_update_cursor(struct intel_plane *plane,
11530                                const struct intel_crtc_state *crtc_state,
11531                                const struct intel_plane_state *plane_state)
11532 {
11533         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11534         u32 cntl = 0, base = 0, pos = 0, size = 0;
11535         unsigned long irqflags;
11536
11537         if (plane_state && plane_state->uapi.visible) {
11538                 unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11539                 unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11540
11541                 cntl = plane_state->ctl |
11542                         i845_cursor_ctl_crtc(crtc_state);
11543
11544                 size = (height << 12) | width;
11545
11546                 base = intel_cursor_base(plane_state);
11547                 pos = intel_cursor_position(plane_state);
11548         }
11549
11550         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11551
11552         /* On these chipsets we can only modify the base/size/stride
11553          * whilst the cursor is disabled.
11554          */
11555         if (plane->cursor.base != base ||
11556             plane->cursor.size != size ||
11557             plane->cursor.cntl != cntl) {
11558                 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11559                 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11560                 intel_de_write_fw(dev_priv, CURSIZE, size);
11561                 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11562                 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11563
11564                 plane->cursor.base = base;
11565                 plane->cursor.size = size;
11566                 plane->cursor.cntl = cntl;
11567         } else {
11568                 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11569         }
11570
11571         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11572 }
11573
11574 static void i845_disable_cursor(struct intel_plane *plane,
11575                                 const struct intel_crtc_state *crtc_state)
11576 {
11577         i845_update_cursor(plane, crtc_state, NULL);
11578 }
11579
11580 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11581                                      enum pipe *pipe)
11582 {
11583         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11584         enum intel_display_power_domain power_domain;
11585         intel_wakeref_t wakeref;
11586         bool ret;
11587
11588         power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11589         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11590         if (!wakeref)
11591                 return false;
11592
11593         ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11594
11595         *pipe = PIPE_A;
11596
11597         intel_display_power_put(dev_priv, power_domain, wakeref);
11598
11599         return ret;
11600 }
11601
11602 static unsigned int
11603 i9xx_cursor_max_stride(struct intel_plane *plane,
11604                        u32 pixel_format, u64 modifier,
11605                        unsigned int rotation)
11606 {
11607         return plane->base.dev->mode_config.cursor_width * 4;
11608 }
11609
11610 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11611 {
11612         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11613         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11614         u32 cntl = 0;
11615
11616         if (INTEL_GEN(dev_priv) >= 11)
11617                 return cntl;
11618
11619         if (crtc_state->gamma_enable)
11620                 cntl = MCURSOR_GAMMA_ENABLE;
11621
11622         if (crtc_state->csc_enable)
11623                 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11624
11625         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11626                 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11627
11628         return cntl;
11629 }
11630
11631 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11632                            const struct intel_plane_state *plane_state)
11633 {
11634         struct drm_i915_private *dev_priv =
11635                 to_i915(plane_state->uapi.plane->dev);
11636         u32 cntl = 0;
11637
11638         if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11639                 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11640
11641         switch (drm_rect_width(&plane_state->uapi.dst)) {
11642         case 64:
11643                 cntl |= MCURSOR_MODE_64_ARGB_AX;
11644                 break;
11645         case 128:
11646                 cntl |= MCURSOR_MODE_128_ARGB_AX;
11647                 break;
11648         case 256:
11649                 cntl |= MCURSOR_MODE_256_ARGB_AX;
11650                 break;
11651         default:
11652                 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11653                 return 0;
11654         }
11655
11656         if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11657                 cntl |= MCURSOR_ROTATE_180;
11658
11659         return cntl;
11660 }
11661
11662 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11663 {
11664         struct drm_i915_private *dev_priv =
11665                 to_i915(plane_state->uapi.plane->dev);
11666         int width = drm_rect_width(&plane_state->uapi.dst);
11667         int height = drm_rect_height(&plane_state->uapi.dst);
11668
11669         if (!intel_cursor_size_ok(plane_state))
11670                 return false;
11671
11672         /* Cursor width is limited to a few power-of-two sizes */
11673         switch (width) {
11674         case 256:
11675         case 128:
11676         case 64:
11677                 break;
11678         default:
11679                 return false;
11680         }
11681
11682         /*
11683          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11684          * height from 8 lines up to the cursor width, when the
11685          * cursor is not rotated. Everything else requires square
11686          * cursors.
11687          */
11688         if (HAS_CUR_FBC(dev_priv) &&
11689             plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11690                 if (height < 8 || height > width)
11691                         return false;
11692         } else {
11693                 if (height != width)
11694                         return false;
11695         }
11696
11697         return true;
11698 }
11699
11700 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11701                              struct intel_plane_state *plane_state)
11702 {
11703         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11704         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11705         const struct drm_framebuffer *fb = plane_state->hw.fb;
11706         enum pipe pipe = plane->pipe;
11707         int ret;
11708
11709         ret = intel_check_cursor(crtc_state, plane_state);
11710         if (ret)
11711                 return ret;
11712
11713         /* if we want to turn off the cursor ignore width and height */
11714         if (!fb)
11715                 return 0;
11716
11717         /* Check for which cursor types we support */
11718         if (!i9xx_cursor_size_ok(plane_state)) {
11719                 drm_dbg(&dev_priv->drm,
11720                         "Cursor dimension %dx%d not supported\n",
11721                         drm_rect_width(&plane_state->uapi.dst),
11722                         drm_rect_height(&plane_state->uapi.dst));
11723                 return -EINVAL;
11724         }
11725
11726         drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11727                     plane_state->color_plane[0].stride != fb->pitches[0]);
11728
11729         if (fb->pitches[0] !=
11730             drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11731                 drm_dbg_kms(&dev_priv->drm,
11732                             "Invalid cursor stride (%u) (cursor width %d)\n",
11733                             fb->pitches[0],
11734                             drm_rect_width(&plane_state->uapi.dst));
11735                 return -EINVAL;
11736         }
11737
11738         /*
11739          * There's something wrong with the cursor on CHV pipe C.
11740          * If it straddles the left edge of the screen then
11741          * moving it away from the edge or disabling it often
11742          * results in a pipe underrun, and often that can lead to
11743          * dead pipe (constant underrun reported, and it scans
11744          * out just a solid color). To recover from that, the
11745          * display power well must be turned off and on again.
11746          * Refuse the put the cursor into that compromised position.
11747          */
11748         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11749             plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11750                 drm_dbg_kms(&dev_priv->drm,
11751                             "CHV cursor C not allowed to straddle the left screen edge\n");
11752                 return -EINVAL;
11753         }
11754
11755         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11756
11757         return 0;
11758 }
11759
11760 static void i9xx_update_cursor(struct intel_plane *plane,
11761                                const struct intel_crtc_state *crtc_state,
11762                                const struct intel_plane_state *plane_state)
11763 {
11764         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11765         enum pipe pipe = plane->pipe;
11766         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11767         unsigned long irqflags;
11768
11769         if (plane_state && plane_state->uapi.visible) {
11770                 unsigned width = drm_rect_width(&plane_state->uapi.dst);
11771                 unsigned height = drm_rect_height(&plane_state->uapi.dst);
11772
11773                 cntl = plane_state->ctl |
11774                         i9xx_cursor_ctl_crtc(crtc_state);
11775
11776                 if (width != height)
11777                         fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11778
11779                 base = intel_cursor_base(plane_state);
11780                 pos = intel_cursor_position(plane_state);
11781         }
11782
11783         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11784
11785         /*
11786          * On some platforms writing CURCNTR first will also
11787          * cause CURPOS to be armed by the CURBASE write.
11788          * Without the CURCNTR write the CURPOS write would
11789          * arm itself. Thus we always update CURCNTR before
11790          * CURPOS.
11791          *
11792          * On other platforms CURPOS always requires the
11793          * CURBASE write to arm the update. Additonally
11794          * a write to any of the cursor register will cancel
11795          * an already armed cursor update. Thus leaving out
11796          * the CURBASE write after CURPOS could lead to a
11797          * cursor that doesn't appear to move, or even change
11798          * shape. Thus we always write CURBASE.
11799          *
11800          * The other registers are armed by by the CURBASE write
11801          * except when the plane is getting enabled at which time
11802          * the CURCNTR write arms the update.
11803          */
11804
11805         if (INTEL_GEN(dev_priv) >= 9)
11806                 skl_write_cursor_wm(plane, crtc_state);
11807
11808         if (plane->cursor.base != base ||
11809             plane->cursor.size != fbc_ctl ||
11810             plane->cursor.cntl != cntl) {
11811                 if (HAS_CUR_FBC(dev_priv))
11812                         intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11813                                           fbc_ctl);
11814                 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11815                 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11816                 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11817
11818                 plane->cursor.base = base;
11819                 plane->cursor.size = fbc_ctl;
11820                 plane->cursor.cntl = cntl;
11821         } else {
11822                 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11823                 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11824         }
11825
11826         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11827 }
11828
11829 static void i9xx_disable_cursor(struct intel_plane *plane,
11830                                 const struct intel_crtc_state *crtc_state)
11831 {
11832         i9xx_update_cursor(plane, crtc_state, NULL);
11833 }
11834
11835 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11836                                      enum pipe *pipe)
11837 {
11838         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11839         enum intel_display_power_domain power_domain;
11840         intel_wakeref_t wakeref;
11841         bool ret;
11842         u32 val;
11843
11844         /*
11845          * Not 100% correct for planes that can move between pipes,
11846          * but that's only the case for gen2-3 which don't have any
11847          * display power wells.
11848          */
11849         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11850         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11851         if (!wakeref)
11852                 return false;
11853
11854         val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11855
11856         ret = val & MCURSOR_MODE;
11857
11858         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11859                 *pipe = plane->pipe;
11860         else
11861                 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11862                         MCURSOR_PIPE_SELECT_SHIFT;
11863
11864         intel_display_power_put(dev_priv, power_domain, wakeref);
11865
11866         return ret;
11867 }
11868
11869 /* VESA 640x480x72Hz mode to set on the pipe */
11870 static const struct drm_display_mode load_detect_mode = {
11871         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11872                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11873 };
11874
11875 struct drm_framebuffer *
11876 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11877                          struct drm_mode_fb_cmd2 *mode_cmd)
11878 {
11879         struct intel_framebuffer *intel_fb;
11880         int ret;
11881
11882         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11883         if (!intel_fb)
11884                 return ERR_PTR(-ENOMEM);
11885
11886         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11887         if (ret)
11888                 goto err;
11889
11890         return &intel_fb->base;
11891
11892 err:
11893         kfree(intel_fb);
11894         return ERR_PTR(ret);
11895 }
11896
11897 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11898                                         struct drm_crtc *crtc)
11899 {
11900         struct drm_plane *plane;
11901         struct drm_plane_state *plane_state;
11902         int ret, i;
11903
11904         ret = drm_atomic_add_affected_planes(state, crtc);
11905         if (ret)
11906                 return ret;
11907
11908         for_each_new_plane_in_state(state, plane, plane_state, i) {
11909                 if (plane_state->crtc != crtc)
11910                         continue;
11911
11912                 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11913                 if (ret)
11914                         return ret;
11915
11916                 drm_atomic_set_fb_for_plane(plane_state, NULL);
11917         }
11918
11919         return 0;
11920 }
11921
11922 int intel_get_load_detect_pipe(struct drm_connector *connector,
11923                                struct intel_load_detect_pipe *old,
11924                                struct drm_modeset_acquire_ctx *ctx)
11925 {
11926         struct intel_crtc *intel_crtc;
11927         struct intel_encoder *intel_encoder =
11928                 intel_attached_encoder(to_intel_connector(connector));
11929         struct drm_crtc *possible_crtc;
11930         struct drm_encoder *encoder = &intel_encoder->base;
11931         struct drm_crtc *crtc = NULL;
11932         struct drm_device *dev = encoder->dev;
11933         struct drm_i915_private *dev_priv = to_i915(dev);
11934         struct drm_mode_config *config = &dev->mode_config;
11935         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11936         struct drm_connector_state *connector_state;
11937         struct intel_crtc_state *crtc_state;
11938         int ret, i = -1;
11939
11940         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11941                     connector->base.id, connector->name,
11942                     encoder->base.id, encoder->name);
11943
11944         old->restore_state = NULL;
11945
11946         drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11947
11948         /*
11949          * Algorithm gets a little messy:
11950          *
11951          *   - if the connector already has an assigned crtc, use it (but make
11952          *     sure it's on first)
11953          *
11954          *   - try to find the first unused crtc that can drive this connector,
11955          *     and use that if we find one
11956          */
11957
11958         /* See if we already have a CRTC for this connector */
11959         if (connector->state->crtc) {
11960                 crtc = connector->state->crtc;
11961
11962                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11963                 if (ret)
11964                         goto fail;
11965
11966                 /* Make sure the crtc and connector are running */
11967                 goto found;
11968         }
11969
11970         /* Find an unused one (if possible) */
11971         for_each_crtc(dev, possible_crtc) {
11972                 i++;
11973                 if (!(encoder->possible_crtcs & (1 << i)))
11974                         continue;
11975
11976                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11977                 if (ret)
11978                         goto fail;
11979
11980                 if (possible_crtc->state->enable) {
11981                         drm_modeset_unlock(&possible_crtc->mutex);
11982                         continue;
11983                 }
11984
11985                 crtc = possible_crtc;
11986                 break;
11987         }
11988
11989         /*
11990          * If we didn't find an unused CRTC, don't use any.
11991          */
11992         if (!crtc) {
11993                 drm_dbg_kms(&dev_priv->drm,
11994                             "no pipe available for load-detect\n");
11995                 ret = -ENODEV;
11996                 goto fail;
11997         }
11998
11999 found:
12000         intel_crtc = to_intel_crtc(crtc);
12001
12002         state = drm_atomic_state_alloc(dev);
12003         restore_state = drm_atomic_state_alloc(dev);
12004         if (!state || !restore_state) {
12005                 ret = -ENOMEM;
12006                 goto fail;
12007         }
12008
12009         state->acquire_ctx = ctx;
12010         restore_state->acquire_ctx = ctx;
12011
12012         connector_state = drm_atomic_get_connector_state(state, connector);
12013         if (IS_ERR(connector_state)) {
12014                 ret = PTR_ERR(connector_state);
12015                 goto fail;
12016         }
12017
12018         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12019         if (ret)
12020                 goto fail;
12021
12022         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12023         if (IS_ERR(crtc_state)) {
12024                 ret = PTR_ERR(crtc_state);
12025                 goto fail;
12026         }
12027
12028         crtc_state->uapi.active = true;
12029
12030         ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12031                                            &load_detect_mode);
12032         if (ret)
12033                 goto fail;
12034
12035         ret = intel_modeset_disable_planes(state, crtc);
12036         if (ret)
12037                 goto fail;
12038
12039         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12040         if (!ret)
12041                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12042         if (!ret)
12043                 ret = drm_atomic_add_affected_planes(restore_state, crtc);
12044         if (ret) {
12045                 drm_dbg_kms(&dev_priv->drm,
12046                             "Failed to create a copy of old state to restore: %i\n",
12047                             ret);
12048                 goto fail;
12049         }
12050
12051         ret = drm_atomic_commit(state);
12052         if (ret) {
12053                 drm_dbg_kms(&dev_priv->drm,
12054                             "failed to set mode on load-detect pipe\n");
12055                 goto fail;
12056         }
12057
12058         old->restore_state = restore_state;
12059         drm_atomic_state_put(state);
12060
12061         /* let the connector get through one full cycle before testing */
12062         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12063         return true;
12064
12065 fail:
12066         if (state) {
12067                 drm_atomic_state_put(state);
12068                 state = NULL;
12069         }
12070         if (restore_state) {
12071                 drm_atomic_state_put(restore_state);
12072                 restore_state = NULL;
12073         }
12074
12075         if (ret == -EDEADLK)
12076                 return ret;
12077
12078         return false;
12079 }
12080
12081 void intel_release_load_detect_pipe(struct drm_connector *connector,
12082                                     struct intel_load_detect_pipe *old,
12083                                     struct drm_modeset_acquire_ctx *ctx)
12084 {
12085         struct intel_encoder *intel_encoder =
12086                 intel_attached_encoder(to_intel_connector(connector));
12087         struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12088         struct drm_encoder *encoder = &intel_encoder->base;
12089         struct drm_atomic_state *state = old->restore_state;
12090         int ret;
12091
12092         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12093                     connector->base.id, connector->name,
12094                     encoder->base.id, encoder->name);
12095
12096         if (!state)
12097                 return;
12098
12099         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12100         if (ret)
12101                 drm_dbg_kms(&i915->drm,
12102                             "Couldn't release load detect pipe: %i\n", ret);
12103         drm_atomic_state_put(state);
12104 }
12105
12106 static int i9xx_pll_refclk(struct drm_device *dev,
12107                            const struct intel_crtc_state *pipe_config)
12108 {
12109         struct drm_i915_private *dev_priv = to_i915(dev);
12110         u32 dpll = pipe_config->dpll_hw_state.dpll;
12111
12112         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12113                 return dev_priv->vbt.lvds_ssc_freq;
12114         else if (HAS_PCH_SPLIT(dev_priv))
12115                 return 120000;
12116         else if (!IS_GEN(dev_priv, 2))
12117                 return 96000;
12118         else
12119                 return 48000;
12120 }
12121
12122 /* Returns the clock of the currently programmed mode of the given pipe. */
12123 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12124                                 struct intel_crtc_state *pipe_config)
12125 {
12126         struct drm_device *dev = crtc->base.dev;
12127         struct drm_i915_private *dev_priv = to_i915(dev);
12128         enum pipe pipe = crtc->pipe;
12129         u32 dpll = pipe_config->dpll_hw_state.dpll;
12130         u32 fp;
12131         struct dpll clock;
12132         int port_clock;
12133         int refclk = i9xx_pll_refclk(dev, pipe_config);
12134
12135         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12136                 fp = pipe_config->dpll_hw_state.fp0;
12137         else
12138                 fp = pipe_config->dpll_hw_state.fp1;
12139
12140         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12141         if (IS_PINEVIEW(dev_priv)) {
12142                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12143                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12144         } else {
12145                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12146                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12147         }
12148
12149         if (!IS_GEN(dev_priv, 2)) {
12150                 if (IS_PINEVIEW(dev_priv))
12151                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12152                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12153                 else
12154                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12155                                DPLL_FPA01_P1_POST_DIV_SHIFT);
12156
12157                 switch (dpll & DPLL_MODE_MASK) {
12158                 case DPLLB_MODE_DAC_SERIAL:
12159                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12160                                 5 : 10;
12161                         break;
12162                 case DPLLB_MODE_LVDS:
12163                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12164                                 7 : 14;
12165                         break;
12166                 default:
12167                         drm_dbg_kms(&dev_priv->drm,
12168                                     "Unknown DPLL mode %08x in programmed "
12169                                     "mode\n", (int)(dpll & DPLL_MODE_MASK));
12170                         return;
12171                 }
12172
12173                 if (IS_PINEVIEW(dev_priv))
12174                         port_clock = pnv_calc_dpll_params(refclk, &clock);
12175                 else
12176                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
12177         } else {
12178                 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12179                                                                  LVDS);
12180                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12181
12182                 if (is_lvds) {
12183                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12184                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
12185
12186                         if (lvds & LVDS_CLKB_POWER_UP)
12187                                 clock.p2 = 7;
12188                         else
12189                                 clock.p2 = 14;
12190                 } else {
12191                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
12192                                 clock.p1 = 2;
12193                         else {
12194                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12195                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12196                         }
12197                         if (dpll & PLL_P2_DIVIDE_BY_4)
12198                                 clock.p2 = 4;
12199                         else
12200                                 clock.p2 = 2;
12201                 }
12202
12203                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12204         }
12205
12206         /*
12207          * This value includes pixel_multiplier. We will use
12208          * port_clock to compute adjusted_mode.crtc_clock in the
12209          * encoder's get_config() function.
12210          */
12211         pipe_config->port_clock = port_clock;
12212 }
12213
12214 int intel_dotclock_calculate(int link_freq,
12215                              const struct intel_link_m_n *m_n)
12216 {
12217         /*
12218          * The calculation for the data clock is:
12219          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12220          * But we want to avoid losing precison if possible, so:
12221          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12222          *
12223          * and the link clock is simpler:
12224          * link_clock = (m * link_clock) / n
12225          */
12226
12227         if (!m_n->link_n)
12228                 return 0;
12229
12230         return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12231 }
12232
12233 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12234                               struct intel_crtc_state *pipe_config)
12235 {
12236         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12237
12238         /* read out port_clock from the DPLL */
12239         i9xx_crtc_clock_get(crtc, pipe_config);
12240
12241         /*
12242          * In case there is an active pipe without active ports,
12243          * we may need some idea for the dotclock anyway.
12244          * Calculate one based on the FDI configuration.
12245          */
12246         pipe_config->hw.adjusted_mode.crtc_clock =
12247                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12248                                          &pipe_config->fdi_m_n);
12249 }
12250
12251 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12252                                    struct intel_crtc *crtc)
12253 {
12254         memset(crtc_state, 0, sizeof(*crtc_state));
12255
12256         __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12257
12258         crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12259         crtc_state->master_transcoder = INVALID_TRANSCODER;
12260         crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12261         crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12262         crtc_state->scaler_state.scaler_id = -1;
12263         crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12264 }
12265
12266 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12267 {
12268         struct intel_crtc_state *crtc_state;
12269
12270         crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12271
12272         if (crtc_state)
12273                 intel_crtc_state_reset(crtc_state, crtc);
12274
12275         return crtc_state;
12276 }
12277
12278 /* Returns the currently programmed mode of the given encoder. */
12279 struct drm_display_mode *
12280 intel_encoder_current_mode(struct intel_encoder *encoder)
12281 {
12282         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12283         struct intel_crtc_state *crtc_state;
12284         struct drm_display_mode *mode;
12285         struct intel_crtc *crtc;
12286         enum pipe pipe;
12287
12288         if (!encoder->get_hw_state(encoder, &pipe))
12289                 return NULL;
12290
12291         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12292
12293         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12294         if (!mode)
12295                 return NULL;
12296
12297         crtc_state = intel_crtc_state_alloc(crtc);
12298         if (!crtc_state) {
12299                 kfree(mode);
12300                 return NULL;
12301         }
12302
12303         if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12304                 kfree(crtc_state);
12305                 kfree(mode);
12306                 return NULL;
12307         }
12308
12309         encoder->get_config(encoder, crtc_state);
12310
12311         intel_mode_from_pipe_config(mode, crtc_state);
12312
12313         kfree(crtc_state);
12314
12315         return mode;
12316 }
12317
12318 static void intel_crtc_destroy(struct drm_crtc *crtc)
12319 {
12320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12321
12322         drm_crtc_cleanup(crtc);
12323         kfree(intel_crtc);
12324 }
12325
12326 /**
12327  * intel_wm_need_update - Check whether watermarks need updating
12328  * @cur: current plane state
12329  * @new: new plane state
12330  *
12331  * Check current plane state versus the new one to determine whether
12332  * watermarks need to be recalculated.
12333  *
12334  * Returns true or false.
12335  */
12336 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12337                                  struct intel_plane_state *new)
12338 {
12339         /* Update watermarks on tiling or size changes. */
12340         if (new->uapi.visible != cur->uapi.visible)
12341                 return true;
12342
12343         if (!cur->hw.fb || !new->hw.fb)
12344                 return false;
12345
12346         if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12347             cur->hw.rotation != new->hw.rotation ||
12348             drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12349             drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12350             drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12351             drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12352                 return true;
12353
12354         return false;
12355 }
12356
12357 static bool needs_scaling(const struct intel_plane_state *state)
12358 {
12359         int src_w = drm_rect_width(&state->uapi.src) >> 16;
12360         int src_h = drm_rect_height(&state->uapi.src) >> 16;
12361         int dst_w = drm_rect_width(&state->uapi.dst);
12362         int dst_h = drm_rect_height(&state->uapi.dst);
12363
12364         return (src_w != dst_w || src_h != dst_h);
12365 }
12366
12367 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12368                                     struct intel_crtc_state *crtc_state,
12369                                     const struct intel_plane_state *old_plane_state,
12370                                     struct intel_plane_state *plane_state)
12371 {
12372         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12373         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12374         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12375         bool mode_changed = needs_modeset(crtc_state);
12376         bool was_crtc_enabled = old_crtc_state->hw.active;
12377         bool is_crtc_enabled = crtc_state->hw.active;
12378         bool turn_off, turn_on, visible, was_visible;
12379         int ret;
12380
12381         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12382                 ret = skl_update_scaler_plane(crtc_state, plane_state);
12383                 if (ret)
12384                         return ret;
12385         }
12386
12387         was_visible = old_plane_state->uapi.visible;
12388         visible = plane_state->uapi.visible;
12389
12390         if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12391                 was_visible = false;
12392
12393         /*
12394          * Visibility is calculated as if the crtc was on, but
12395          * after scaler setup everything depends on it being off
12396          * when the crtc isn't active.
12397          *
12398          * FIXME this is wrong for watermarks. Watermarks should also
12399          * be computed as if the pipe would be active. Perhaps move
12400          * per-plane wm computation to the .check_plane() hook, and
12401          * only combine the results from all planes in the current place?
12402          */
12403         if (!is_crtc_enabled) {
12404                 intel_plane_set_invisible(crtc_state, plane_state);
12405                 visible = false;
12406         }
12407
12408         if (!was_visible && !visible)
12409                 return 0;
12410
12411         turn_off = was_visible && (!visible || mode_changed);
12412         turn_on = visible && (!was_visible || mode_changed);
12413
12414         drm_dbg_atomic(&dev_priv->drm,
12415                        "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12416                        crtc->base.base.id, crtc->base.name,
12417                        plane->base.base.id, plane->base.name,
12418                        was_visible, visible,
12419                        turn_off, turn_on, mode_changed);
12420
12421         if (turn_on) {
12422                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12423                         crtc_state->update_wm_pre = true;
12424
12425                 /* must disable cxsr around plane enable/disable */
12426                 if (plane->id != PLANE_CURSOR)
12427                         crtc_state->disable_cxsr = true;
12428         } else if (turn_off) {
12429                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12430                         crtc_state->update_wm_post = true;
12431
12432                 /* must disable cxsr around plane enable/disable */
12433                 if (plane->id != PLANE_CURSOR)
12434                         crtc_state->disable_cxsr = true;
12435         } else if (intel_wm_need_update(old_plane_state, plane_state)) {
12436                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12437                         /* FIXME bollocks */
12438                         crtc_state->update_wm_pre = true;
12439                         crtc_state->update_wm_post = true;
12440                 }
12441         }
12442
12443         if (visible || was_visible)
12444                 crtc_state->fb_bits |= plane->frontbuffer_bit;
12445
12446         /*
12447          * ILK/SNB DVSACNTR/Sprite Enable
12448          * IVB SPR_CTL/Sprite Enable
12449          * "When in Self Refresh Big FIFO mode, a write to enable the
12450          *  plane will be internally buffered and delayed while Big FIFO
12451          *  mode is exiting."
12452          *
12453          * Which means that enabling the sprite can take an extra frame
12454          * when we start in big FIFO mode (LP1+). Thus we need to drop
12455          * down to LP0 and wait for vblank in order to make sure the
12456          * sprite gets enabled on the next vblank after the register write.
12457          * Doing otherwise would risk enabling the sprite one frame after
12458          * we've already signalled flip completion. We can resume LP1+
12459          * once the sprite has been enabled.
12460          *
12461          *
12462          * WaCxSRDisabledForSpriteScaling:ivb
12463          * IVB SPR_SCALE/Scaling Enable
12464          * "Low Power watermarks must be disabled for at least one
12465          *  frame before enabling sprite scaling, and kept disabled
12466          *  until sprite scaling is disabled."
12467          *
12468          * ILK/SNB DVSASCALE/Scaling Enable
12469          * "When in Self Refresh Big FIFO mode, scaling enable will be
12470          *  masked off while Big FIFO mode is exiting."
12471          *
12472          * Despite the w/a only being listed for IVB we assume that
12473          * the ILK/SNB note has similar ramifications, hence we apply
12474          * the w/a on all three platforms.
12475          *
12476          * With experimental results seems this is needed also for primary
12477          * plane, not only sprite plane.
12478          */
12479         if (plane->id != PLANE_CURSOR &&
12480             (IS_GEN_RANGE(dev_priv, 5, 6) ||
12481              IS_IVYBRIDGE(dev_priv)) &&
12482             (turn_on || (!needs_scaling(old_plane_state) &&
12483                          needs_scaling(plane_state))))
12484                 crtc_state->disable_lp_wm = true;
12485
12486         return 0;
12487 }
12488
12489 static bool encoders_cloneable(const struct intel_encoder *a,
12490                                const struct intel_encoder *b)
12491 {
12492         /* masks could be asymmetric, so check both ways */
12493         return a == b || (a->cloneable & (1 << b->type) &&
12494                           b->cloneable & (1 << a->type));
12495 }
12496
12497 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12498                                          struct intel_crtc *crtc,
12499                                          struct intel_encoder *encoder)
12500 {
12501         struct intel_encoder *source_encoder;
12502         struct drm_connector *connector;
12503         struct drm_connector_state *connector_state;
12504         int i;
12505
12506         for_each_new_connector_in_state(state, connector, connector_state, i) {
12507                 if (connector_state->crtc != &crtc->base)
12508                         continue;
12509
12510                 source_encoder =
12511                         to_intel_encoder(connector_state->best_encoder);
12512                 if (!encoders_cloneable(encoder, source_encoder))
12513                         return false;
12514         }
12515
12516         return true;
12517 }
12518
12519 static int icl_add_linked_planes(struct intel_atomic_state *state)
12520 {
12521         struct intel_plane *plane, *linked;
12522         struct intel_plane_state *plane_state, *linked_plane_state;
12523         int i;
12524
12525         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12526                 linked = plane_state->planar_linked_plane;
12527
12528                 if (!linked)
12529                         continue;
12530
12531                 linked_plane_state = intel_atomic_get_plane_state(state, linked);
12532                 if (IS_ERR(linked_plane_state))
12533                         return PTR_ERR(linked_plane_state);
12534
12535                 drm_WARN_ON(state->base.dev,
12536                             linked_plane_state->planar_linked_plane != plane);
12537                 drm_WARN_ON(state->base.dev,
12538                             linked_plane_state->planar_slave == plane_state->planar_slave);
12539         }
12540
12541         return 0;
12542 }
12543
12544 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12545 {
12546         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12547         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12548         struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12549         struct intel_plane *plane, *linked;
12550         struct intel_plane_state *plane_state;
12551         int i;
12552
12553         if (INTEL_GEN(dev_priv) < 11)
12554                 return 0;
12555
12556         /*
12557          * Destroy all old plane links and make the slave plane invisible
12558          * in the crtc_state->active_planes mask.
12559          */
12560         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12561                 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12562                         continue;
12563
12564                 plane_state->planar_linked_plane = NULL;
12565                 if (plane_state->planar_slave && !plane_state->uapi.visible) {
12566                         crtc_state->active_planes &= ~BIT(plane->id);
12567                         crtc_state->update_planes |= BIT(plane->id);
12568                 }
12569
12570                 plane_state->planar_slave = false;
12571         }
12572
12573         if (!crtc_state->nv12_planes)
12574                 return 0;
12575
12576         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12577                 struct intel_plane_state *linked_state = NULL;
12578
12579                 if (plane->pipe != crtc->pipe ||
12580                     !(crtc_state->nv12_planes & BIT(plane->id)))
12581                         continue;
12582
12583                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12584                         if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12585                                 continue;
12586
12587                         if (crtc_state->active_planes & BIT(linked->id))
12588                                 continue;
12589
12590                         linked_state = intel_atomic_get_plane_state(state, linked);
12591                         if (IS_ERR(linked_state))
12592                                 return PTR_ERR(linked_state);
12593
12594                         break;
12595                 }
12596
12597                 if (!linked_state) {
12598                         drm_dbg_kms(&dev_priv->drm,
12599                                     "Need %d free Y planes for planar YUV\n",
12600                                     hweight8(crtc_state->nv12_planes));
12601
12602                         return -EINVAL;
12603                 }
12604
12605                 plane_state->planar_linked_plane = linked;
12606
12607                 linked_state->planar_slave = true;
12608                 linked_state->planar_linked_plane = plane;
12609                 crtc_state->active_planes |= BIT(linked->id);
12610                 crtc_state->update_planes |= BIT(linked->id);
12611                 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12612                             linked->base.name, plane->base.name);
12613
12614                 /* Copy parameters to slave plane */
12615                 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12616                 linked_state->color_ctl = plane_state->color_ctl;
12617                 linked_state->view = plane_state->view;
12618                 memcpy(linked_state->color_plane, plane_state->color_plane,
12619                        sizeof(linked_state->color_plane));
12620
12621                 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12622                 linked_state->uapi.src = plane_state->uapi.src;
12623                 linked_state->uapi.dst = plane_state->uapi.dst;
12624
12625                 if (icl_is_hdr_plane(dev_priv, plane->id)) {
12626                         if (linked->id == PLANE_SPRITE5)
12627                                 plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12628                         else if (linked->id == PLANE_SPRITE4)
12629                                 plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12630                         else if (linked->id == PLANE_SPRITE3)
12631                                 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12632                         else if (linked->id == PLANE_SPRITE2)
12633                                 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12634                         else
12635                                 MISSING_CASE(linked->id);
12636                 }
12637         }
12638
12639         return 0;
12640 }
12641
12642 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12643 {
12644         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12645         struct intel_atomic_state *state =
12646                 to_intel_atomic_state(new_crtc_state->uapi.state);
12647         const struct intel_crtc_state *old_crtc_state =
12648                 intel_atomic_get_old_crtc_state(state, crtc);
12649
12650         return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12651 }
12652
12653 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12654 {
12655         const struct drm_display_mode *adjusted_mode =
12656                 &crtc_state->hw.adjusted_mode;
12657         int linetime_wm;
12658
12659         if (!crtc_state->hw.enable)
12660                 return 0;
12661
12662         linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12663                                         adjusted_mode->crtc_clock);
12664
12665         return min(linetime_wm, 0x1ff);
12666 }
12667
12668 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12669                                const struct intel_cdclk_state *cdclk_state)
12670 {
12671         const struct drm_display_mode *adjusted_mode =
12672                 &crtc_state->hw.adjusted_mode;
12673         int linetime_wm;
12674
12675         if (!crtc_state->hw.enable)
12676                 return 0;
12677
12678         linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12679                                         cdclk_state->logical.cdclk);
12680
12681         return min(linetime_wm, 0x1ff);
12682 }
12683
12684 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12685 {
12686         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12687         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12688         const struct drm_display_mode *adjusted_mode =
12689                 &crtc_state->hw.adjusted_mode;
12690         int linetime_wm;
12691
12692         if (!crtc_state->hw.enable)
12693                 return 0;
12694
12695         linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12696                                    crtc_state->pixel_rate);
12697
12698         /* Display WA #1135: BXT:ALL GLK:ALL */
12699         if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12700                 linetime_wm /= 2;
12701
12702         return min(linetime_wm, 0x1ff);
12703 }
12704
12705 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12706                                    struct intel_crtc *crtc)
12707 {
12708         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12709         struct intel_crtc_state *crtc_state =
12710                 intel_atomic_get_new_crtc_state(state, crtc);
12711         const struct intel_cdclk_state *cdclk_state;
12712
12713         if (INTEL_GEN(dev_priv) >= 9)
12714                 crtc_state->linetime = skl_linetime_wm(crtc_state);
12715         else
12716                 crtc_state->linetime = hsw_linetime_wm(crtc_state);
12717
12718         if (!hsw_crtc_supports_ips(crtc))
12719                 return 0;
12720
12721         cdclk_state = intel_atomic_get_cdclk_state(state);
12722         if (IS_ERR(cdclk_state))
12723                 return PTR_ERR(cdclk_state);
12724
12725         crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12726                                                        cdclk_state);
12727
12728         return 0;
12729 }
12730
12731 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12732                                    struct intel_crtc *crtc)
12733 {
12734         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12735         struct intel_crtc_state *crtc_state =
12736                 intel_atomic_get_new_crtc_state(state, crtc);
12737         bool mode_changed = needs_modeset(crtc_state);
12738         int ret;
12739
12740         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12741             mode_changed && !crtc_state->hw.active)
12742                 crtc_state->update_wm_post = true;
12743
12744         if (mode_changed && crtc_state->hw.enable &&
12745             dev_priv->display.crtc_compute_clock &&
12746             !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12747                 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12748                 if (ret)
12749                         return ret;
12750         }
12751
12752         /*
12753          * May need to update pipe gamma enable bits
12754          * when C8 planes are getting enabled/disabled.
12755          */
12756         if (c8_planes_changed(crtc_state))
12757                 crtc_state->uapi.color_mgmt_changed = true;
12758
12759         if (mode_changed || crtc_state->update_pipe ||
12760             crtc_state->uapi.color_mgmt_changed) {
12761                 ret = intel_color_check(crtc_state);
12762                 if (ret)
12763                         return ret;
12764         }
12765
12766         if (dev_priv->display.compute_pipe_wm) {
12767                 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12768                 if (ret) {
12769                         drm_dbg_kms(&dev_priv->drm,
12770                                     "Target pipe watermarks are invalid\n");
12771                         return ret;
12772                 }
12773         }
12774
12775         if (dev_priv->display.compute_intermediate_wm) {
12776                 if (drm_WARN_ON(&dev_priv->drm,
12777                                 !dev_priv->display.compute_pipe_wm))
12778                         return 0;
12779
12780                 /*
12781                  * Calculate 'intermediate' watermarks that satisfy both the
12782                  * old state and the new state.  We can program these
12783                  * immediately.
12784                  */
12785                 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12786                 if (ret) {
12787                         drm_dbg_kms(&dev_priv->drm,
12788                                     "No valid intermediate pipe watermarks are possible\n");
12789                         return ret;
12790                 }
12791         }
12792
12793         if (INTEL_GEN(dev_priv) >= 9) {
12794                 if (mode_changed || crtc_state->update_pipe) {
12795                         ret = skl_update_scaler_crtc(crtc_state);
12796                         if (ret)
12797                                 return ret;
12798                 }
12799
12800                 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12801                 if (ret)
12802                         return ret;
12803         }
12804
12805         if (HAS_IPS(dev_priv)) {
12806                 ret = hsw_compute_ips_config(crtc_state);
12807                 if (ret)
12808                         return ret;
12809         }
12810
12811         if (INTEL_GEN(dev_priv) >= 9 ||
12812             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12813                 ret = hsw_compute_linetime_wm(state, crtc);
12814                 if (ret)
12815                         return ret;
12816
12817         }
12818
12819         if (!mode_changed)
12820                 intel_psr2_sel_fetch_update(state, crtc);
12821
12822         return 0;
12823 }
12824
12825 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12826 {
12827         struct intel_connector *connector;
12828         struct drm_connector_list_iter conn_iter;
12829
12830         drm_connector_list_iter_begin(dev, &conn_iter);
12831         for_each_intel_connector_iter(connector, &conn_iter) {
12832                 if (connector->base.state->crtc)
12833                         drm_connector_put(&connector->base);
12834
12835                 if (connector->base.encoder) {
12836                         connector->base.state->best_encoder =
12837                                 connector->base.encoder;
12838                         connector->base.state->crtc =
12839                                 connector->base.encoder->crtc;
12840
12841                         drm_connector_get(&connector->base);
12842                 } else {
12843                         connector->base.state->best_encoder = NULL;
12844                         connector->base.state->crtc = NULL;
12845                 }
12846         }
12847         drm_connector_list_iter_end(&conn_iter);
12848 }
12849
12850 static int
12851 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12852                       struct intel_crtc_state *pipe_config)
12853 {
12854         struct drm_connector *connector = conn_state->connector;
12855         struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12856         const struct drm_display_info *info = &connector->display_info;
12857         int bpp;
12858
12859         switch (conn_state->max_bpc) {
12860         case 6 ... 7:
12861                 bpp = 6 * 3;
12862                 break;
12863         case 8 ... 9:
12864                 bpp = 8 * 3;
12865                 break;
12866         case 10 ... 11:
12867                 bpp = 10 * 3;
12868                 break;
12869         case 12:
12870                 bpp = 12 * 3;
12871                 break;
12872         default:
12873                 return -EINVAL;
12874         }
12875
12876         if (bpp < pipe_config->pipe_bpp) {
12877                 drm_dbg_kms(&i915->drm,
12878                             "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12879                             "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12880                             connector->base.id, connector->name,
12881                             bpp, 3 * info->bpc,
12882                             3 * conn_state->max_requested_bpc,
12883                             pipe_config->pipe_bpp);
12884
12885                 pipe_config->pipe_bpp = bpp;
12886         }
12887
12888         return 0;
12889 }
12890
12891 static int
12892 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12893                           struct intel_crtc_state *pipe_config)
12894 {
12895         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12896         struct drm_atomic_state *state = pipe_config->uapi.state;
12897         struct drm_connector *connector;
12898         struct drm_connector_state *connector_state;
12899         int bpp, i;
12900
12901         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12902             IS_CHERRYVIEW(dev_priv)))
12903                 bpp = 10*3;
12904         else if (INTEL_GEN(dev_priv) >= 5)
12905                 bpp = 12*3;
12906         else
12907                 bpp = 8*3;
12908
12909         pipe_config->pipe_bpp = bpp;
12910
12911         /* Clamp display bpp to connector max bpp */
12912         for_each_new_connector_in_state(state, connector, connector_state, i) {
12913                 int ret;
12914
12915                 if (connector_state->crtc != &crtc->base)
12916                         continue;
12917
12918                 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12919                 if (ret)
12920                         return ret;
12921         }
12922
12923         return 0;
12924 }
12925
12926 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12927                                     const struct drm_display_mode *mode)
12928 {
12929         drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12930                     "type: 0x%x flags: 0x%x\n",
12931                     mode->crtc_clock,
12932                     mode->crtc_hdisplay, mode->crtc_hsync_start,
12933                     mode->crtc_hsync_end, mode->crtc_htotal,
12934                     mode->crtc_vdisplay, mode->crtc_vsync_start,
12935                     mode->crtc_vsync_end, mode->crtc_vtotal,
12936                     mode->type, mode->flags);
12937 }
12938
12939 static void
12940 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12941                       const char *id, unsigned int lane_count,
12942                       const struct intel_link_m_n *m_n)
12943 {
12944         struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12945
12946         drm_dbg_kms(&i915->drm,
12947                     "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12948                     id, lane_count,
12949                     m_n->gmch_m, m_n->gmch_n,
12950                     m_n->link_m, m_n->link_n, m_n->tu);
12951 }
12952
12953 static void
12954 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12955                      const union hdmi_infoframe *frame)
12956 {
12957         if (!drm_debug_enabled(DRM_UT_KMS))
12958                 return;
12959
12960         hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12961 }
12962
12963 static void
12964 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12965                       const struct drm_dp_vsc_sdp *vsc)
12966 {
12967         if (!drm_debug_enabled(DRM_UT_KMS))
12968                 return;
12969
12970         drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12971 }
12972
12973 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12974
12975 static const char * const output_type_str[] = {
12976         OUTPUT_TYPE(UNUSED),
12977         OUTPUT_TYPE(ANALOG),
12978         OUTPUT_TYPE(DVO),
12979         OUTPUT_TYPE(SDVO),
12980         OUTPUT_TYPE(LVDS),
12981         OUTPUT_TYPE(TVOUT),
12982         OUTPUT_TYPE(HDMI),
12983         OUTPUT_TYPE(DP),
12984         OUTPUT_TYPE(EDP),
12985         OUTPUT_TYPE(DSI),
12986         OUTPUT_TYPE(DDI),
12987         OUTPUT_TYPE(DP_MST),
12988 };
12989
12990 #undef OUTPUT_TYPE
12991
12992 static void snprintf_output_types(char *buf, size_t len,
12993                                   unsigned int output_types)
12994 {
12995         char *str = buf;
12996         int i;
12997
12998         str[0] = '\0';
12999
13000         for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13001                 int r;
13002
13003                 if ((output_types & BIT(i)) == 0)
13004                         continue;
13005
13006                 r = snprintf(str, len, "%s%s",
13007                              str != buf ? "," : "", output_type_str[i]);
13008                 if (r >= len)
13009                         break;
13010                 str += r;
13011                 len -= r;
13012
13013                 output_types &= ~BIT(i);
13014         }
13015
13016         WARN_ON_ONCE(output_types != 0);
13017 }
13018
13019 static const char * const output_format_str[] = {
13020         [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13021         [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13022         [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13023         [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13024 };
13025
13026 static const char *output_formats(enum intel_output_format format)
13027 {
13028         if (format >= ARRAY_SIZE(output_format_str))
13029                 format = INTEL_OUTPUT_FORMAT_INVALID;
13030         return output_format_str[format];
13031 }
13032
13033 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13034 {
13035         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13036         struct drm_i915_private *i915 = to_i915(plane->base.dev);
13037         const struct drm_framebuffer *fb = plane_state->hw.fb;
13038         struct drm_format_name_buf format_name;
13039
13040         if (!fb) {
13041                 drm_dbg_kms(&i915->drm,
13042                             "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13043                             plane->base.base.id, plane->base.name,
13044                             yesno(plane_state->uapi.visible));
13045                 return;
13046         }
13047
13048         drm_dbg_kms(&i915->drm,
13049                     "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13050                     plane->base.base.id, plane->base.name,
13051                     fb->base.id, fb->width, fb->height,
13052                     drm_get_format_name(fb->format->format, &format_name),
13053                     yesno(plane_state->uapi.visible));
13054         drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13055                     plane_state->hw.rotation, plane_state->scaler_id);
13056         if (plane_state->uapi.visible)
13057                 drm_dbg_kms(&i915->drm,
13058                             "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13059                             DRM_RECT_FP_ARG(&plane_state->uapi.src),
13060                             DRM_RECT_ARG(&plane_state->uapi.dst));
13061 }
13062
13063 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13064                                    struct intel_atomic_state *state,
13065                                    const char *context)
13066 {
13067         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13068         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13069         const struct intel_plane_state *plane_state;
13070         struct intel_plane *plane;
13071         char buf[64];
13072         int i;
13073
13074         drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13075                     crtc->base.base.id, crtc->base.name,
13076                     yesno(pipe_config->hw.enable), context);
13077
13078         if (!pipe_config->hw.enable)
13079                 goto dump_planes;
13080
13081         snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13082         drm_dbg_kms(&dev_priv->drm,
13083                     "active: %s, output_types: %s (0x%x), output format: %s\n",
13084                     yesno(pipe_config->hw.active),
13085                     buf, pipe_config->output_types,
13086                     output_formats(pipe_config->output_format));
13087
13088         drm_dbg_kms(&dev_priv->drm,
13089                     "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13090                     transcoder_name(pipe_config->cpu_transcoder),
13091                     pipe_config->pipe_bpp, pipe_config->dither);
13092
13093         drm_dbg_kms(&dev_priv->drm,
13094                     "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13095                     transcoder_name(pipe_config->master_transcoder),
13096                     pipe_config->sync_mode_slaves_mask);
13097
13098         if (pipe_config->has_pch_encoder)
13099                 intel_dump_m_n_config(pipe_config, "fdi",
13100                                       pipe_config->fdi_lanes,
13101                                       &pipe_config->fdi_m_n);
13102
13103         if (intel_crtc_has_dp_encoder(pipe_config)) {
13104                 intel_dump_m_n_config(pipe_config, "dp m_n",
13105                                 pipe_config->lane_count, &pipe_config->dp_m_n);
13106                 if (pipe_config->has_drrs)
13107                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
13108                                               pipe_config->lane_count,
13109                                               &pipe_config->dp_m2_n2);
13110         }
13111
13112         drm_dbg_kms(&dev_priv->drm,
13113                     "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13114                     pipe_config->has_audio, pipe_config->has_infoframe,
13115                     pipe_config->infoframes.enable);
13116
13117         if (pipe_config->infoframes.enable &
13118             intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13119                 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13120                             pipe_config->infoframes.gcp);
13121         if (pipe_config->infoframes.enable &
13122             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13123                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13124         if (pipe_config->infoframes.enable &
13125             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13126                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13127         if (pipe_config->infoframes.enable &
13128             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13129                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13130         if (pipe_config->infoframes.enable &
13131             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13132                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13133         if (pipe_config->infoframes.enable &
13134             intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13135                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13136         if (pipe_config->infoframes.enable &
13137             intel_hdmi_infoframe_enable(DP_SDP_VSC))
13138                 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13139
13140         drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13141         drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13142         drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13143         drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13144         intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13145         drm_dbg_kms(&dev_priv->drm,
13146                     "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13147                     pipe_config->port_clock,
13148                     pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13149                     pipe_config->pixel_rate);
13150
13151         drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13152                     pipe_config->linetime, pipe_config->ips_linetime);
13153
13154         if (INTEL_GEN(dev_priv) >= 9)
13155                 drm_dbg_kms(&dev_priv->drm,
13156                             "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13157                             crtc->num_scalers,
13158                             pipe_config->scaler_state.scaler_users,
13159                             pipe_config->scaler_state.scaler_id);
13160
13161         if (HAS_GMCH(dev_priv))
13162                 drm_dbg_kms(&dev_priv->drm,
13163                             "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13164                             pipe_config->gmch_pfit.control,
13165                             pipe_config->gmch_pfit.pgm_ratios,
13166                             pipe_config->gmch_pfit.lvds_border_bits);
13167         else
13168                 drm_dbg_kms(&dev_priv->drm,
13169                             "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13170                             DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13171                             enableddisabled(pipe_config->pch_pfit.enabled),
13172                             yesno(pipe_config->pch_pfit.force_thru));
13173
13174         drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13175                     pipe_config->ips_enabled, pipe_config->double_wide);
13176
13177         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13178
13179         if (IS_CHERRYVIEW(dev_priv))
13180                 drm_dbg_kms(&dev_priv->drm,
13181                             "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13182                             pipe_config->cgm_mode, pipe_config->gamma_mode,
13183                             pipe_config->gamma_enable, pipe_config->csc_enable);
13184         else
13185                 drm_dbg_kms(&dev_priv->drm,
13186                             "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13187                             pipe_config->csc_mode, pipe_config->gamma_mode,
13188                             pipe_config->gamma_enable, pipe_config->csc_enable);
13189
13190         drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13191                     transcoder_name(pipe_config->mst_master_transcoder));
13192
13193 dump_planes:
13194         if (!state)
13195                 return;
13196
13197         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13198                 if (plane->pipe == crtc->pipe)
13199                         intel_dump_plane_state(plane_state);
13200         }
13201 }
13202
13203 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13204 {
13205         struct drm_device *dev = state->base.dev;
13206         struct drm_connector *connector;
13207         struct drm_connector_list_iter conn_iter;
13208         unsigned int used_ports = 0;
13209         unsigned int used_mst_ports = 0;
13210         bool ret = true;
13211
13212         /*
13213          * We're going to peek into connector->state,
13214          * hence connection_mutex must be held.
13215          */
13216         drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13217
13218         /*
13219          * Walk the connector list instead of the encoder
13220          * list to detect the problem on ddi platforms
13221          * where there's just one encoder per digital port.
13222          */
13223         drm_connector_list_iter_begin(dev, &conn_iter);
13224         drm_for_each_connector_iter(connector, &conn_iter) {
13225                 struct drm_connector_state *connector_state;
13226                 struct intel_encoder *encoder;
13227
13228                 connector_state =
13229                         drm_atomic_get_new_connector_state(&state->base,
13230                                                            connector);
13231                 if (!connector_state)
13232                         connector_state = connector->state;
13233
13234                 if (!connector_state->best_encoder)
13235                         continue;
13236
13237                 encoder = to_intel_encoder(connector_state->best_encoder);
13238
13239                 drm_WARN_ON(dev, !connector_state->crtc);
13240
13241                 switch (encoder->type) {
13242                 case INTEL_OUTPUT_DDI:
13243                         if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13244                                 break;
13245                         fallthrough;
13246                 case INTEL_OUTPUT_DP:
13247                 case INTEL_OUTPUT_HDMI:
13248                 case INTEL_OUTPUT_EDP:
13249                         /* the same port mustn't appear more than once */
13250                         if (used_ports & BIT(encoder->port))
13251                                 ret = false;
13252
13253                         used_ports |= BIT(encoder->port);
13254                         break;
13255                 case INTEL_OUTPUT_DP_MST:
13256                         used_mst_ports |=
13257                                 1 << encoder->port;
13258                         break;
13259                 default:
13260                         break;
13261                 }
13262         }
13263         drm_connector_list_iter_end(&conn_iter);
13264
13265         /* can't mix MST and SST/HDMI on the same port */
13266         if (used_ports & used_mst_ports)
13267                 return false;
13268
13269         return ret;
13270 }
13271
13272 static void
13273 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13274 {
13275         intel_crtc_copy_color_blobs(crtc_state);
13276 }
13277
13278 static void
13279 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13280 {
13281         crtc_state->hw.enable = crtc_state->uapi.enable;
13282         crtc_state->hw.active = crtc_state->uapi.active;
13283         crtc_state->hw.mode = crtc_state->uapi.mode;
13284         crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13285         intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13286 }
13287
13288 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13289 {
13290         crtc_state->uapi.enable = crtc_state->hw.enable;
13291         crtc_state->uapi.active = crtc_state->hw.active;
13292         drm_WARN_ON(crtc_state->uapi.crtc->dev,
13293                     drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13294
13295         crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13296
13297         /* copy color blobs to uapi */
13298         drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13299                                   crtc_state->hw.degamma_lut);
13300         drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13301                                   crtc_state->hw.gamma_lut);
13302         drm_property_replace_blob(&crtc_state->uapi.ctm,
13303                                   crtc_state->hw.ctm);
13304 }
13305
13306 static int
13307 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13308 {
13309         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13310         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13311         struct intel_crtc_state *saved_state;
13312
13313         saved_state = intel_crtc_state_alloc(crtc);
13314         if (!saved_state)
13315                 return -ENOMEM;
13316
13317         /* free the old crtc_state->hw members */
13318         intel_crtc_free_hw_state(crtc_state);
13319
13320         /* FIXME: before the switch to atomic started, a new pipe_config was
13321          * kzalloc'd. Code that depends on any field being zero should be
13322          * fixed, so that the crtc_state can be safely duplicated. For now,
13323          * only fields that are know to not cause problems are preserved. */
13324
13325         saved_state->uapi = crtc_state->uapi;
13326         saved_state->scaler_state = crtc_state->scaler_state;
13327         saved_state->shared_dpll = crtc_state->shared_dpll;
13328         saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13329         memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13330                sizeof(saved_state->icl_port_dplls));
13331         saved_state->crc_enabled = crtc_state->crc_enabled;
13332         if (IS_G4X(dev_priv) ||
13333             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13334                 saved_state->wm = crtc_state->wm;
13335
13336         memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13337         kfree(saved_state);
13338
13339         intel_crtc_copy_uapi_to_hw_state(crtc_state);
13340
13341         return 0;
13342 }
13343
13344 static int
13345 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13346 {
13347         struct drm_crtc *crtc = pipe_config->uapi.crtc;
13348         struct drm_atomic_state *state = pipe_config->uapi.state;
13349         struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13350         struct drm_connector *connector;
13351         struct drm_connector_state *connector_state;
13352         int base_bpp, ret, i;
13353         bool retry = true;
13354
13355         pipe_config->cpu_transcoder =
13356                 (enum transcoder) to_intel_crtc(crtc)->pipe;
13357
13358         /*
13359          * Sanitize sync polarity flags based on requested ones. If neither
13360          * positive or negative polarity is requested, treat this as meaning
13361          * negative polarity.
13362          */
13363         if (!(pipe_config->hw.adjusted_mode.flags &
13364               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13365                 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13366
13367         if (!(pipe_config->hw.adjusted_mode.flags &
13368               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13369                 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13370
13371         ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13372                                         pipe_config);
13373         if (ret)
13374                 return ret;
13375
13376         base_bpp = pipe_config->pipe_bpp;
13377
13378         /*
13379          * Determine the real pipe dimensions. Note that stereo modes can
13380          * increase the actual pipe size due to the frame doubling and
13381          * insertion of additional space for blanks between the frame. This
13382          * is stored in the crtc timings. We use the requested mode to do this
13383          * computation to clearly distinguish it from the adjusted mode, which
13384          * can be changed by the connectors in the below retry loop.
13385          */
13386         drm_mode_get_hv_timing(&pipe_config->hw.mode,
13387                                &pipe_config->pipe_src_w,
13388                                &pipe_config->pipe_src_h);
13389
13390         for_each_new_connector_in_state(state, connector, connector_state, i) {
13391                 struct intel_encoder *encoder =
13392                         to_intel_encoder(connector_state->best_encoder);
13393
13394                 if (connector_state->crtc != crtc)
13395                         continue;
13396
13397                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13398                         drm_dbg_kms(&i915->drm,
13399                                     "rejecting invalid cloning configuration\n");
13400                         return -EINVAL;
13401                 }
13402
13403                 /*
13404                  * Determine output_types before calling the .compute_config()
13405                  * hooks so that the hooks can use this information safely.
13406                  */
13407                 if (encoder->compute_output_type)
13408                         pipe_config->output_types |=
13409                                 BIT(encoder->compute_output_type(encoder, pipe_config,
13410                                                                  connector_state));
13411                 else
13412                         pipe_config->output_types |= BIT(encoder->type);
13413         }
13414
13415 encoder_retry:
13416         /* Ensure the port clock defaults are reset when retrying. */
13417         pipe_config->port_clock = 0;
13418         pipe_config->pixel_multiplier = 1;
13419
13420         /* Fill in default crtc timings, allow encoders to overwrite them. */
13421         drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13422                               CRTC_STEREO_DOUBLE);
13423
13424         /* Pass our mode to the connectors and the CRTC to give them a chance to
13425          * adjust it according to limitations or connector properties, and also
13426          * a chance to reject the mode entirely.
13427          */
13428         for_each_new_connector_in_state(state, connector, connector_state, i) {
13429                 struct intel_encoder *encoder =
13430                         to_intel_encoder(connector_state->best_encoder);
13431
13432                 if (connector_state->crtc != crtc)
13433                         continue;
13434
13435                 ret = encoder->compute_config(encoder, pipe_config,
13436                                               connector_state);
13437                 if (ret < 0) {
13438                         if (ret != -EDEADLK)
13439                                 drm_dbg_kms(&i915->drm,
13440                                             "Encoder config failure: %d\n",
13441                                             ret);
13442                         return ret;
13443                 }
13444         }
13445
13446         /* Set default port clock if not overwritten by the encoder. Needs to be
13447          * done afterwards in case the encoder adjusts the mode. */
13448         if (!pipe_config->port_clock)
13449                 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13450                         * pipe_config->pixel_multiplier;
13451
13452         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13453         if (ret == -EDEADLK)
13454                 return ret;
13455         if (ret < 0) {
13456                 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13457                 return ret;
13458         }
13459
13460         if (ret == RETRY) {
13461                 if (drm_WARN(&i915->drm, !retry,
13462                              "loop in pipe configuration computation\n"))
13463                         return -EINVAL;
13464
13465                 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13466                 retry = false;
13467                 goto encoder_retry;
13468         }
13469
13470         /* Dithering seems to not pass-through bits correctly when it should, so
13471          * only enable it on 6bpc panels and when its not a compliance
13472          * test requesting 6bpc video pattern.
13473          */
13474         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13475                 !pipe_config->dither_force_disable;
13476         drm_dbg_kms(&i915->drm,
13477                     "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13478                     base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13479
13480         return 0;
13481 }
13482
13483 static int
13484 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13485 {
13486         struct intel_atomic_state *state =
13487                 to_intel_atomic_state(crtc_state->uapi.state);
13488         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13489         struct drm_connector_state *conn_state;
13490         struct drm_connector *connector;
13491         int i;
13492
13493         for_each_new_connector_in_state(&state->base, connector,
13494                                         conn_state, i) {
13495                 struct intel_encoder *encoder =
13496                         to_intel_encoder(conn_state->best_encoder);
13497                 int ret;
13498
13499                 if (conn_state->crtc != &crtc->base ||
13500                     !encoder->compute_config_late)
13501                         continue;
13502
13503                 ret = encoder->compute_config_late(encoder, crtc_state,
13504                                                    conn_state);
13505                 if (ret)
13506                         return ret;
13507         }
13508
13509         return 0;
13510 }
13511
13512 bool intel_fuzzy_clock_check(int clock1, int clock2)
13513 {
13514         int diff;
13515
13516         if (clock1 == clock2)
13517                 return true;
13518
13519         if (!clock1 || !clock2)
13520                 return false;
13521
13522         diff = abs(clock1 - clock2);
13523
13524         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13525                 return true;
13526
13527         return false;
13528 }
13529
13530 static bool
13531 intel_compare_m_n(unsigned int m, unsigned int n,
13532                   unsigned int m2, unsigned int n2,
13533                   bool exact)
13534 {
13535         if (m == m2 && n == n2)
13536                 return true;
13537
13538         if (exact || !m || !n || !m2 || !n2)
13539                 return false;
13540
13541         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13542
13543         if (n > n2) {
13544                 while (n > n2) {
13545                         m2 <<= 1;
13546                         n2 <<= 1;
13547                 }
13548         } else if (n < n2) {
13549                 while (n < n2) {
13550                         m <<= 1;
13551                         n <<= 1;
13552                 }
13553         }
13554
13555         if (n != n2)
13556                 return false;
13557
13558         return intel_fuzzy_clock_check(m, m2);
13559 }
13560
13561 static bool
13562 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13563                        const struct intel_link_m_n *m2_n2,
13564                        bool exact)
13565 {
13566         return m_n->tu == m2_n2->tu &&
13567                 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13568                                   m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13569                 intel_compare_m_n(m_n->link_m, m_n->link_n,
13570                                   m2_n2->link_m, m2_n2->link_n, exact);
13571 }
13572
13573 static bool
13574 intel_compare_infoframe(const union hdmi_infoframe *a,
13575                         const union hdmi_infoframe *b)
13576 {
13577         return memcmp(a, b, sizeof(*a)) == 0;
13578 }
13579
13580 static bool
13581 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13582                          const struct drm_dp_vsc_sdp *b)
13583 {
13584         return memcmp(a, b, sizeof(*a)) == 0;
13585 }
13586
13587 static void
13588 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13589                                bool fastset, const char *name,
13590                                const union hdmi_infoframe *a,
13591                                const union hdmi_infoframe *b)
13592 {
13593         if (fastset) {
13594                 if (!drm_debug_enabled(DRM_UT_KMS))
13595                         return;
13596
13597                 drm_dbg_kms(&dev_priv->drm,
13598                             "fastset mismatch in %s infoframe\n", name);
13599                 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13600                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13601                 drm_dbg_kms(&dev_priv->drm, "found:\n");
13602                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13603         } else {
13604                 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13605                 drm_err(&dev_priv->drm, "expected:\n");
13606                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13607                 drm_err(&dev_priv->drm, "found:\n");
13608                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13609         }
13610 }
13611
13612 static void
13613 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13614                                 bool fastset, const char *name,
13615                                 const struct drm_dp_vsc_sdp *a,
13616                                 const struct drm_dp_vsc_sdp *b)
13617 {
13618         if (fastset) {
13619                 if (!drm_debug_enabled(DRM_UT_KMS))
13620                         return;
13621
13622                 drm_dbg_kms(&dev_priv->drm,
13623                             "fastset mismatch in %s dp sdp\n", name);
13624                 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13625                 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13626                 drm_dbg_kms(&dev_priv->drm, "found:\n");
13627                 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13628         } else {
13629                 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13630                 drm_err(&dev_priv->drm, "expected:\n");
13631                 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13632                 drm_err(&dev_priv->drm, "found:\n");
13633                 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13634         }
13635 }
13636
13637 static void __printf(4, 5)
13638 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13639                      const char *name, const char *format, ...)
13640 {
13641         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13642         struct va_format vaf;
13643         va_list args;
13644
13645         va_start(args, format);
13646         vaf.fmt = format;
13647         vaf.va = &args;
13648
13649         if (fastset)
13650                 drm_dbg_kms(&i915->drm,
13651                             "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13652                             crtc->base.base.id, crtc->base.name, name, &vaf);
13653         else
13654                 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13655                         crtc->base.base.id, crtc->base.name, name, &vaf);
13656
13657         va_end(args);
13658 }
13659
13660 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13661 {
13662         if (dev_priv->params.fastboot != -1)
13663                 return dev_priv->params.fastboot;
13664
13665         /* Enable fastboot by default on Skylake and newer */
13666         if (INTEL_GEN(dev_priv) >= 9)
13667                 return true;
13668
13669         /* Enable fastboot by default on VLV and CHV */
13670         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13671                 return true;
13672
13673         /* Disabled by default on all others */
13674         return false;
13675 }
13676
13677 static bool
13678 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13679                           const struct intel_crtc_state *pipe_config,
13680                           bool fastset)
13681 {
13682         struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13683         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13684         bool ret = true;
13685         u32 bp_gamma = 0;
13686         bool fixup_inherited = fastset &&
13687                 current_config->inherited && !pipe_config->inherited;
13688
13689         if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13690                 drm_dbg_kms(&dev_priv->drm,
13691                             "initial modeset and fastboot not set\n");
13692                 ret = false;
13693         }
13694
13695 #define PIPE_CONF_CHECK_X(name) do { \
13696         if (current_config->name != pipe_config->name) { \
13697                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13698                                      "(expected 0x%08x, found 0x%08x)", \
13699                                      current_config->name, \
13700                                      pipe_config->name); \
13701                 ret = false; \
13702         } \
13703 } while (0)
13704
13705 #define PIPE_CONF_CHECK_I(name) do { \
13706         if (current_config->name != pipe_config->name) { \
13707                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13708                                      "(expected %i, found %i)", \
13709                                      current_config->name, \
13710                                      pipe_config->name); \
13711                 ret = false; \
13712         } \
13713 } while (0)
13714
13715 #define PIPE_CONF_CHECK_BOOL(name) do { \
13716         if (current_config->name != pipe_config->name) { \
13717                 pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13718                                      "(expected %s, found %s)", \
13719                                      yesno(current_config->name), \
13720                                      yesno(pipe_config->name)); \
13721                 ret = false; \
13722         } \
13723 } while (0)
13724
13725 /*
13726  * Checks state where we only read out the enabling, but not the entire
13727  * state itself (like full infoframes or ELD for audio). These states
13728  * require a full modeset on bootup to fix up.
13729  */
13730 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13731         if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13732                 PIPE_CONF_CHECK_BOOL(name); \
13733         } else { \
13734                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13735                                      "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13736                                      yesno(current_config->name), \
13737                                      yesno(pipe_config->name)); \
13738                 ret = false; \
13739         } \
13740 } while (0)
13741
13742 #define PIPE_CONF_CHECK_P(name) do { \
13743         if (current_config->name != pipe_config->name) { \
13744                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13745                                      "(expected %p, found %p)", \
13746                                      current_config->name, \
13747                                      pipe_config->name); \
13748                 ret = false; \
13749         } \
13750 } while (0)
13751
13752 #define PIPE_CONF_CHECK_M_N(name) do { \
13753         if (!intel_compare_link_m_n(&current_config->name, \
13754                                     &pipe_config->name,\
13755                                     !fastset)) { \
13756                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13757                                      "(expected tu %i gmch %i/%i link %i/%i, " \
13758                                      "found tu %i, gmch %i/%i link %i/%i)", \
13759                                      current_config->name.tu, \
13760                                      current_config->name.gmch_m, \
13761                                      current_config->name.gmch_n, \
13762                                      current_config->name.link_m, \
13763                                      current_config->name.link_n, \
13764                                      pipe_config->name.tu, \
13765                                      pipe_config->name.gmch_m, \
13766                                      pipe_config->name.gmch_n, \
13767                                      pipe_config->name.link_m, \
13768                                      pipe_config->name.link_n); \
13769                 ret = false; \
13770         } \
13771 } while (0)
13772
13773 /* This is required for BDW+ where there is only one set of registers for
13774  * switching between high and low RR.
13775  * This macro can be used whenever a comparison has to be made between one
13776  * hw state and multiple sw state variables.
13777  */
13778 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13779         if (!intel_compare_link_m_n(&current_config->name, \
13780                                     &pipe_config->name, !fastset) && \
13781             !intel_compare_link_m_n(&current_config->alt_name, \
13782                                     &pipe_config->name, !fastset)) { \
13783                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13784                                      "(expected tu %i gmch %i/%i link %i/%i, " \
13785                                      "or tu %i gmch %i/%i link %i/%i, " \
13786                                      "found tu %i, gmch %i/%i link %i/%i)", \
13787                                      current_config->name.tu, \
13788                                      current_config->name.gmch_m, \
13789                                      current_config->name.gmch_n, \
13790                                      current_config->name.link_m, \
13791                                      current_config->name.link_n, \
13792                                      current_config->alt_name.tu, \
13793                                      current_config->alt_name.gmch_m, \
13794                                      current_config->alt_name.gmch_n, \
13795                                      current_config->alt_name.link_m, \
13796                                      current_config->alt_name.link_n, \
13797                                      pipe_config->name.tu, \
13798                                      pipe_config->name.gmch_m, \
13799                                      pipe_config->name.gmch_n, \
13800                                      pipe_config->name.link_m, \
13801                                      pipe_config->name.link_n); \
13802                 ret = false; \
13803         } \
13804 } while (0)
13805
13806 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13807         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13808                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13809                                      "(%x) (expected %i, found %i)", \
13810                                      (mask), \
13811                                      current_config->name & (mask), \
13812                                      pipe_config->name & (mask)); \
13813                 ret = false; \
13814         } \
13815 } while (0)
13816
13817 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13818         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13819                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13820                                      "(expected %i, found %i)", \
13821                                      current_config->name, \
13822                                      pipe_config->name); \
13823                 ret = false; \
13824         } \
13825 } while (0)
13826
13827 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13828         if (!intel_compare_infoframe(&current_config->infoframes.name, \
13829                                      &pipe_config->infoframes.name)) { \
13830                 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13831                                                &current_config->infoframes.name, \
13832                                                &pipe_config->infoframes.name); \
13833                 ret = false; \
13834         } \
13835 } while (0)
13836
13837 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13838         if (!current_config->has_psr && !pipe_config->has_psr && \
13839             !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
13840                                       &pipe_config->infoframes.name)) { \
13841                 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13842                                                 &current_config->infoframes.name, \
13843                                                 &pipe_config->infoframes.name); \
13844                 ret = false; \
13845         } \
13846 } while (0)
13847
13848 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13849         if (current_config->name1 != pipe_config->name1) { \
13850                 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13851                                 "(expected %i, found %i, won't compare lut values)", \
13852                                 current_config->name1, \
13853                                 pipe_config->name1); \
13854                 ret = false;\
13855         } else { \
13856                 if (!intel_color_lut_equal(current_config->name2, \
13857                                         pipe_config->name2, pipe_config->name1, \
13858                                         bit_precision)) { \
13859                         pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13860                                         "hw_state doesn't match sw_state"); \
13861                         ret = false; \
13862                 } \
13863         } \
13864 } while (0)
13865
13866 #define PIPE_CONF_QUIRK(quirk) \
13867         ((current_config->quirks | pipe_config->quirks) & (quirk))
13868
13869         PIPE_CONF_CHECK_I(cpu_transcoder);
13870
13871         PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13872         PIPE_CONF_CHECK_I(fdi_lanes);
13873         PIPE_CONF_CHECK_M_N(fdi_m_n);
13874
13875         PIPE_CONF_CHECK_I(lane_count);
13876         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13877
13878         if (INTEL_GEN(dev_priv) < 8) {
13879                 PIPE_CONF_CHECK_M_N(dp_m_n);
13880
13881                 if (current_config->has_drrs)
13882                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13883         } else
13884                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13885
13886         PIPE_CONF_CHECK_X(output_types);
13887
13888         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13889         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13890         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13891         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13892         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13893         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13894
13895         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13896         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13897         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13898         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13899         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13900         PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13901
13902         PIPE_CONF_CHECK_I(pixel_multiplier);
13903         PIPE_CONF_CHECK_I(output_format);
13904         PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13905         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13906             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13907                 PIPE_CONF_CHECK_BOOL(limited_color_range);
13908
13909         PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13910         PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13911         PIPE_CONF_CHECK_BOOL(has_infoframe);
13912         PIPE_CONF_CHECK_BOOL(fec_enable);
13913
13914         PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13915
13916         PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13917                               DRM_MODE_FLAG_INTERLACE);
13918
13919         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13920                 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13921                                       DRM_MODE_FLAG_PHSYNC);
13922                 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13923                                       DRM_MODE_FLAG_NHSYNC);
13924                 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13925                                       DRM_MODE_FLAG_PVSYNC);
13926                 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13927                                       DRM_MODE_FLAG_NVSYNC);
13928         }
13929
13930         PIPE_CONF_CHECK_X(gmch_pfit.control);
13931         /* pfit ratios are autocomputed by the hw on gen4+ */
13932         if (INTEL_GEN(dev_priv) < 4)
13933                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13934         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13935
13936         /*
13937          * Changing the EDP transcoder input mux
13938          * (A_ONOFF vs. A_ON) requires a full modeset.
13939          */
13940         PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13941
13942         if (!fastset) {
13943                 PIPE_CONF_CHECK_I(pipe_src_w);
13944                 PIPE_CONF_CHECK_I(pipe_src_h);
13945
13946                 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13947                 if (current_config->pch_pfit.enabled) {
13948                         PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13949                         PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13950                         PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13951                         PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13952                 }
13953
13954                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13955                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13956
13957                 PIPE_CONF_CHECK_X(gamma_mode);
13958                 if (IS_CHERRYVIEW(dev_priv))
13959                         PIPE_CONF_CHECK_X(cgm_mode);
13960                 else
13961                         PIPE_CONF_CHECK_X(csc_mode);
13962                 PIPE_CONF_CHECK_BOOL(gamma_enable);
13963                 PIPE_CONF_CHECK_BOOL(csc_enable);
13964
13965                 PIPE_CONF_CHECK_I(linetime);
13966                 PIPE_CONF_CHECK_I(ips_linetime);
13967
13968                 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13969                 if (bp_gamma)
13970                         PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13971         }
13972
13973         PIPE_CONF_CHECK_BOOL(double_wide);
13974
13975         PIPE_CONF_CHECK_P(shared_dpll);
13976         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13977         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13978         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13979         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13980         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13981         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13982         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13983         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13984         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13985         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13986         PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13987         PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13988         PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13989         PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13990         PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13991         PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13992         PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13993         PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13994         PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13995         PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13996         PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13997         PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13998         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13999         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14000         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14001         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14002         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14003         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14004         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14005         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14006         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14007
14008         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14009         PIPE_CONF_CHECK_X(dsi_pll.div);
14010
14011         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14012                 PIPE_CONF_CHECK_I(pipe_bpp);
14013
14014         PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14015         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14016
14017         PIPE_CONF_CHECK_I(min_voltage_level);
14018
14019         PIPE_CONF_CHECK_X(infoframes.enable);
14020         PIPE_CONF_CHECK_X(infoframes.gcp);
14021         PIPE_CONF_CHECK_INFOFRAME(avi);
14022         PIPE_CONF_CHECK_INFOFRAME(spd);
14023         PIPE_CONF_CHECK_INFOFRAME(hdmi);
14024         PIPE_CONF_CHECK_INFOFRAME(drm);
14025         PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14026
14027         PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14028         PIPE_CONF_CHECK_I(master_transcoder);
14029
14030         PIPE_CONF_CHECK_I(dsc.compression_enable);
14031         PIPE_CONF_CHECK_I(dsc.dsc_split);
14032         PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14033
14034         PIPE_CONF_CHECK_I(mst_master_transcoder);
14035
14036 #undef PIPE_CONF_CHECK_X
14037 #undef PIPE_CONF_CHECK_I
14038 #undef PIPE_CONF_CHECK_BOOL
14039 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14040 #undef PIPE_CONF_CHECK_P
14041 #undef PIPE_CONF_CHECK_FLAGS
14042 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14043 #undef PIPE_CONF_CHECK_COLOR_LUT
14044 #undef PIPE_CONF_QUIRK
14045
14046         return ret;
14047 }
14048
14049 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14050                                            const struct intel_crtc_state *pipe_config)
14051 {
14052         if (pipe_config->has_pch_encoder) {
14053                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14054                                                             &pipe_config->fdi_m_n);
14055                 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14056
14057                 /*
14058                  * FDI already provided one idea for the dotclock.
14059                  * Yell if the encoder disagrees.
14060                  */
14061                 drm_WARN(&dev_priv->drm,
14062                          !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14063                          "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14064                          fdi_dotclock, dotclock);
14065         }
14066 }
14067
14068 static void verify_wm_state(struct intel_crtc *crtc,
14069                             struct intel_crtc_state *new_crtc_state)
14070 {
14071         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14072         struct skl_hw_state {
14073                 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14074                 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14075                 struct skl_pipe_wm wm;
14076         } *hw;
14077         struct skl_pipe_wm *sw_wm;
14078         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14079         u8 hw_enabled_slices;
14080         const enum pipe pipe = crtc->pipe;
14081         int plane, level, max_level = ilk_wm_max_level(dev_priv);
14082
14083         if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14084                 return;
14085
14086         hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14087         if (!hw)
14088                 return;
14089
14090         skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14091         sw_wm = &new_crtc_state->wm.skl.optimal;
14092
14093         skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14094
14095         hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14096
14097         if (INTEL_GEN(dev_priv) >= 11 &&
14098             hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14099                 drm_err(&dev_priv->drm,
14100                         "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14101                         dev_priv->dbuf.enabled_slices,
14102                         hw_enabled_slices);
14103
14104         /* planes */
14105         for_each_universal_plane(dev_priv, pipe, plane) {
14106                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14107
14108                 hw_plane_wm = &hw->wm.planes[plane];
14109                 sw_plane_wm = &sw_wm->planes[plane];
14110
14111                 /* Watermarks */
14112                 for (level = 0; level <= max_level; level++) {
14113                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14114                                                 &sw_plane_wm->wm[level]) ||
14115                             (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14116                                                                &sw_plane_wm->sagv_wm0)))
14117                                 continue;
14118
14119                         drm_err(&dev_priv->drm,
14120                                 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14121                                 pipe_name(pipe), plane + 1, level,
14122                                 sw_plane_wm->wm[level].plane_en,
14123                                 sw_plane_wm->wm[level].plane_res_b,
14124                                 sw_plane_wm->wm[level].plane_res_l,
14125                                 hw_plane_wm->wm[level].plane_en,
14126                                 hw_plane_wm->wm[level].plane_res_b,
14127                                 hw_plane_wm->wm[level].plane_res_l);
14128                 }
14129
14130                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14131                                          &sw_plane_wm->trans_wm)) {
14132                         drm_err(&dev_priv->drm,
14133                                 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14134                                 pipe_name(pipe), plane + 1,
14135                                 sw_plane_wm->trans_wm.plane_en,
14136                                 sw_plane_wm->trans_wm.plane_res_b,
14137                                 sw_plane_wm->trans_wm.plane_res_l,
14138                                 hw_plane_wm->trans_wm.plane_en,
14139                                 hw_plane_wm->trans_wm.plane_res_b,
14140                                 hw_plane_wm->trans_wm.plane_res_l);
14141                 }
14142
14143                 /* DDB */
14144                 hw_ddb_entry = &hw->ddb_y[plane];
14145                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14146
14147                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14148                         drm_err(&dev_priv->drm,
14149                                 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14150                                 pipe_name(pipe), plane + 1,
14151                                 sw_ddb_entry->start, sw_ddb_entry->end,
14152                                 hw_ddb_entry->start, hw_ddb_entry->end);
14153                 }
14154         }
14155
14156         /*
14157          * cursor
14158          * If the cursor plane isn't active, we may not have updated it's ddb
14159          * allocation. In that case since the ddb allocation will be updated
14160          * once the plane becomes visible, we can skip this check
14161          */
14162         if (1) {
14163                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14164
14165                 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14166                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14167
14168                 /* Watermarks */
14169                 for (level = 0; level <= max_level; level++) {
14170                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14171                                                 &sw_plane_wm->wm[level]) ||
14172                             (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14173                                                                &sw_plane_wm->sagv_wm0)))
14174                                 continue;
14175
14176                         drm_err(&dev_priv->drm,
14177                                 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14178                                 pipe_name(pipe), level,
14179                                 sw_plane_wm->wm[level].plane_en,
14180                                 sw_plane_wm->wm[level].plane_res_b,
14181                                 sw_plane_wm->wm[level].plane_res_l,
14182                                 hw_plane_wm->wm[level].plane_en,
14183                                 hw_plane_wm->wm[level].plane_res_b,
14184                                 hw_plane_wm->wm[level].plane_res_l);
14185                 }
14186
14187                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14188                                          &sw_plane_wm->trans_wm)) {
14189                         drm_err(&dev_priv->drm,
14190                                 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14191                                 pipe_name(pipe),
14192                                 sw_plane_wm->trans_wm.plane_en,
14193                                 sw_plane_wm->trans_wm.plane_res_b,
14194                                 sw_plane_wm->trans_wm.plane_res_l,
14195                                 hw_plane_wm->trans_wm.plane_en,
14196                                 hw_plane_wm->trans_wm.plane_res_b,
14197                                 hw_plane_wm->trans_wm.plane_res_l);
14198                 }
14199
14200                 /* DDB */
14201                 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14202                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14203
14204                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14205                         drm_err(&dev_priv->drm,
14206                                 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14207                                 pipe_name(pipe),
14208                                 sw_ddb_entry->start, sw_ddb_entry->end,
14209                                 hw_ddb_entry->start, hw_ddb_entry->end);
14210                 }
14211         }
14212
14213         kfree(hw);
14214 }
14215
14216 static void
14217 verify_connector_state(struct intel_atomic_state *state,
14218                        struct intel_crtc *crtc)
14219 {
14220         struct drm_connector *connector;
14221         struct drm_connector_state *new_conn_state;
14222         int i;
14223
14224         for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14225                 struct drm_encoder *encoder = connector->encoder;
14226                 struct intel_crtc_state *crtc_state = NULL;
14227
14228                 if (new_conn_state->crtc != &crtc->base)
14229                         continue;
14230
14231                 if (crtc)
14232                         crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14233
14234                 intel_connector_verify_state(crtc_state, new_conn_state);
14235
14236                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14237                      "connector's atomic encoder doesn't match legacy encoder\n");
14238         }
14239 }
14240
14241 static void
14242 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14243 {
14244         struct intel_encoder *encoder;
14245         struct drm_connector *connector;
14246         struct drm_connector_state *old_conn_state, *new_conn_state;
14247         int i;
14248
14249         for_each_intel_encoder(&dev_priv->drm, encoder) {
14250                 bool enabled = false, found = false;
14251                 enum pipe pipe;
14252
14253                 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14254                             encoder->base.base.id,
14255                             encoder->base.name);
14256
14257                 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14258                                                    new_conn_state, i) {
14259                         if (old_conn_state->best_encoder == &encoder->base)
14260                                 found = true;
14261
14262                         if (new_conn_state->best_encoder != &encoder->base)
14263                                 continue;
14264                         found = enabled = true;
14265
14266                         I915_STATE_WARN(new_conn_state->crtc !=
14267                                         encoder->base.crtc,
14268                              "connector's crtc doesn't match encoder crtc\n");
14269                 }
14270
14271                 if (!found)
14272                         continue;
14273
14274                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
14275                      "encoder's enabled state mismatch "
14276                      "(expected %i, found %i)\n",
14277                      !!encoder->base.crtc, enabled);
14278
14279                 if (!encoder->base.crtc) {
14280                         bool active;
14281
14282                         active = encoder->get_hw_state(encoder, &pipe);
14283                         I915_STATE_WARN(active,
14284                              "encoder detached but still enabled on pipe %c.\n",
14285                              pipe_name(pipe));
14286                 }
14287         }
14288 }
14289
14290 static void
14291 verify_crtc_state(struct intel_crtc *crtc,
14292                   struct intel_crtc_state *old_crtc_state,
14293                   struct intel_crtc_state *new_crtc_state)
14294 {
14295         struct drm_device *dev = crtc->base.dev;
14296         struct drm_i915_private *dev_priv = to_i915(dev);
14297         struct intel_encoder *encoder;
14298         struct intel_crtc_state *pipe_config = old_crtc_state;
14299         struct drm_atomic_state *state = old_crtc_state->uapi.state;
14300
14301         __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14302         intel_crtc_free_hw_state(old_crtc_state);
14303         intel_crtc_state_reset(old_crtc_state, crtc);
14304         old_crtc_state->uapi.state = state;
14305
14306         drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14307                     crtc->base.name);
14308
14309         pipe_config->hw.enable = new_crtc_state->hw.enable;
14310
14311         pipe_config->hw.active =
14312                 dev_priv->display.get_pipe_config(crtc, pipe_config);
14313
14314         /* we keep both pipes enabled on 830 */
14315         if (IS_I830(dev_priv) && pipe_config->hw.active)
14316                 pipe_config->hw.active = new_crtc_state->hw.active;
14317
14318         I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14319                         "crtc active state doesn't match with hw state "
14320                         "(expected %i, found %i)\n",
14321                         new_crtc_state->hw.active, pipe_config->hw.active);
14322
14323         I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14324                         "transitional active state does not match atomic hw state "
14325                         "(expected %i, found %i)\n",
14326                         new_crtc_state->hw.active, crtc->active);
14327
14328         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14329                 enum pipe pipe;
14330                 bool active;
14331
14332                 active = encoder->get_hw_state(encoder, &pipe);
14333                 I915_STATE_WARN(active != new_crtc_state->hw.active,
14334                                 "[ENCODER:%i] active %i with crtc active %i\n",
14335                                 encoder->base.base.id, active,
14336                                 new_crtc_state->hw.active);
14337
14338                 I915_STATE_WARN(active && crtc->pipe != pipe,
14339                                 "Encoder connected to wrong pipe %c\n",
14340                                 pipe_name(pipe));
14341
14342                 if (active)
14343                         encoder->get_config(encoder, pipe_config);
14344         }
14345
14346         intel_crtc_compute_pixel_rate(pipe_config);
14347
14348         if (!new_crtc_state->hw.active)
14349                 return;
14350
14351         intel_pipe_config_sanity_check(dev_priv, pipe_config);
14352
14353         if (!intel_pipe_config_compare(new_crtc_state,
14354                                        pipe_config, false)) {
14355                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
14356                 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14357                 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14358         }
14359 }
14360
14361 static void
14362 intel_verify_planes(struct intel_atomic_state *state)
14363 {
14364         struct intel_plane *plane;
14365         const struct intel_plane_state *plane_state;
14366         int i;
14367
14368         for_each_new_intel_plane_in_state(state, plane,
14369                                           plane_state, i)
14370                 assert_plane(plane, plane_state->planar_slave ||
14371                              plane_state->uapi.visible);
14372 }
14373
14374 static void
14375 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14376                          struct intel_shared_dpll *pll,
14377                          struct intel_crtc *crtc,
14378                          struct intel_crtc_state *new_crtc_state)
14379 {
14380         struct intel_dpll_hw_state dpll_hw_state;
14381         unsigned int crtc_mask;
14382         bool active;
14383
14384         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14385
14386         drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14387
14388         active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14389
14390         if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14391                 I915_STATE_WARN(!pll->on && pll->active_mask,
14392                      "pll in active use but not on in sw tracking\n");
14393                 I915_STATE_WARN(pll->on && !pll->active_mask,
14394                      "pll is on but not used by any active crtc\n");
14395                 I915_STATE_WARN(pll->on != active,
14396                      "pll on state mismatch (expected %i, found %i)\n",
14397                      pll->on, active);
14398         }
14399
14400         if (!crtc) {
14401                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14402                                 "more active pll users than references: %x vs %x\n",
14403                                 pll->active_mask, pll->state.crtc_mask);
14404
14405                 return;
14406         }
14407
14408         crtc_mask = drm_crtc_mask(&crtc->base);
14409
14410         if (new_crtc_state->hw.active)
14411                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14412                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14413                                 pipe_name(crtc->pipe), pll->active_mask);
14414         else
14415                 I915_STATE_WARN(pll->active_mask & crtc_mask,
14416                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14417                                 pipe_name(crtc->pipe), pll->active_mask);
14418
14419         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14420                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14421                         crtc_mask, pll->state.crtc_mask);
14422
14423         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14424                                           &dpll_hw_state,
14425                                           sizeof(dpll_hw_state)),
14426                         "pll hw state mismatch\n");
14427 }
14428
14429 static void
14430 verify_shared_dpll_state(struct intel_crtc *crtc,
14431                          struct intel_crtc_state *old_crtc_state,
14432                          struct intel_crtc_state *new_crtc_state)
14433 {
14434         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14435
14436         if (new_crtc_state->shared_dpll)
14437                 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14438
14439         if (old_crtc_state->shared_dpll &&
14440             old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14441                 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14442                 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14443
14444                 I915_STATE_WARN(pll->active_mask & crtc_mask,
14445                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
14446                                 pipe_name(crtc->pipe));
14447                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14448                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
14449                                 pipe_name(crtc->pipe));
14450         }
14451 }
14452
14453 static void
14454 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14455                           struct intel_atomic_state *state,
14456                           struct intel_crtc_state *old_crtc_state,
14457                           struct intel_crtc_state *new_crtc_state)
14458 {
14459         if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14460                 return;
14461
14462         verify_wm_state(crtc, new_crtc_state);
14463         verify_connector_state(state, crtc);
14464         verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14465         verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14466 }
14467
14468 static void
14469 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14470 {
14471         int i;
14472
14473         for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14474                 verify_single_dpll_state(dev_priv,
14475                                          &dev_priv->dpll.shared_dplls[i],
14476                                          NULL, NULL);
14477 }
14478
14479 static void
14480 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14481                               struct intel_atomic_state *state)
14482 {
14483         verify_encoder_state(dev_priv, state);
14484         verify_connector_state(state, NULL);
14485         verify_disabled_dpll_state(dev_priv);
14486 }
14487
14488 static void
14489 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14490 {
14491         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14492         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14493         const struct drm_display_mode *adjusted_mode =
14494                 &crtc_state->hw.adjusted_mode;
14495
14496         drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14497
14498         crtc->mode_flags = crtc_state->mode_flags;
14499
14500         /*
14501          * The scanline counter increments at the leading edge of hsync.
14502          *
14503          * On most platforms it starts counting from vtotal-1 on the
14504          * first active line. That means the scanline counter value is
14505          * always one less than what we would expect. Ie. just after
14506          * start of vblank, which also occurs at start of hsync (on the
14507          * last active line), the scanline counter will read vblank_start-1.
14508          *
14509          * On gen2 the scanline counter starts counting from 1 instead
14510          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14511          * to keep the value positive), instead of adding one.
14512          *
14513          * On HSW+ the behaviour of the scanline counter depends on the output
14514          * type. For DP ports it behaves like most other platforms, but on HDMI
14515          * there's an extra 1 line difference. So we need to add two instead of
14516          * one to the value.
14517          *
14518          * On VLV/CHV DSI the scanline counter would appear to increment
14519          * approx. 1/3 of a scanline before start of vblank. Unfortunately
14520          * that means we can't tell whether we're in vblank or not while
14521          * we're on that particular line. We must still set scanline_offset
14522          * to 1 so that the vblank timestamps come out correct when we query
14523          * the scanline counter from within the vblank interrupt handler.
14524          * However if queried just before the start of vblank we'll get an
14525          * answer that's slightly in the future.
14526          */
14527         if (IS_GEN(dev_priv, 2)) {
14528                 int vtotal;
14529
14530                 vtotal = adjusted_mode->crtc_vtotal;
14531                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14532                         vtotal /= 2;
14533
14534                 crtc->scanline_offset = vtotal - 1;
14535         } else if (HAS_DDI(dev_priv) &&
14536                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14537                 crtc->scanline_offset = 2;
14538         } else {
14539                 crtc->scanline_offset = 1;
14540         }
14541 }
14542
14543 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14544 {
14545         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14546         struct intel_crtc_state *new_crtc_state;
14547         struct intel_crtc *crtc;
14548         int i;
14549
14550         if (!dev_priv->display.crtc_compute_clock)
14551                 return;
14552
14553         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14554                 if (!needs_modeset(new_crtc_state))
14555                         continue;
14556
14557                 intel_release_shared_dplls(state, crtc);
14558         }
14559 }
14560
14561 /*
14562  * This implements the workaround described in the "notes" section of the mode
14563  * set sequence documentation. When going from no pipes or single pipe to
14564  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14565  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14566  */
14567 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14568 {
14569         struct intel_crtc_state *crtc_state;
14570         struct intel_crtc *crtc;
14571         struct intel_crtc_state *first_crtc_state = NULL;
14572         struct intel_crtc_state *other_crtc_state = NULL;
14573         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14574         int i;
14575
14576         /* look at all crtc's that are going to be enabled in during modeset */
14577         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14578                 if (!crtc_state->hw.active ||
14579                     !needs_modeset(crtc_state))
14580                         continue;
14581
14582                 if (first_crtc_state) {
14583                         other_crtc_state = crtc_state;
14584                         break;
14585                 } else {
14586                         first_crtc_state = crtc_state;
14587                         first_pipe = crtc->pipe;
14588                 }
14589         }
14590
14591         /* No workaround needed? */
14592         if (!first_crtc_state)
14593                 return 0;
14594
14595         /* w/a possibly needed, check how many crtc's are already enabled. */
14596         for_each_intel_crtc(state->base.dev, crtc) {
14597                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14598                 if (IS_ERR(crtc_state))
14599                         return PTR_ERR(crtc_state);
14600
14601                 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14602
14603                 if (!crtc_state->hw.active ||
14604                     needs_modeset(crtc_state))
14605                         continue;
14606
14607                 /* 2 or more enabled crtcs means no need for w/a */
14608                 if (enabled_pipe != INVALID_PIPE)
14609                         return 0;
14610
14611                 enabled_pipe = crtc->pipe;
14612         }
14613
14614         if (enabled_pipe != INVALID_PIPE)
14615                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14616         else if (other_crtc_state)
14617                 other_crtc_state->hsw_workaround_pipe = first_pipe;
14618
14619         return 0;
14620 }
14621
14622 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14623                            u8 active_pipes)
14624 {
14625         const struct intel_crtc_state *crtc_state;
14626         struct intel_crtc *crtc;
14627         int i;
14628
14629         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14630                 if (crtc_state->hw.active)
14631                         active_pipes |= BIT(crtc->pipe);
14632                 else
14633                         active_pipes &= ~BIT(crtc->pipe);
14634         }
14635
14636         return active_pipes;
14637 }
14638
14639 static int intel_modeset_checks(struct intel_atomic_state *state)
14640 {
14641         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14642
14643         state->modeset = true;
14644
14645         if (IS_HASWELL(dev_priv))
14646                 return hsw_mode_set_planes_workaround(state);
14647
14648         return 0;
14649 }
14650
14651 /*
14652  * Handle calculation of various watermark data at the end of the atomic check
14653  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14654  * handlers to ensure that all derived state has been updated.
14655  */
14656 static int calc_watermark_data(struct intel_atomic_state *state)
14657 {
14658         struct drm_device *dev = state->base.dev;
14659         struct drm_i915_private *dev_priv = to_i915(dev);
14660
14661         /* Is there platform-specific watermark information to calculate? */
14662         if (dev_priv->display.compute_global_watermarks)
14663                 return dev_priv->display.compute_global_watermarks(state);
14664
14665         return 0;
14666 }
14667
14668 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14669                                      struct intel_crtc_state *new_crtc_state)
14670 {
14671         if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14672                 return;
14673
14674         new_crtc_state->uapi.mode_changed = false;
14675         new_crtc_state->update_pipe = true;
14676 }
14677
14678 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14679                                     struct intel_crtc_state *new_crtc_state)
14680 {
14681         /*
14682          * If we're not doing the full modeset we want to
14683          * keep the current M/N values as they may be
14684          * sufficiently different to the computed values
14685          * to cause problems.
14686          *
14687          * FIXME: should really copy more fuzzy state here
14688          */
14689         new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14690         new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14691         new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14692         new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14693 }
14694
14695 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14696                                           struct intel_crtc *crtc,
14697                                           u8 plane_ids_mask)
14698 {
14699         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14700         struct intel_plane *plane;
14701
14702         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14703                 struct intel_plane_state *plane_state;
14704
14705                 if ((plane_ids_mask & BIT(plane->id)) == 0)
14706                         continue;
14707
14708                 plane_state = intel_atomic_get_plane_state(state, plane);
14709                 if (IS_ERR(plane_state))
14710                         return PTR_ERR(plane_state);
14711         }
14712
14713         return 0;
14714 }
14715
14716 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14717 {
14718         /* See {hsw,vlv,ivb}_plane_ratio() */
14719         return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14720                 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14721                 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14722 }
14723
14724 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14725 {
14726         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14727         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14728         struct intel_plane_state *plane_state;
14729         struct intel_plane *plane;
14730         struct intel_crtc *crtc;
14731         int i, ret;
14732
14733         ret = icl_add_linked_planes(state);
14734         if (ret)
14735                 return ret;
14736
14737         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14738                 ret = intel_plane_atomic_check(state, plane);
14739                 if (ret) {
14740                         drm_dbg_atomic(&dev_priv->drm,
14741                                        "[PLANE:%d:%s] atomic driver check failed\n",
14742                                        plane->base.base.id, plane->base.name);
14743                         return ret;
14744                 }
14745         }
14746
14747         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14748                                             new_crtc_state, i) {
14749                 u8 old_active_planes, new_active_planes;
14750
14751                 ret = icl_check_nv12_planes(new_crtc_state);
14752                 if (ret)
14753                         return ret;
14754
14755                 /*
14756                  * On some platforms the number of active planes affects
14757                  * the planes' minimum cdclk calculation. Add such planes
14758                  * to the state before we compute the minimum cdclk.
14759                  */
14760                 if (!active_planes_affects_min_cdclk(dev_priv))
14761                         continue;
14762
14763                 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14764                 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14765
14766                 /*
14767                  * Not only the number of planes, but if the plane configuration had
14768                  * changed might already mean we need to recompute min CDCLK,
14769                  * because different planes might consume different amount of Dbuf bandwidth
14770                  * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14771                  */
14772                 if (old_active_planes == new_active_planes)
14773                         continue;
14774
14775                 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14776                 if (ret)
14777                         return ret;
14778         }
14779
14780         return 0;
14781 }
14782
14783 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14784                                     bool *need_cdclk_calc)
14785 {
14786         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14787         const struct intel_cdclk_state *old_cdclk_state;
14788         const struct intel_cdclk_state *new_cdclk_state;
14789         struct intel_plane_state *plane_state;
14790         struct intel_bw_state *new_bw_state;
14791         struct intel_plane *plane;
14792         int min_cdclk = 0;
14793         enum pipe pipe;
14794         int ret;
14795         int i;
14796         /*
14797          * active_planes bitmask has been updated, and potentially
14798          * affected planes are part of the state. We can now
14799          * compute the minimum cdclk for each plane.
14800          */
14801         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14802                 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14803                 if (ret)
14804                         return ret;
14805         }
14806
14807         old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14808         new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14809
14810         if (new_cdclk_state &&
14811             old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14812                 *need_cdclk_calc = true;
14813
14814         ret = dev_priv->display.bw_calc_min_cdclk(state);
14815         if (ret)
14816                 return ret;
14817
14818         new_bw_state = intel_atomic_get_new_bw_state(state);
14819
14820         if (!new_cdclk_state || !new_bw_state)
14821                 return 0;
14822
14823         for_each_pipe(dev_priv, pipe) {
14824                 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14825
14826                 /*
14827                  * Currently do this change only if we need to increase
14828                  */
14829                 if (new_bw_state->min_cdclk > min_cdclk)
14830                         *need_cdclk_calc = true;
14831         }
14832
14833         return 0;
14834 }
14835
14836 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14837 {
14838         struct intel_crtc_state *crtc_state;
14839         struct intel_crtc *crtc;
14840         int i;
14841
14842         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14843                 int ret = intel_crtc_atomic_check(state, crtc);
14844                 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14845                 if (ret) {
14846                         drm_dbg_atomic(&i915->drm,
14847                                        "[CRTC:%d:%s] atomic driver check failed\n",
14848                                        crtc->base.base.id, crtc->base.name);
14849                         return ret;
14850                 }
14851         }
14852
14853         return 0;
14854 }
14855
14856 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14857                                                u8 transcoders)
14858 {
14859         const struct intel_crtc_state *new_crtc_state;
14860         struct intel_crtc *crtc;
14861         int i;
14862
14863         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14864                 if (new_crtc_state->hw.enable &&
14865                     transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14866                     needs_modeset(new_crtc_state))
14867                         return true;
14868         }
14869
14870         return false;
14871 }
14872
14873 /**
14874  * intel_atomic_check - validate state object
14875  * @dev: drm device
14876  * @_state: state to validate
14877  */
14878 static int intel_atomic_check(struct drm_device *dev,
14879                               struct drm_atomic_state *_state)
14880 {
14881         struct drm_i915_private *dev_priv = to_i915(dev);
14882         struct intel_atomic_state *state = to_intel_atomic_state(_state);
14883         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14884         struct intel_crtc *crtc;
14885         int ret, i;
14886         bool any_ms = false;
14887
14888         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14889                                             new_crtc_state, i) {
14890                 if (new_crtc_state->inherited != old_crtc_state->inherited)
14891                         new_crtc_state->uapi.mode_changed = true;
14892         }
14893
14894         ret = drm_atomic_helper_check_modeset(dev, &state->base);
14895         if (ret)
14896                 goto fail;
14897
14898         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14899                                             new_crtc_state, i) {
14900                 if (!needs_modeset(new_crtc_state)) {
14901                         /* Light copy */
14902                         intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14903
14904                         continue;
14905                 }
14906
14907                 ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14908                 if (ret)
14909                         goto fail;
14910
14911                 if (!new_crtc_state->hw.enable)
14912                         continue;
14913
14914                 ret = intel_modeset_pipe_config(new_crtc_state);
14915                 if (ret)
14916                         goto fail;
14917         }
14918
14919         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14920                                             new_crtc_state, i) {
14921                 if (!needs_modeset(new_crtc_state))
14922                         continue;
14923
14924                 ret = intel_modeset_pipe_config_late(new_crtc_state);
14925                 if (ret)
14926                         goto fail;
14927
14928                 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14929         }
14930
14931         /**
14932          * Check if fastset is allowed by external dependencies like other
14933          * pipes and transcoders.
14934          *
14935          * Right now it only forces a fullmodeset when the MST master
14936          * transcoder did not changed but the pipe of the master transcoder
14937          * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14938          * in case of port synced crtcs, if one of the synced crtcs
14939          * needs a full modeset, all other synced crtcs should be
14940          * forced a full modeset.
14941          */
14942         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14943                 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14944                         continue;
14945
14946                 if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14947                         enum transcoder master = new_crtc_state->mst_master_transcoder;
14948
14949                         if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14950                                 new_crtc_state->uapi.mode_changed = true;
14951                                 new_crtc_state->update_pipe = false;
14952                         }
14953                 }
14954
14955                 if (is_trans_port_sync_mode(new_crtc_state)) {
14956                         u8 trans = new_crtc_state->sync_mode_slaves_mask;
14957
14958                         if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14959                                 trans |= BIT(new_crtc_state->master_transcoder);
14960
14961                         if (intel_cpu_transcoders_need_modeset(state, trans)) {
14962                                 new_crtc_state->uapi.mode_changed = true;
14963                                 new_crtc_state->update_pipe = false;
14964                         }
14965                 }
14966         }
14967
14968         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14969                                             new_crtc_state, i) {
14970                 if (needs_modeset(new_crtc_state)) {
14971                         any_ms = true;
14972                         continue;
14973                 }
14974
14975                 if (!new_crtc_state->update_pipe)
14976                         continue;
14977
14978                 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14979         }
14980
14981         if (any_ms && !check_digital_port_conflicts(state)) {
14982                 drm_dbg_kms(&dev_priv->drm,
14983                             "rejecting conflicting digital port configuration\n");
14984                 ret = -EINVAL;
14985                 goto fail;
14986         }
14987
14988         ret = drm_dp_mst_atomic_check(&state->base);
14989         if (ret)
14990                 goto fail;
14991
14992         ret = intel_atomic_check_planes(state);
14993         if (ret)
14994                 goto fail;
14995
14996         /*
14997          * distrust_bios_wm will force a full dbuf recomputation
14998          * but the hardware state will only get updated accordingly
14999          * if state->modeset==true. Hence distrust_bios_wm==true &&
15000          * state->modeset==false is an invalid combination which
15001          * would cause the hardware and software dbuf state to get
15002          * out of sync. We must prevent that.
15003          *
15004          * FIXME clean up this mess and introduce better
15005          * state tracking for dbuf.
15006          */
15007         if (dev_priv->wm.distrust_bios_wm)
15008                 any_ms = true;
15009
15010         intel_fbc_choose_crtc(dev_priv, state);
15011         ret = calc_watermark_data(state);
15012         if (ret)
15013                 goto fail;
15014
15015         ret = intel_bw_atomic_check(state);
15016         if (ret)
15017                 goto fail;
15018
15019         ret = intel_atomic_check_cdclk(state, &any_ms);
15020         if (ret)
15021                 goto fail;
15022
15023         if (any_ms) {
15024                 ret = intel_modeset_checks(state);
15025                 if (ret)
15026                         goto fail;
15027
15028                 ret = intel_modeset_calc_cdclk(state);
15029                 if (ret)
15030                         return ret;
15031
15032                 intel_modeset_clear_plls(state);
15033         }
15034
15035         ret = intel_atomic_check_crtcs(state);
15036         if (ret)
15037                 goto fail;
15038
15039         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15040                                             new_crtc_state, i) {
15041                 if (!needs_modeset(new_crtc_state) &&
15042                     !new_crtc_state->update_pipe)
15043                         continue;
15044
15045                 intel_dump_pipe_config(new_crtc_state, state,
15046                                        needs_modeset(new_crtc_state) ?
15047                                        "[modeset]" : "[fastset]");
15048         }
15049
15050         return 0;
15051
15052  fail:
15053         if (ret == -EDEADLK)
15054                 return ret;
15055
15056         /*
15057          * FIXME would probably be nice to know which crtc specifically
15058          * caused the failure, in cases where we can pinpoint it.
15059          */
15060         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15061                                             new_crtc_state, i)
15062                 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15063
15064         return ret;
15065 }
15066
15067 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15068 {
15069         struct intel_crtc_state *crtc_state;
15070         struct intel_crtc *crtc;
15071         int i, ret;
15072
15073         ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15074         if (ret < 0)
15075                 return ret;
15076
15077         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15078                 bool mode_changed = needs_modeset(crtc_state);
15079
15080                 if (mode_changed || crtc_state->update_pipe ||
15081                     crtc_state->uapi.color_mgmt_changed) {
15082                         intel_dsb_prepare(crtc_state);
15083                 }
15084         }
15085
15086         return 0;
15087 }
15088
15089 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15090 {
15091         struct drm_device *dev = crtc->base.dev;
15092         struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15093
15094         if (!vblank->max_vblank_count)
15095                 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15096
15097         return crtc->base.funcs->get_vblank_counter(&crtc->base);
15098 }
15099
15100 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15101                                   struct intel_crtc_state *crtc_state)
15102 {
15103         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15104
15105         if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15106                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15107
15108         if (crtc_state->has_pch_encoder) {
15109                 enum pipe pch_transcoder =
15110                         intel_crtc_pch_transcoder(crtc);
15111
15112                 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15113         }
15114 }
15115
15116 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15117                                const struct intel_crtc_state *new_crtc_state)
15118 {
15119         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15120         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15121
15122         /*
15123          * Update pipe size and adjust fitter if needed: the reason for this is
15124          * that in compute_mode_changes we check the native mode (not the pfit
15125          * mode) to see if we can flip rather than do a full mode set. In the
15126          * fastboot case, we'll flip, but if we don't update the pipesrc and
15127          * pfit state, we'll end up with a big fb scanned out into the wrong
15128          * sized surface.
15129          */
15130         intel_set_pipe_src_size(new_crtc_state);
15131
15132         /* on skylake this is done by detaching scalers */
15133         if (INTEL_GEN(dev_priv) >= 9) {
15134                 skl_detach_scalers(new_crtc_state);
15135
15136                 if (new_crtc_state->pch_pfit.enabled)
15137                         skl_pfit_enable(new_crtc_state);
15138         } else if (HAS_PCH_SPLIT(dev_priv)) {
15139                 if (new_crtc_state->pch_pfit.enabled)
15140                         ilk_pfit_enable(new_crtc_state);
15141                 else if (old_crtc_state->pch_pfit.enabled)
15142                         ilk_pfit_disable(old_crtc_state);
15143         }
15144
15145         /*
15146          * The register is supposedly single buffered so perhaps
15147          * not 100% correct to do this here. But SKL+ calculate
15148          * this based on the adjust pixel rate so pfit changes do
15149          * affect it and so it must be updated for fastsets.
15150          * HSW/BDW only really need this here for fastboot, after
15151          * that the value should not change without a full modeset.
15152          */
15153         if (INTEL_GEN(dev_priv) >= 9 ||
15154             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15155                 hsw_set_linetime_wm(new_crtc_state);
15156
15157         if (INTEL_GEN(dev_priv) >= 11)
15158                 icl_set_pipe_chicken(crtc);
15159 }
15160
15161 static void commit_pipe_config(struct intel_atomic_state *state,
15162                                struct intel_crtc *crtc)
15163 {
15164         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15165         const struct intel_crtc_state *old_crtc_state =
15166                 intel_atomic_get_old_crtc_state(state, crtc);
15167         const struct intel_crtc_state *new_crtc_state =
15168                 intel_atomic_get_new_crtc_state(state, crtc);
15169         bool modeset = needs_modeset(new_crtc_state);
15170
15171         /*
15172          * During modesets pipe configuration was programmed as the
15173          * CRTC was enabled.
15174          */
15175         if (!modeset) {
15176                 if (new_crtc_state->uapi.color_mgmt_changed ||
15177                     new_crtc_state->update_pipe)
15178                         intel_color_commit(new_crtc_state);
15179
15180                 if (INTEL_GEN(dev_priv) >= 9)
15181                         skl_detach_scalers(new_crtc_state);
15182
15183                 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15184                         bdw_set_pipemisc(new_crtc_state);
15185
15186                 if (new_crtc_state->update_pipe)
15187                         intel_pipe_fastset(old_crtc_state, new_crtc_state);
15188
15189                 intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15190         }
15191
15192         if (dev_priv->display.atomic_update_watermarks)
15193                 dev_priv->display.atomic_update_watermarks(state, crtc);
15194 }
15195
15196 static void intel_enable_crtc(struct intel_atomic_state *state,
15197                               struct intel_crtc *crtc)
15198 {
15199         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15200         const struct intel_crtc_state *new_crtc_state =
15201                 intel_atomic_get_new_crtc_state(state, crtc);
15202
15203         if (!needs_modeset(new_crtc_state))
15204                 return;
15205
15206         intel_crtc_update_active_timings(new_crtc_state);
15207
15208         dev_priv->display.crtc_enable(state, crtc);
15209
15210         /* vblanks work again, re-enable pipe CRC. */
15211         intel_crtc_enable_pipe_crc(crtc);
15212 }
15213
15214 static void intel_update_crtc(struct intel_atomic_state *state,
15215                               struct intel_crtc *crtc)
15216 {
15217         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15218         const struct intel_crtc_state *old_crtc_state =
15219                 intel_atomic_get_old_crtc_state(state, crtc);
15220         struct intel_crtc_state *new_crtc_state =
15221                 intel_atomic_get_new_crtc_state(state, crtc);
15222         bool modeset = needs_modeset(new_crtc_state);
15223
15224         if (!modeset) {
15225                 if (new_crtc_state->preload_luts &&
15226                     (new_crtc_state->uapi.color_mgmt_changed ||
15227                      new_crtc_state->update_pipe))
15228                         intel_color_load_luts(new_crtc_state);
15229
15230                 intel_pre_plane_update(state, crtc);
15231
15232                 if (new_crtc_state->update_pipe)
15233                         intel_encoders_update_pipe(state, crtc);
15234         }
15235
15236         if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15237                 intel_fbc_disable(crtc);
15238         else
15239                 intel_fbc_enable(state, crtc);
15240
15241         /* Perform vblank evasion around commit operation */
15242         intel_pipe_update_start(new_crtc_state);
15243
15244         commit_pipe_config(state, crtc);
15245
15246         if (INTEL_GEN(dev_priv) >= 9)
15247                 skl_update_planes_on_crtc(state, crtc);
15248         else
15249                 i9xx_update_planes_on_crtc(state, crtc);
15250
15251         intel_pipe_update_end(new_crtc_state);
15252
15253         /*
15254          * We usually enable FIFO underrun interrupts as part of the
15255          * CRTC enable sequence during modesets.  But when we inherit a
15256          * valid pipe configuration from the BIOS we need to take care
15257          * of enabling them on the CRTC's first fastset.
15258          */
15259         if (new_crtc_state->update_pipe && !modeset &&
15260             old_crtc_state->inherited)
15261                 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15262 }
15263
15264
15265 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15266                                           struct intel_crtc_state *old_crtc_state,
15267                                           struct intel_crtc_state *new_crtc_state,
15268                                           struct intel_crtc *crtc)
15269 {
15270         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15271
15272         intel_crtc_disable_planes(state, crtc);
15273
15274         /*
15275          * We need to disable pipe CRC before disabling the pipe,
15276          * or we race against vblank off.
15277          */
15278         intel_crtc_disable_pipe_crc(crtc);
15279
15280         dev_priv->display.crtc_disable(state, crtc);
15281         crtc->active = false;
15282         intel_fbc_disable(crtc);
15283         intel_disable_shared_dpll(old_crtc_state);
15284
15285         /* FIXME unify this for all platforms */
15286         if (!new_crtc_state->hw.active &&
15287             !HAS_GMCH(dev_priv) &&
15288             dev_priv->display.initial_watermarks)
15289                 dev_priv->display.initial_watermarks(state, crtc);
15290 }
15291
15292 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15293 {
15294         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15295         struct intel_crtc *crtc;
15296         u32 handled = 0;
15297         int i;
15298
15299         /* Only disable port sync and MST slaves */
15300         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15301                                             new_crtc_state, i) {
15302                 if (!needs_modeset(new_crtc_state))
15303                         continue;
15304
15305                 if (!old_crtc_state->hw.active)
15306                         continue;
15307
15308                 /* In case of Transcoder port Sync master slave CRTCs can be
15309                  * assigned in any order and we need to make sure that
15310                  * slave CRTCs are disabled first and then master CRTC since
15311                  * Slave vblanks are masked till Master Vblanks.
15312                  */
15313                 if (!is_trans_port_sync_slave(old_crtc_state) &&
15314                     !intel_dp_mst_is_slave_trans(old_crtc_state))
15315                         continue;
15316
15317                 intel_pre_plane_update(state, crtc);
15318                 intel_old_crtc_state_disables(state, old_crtc_state,
15319                                               new_crtc_state, crtc);
15320                 handled |= BIT(crtc->pipe);
15321         }
15322
15323         /* Disable everything else left on */
15324         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15325                                             new_crtc_state, i) {
15326                 if (!needs_modeset(new_crtc_state) ||
15327                     (handled & BIT(crtc->pipe)))
15328                         continue;
15329
15330                 intel_pre_plane_update(state, crtc);
15331                 if (old_crtc_state->hw.active)
15332                         intel_old_crtc_state_disables(state, old_crtc_state,
15333                                                       new_crtc_state, crtc);
15334         }
15335 }
15336
15337 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15338 {
15339         struct intel_crtc_state *new_crtc_state;
15340         struct intel_crtc *crtc;
15341         int i;
15342
15343         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15344                 if (!new_crtc_state->hw.active)
15345                         continue;
15346
15347                 intel_enable_crtc(state, crtc);
15348                 intel_update_crtc(state, crtc);
15349         }
15350 }
15351
15352 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15353 {
15354         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15355         struct intel_crtc *crtc;
15356         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15357         struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15358         u8 update_pipes = 0, modeset_pipes = 0;
15359         int i;
15360
15361         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15362                 enum pipe pipe = crtc->pipe;
15363
15364                 if (!new_crtc_state->hw.active)
15365                         continue;
15366
15367                 /* ignore allocations for crtc's that have been turned off. */
15368                 if (!needs_modeset(new_crtc_state)) {
15369                         entries[pipe] = old_crtc_state->wm.skl.ddb;
15370                         update_pipes |= BIT(pipe);
15371                 } else {
15372                         modeset_pipes |= BIT(pipe);
15373                 }
15374         }
15375
15376         /*
15377          * Whenever the number of active pipes changes, we need to make sure we
15378          * update the pipes in the right order so that their ddb allocations
15379          * never overlap with each other between CRTC updates. Otherwise we'll
15380          * cause pipe underruns and other bad stuff.
15381          *
15382          * So first lets enable all pipes that do not need a fullmodeset as
15383          * those don't have any external dependency.
15384          */
15385         while (update_pipes) {
15386                 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15387                                                     new_crtc_state, i) {
15388                         enum pipe pipe = crtc->pipe;
15389
15390                         if ((update_pipes & BIT(pipe)) == 0)
15391                                 continue;
15392
15393                         if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15394                                                         entries, I915_MAX_PIPES, pipe))
15395                                 continue;
15396
15397                         entries[pipe] = new_crtc_state->wm.skl.ddb;
15398                         update_pipes &= ~BIT(pipe);
15399
15400                         intel_update_crtc(state, crtc);
15401
15402                         /*
15403                          * If this is an already active pipe, it's DDB changed,
15404                          * and this isn't the last pipe that needs updating
15405                          * then we need to wait for a vblank to pass for the
15406                          * new ddb allocation to take effect.
15407                          */
15408                         if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15409                                                  &old_crtc_state->wm.skl.ddb) &&
15410                             (update_pipes | modeset_pipes))
15411                                 intel_wait_for_vblank(dev_priv, pipe);
15412                 }
15413         }
15414
15415         update_pipes = modeset_pipes;
15416
15417         /*
15418          * Enable all pipes that needs a modeset and do not depends on other
15419          * pipes
15420          */
15421         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15422                 enum pipe pipe = crtc->pipe;
15423
15424                 if ((modeset_pipes & BIT(pipe)) == 0)
15425                         continue;
15426
15427                 if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15428                     is_trans_port_sync_master(new_crtc_state))
15429                         continue;
15430
15431                 modeset_pipes &= ~BIT(pipe);
15432
15433                 intel_enable_crtc(state, crtc);
15434         }
15435
15436         /*
15437          * Then we enable all remaining pipes that depend on other
15438          * pipes: MST slaves and port sync masters.
15439          */
15440         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15441                 enum pipe pipe = crtc->pipe;
15442
15443                 if ((modeset_pipes & BIT(pipe)) == 0)
15444                         continue;
15445
15446                 modeset_pipes &= ~BIT(pipe);
15447
15448                 intel_enable_crtc(state, crtc);
15449         }
15450
15451         /*
15452          * Finally we do the plane updates/etc. for all pipes that got enabled.
15453          */
15454         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15455                 enum pipe pipe = crtc->pipe;
15456
15457                 if ((update_pipes & BIT(pipe)) == 0)
15458                         continue;
15459
15460                 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15461                                                                         entries, I915_MAX_PIPES, pipe));
15462
15463                 entries[pipe] = new_crtc_state->wm.skl.ddb;
15464                 update_pipes &= ~BIT(pipe);
15465
15466                 intel_update_crtc(state, crtc);
15467         }
15468
15469         drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15470         drm_WARN_ON(&dev_priv->drm, update_pipes);
15471 }
15472
15473 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15474 {
15475         struct intel_atomic_state *state, *next;
15476         struct llist_node *freed;
15477
15478         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15479         llist_for_each_entry_safe(state, next, freed, freed)
15480                 drm_atomic_state_put(&state->base);
15481 }
15482
15483 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15484 {
15485         struct drm_i915_private *dev_priv =
15486                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15487
15488         intel_atomic_helper_free_state(dev_priv);
15489 }
15490
15491 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15492 {
15493         struct wait_queue_entry wait_fence, wait_reset;
15494         struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15495
15496         init_wait_entry(&wait_fence, 0);
15497         init_wait_entry(&wait_reset, 0);
15498         for (;;) {
15499                 prepare_to_wait(&intel_state->commit_ready.wait,
15500                                 &wait_fence, TASK_UNINTERRUPTIBLE);
15501                 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15502                                               I915_RESET_MODESET),
15503                                 &wait_reset, TASK_UNINTERRUPTIBLE);
15504
15505
15506                 if (i915_sw_fence_done(&intel_state->commit_ready) ||
15507                     test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15508                         break;
15509
15510                 schedule();
15511         }
15512         finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15513         finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15514                                   I915_RESET_MODESET),
15515                     &wait_reset);
15516 }
15517
15518 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15519 {
15520         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15521         struct intel_crtc *crtc;
15522         int i;
15523
15524         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15525                                             new_crtc_state, i)
15526                 intel_dsb_cleanup(old_crtc_state);
15527 }
15528
15529 static void intel_atomic_cleanup_work(struct work_struct *work)
15530 {
15531         struct intel_atomic_state *state =
15532                 container_of(work, struct intel_atomic_state, base.commit_work);
15533         struct drm_i915_private *i915 = to_i915(state->base.dev);
15534
15535         intel_cleanup_dsbs(state);
15536         drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15537         drm_atomic_helper_commit_cleanup_done(&state->base);
15538         drm_atomic_state_put(&state->base);
15539
15540         intel_atomic_helper_free_state(i915);
15541 }
15542
15543 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15544 {
15545         struct drm_device *dev = state->base.dev;
15546         struct drm_i915_private *dev_priv = to_i915(dev);
15547         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15548         struct intel_crtc *crtc;
15549         u64 put_domains[I915_MAX_PIPES] = {};
15550         intel_wakeref_t wakeref = 0;
15551         int i;
15552
15553         intel_atomic_commit_fence_wait(state);
15554
15555         drm_atomic_helper_wait_for_dependencies(&state->base);
15556
15557         if (state->modeset)
15558                 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15559
15560         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15561                                             new_crtc_state, i) {
15562                 if (needs_modeset(new_crtc_state) ||
15563                     new_crtc_state->update_pipe) {
15564
15565                         put_domains[crtc->pipe] =
15566                                 modeset_get_crtc_power_domains(new_crtc_state);
15567                 }
15568         }
15569
15570         intel_commit_modeset_disables(state);
15571
15572         /* FIXME: Eventually get rid of our crtc->config pointer */
15573         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15574                 crtc->config = new_crtc_state;
15575
15576         if (state->modeset) {
15577                 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15578
15579                 intel_set_cdclk_pre_plane_update(state);
15580
15581                 intel_modeset_verify_disabled(dev_priv, state);
15582         }
15583
15584         intel_sagv_pre_plane_update(state);
15585
15586         /* Complete the events for pipes that have now been disabled */
15587         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15588                 bool modeset = needs_modeset(new_crtc_state);
15589
15590                 /* Complete events for now disable pipes here. */
15591                 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15592                         spin_lock_irq(&dev->event_lock);
15593                         drm_crtc_send_vblank_event(&crtc->base,
15594                                                    new_crtc_state->uapi.event);
15595                         spin_unlock_irq(&dev->event_lock);
15596
15597                         new_crtc_state->uapi.event = NULL;
15598                 }
15599         }
15600
15601         if (state->modeset)
15602                 intel_encoders_update_prepare(state);
15603
15604         intel_dbuf_pre_plane_update(state);
15605
15606         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
15607         dev_priv->display.commit_modeset_enables(state);
15608
15609         if (state->modeset) {
15610                 intel_encoders_update_complete(state);
15611
15612                 intel_set_cdclk_post_plane_update(state);
15613         }
15614
15615         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15616          * already, but still need the state for the delayed optimization. To
15617          * fix this:
15618          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15619          * - schedule that vblank worker _before_ calling hw_done
15620          * - at the start of commit_tail, cancel it _synchrously
15621          * - switch over to the vblank wait helper in the core after that since
15622          *   we don't need out special handling any more.
15623          */
15624         drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15625
15626         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15627                 if (new_crtc_state->hw.active &&
15628                     !needs_modeset(new_crtc_state) &&
15629                     !new_crtc_state->preload_luts &&
15630                     (new_crtc_state->uapi.color_mgmt_changed ||
15631                      new_crtc_state->update_pipe))
15632                         intel_color_load_luts(new_crtc_state);
15633         }
15634
15635         /*
15636          * Now that the vblank has passed, we can go ahead and program the
15637          * optimal watermarks on platforms that need two-step watermark
15638          * programming.
15639          *
15640          * TODO: Move this (and other cleanup) to an async worker eventually.
15641          */
15642         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15643                                             new_crtc_state, i) {
15644                 /*
15645                  * Gen2 reports pipe underruns whenever all planes are disabled.
15646                  * So re-enable underrun reporting after some planes get enabled.
15647                  *
15648                  * We do this before .optimize_watermarks() so that we have a
15649                  * chance of catching underruns with the intermediate watermarks
15650                  * vs. the new plane configuration.
15651                  */
15652                 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15653                         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15654
15655                 if (dev_priv->display.optimize_watermarks)
15656                         dev_priv->display.optimize_watermarks(state, crtc);
15657         }
15658
15659         intel_dbuf_post_plane_update(state);
15660
15661         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15662                 intel_post_plane_update(state, crtc);
15663
15664                 if (put_domains[i])
15665                         modeset_put_power_domains(dev_priv, put_domains[i]);
15666
15667                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15668
15669                 /*
15670                  * DSB cleanup is done in cleanup_work aligning with framebuffer
15671                  * cleanup. So copy and reset the dsb structure to sync with
15672                  * commit_done and later do dsb cleanup in cleanup_work.
15673                  */
15674                 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15675         }
15676
15677         /* Underruns don't always raise interrupts, so check manually */
15678         intel_check_cpu_fifo_underruns(dev_priv);
15679         intel_check_pch_fifo_underruns(dev_priv);
15680
15681         if (state->modeset)
15682                 intel_verify_planes(state);
15683
15684         intel_sagv_post_plane_update(state);
15685
15686         drm_atomic_helper_commit_hw_done(&state->base);
15687
15688         if (state->modeset) {
15689                 /* As one of the primary mmio accessors, KMS has a high
15690                  * likelihood of triggering bugs in unclaimed access. After we
15691                  * finish modesetting, see if an error has been flagged, and if
15692                  * so enable debugging for the next modeset - and hope we catch
15693                  * the culprit.
15694                  */
15695                 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15696                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15697         }
15698         intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15699
15700         /*
15701          * Defer the cleanup of the old state to a separate worker to not
15702          * impede the current task (userspace for blocking modesets) that
15703          * are executed inline. For out-of-line asynchronous modesets/flips,
15704          * deferring to a new worker seems overkill, but we would place a
15705          * schedule point (cond_resched()) here anyway to keep latencies
15706          * down.
15707          */
15708         INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15709         queue_work(system_highpri_wq, &state->base.commit_work);
15710 }
15711
15712 static void intel_atomic_commit_work(struct work_struct *work)
15713 {
15714         struct intel_atomic_state *state =
15715                 container_of(work, struct intel_atomic_state, base.commit_work);
15716
15717         intel_atomic_commit_tail(state);
15718 }
15719
15720 static int __i915_sw_fence_call
15721 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15722                           enum i915_sw_fence_notify notify)
15723 {
15724         struct intel_atomic_state *state =
15725                 container_of(fence, struct intel_atomic_state, commit_ready);
15726
15727         switch (notify) {
15728         case FENCE_COMPLETE:
15729                 /* we do blocking waits in the worker, nothing to do here */
15730                 break;
15731         case FENCE_FREE:
15732                 {
15733                         struct intel_atomic_helper *helper =
15734                                 &to_i915(state->base.dev)->atomic_helper;
15735
15736                         if (llist_add(&state->freed, &helper->free_list))
15737                                 schedule_work(&helper->free_work);
15738                         break;
15739                 }
15740         }
15741
15742         return NOTIFY_DONE;
15743 }
15744
15745 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15746 {
15747         struct intel_plane_state *old_plane_state, *new_plane_state;
15748         struct intel_plane *plane;
15749         int i;
15750
15751         for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15752                                              new_plane_state, i)
15753                 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15754                                         to_intel_frontbuffer(new_plane_state->hw.fb),
15755                                         plane->frontbuffer_bit);
15756 }
15757
15758 static int intel_atomic_commit(struct drm_device *dev,
15759                                struct drm_atomic_state *_state,
15760                                bool nonblock)
15761 {
15762         struct intel_atomic_state *state = to_intel_atomic_state(_state);
15763         struct drm_i915_private *dev_priv = to_i915(dev);
15764         int ret = 0;
15765
15766         state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15767
15768         drm_atomic_state_get(&state->base);
15769         i915_sw_fence_init(&state->commit_ready,
15770                            intel_atomic_commit_ready);
15771
15772         /*
15773          * The intel_legacy_cursor_update() fast path takes care
15774          * of avoiding the vblank waits for simple cursor
15775          * movement and flips. For cursor on/off and size changes,
15776          * we want to perform the vblank waits so that watermark
15777          * updates happen during the correct frames. Gen9+ have
15778          * double buffered watermarks and so shouldn't need this.
15779          *
15780          * Unset state->legacy_cursor_update before the call to
15781          * drm_atomic_helper_setup_commit() because otherwise
15782          * drm_atomic_helper_wait_for_flip_done() is a noop and
15783          * we get FIFO underruns because we didn't wait
15784          * for vblank.
15785          *
15786          * FIXME doing watermarks and fb cleanup from a vblank worker
15787          * (assuming we had any) would solve these problems.
15788          */
15789         if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15790                 struct intel_crtc_state *new_crtc_state;
15791                 struct intel_crtc *crtc;
15792                 int i;
15793
15794                 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15795                         if (new_crtc_state->wm.need_postvbl_update ||
15796                             new_crtc_state->update_wm_post)
15797                                 state->base.legacy_cursor_update = false;
15798         }
15799
15800         ret = intel_atomic_prepare_commit(state);
15801         if (ret) {
15802                 drm_dbg_atomic(&dev_priv->drm,
15803                                "Preparing state failed with %i\n", ret);
15804                 i915_sw_fence_commit(&state->commit_ready);
15805                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15806                 return ret;
15807         }
15808
15809         ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15810         if (!ret)
15811                 ret = drm_atomic_helper_swap_state(&state->base, true);
15812         if (!ret)
15813                 intel_atomic_swap_global_state(state);
15814
15815         if (ret) {
15816                 struct intel_crtc_state *new_crtc_state;
15817                 struct intel_crtc *crtc;
15818                 int i;
15819
15820                 i915_sw_fence_commit(&state->commit_ready);
15821
15822                 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15823                         intel_dsb_cleanup(new_crtc_state);
15824
15825                 drm_atomic_helper_cleanup_planes(dev, &state->base);
15826                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15827                 return ret;
15828         }
15829         dev_priv->wm.distrust_bios_wm = false;
15830         intel_shared_dpll_swap_state(state);
15831         intel_atomic_track_fbs(state);
15832
15833         drm_atomic_state_get(&state->base);
15834         INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15835
15836         i915_sw_fence_commit(&state->commit_ready);
15837         if (nonblock && state->modeset) {
15838                 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15839         } else if (nonblock) {
15840                 queue_work(dev_priv->flip_wq, &state->base.commit_work);
15841         } else {
15842                 if (state->modeset)
15843                         flush_workqueue(dev_priv->modeset_wq);
15844                 intel_atomic_commit_tail(state);
15845         }
15846
15847         return 0;
15848 }
15849
15850 struct wait_rps_boost {
15851         struct wait_queue_entry wait;
15852
15853         struct drm_crtc *crtc;
15854         struct i915_request *request;
15855 };
15856
15857 static int do_rps_boost(struct wait_queue_entry *_wait,
15858                         unsigned mode, int sync, void *key)
15859 {
15860         struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15861         struct i915_request *rq = wait->request;
15862
15863         /*
15864          * If we missed the vblank, but the request is already running it
15865          * is reasonable to assume that it will complete before the next
15866          * vblank without our intervention, so leave RPS alone.
15867          */
15868         if (!i915_request_started(rq))
15869                 intel_rps_boost(rq);
15870         i915_request_put(rq);
15871
15872         drm_crtc_vblank_put(wait->crtc);
15873
15874         list_del(&wait->wait.entry);
15875         kfree(wait);
15876         return 1;
15877 }
15878
15879 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15880                                        struct dma_fence *fence)
15881 {
15882         struct wait_rps_boost *wait;
15883
15884         if (!dma_fence_is_i915(fence))
15885                 return;
15886
15887         if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15888                 return;
15889
15890         if (drm_crtc_vblank_get(crtc))
15891                 return;
15892
15893         wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15894         if (!wait) {
15895                 drm_crtc_vblank_put(crtc);
15896                 return;
15897         }
15898
15899         wait->request = to_request(dma_fence_get(fence));
15900         wait->crtc = crtc;
15901
15902         wait->wait.func = do_rps_boost;
15903         wait->wait.flags = 0;
15904
15905         add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15906 }
15907
15908 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15909 {
15910         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15911         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15912         struct drm_framebuffer *fb = plane_state->hw.fb;
15913         struct i915_vma *vma;
15914
15915         if (plane->id == PLANE_CURSOR &&
15916             INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15917                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15918                 const int align = intel_cursor_alignment(dev_priv);
15919                 int err;
15920
15921                 err = i915_gem_object_attach_phys(obj, align);
15922                 if (err)
15923                         return err;
15924         }
15925
15926         vma = intel_pin_and_fence_fb_obj(fb,
15927                                          &plane_state->view,
15928                                          intel_plane_uses_fence(plane_state),
15929                                          &plane_state->flags);
15930         if (IS_ERR(vma))
15931                 return PTR_ERR(vma);
15932
15933         plane_state->vma = vma;
15934
15935         return 0;
15936 }
15937
15938 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15939 {
15940         struct i915_vma *vma;
15941
15942         vma = fetch_and_zero(&old_plane_state->vma);
15943         if (vma)
15944                 intel_unpin_fb_vma(vma, old_plane_state->flags);
15945 }
15946
15947 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15948 {
15949         struct i915_sched_attr attr = {
15950                 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15951         };
15952
15953         i915_gem_object_wait_priority(obj, 0, &attr);
15954 }
15955
15956 /**
15957  * intel_prepare_plane_fb - Prepare fb for usage on plane
15958  * @_plane: drm plane to prepare for
15959  * @_new_plane_state: the plane state being prepared
15960  *
15961  * Prepares a framebuffer for usage on a display plane.  Generally this
15962  * involves pinning the underlying object and updating the frontbuffer tracking
15963  * bits.  Some older platforms need special physical address handling for
15964  * cursor planes.
15965  *
15966  * Returns 0 on success, negative error code on failure.
15967  */
15968 int
15969 intel_prepare_plane_fb(struct drm_plane *_plane,
15970                        struct drm_plane_state *_new_plane_state)
15971 {
15972         struct intel_plane *plane = to_intel_plane(_plane);
15973         struct intel_plane_state *new_plane_state =
15974                 to_intel_plane_state(_new_plane_state);
15975         struct intel_atomic_state *state =
15976                 to_intel_atomic_state(new_plane_state->uapi.state);
15977         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15978         const struct intel_plane_state *old_plane_state =
15979                 intel_atomic_get_old_plane_state(state, plane);
15980         struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15981         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15982         int ret;
15983
15984         if (old_obj) {
15985                 const struct intel_crtc_state *crtc_state =
15986                         intel_atomic_get_new_crtc_state(state,
15987                                                         to_intel_crtc(old_plane_state->hw.crtc));
15988
15989                 /* Big Hammer, we also need to ensure that any pending
15990                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15991                  * current scanout is retired before unpinning the old
15992                  * framebuffer. Note that we rely on userspace rendering
15993                  * into the buffer attached to the pipe they are waiting
15994                  * on. If not, userspace generates a GPU hang with IPEHR
15995                  * point to the MI_WAIT_FOR_EVENT.
15996                  *
15997                  * This should only fail upon a hung GPU, in which case we
15998                  * can safely continue.
15999                  */
16000                 if (needs_modeset(crtc_state)) {
16001                         ret = i915_sw_fence_await_reservation(&state->commit_ready,
16002                                                               old_obj->base.resv, NULL,
16003                                                               false, 0,
16004                                                               GFP_KERNEL);
16005                         if (ret < 0)
16006                                 return ret;
16007                 }
16008         }
16009
16010         if (new_plane_state->uapi.fence) { /* explicit fencing */
16011                 ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16012                                                     new_plane_state->uapi.fence,
16013                                                     i915_fence_timeout(dev_priv),
16014                                                     GFP_KERNEL);
16015                 if (ret < 0)
16016                         return ret;
16017         }
16018
16019         if (!obj)
16020                 return 0;
16021
16022         ret = i915_gem_object_pin_pages(obj);
16023         if (ret)
16024                 return ret;
16025
16026         ret = intel_plane_pin_fb(new_plane_state);
16027
16028         i915_gem_object_unpin_pages(obj);
16029         if (ret)
16030                 return ret;
16031
16032         fb_obj_bump_render_priority(obj);
16033         i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16034
16035         if (!new_plane_state->uapi.fence) { /* implicit fencing */
16036                 struct dma_fence *fence;
16037
16038                 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16039                                                       obj->base.resv, NULL,
16040                                                       false,
16041                                                       i915_fence_timeout(dev_priv),
16042                                                       GFP_KERNEL);
16043                 if (ret < 0)
16044                         goto unpin_fb;
16045
16046                 fence = dma_resv_get_excl_rcu(obj->base.resv);
16047                 if (fence) {
16048                         add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16049                                                    fence);
16050                         dma_fence_put(fence);
16051                 }
16052         } else {
16053                 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16054                                            new_plane_state->uapi.fence);
16055         }
16056
16057         /*
16058          * We declare pageflips to be interactive and so merit a small bias
16059          * towards upclocking to deliver the frame on time. By only changing
16060          * the RPS thresholds to sample more regularly and aim for higher
16061          * clocks we can hopefully deliver low power workloads (like kodi)
16062          * that are not quite steady state without resorting to forcing
16063          * maximum clocks following a vblank miss (see do_rps_boost()).
16064          */
16065         if (!state->rps_interactive) {
16066                 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16067                 state->rps_interactive = true;
16068         }
16069
16070         return 0;
16071
16072 unpin_fb:
16073         intel_plane_unpin_fb(new_plane_state);
16074
16075         return ret;
16076 }
16077
16078 /**
16079  * intel_cleanup_plane_fb - Cleans up an fb after plane use
16080  * @plane: drm plane to clean up for
16081  * @_old_plane_state: the state from the previous modeset
16082  *
16083  * Cleans up a framebuffer that has just been removed from a plane.
16084  */
16085 void
16086 intel_cleanup_plane_fb(struct drm_plane *plane,
16087                        struct drm_plane_state *_old_plane_state)
16088 {
16089         struct intel_plane_state *old_plane_state =
16090                 to_intel_plane_state(_old_plane_state);
16091         struct intel_atomic_state *state =
16092                 to_intel_atomic_state(old_plane_state->uapi.state);
16093         struct drm_i915_private *dev_priv = to_i915(plane->dev);
16094         struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16095
16096         if (!obj)
16097                 return;
16098
16099         if (state->rps_interactive) {
16100                 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16101                 state->rps_interactive = false;
16102         }
16103
16104         /* Should only be called after a successful intel_prepare_plane_fb()! */
16105         intel_plane_unpin_fb(old_plane_state);
16106 }
16107
16108 /**
16109  * intel_plane_destroy - destroy a plane
16110  * @plane: plane to destroy
16111  *
16112  * Common destruction function for all types of planes (primary, cursor,
16113  * sprite).
16114  */
16115 void intel_plane_destroy(struct drm_plane *plane)
16116 {
16117         drm_plane_cleanup(plane);
16118         kfree(to_intel_plane(plane));
16119 }
16120
16121 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16122                                             u32 format, u64 modifier)
16123 {
16124         switch (modifier) {
16125         case DRM_FORMAT_MOD_LINEAR:
16126         case I915_FORMAT_MOD_X_TILED:
16127                 break;
16128         default:
16129                 return false;
16130         }
16131
16132         switch (format) {
16133         case DRM_FORMAT_C8:
16134         case DRM_FORMAT_RGB565:
16135         case DRM_FORMAT_XRGB1555:
16136         case DRM_FORMAT_XRGB8888:
16137                 return modifier == DRM_FORMAT_MOD_LINEAR ||
16138                         modifier == I915_FORMAT_MOD_X_TILED;
16139         default:
16140                 return false;
16141         }
16142 }
16143
16144 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16145                                             u32 format, u64 modifier)
16146 {
16147         switch (modifier) {
16148         case DRM_FORMAT_MOD_LINEAR:
16149         case I915_FORMAT_MOD_X_TILED:
16150                 break;
16151         default:
16152                 return false;
16153         }
16154
16155         switch (format) {
16156         case DRM_FORMAT_C8:
16157         case DRM_FORMAT_RGB565:
16158         case DRM_FORMAT_XRGB8888:
16159         case DRM_FORMAT_XBGR8888:
16160         case DRM_FORMAT_ARGB8888:
16161         case DRM_FORMAT_ABGR8888:
16162         case DRM_FORMAT_XRGB2101010:
16163         case DRM_FORMAT_XBGR2101010:
16164         case DRM_FORMAT_ARGB2101010:
16165         case DRM_FORMAT_ABGR2101010:
16166         case DRM_FORMAT_XBGR16161616F:
16167                 return modifier == DRM_FORMAT_MOD_LINEAR ||
16168                         modifier == I915_FORMAT_MOD_X_TILED;
16169         default:
16170                 return false;
16171         }
16172 }
16173
16174 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16175                                               u32 format, u64 modifier)
16176 {
16177         return modifier == DRM_FORMAT_MOD_LINEAR &&
16178                 format == DRM_FORMAT_ARGB8888;
16179 }
16180
16181 static const struct drm_plane_funcs i965_plane_funcs = {
16182         .update_plane = drm_atomic_helper_update_plane,
16183         .disable_plane = drm_atomic_helper_disable_plane,
16184         .destroy = intel_plane_destroy,
16185         .atomic_duplicate_state = intel_plane_duplicate_state,
16186         .atomic_destroy_state = intel_plane_destroy_state,
16187         .format_mod_supported = i965_plane_format_mod_supported,
16188 };
16189
16190 static const struct drm_plane_funcs i8xx_plane_funcs = {
16191         .update_plane = drm_atomic_helper_update_plane,
16192         .disable_plane = drm_atomic_helper_disable_plane,
16193         .destroy = intel_plane_destroy,
16194         .atomic_duplicate_state = intel_plane_duplicate_state,
16195         .atomic_destroy_state = intel_plane_destroy_state,
16196         .format_mod_supported = i8xx_plane_format_mod_supported,
16197 };
16198
16199 static int
16200 intel_legacy_cursor_update(struct drm_plane *_plane,
16201                            struct drm_crtc *_crtc,
16202                            struct drm_framebuffer *fb,
16203                            int crtc_x, int crtc_y,
16204                            unsigned int crtc_w, unsigned int crtc_h,
16205                            u32 src_x, u32 src_y,
16206                            u32 src_w, u32 src_h,
16207                            struct drm_modeset_acquire_ctx *ctx)
16208 {
16209         struct intel_plane *plane = to_intel_plane(_plane);
16210         struct intel_crtc *crtc = to_intel_crtc(_crtc);
16211         struct intel_plane_state *old_plane_state =
16212                 to_intel_plane_state(plane->base.state);
16213         struct intel_plane_state *new_plane_state;
16214         struct intel_crtc_state *crtc_state =
16215                 to_intel_crtc_state(crtc->base.state);
16216         struct intel_crtc_state *new_crtc_state;
16217         int ret;
16218
16219         /*
16220          * When crtc is inactive or there is a modeset pending,
16221          * wait for it to complete in the slowpath
16222          */
16223         if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16224             crtc_state->update_pipe)
16225                 goto slow;
16226
16227         /*
16228          * Don't do an async update if there is an outstanding commit modifying
16229          * the plane.  This prevents our async update's changes from getting
16230          * overridden by a previous synchronous update's state.
16231          */
16232         if (old_plane_state->uapi.commit &&
16233             !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16234                 goto slow;
16235
16236         /*
16237          * If any parameters change that may affect watermarks,
16238          * take the slowpath. Only changing fb or position should be
16239          * in the fastpath.
16240          */
16241         if (old_plane_state->uapi.crtc != &crtc->base ||
16242             old_plane_state->uapi.src_w != src_w ||
16243             old_plane_state->uapi.src_h != src_h ||
16244             old_plane_state->uapi.crtc_w != crtc_w ||
16245             old_plane_state->uapi.crtc_h != crtc_h ||
16246             !old_plane_state->uapi.fb != !fb)
16247                 goto slow;
16248
16249         new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16250         if (!new_plane_state)
16251                 return -ENOMEM;
16252
16253         new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16254         if (!new_crtc_state) {
16255                 ret = -ENOMEM;
16256                 goto out_free;
16257         }
16258
16259         drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16260
16261         new_plane_state->uapi.src_x = src_x;
16262         new_plane_state->uapi.src_y = src_y;
16263         new_plane_state->uapi.src_w = src_w;
16264         new_plane_state->uapi.src_h = src_h;
16265         new_plane_state->uapi.crtc_x = crtc_x;
16266         new_plane_state->uapi.crtc_y = crtc_y;
16267         new_plane_state->uapi.crtc_w = crtc_w;
16268         new_plane_state->uapi.crtc_h = crtc_h;
16269
16270         intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16271
16272         ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16273                                                   old_plane_state, new_plane_state);
16274         if (ret)
16275                 goto out_free;
16276
16277         ret = intel_plane_pin_fb(new_plane_state);
16278         if (ret)
16279                 goto out_free;
16280
16281         intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16282                                 ORIGIN_FLIP);
16283         intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16284                                 to_intel_frontbuffer(new_plane_state->hw.fb),
16285                                 plane->frontbuffer_bit);
16286
16287         /* Swap plane state */
16288         plane->base.state = &new_plane_state->uapi;
16289
16290         /*
16291          * We cannot swap crtc_state as it may be in use by an atomic commit or
16292          * page flip that's running simultaneously. If we swap crtc_state and
16293          * destroy the old state, we will cause a use-after-free there.
16294          *
16295          * Only update active_planes, which is needed for our internal
16296          * bookkeeping. Either value will do the right thing when updating
16297          * planes atomically. If the cursor was part of the atomic update then
16298          * we would have taken the slowpath.
16299          */
16300         crtc_state->active_planes = new_crtc_state->active_planes;
16301
16302         if (new_plane_state->uapi.visible)
16303                 intel_update_plane(plane, crtc_state, new_plane_state);
16304         else
16305                 intel_disable_plane(plane, crtc_state);
16306
16307         intel_plane_unpin_fb(old_plane_state);
16308
16309 out_free:
16310         if (new_crtc_state)
16311                 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16312         if (ret)
16313                 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16314         else
16315                 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16316         return ret;
16317
16318 slow:
16319         return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16320                                               crtc_x, crtc_y, crtc_w, crtc_h,
16321                                               src_x, src_y, src_w, src_h, ctx);
16322 }
16323
16324 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16325         .update_plane = intel_legacy_cursor_update,
16326         .disable_plane = drm_atomic_helper_disable_plane,
16327         .destroy = intel_plane_destroy,
16328         .atomic_duplicate_state = intel_plane_duplicate_state,
16329         .atomic_destroy_state = intel_plane_destroy_state,
16330         .format_mod_supported = intel_cursor_format_mod_supported,
16331 };
16332
16333 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16334                                enum i9xx_plane_id i9xx_plane)
16335 {
16336         if (!HAS_FBC(dev_priv))
16337                 return false;
16338
16339         if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16340                 return i9xx_plane == PLANE_A; /* tied to pipe A */
16341         else if (IS_IVYBRIDGE(dev_priv))
16342                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16343                         i9xx_plane == PLANE_C;
16344         else if (INTEL_GEN(dev_priv) >= 4)
16345                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16346         else
16347                 return i9xx_plane == PLANE_A;
16348 }
16349
16350 static struct intel_plane *
16351 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16352 {
16353         struct intel_plane *plane;
16354         const struct drm_plane_funcs *plane_funcs;
16355         unsigned int supported_rotations;
16356         const u32 *formats;
16357         int num_formats;
16358         int ret, zpos;
16359
16360         if (INTEL_GEN(dev_priv) >= 9)
16361                 return skl_universal_plane_create(dev_priv, pipe,
16362                                                   PLANE_PRIMARY);
16363
16364         plane = intel_plane_alloc();
16365         if (IS_ERR(plane))
16366                 return plane;
16367
16368         plane->pipe = pipe;
16369         /*
16370          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16371          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16372          */
16373         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16374             INTEL_NUM_PIPES(dev_priv) == 2)
16375                 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16376         else
16377                 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16378         plane->id = PLANE_PRIMARY;
16379         plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16380
16381         plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16382         if (plane->has_fbc) {
16383                 struct intel_fbc *fbc = &dev_priv->fbc;
16384
16385                 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16386         }
16387
16388         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16389                 formats = vlv_primary_formats;
16390                 num_formats = ARRAY_SIZE(vlv_primary_formats);
16391         } else if (INTEL_GEN(dev_priv) >= 4) {
16392                 /*
16393                  * WaFP16GammaEnabling:ivb
16394                  * "Workaround : When using the 64-bit format, the plane
16395                  *  output on each color channel has one quarter amplitude.
16396                  *  It can be brought up to full amplitude by using pipe
16397                  *  gamma correction or pipe color space conversion to
16398                  *  multiply the plane output by four."
16399                  *
16400                  * There is no dedicated plane gamma for the primary plane,
16401                  * and using the pipe gamma/csc could conflict with other
16402                  * planes, so we choose not to expose fp16 on IVB primary
16403                  * planes. HSW primary planes no longer have this problem.
16404                  */
16405                 if (IS_IVYBRIDGE(dev_priv)) {
16406                         formats = ivb_primary_formats;
16407                         num_formats = ARRAY_SIZE(ivb_primary_formats);
16408                 } else {
16409                         formats = i965_primary_formats;
16410                         num_formats = ARRAY_SIZE(i965_primary_formats);
16411                 }
16412         } else {
16413                 formats = i8xx_primary_formats;
16414                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
16415         }
16416
16417         if (INTEL_GEN(dev_priv) >= 4)
16418                 plane_funcs = &i965_plane_funcs;
16419         else
16420                 plane_funcs = &i8xx_plane_funcs;
16421
16422         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16423                 plane->min_cdclk = vlv_plane_min_cdclk;
16424         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16425                 plane->min_cdclk = hsw_plane_min_cdclk;
16426         else if (IS_IVYBRIDGE(dev_priv))
16427                 plane->min_cdclk = ivb_plane_min_cdclk;
16428         else
16429                 plane->min_cdclk = i9xx_plane_min_cdclk;
16430
16431         plane->max_stride = i9xx_plane_max_stride;
16432         plane->update_plane = i9xx_update_plane;
16433         plane->disable_plane = i9xx_disable_plane;
16434         plane->get_hw_state = i9xx_plane_get_hw_state;
16435         plane->check_plane = i9xx_plane_check;
16436
16437         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16438                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16439                                                0, plane_funcs,
16440                                                formats, num_formats,
16441                                                i9xx_format_modifiers,
16442                                                DRM_PLANE_TYPE_PRIMARY,
16443                                                "primary %c", pipe_name(pipe));
16444         else
16445                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16446                                                0, plane_funcs,
16447                                                formats, num_formats,
16448                                                i9xx_format_modifiers,
16449                                                DRM_PLANE_TYPE_PRIMARY,
16450                                                "plane %c",
16451                                                plane_name(plane->i9xx_plane));
16452         if (ret)
16453                 goto fail;
16454
16455         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16456                 supported_rotations =
16457                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16458                         DRM_MODE_REFLECT_X;
16459         } else if (INTEL_GEN(dev_priv) >= 4) {
16460                 supported_rotations =
16461                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16462         } else {
16463                 supported_rotations = DRM_MODE_ROTATE_0;
16464         }
16465
16466         if (INTEL_GEN(dev_priv) >= 4)
16467                 drm_plane_create_rotation_property(&plane->base,
16468                                                    DRM_MODE_ROTATE_0,
16469                                                    supported_rotations);
16470
16471         zpos = 0;
16472         drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16473
16474         drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16475
16476         return plane;
16477
16478 fail:
16479         intel_plane_free(plane);
16480
16481         return ERR_PTR(ret);
16482 }
16483
16484 static struct intel_plane *
16485 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16486                           enum pipe pipe)
16487 {
16488         struct intel_plane *cursor;
16489         int ret, zpos;
16490
16491         cursor = intel_plane_alloc();
16492         if (IS_ERR(cursor))
16493                 return cursor;
16494
16495         cursor->pipe = pipe;
16496         cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16497         cursor->id = PLANE_CURSOR;
16498         cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16499
16500         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16501                 cursor->max_stride = i845_cursor_max_stride;
16502                 cursor->update_plane = i845_update_cursor;
16503                 cursor->disable_plane = i845_disable_cursor;
16504                 cursor->get_hw_state = i845_cursor_get_hw_state;
16505                 cursor->check_plane = i845_check_cursor;
16506         } else {
16507                 cursor->max_stride = i9xx_cursor_max_stride;
16508                 cursor->update_plane = i9xx_update_cursor;
16509                 cursor->disable_plane = i9xx_disable_cursor;
16510                 cursor->get_hw_state = i9xx_cursor_get_hw_state;
16511                 cursor->check_plane = i9xx_check_cursor;
16512         }
16513
16514         cursor->cursor.base = ~0;
16515         cursor->cursor.cntl = ~0;
16516
16517         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16518                 cursor->cursor.size = ~0;
16519
16520         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16521                                        0, &intel_cursor_plane_funcs,
16522                                        intel_cursor_formats,
16523                                        ARRAY_SIZE(intel_cursor_formats),
16524                                        cursor_format_modifiers,
16525                                        DRM_PLANE_TYPE_CURSOR,
16526                                        "cursor %c", pipe_name(pipe));
16527         if (ret)
16528                 goto fail;
16529
16530         if (INTEL_GEN(dev_priv) >= 4)
16531                 drm_plane_create_rotation_property(&cursor->base,
16532                                                    DRM_MODE_ROTATE_0,
16533                                                    DRM_MODE_ROTATE_0 |
16534                                                    DRM_MODE_ROTATE_180);
16535
16536         zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16537         drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16538
16539         if (INTEL_GEN(dev_priv) >= 12)
16540                 drm_plane_enable_fb_damage_clips(&cursor->base);
16541
16542         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16543
16544         return cursor;
16545
16546 fail:
16547         intel_plane_free(cursor);
16548
16549         return ERR_PTR(ret);
16550 }
16551
16552 #define INTEL_CRTC_FUNCS \
16553         .gamma_set = drm_atomic_helper_legacy_gamma_set, \
16554         .set_config = drm_atomic_helper_set_config, \
16555         .destroy = intel_crtc_destroy, \
16556         .page_flip = drm_atomic_helper_page_flip, \
16557         .atomic_duplicate_state = intel_crtc_duplicate_state, \
16558         .atomic_destroy_state = intel_crtc_destroy_state, \
16559         .set_crc_source = intel_crtc_set_crc_source, \
16560         .verify_crc_source = intel_crtc_verify_crc_source, \
16561         .get_crc_sources = intel_crtc_get_crc_sources
16562
16563 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16564         INTEL_CRTC_FUNCS,
16565
16566         .get_vblank_counter = g4x_get_vblank_counter,
16567         .enable_vblank = bdw_enable_vblank,
16568         .disable_vblank = bdw_disable_vblank,
16569         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16570 };
16571
16572 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16573         INTEL_CRTC_FUNCS,
16574
16575         .get_vblank_counter = g4x_get_vblank_counter,
16576         .enable_vblank = ilk_enable_vblank,
16577         .disable_vblank = ilk_disable_vblank,
16578         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16579 };
16580
16581 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16582         INTEL_CRTC_FUNCS,
16583
16584         .get_vblank_counter = g4x_get_vblank_counter,
16585         .enable_vblank = i965_enable_vblank,
16586         .disable_vblank = i965_disable_vblank,
16587         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16588 };
16589
16590 static const struct drm_crtc_funcs i965_crtc_funcs = {
16591         INTEL_CRTC_FUNCS,
16592
16593         .get_vblank_counter = i915_get_vblank_counter,
16594         .enable_vblank = i965_enable_vblank,
16595         .disable_vblank = i965_disable_vblank,
16596         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16597 };
16598
16599 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16600         INTEL_CRTC_FUNCS,
16601
16602         .get_vblank_counter = i915_get_vblank_counter,
16603         .enable_vblank = i915gm_enable_vblank,
16604         .disable_vblank = i915gm_disable_vblank,
16605         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16606 };
16607
16608 static const struct drm_crtc_funcs i915_crtc_funcs = {
16609         INTEL_CRTC_FUNCS,
16610
16611         .get_vblank_counter = i915_get_vblank_counter,
16612         .enable_vblank = i8xx_enable_vblank,
16613         .disable_vblank = i8xx_disable_vblank,
16614         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16615 };
16616
16617 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16618         INTEL_CRTC_FUNCS,
16619
16620         /* no hw vblank counter */
16621         .enable_vblank = i8xx_enable_vblank,
16622         .disable_vblank = i8xx_disable_vblank,
16623         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16624 };
16625
16626 static struct intel_crtc *intel_crtc_alloc(void)
16627 {
16628         struct intel_crtc_state *crtc_state;
16629         struct intel_crtc *crtc;
16630
16631         crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16632         if (!crtc)
16633                 return ERR_PTR(-ENOMEM);
16634
16635         crtc_state = intel_crtc_state_alloc(crtc);
16636         if (!crtc_state) {
16637                 kfree(crtc);
16638                 return ERR_PTR(-ENOMEM);
16639         }
16640
16641         crtc->base.state = &crtc_state->uapi;
16642         crtc->config = crtc_state;
16643
16644         return crtc;
16645 }
16646
16647 static void intel_crtc_free(struct intel_crtc *crtc)
16648 {
16649         intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16650         kfree(crtc);
16651 }
16652
16653 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16654 {
16655         struct intel_plane *plane;
16656
16657         for_each_intel_plane(&dev_priv->drm, plane) {
16658                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16659                                                                   plane->pipe);
16660
16661                 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16662         }
16663 }
16664
16665 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16666 {
16667         struct intel_plane *primary, *cursor;
16668         const struct drm_crtc_funcs *funcs;
16669         struct intel_crtc *crtc;
16670         int sprite, ret;
16671
16672         crtc = intel_crtc_alloc();
16673         if (IS_ERR(crtc))
16674                 return PTR_ERR(crtc);
16675
16676         crtc->pipe = pipe;
16677         crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16678
16679         primary = intel_primary_plane_create(dev_priv, pipe);
16680         if (IS_ERR(primary)) {
16681                 ret = PTR_ERR(primary);
16682                 goto fail;
16683         }
16684         crtc->plane_ids_mask |= BIT(primary->id);
16685
16686         for_each_sprite(dev_priv, pipe, sprite) {
16687                 struct intel_plane *plane;
16688
16689                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16690                 if (IS_ERR(plane)) {
16691                         ret = PTR_ERR(plane);
16692                         goto fail;
16693                 }
16694                 crtc->plane_ids_mask |= BIT(plane->id);
16695         }
16696
16697         cursor = intel_cursor_plane_create(dev_priv, pipe);
16698         if (IS_ERR(cursor)) {
16699                 ret = PTR_ERR(cursor);
16700                 goto fail;
16701         }
16702         crtc->plane_ids_mask |= BIT(cursor->id);
16703
16704         if (HAS_GMCH(dev_priv)) {
16705                 if (IS_CHERRYVIEW(dev_priv) ||
16706                     IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16707                         funcs = &g4x_crtc_funcs;
16708                 else if (IS_GEN(dev_priv, 4))
16709                         funcs = &i965_crtc_funcs;
16710                 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16711                         funcs = &i915gm_crtc_funcs;
16712                 else if (IS_GEN(dev_priv, 3))
16713                         funcs = &i915_crtc_funcs;
16714                 else
16715                         funcs = &i8xx_crtc_funcs;
16716         } else {
16717                 if (INTEL_GEN(dev_priv) >= 8)
16718                         funcs = &bdw_crtc_funcs;
16719                 else
16720                         funcs = &ilk_crtc_funcs;
16721         }
16722
16723         ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16724                                         &primary->base, &cursor->base,
16725                                         funcs, "pipe %c", pipe_name(pipe));
16726         if (ret)
16727                 goto fail;
16728
16729         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16730                dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16731         dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16732
16733         if (INTEL_GEN(dev_priv) < 9) {
16734                 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16735
16736                 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16737                        dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16738                 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16739         }
16740
16741         intel_color_init(crtc);
16742
16743         intel_crtc_crc_init(crtc);
16744
16745         drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16746
16747         return 0;
16748
16749 fail:
16750         intel_crtc_free(crtc);
16751
16752         return ret;
16753 }
16754
16755 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16756                                       struct drm_file *file)
16757 {
16758         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16759         struct drm_crtc *drmmode_crtc;
16760         struct intel_crtc *crtc;
16761
16762         drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16763         if (!drmmode_crtc)
16764                 return -ENOENT;
16765
16766         crtc = to_intel_crtc(drmmode_crtc);
16767         pipe_from_crtc_id->pipe = crtc->pipe;
16768
16769         return 0;
16770 }
16771
16772 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16773 {
16774         struct drm_device *dev = encoder->base.dev;
16775         struct intel_encoder *source_encoder;
16776         u32 possible_clones = 0;
16777
16778         for_each_intel_encoder(dev, source_encoder) {
16779                 if (encoders_cloneable(encoder, source_encoder))
16780                         possible_clones |= drm_encoder_mask(&source_encoder->base);
16781         }
16782
16783         return possible_clones;
16784 }
16785
16786 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16787 {
16788         struct drm_device *dev = encoder->base.dev;
16789         struct intel_crtc *crtc;
16790         u32 possible_crtcs = 0;
16791
16792         for_each_intel_crtc(dev, crtc) {
16793                 if (encoder->pipe_mask & BIT(crtc->pipe))
16794                         possible_crtcs |= drm_crtc_mask(&crtc->base);
16795         }
16796
16797         return possible_crtcs;
16798 }
16799
16800 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16801 {
16802         if (!IS_MOBILE(dev_priv))
16803                 return false;
16804
16805         if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16806                 return false;
16807
16808         if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16809                 return false;
16810
16811         return true;
16812 }
16813
16814 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16815 {
16816         if (INTEL_GEN(dev_priv) >= 9)
16817                 return false;
16818
16819         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16820                 return false;
16821
16822         if (HAS_PCH_LPT_H(dev_priv) &&
16823             intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16824                 return false;
16825
16826         /* DDI E can't be used if DDI A requires 4 lanes */
16827         if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16828                 return false;
16829
16830         if (!dev_priv->vbt.int_crt_support)
16831                 return false;
16832
16833         return true;
16834 }
16835
16836 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16837 {
16838         int pps_num;
16839         int pps_idx;
16840
16841         if (HAS_DDI(dev_priv))
16842                 return;
16843         /*
16844          * This w/a is needed at least on CPT/PPT, but to be sure apply it
16845          * everywhere where registers can be write protected.
16846          */
16847         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16848                 pps_num = 2;
16849         else
16850                 pps_num = 1;
16851
16852         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16853                 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16854
16855                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16856                 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16857         }
16858 }
16859
16860 static void intel_pps_init(struct drm_i915_private *dev_priv)
16861 {
16862         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16863                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
16864         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16865                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
16866         else
16867                 dev_priv->pps_mmio_base = PPS_BASE;
16868
16869         intel_pps_unlock_regs_wa(dev_priv);
16870 }
16871
16872 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16873 {
16874         struct intel_encoder *encoder;
16875         bool dpd_is_edp = false;
16876
16877         intel_pps_init(dev_priv);
16878
16879         if (!HAS_DISPLAY(dev_priv))
16880                 return;
16881
16882         if (IS_ROCKETLAKE(dev_priv)) {
16883                 intel_ddi_init(dev_priv, PORT_A);
16884                 intel_ddi_init(dev_priv, PORT_B);
16885                 intel_ddi_init(dev_priv, PORT_D);       /* DDI TC1 */
16886                 intel_ddi_init(dev_priv, PORT_E);       /* DDI TC2 */
16887         } else if (INTEL_GEN(dev_priv) >= 12) {
16888                 intel_ddi_init(dev_priv, PORT_A);
16889                 intel_ddi_init(dev_priv, PORT_B);
16890                 intel_ddi_init(dev_priv, PORT_D);
16891                 intel_ddi_init(dev_priv, PORT_E);
16892                 intel_ddi_init(dev_priv, PORT_F);
16893                 intel_ddi_init(dev_priv, PORT_G);
16894                 intel_ddi_init(dev_priv, PORT_H);
16895                 intel_ddi_init(dev_priv, PORT_I);
16896                 icl_dsi_init(dev_priv);
16897         } else if (IS_ELKHARTLAKE(dev_priv)) {
16898                 intel_ddi_init(dev_priv, PORT_A);
16899                 intel_ddi_init(dev_priv, PORT_B);
16900                 intel_ddi_init(dev_priv, PORT_C);
16901                 intel_ddi_init(dev_priv, PORT_D);
16902                 icl_dsi_init(dev_priv);
16903         } else if (IS_GEN(dev_priv, 11)) {
16904                 intel_ddi_init(dev_priv, PORT_A);
16905                 intel_ddi_init(dev_priv, PORT_B);
16906                 intel_ddi_init(dev_priv, PORT_C);
16907                 intel_ddi_init(dev_priv, PORT_D);
16908                 intel_ddi_init(dev_priv, PORT_E);
16909                 /*
16910                  * On some ICL SKUs port F is not present. No strap bits for
16911                  * this, so rely on VBT.
16912                  * Work around broken VBTs on SKUs known to have no port F.
16913                  */
16914                 if (IS_ICL_WITH_PORT_F(dev_priv) &&
16915                     intel_bios_is_port_present(dev_priv, PORT_F))
16916                         intel_ddi_init(dev_priv, PORT_F);
16917
16918                 icl_dsi_init(dev_priv);
16919         } else if (IS_GEN9_LP(dev_priv)) {
16920                 /*
16921                  * FIXME: Broxton doesn't support port detection via the
16922                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16923                  * detect the ports.
16924                  */
16925                 intel_ddi_init(dev_priv, PORT_A);
16926                 intel_ddi_init(dev_priv, PORT_B);
16927                 intel_ddi_init(dev_priv, PORT_C);
16928
16929                 vlv_dsi_init(dev_priv);
16930         } else if (HAS_DDI(dev_priv)) {
16931                 int found;
16932
16933                 if (intel_ddi_crt_present(dev_priv))
16934                         intel_crt_init(dev_priv);
16935
16936                 /*
16937                  * Haswell uses DDI functions to detect digital outputs.
16938                  * On SKL pre-D0 the strap isn't connected, so we assume
16939                  * it's there.
16940                  */
16941                 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16942                 /* WaIgnoreDDIAStrap: skl */
16943                 if (found || IS_GEN9_BC(dev_priv))
16944                         intel_ddi_init(dev_priv, PORT_A);
16945
16946                 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16947                  * register */
16948                 found = intel_de_read(dev_priv, SFUSE_STRAP);
16949
16950                 if (found & SFUSE_STRAP_DDIB_DETECTED)
16951                         intel_ddi_init(dev_priv, PORT_B);
16952                 if (found & SFUSE_STRAP_DDIC_DETECTED)
16953                         intel_ddi_init(dev_priv, PORT_C);
16954                 if (found & SFUSE_STRAP_DDID_DETECTED)
16955                         intel_ddi_init(dev_priv, PORT_D);
16956                 if (found & SFUSE_STRAP_DDIF_DETECTED)
16957                         intel_ddi_init(dev_priv, PORT_F);
16958                 /*
16959                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16960                  */
16961                 if (IS_GEN9_BC(dev_priv) &&
16962                     intel_bios_is_port_present(dev_priv, PORT_E))
16963                         intel_ddi_init(dev_priv, PORT_E);
16964
16965         } else if (HAS_PCH_SPLIT(dev_priv)) {
16966                 int found;
16967
16968                 /*
16969                  * intel_edp_init_connector() depends on this completing first,
16970                  * to prevent the registration of both eDP and LVDS and the
16971                  * incorrect sharing of the PPS.
16972                  */
16973                 intel_lvds_init(dev_priv);
16974                 intel_crt_init(dev_priv);
16975
16976                 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16977
16978                 if (ilk_has_edp_a(dev_priv))
16979                         intel_dp_init(dev_priv, DP_A, PORT_A);
16980
16981                 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16982                         /* PCH SDVOB multiplex with HDMIB */
16983                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16984                         if (!found)
16985                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16986                         if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
16987                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16988                 }
16989
16990                 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
16991                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16992
16993                 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
16994                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16995
16996                 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
16997                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16998
16999                 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17000                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17001         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17002                 bool has_edp, has_port;
17003
17004                 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17005                         intel_crt_init(dev_priv);
17006
17007                 /*
17008                  * The DP_DETECTED bit is the latched state of the DDC
17009                  * SDA pin at boot. However since eDP doesn't require DDC
17010                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
17011                  * eDP ports may have been muxed to an alternate function.
17012                  * Thus we can't rely on the DP_DETECTED bit alone to detect
17013                  * eDP ports. Consult the VBT as well as DP_DETECTED to
17014                  * detect eDP ports.
17015                  *
17016                  * Sadly the straps seem to be missing sometimes even for HDMI
17017                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17018                  * and VBT for the presence of the port. Additionally we can't
17019                  * trust the port type the VBT declares as we've seen at least
17020                  * HDMI ports that the VBT claim are DP or eDP.
17021                  */
17022                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17023                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17024                 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17025                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17026                 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17027                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17028
17029                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17030                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17031                 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17032                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17033                 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17034                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17035
17036                 if (IS_CHERRYVIEW(dev_priv)) {
17037                         /*
17038                          * eDP not supported on port D,
17039                          * so no need to worry about it
17040                          */
17041                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17042                         if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17043                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17044                         if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17045                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17046                 }
17047
17048                 vlv_dsi_init(dev_priv);
17049         } else if (IS_PINEVIEW(dev_priv)) {
17050                 intel_lvds_init(dev_priv);
17051                 intel_crt_init(dev_priv);
17052         } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17053                 bool found = false;
17054
17055                 if (IS_MOBILE(dev_priv))
17056                         intel_lvds_init(dev_priv);
17057
17058                 intel_crt_init(dev_priv);
17059
17060                 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17061                         drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17062                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17063                         if (!found && IS_G4X(dev_priv)) {
17064                                 drm_dbg_kms(&dev_priv->drm,
17065                                             "probing HDMI on SDVOB\n");
17066                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17067                         }
17068
17069                         if (!found && IS_G4X(dev_priv))
17070                                 intel_dp_init(dev_priv, DP_B, PORT_B);
17071                 }
17072
17073                 /* Before G4X SDVOC doesn't have its own detect register */
17074
17075                 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17076                         drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17077                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17078                 }
17079
17080                 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17081
17082                         if (IS_G4X(dev_priv)) {
17083                                 drm_dbg_kms(&dev_priv->drm,
17084                                             "probing HDMI on SDVOC\n");
17085                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17086                         }
17087                         if (IS_G4X(dev_priv))
17088                                 intel_dp_init(dev_priv, DP_C, PORT_C);
17089                 }
17090
17091                 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17092                         intel_dp_init(dev_priv, DP_D, PORT_D);
17093
17094                 if (SUPPORTS_TV(dev_priv))
17095                         intel_tv_init(dev_priv);
17096         } else if (IS_GEN(dev_priv, 2)) {
17097                 if (IS_I85X(dev_priv))
17098                         intel_lvds_init(dev_priv);
17099
17100                 intel_crt_init(dev_priv);
17101                 intel_dvo_init(dev_priv);
17102         }
17103
17104         intel_psr_init(dev_priv);
17105
17106         for_each_intel_encoder(&dev_priv->drm, encoder) {
17107                 encoder->base.possible_crtcs =
17108                         intel_encoder_possible_crtcs(encoder);
17109                 encoder->base.possible_clones =
17110                         intel_encoder_possible_clones(encoder);
17111         }
17112
17113         intel_init_pch_refclk(dev_priv);
17114
17115         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17116 }
17117
17118 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17119 {
17120         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17121
17122         drm_framebuffer_cleanup(fb);
17123         intel_frontbuffer_put(intel_fb->frontbuffer);
17124
17125         kfree(intel_fb);
17126 }
17127
17128 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17129                                                 struct drm_file *file,
17130                                                 unsigned int *handle)
17131 {
17132         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17133         struct drm_i915_private *i915 = to_i915(obj->base.dev);
17134
17135         if (obj->userptr.mm) {
17136                 drm_dbg(&i915->drm,
17137                         "attempting to use a userptr for a framebuffer, denied\n");
17138                 return -EINVAL;
17139         }
17140
17141         return drm_gem_handle_create(file, &obj->base, handle);
17142 }
17143
17144 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17145                                         struct drm_file *file,
17146                                         unsigned flags, unsigned color,
17147                                         struct drm_clip_rect *clips,
17148                                         unsigned num_clips)
17149 {
17150         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17151
17152         i915_gem_object_flush_if_display(obj);
17153         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17154
17155         return 0;
17156 }
17157
17158 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17159         .destroy = intel_user_framebuffer_destroy,
17160         .create_handle = intel_user_framebuffer_create_handle,
17161         .dirty = intel_user_framebuffer_dirty,
17162 };
17163
17164 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17165                                   struct drm_i915_gem_object *obj,
17166                                   struct drm_mode_fb_cmd2 *mode_cmd)
17167 {
17168         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17169         struct drm_framebuffer *fb = &intel_fb->base;
17170         u32 max_stride;
17171         unsigned int tiling, stride;
17172         int ret = -EINVAL;
17173         int i;
17174
17175         intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17176         if (!intel_fb->frontbuffer)
17177                 return -ENOMEM;
17178
17179         i915_gem_object_lock(obj, NULL);
17180         tiling = i915_gem_object_get_tiling(obj);
17181         stride = i915_gem_object_get_stride(obj);
17182         i915_gem_object_unlock(obj);
17183
17184         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17185                 /*
17186                  * If there's a fence, enforce that
17187                  * the fb modifier and tiling mode match.
17188                  */
17189                 if (tiling != I915_TILING_NONE &&
17190                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17191                         drm_dbg_kms(&dev_priv->drm,
17192                                     "tiling_mode doesn't match fb modifier\n");
17193                         goto err;
17194                 }
17195         } else {
17196                 if (tiling == I915_TILING_X) {
17197                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17198                 } else if (tiling == I915_TILING_Y) {
17199                         drm_dbg_kms(&dev_priv->drm,
17200                                     "No Y tiling for legacy addfb\n");
17201                         goto err;
17202                 }
17203         }
17204
17205         if (!drm_any_plane_has_format(&dev_priv->drm,
17206                                       mode_cmd->pixel_format,
17207                                       mode_cmd->modifier[0])) {
17208                 struct drm_format_name_buf format_name;
17209
17210                 drm_dbg_kms(&dev_priv->drm,
17211                             "unsupported pixel format %s / modifier 0x%llx\n",
17212                             drm_get_format_name(mode_cmd->pixel_format,
17213                                                 &format_name),
17214                             mode_cmd->modifier[0]);
17215                 goto err;
17216         }
17217
17218         /*
17219          * gen2/3 display engine uses the fence if present,
17220          * so the tiling mode must match the fb modifier exactly.
17221          */
17222         if (INTEL_GEN(dev_priv) < 4 &&
17223             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17224                 drm_dbg_kms(&dev_priv->drm,
17225                             "tiling_mode must match fb modifier exactly on gen2/3\n");
17226                 goto err;
17227         }
17228
17229         max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17230                                          mode_cmd->modifier[0]);
17231         if (mode_cmd->pitches[0] > max_stride) {
17232                 drm_dbg_kms(&dev_priv->drm,
17233                             "%s pitch (%u) must be at most %d\n",
17234                             mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17235                             "tiled" : "linear",
17236                             mode_cmd->pitches[0], max_stride);
17237                 goto err;
17238         }
17239
17240         /*
17241          * If there's a fence, enforce that
17242          * the fb pitch and fence stride match.
17243          */
17244         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17245                 drm_dbg_kms(&dev_priv->drm,
17246                             "pitch (%d) must match tiling stride (%d)\n",
17247                             mode_cmd->pitches[0], stride);
17248                 goto err;
17249         }
17250
17251         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17252         if (mode_cmd->offsets[0] != 0) {
17253                 drm_dbg_kms(&dev_priv->drm,
17254                             "plane 0 offset (0x%08x) must be 0\n",
17255                             mode_cmd->offsets[0]);
17256                 goto err;
17257         }
17258
17259         drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17260
17261         for (i = 0; i < fb->format->num_planes; i++) {
17262                 u32 stride_alignment;
17263
17264                 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17265                         drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17266                                     i);
17267                         goto err;
17268                 }
17269
17270                 stride_alignment = intel_fb_stride_alignment(fb, i);
17271                 if (fb->pitches[i] & (stride_alignment - 1)) {
17272                         drm_dbg_kms(&dev_priv->drm,
17273                                     "plane %d pitch (%d) must be at least %u byte aligned\n",
17274                                     i, fb->pitches[i], stride_alignment);
17275                         goto err;
17276                 }
17277
17278                 if (is_gen12_ccs_plane(fb, i)) {
17279                         int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17280
17281                         if (fb->pitches[i] != ccs_aux_stride) {
17282                                 drm_dbg_kms(&dev_priv->drm,
17283                                             "ccs aux plane %d pitch (%d) must be %d\n",
17284                                             i,
17285                                             fb->pitches[i], ccs_aux_stride);
17286                                 goto err;
17287                         }
17288                 }
17289
17290                 fb->obj[i] = &obj->base;
17291         }
17292
17293         ret = intel_fill_fb_info(dev_priv, fb);
17294         if (ret)
17295                 goto err;
17296
17297         ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17298         if (ret) {
17299                 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17300                 goto err;
17301         }
17302
17303         return 0;
17304
17305 err:
17306         intel_frontbuffer_put(intel_fb->frontbuffer);
17307         return ret;
17308 }
17309
17310 static struct drm_framebuffer *
17311 intel_user_framebuffer_create(struct drm_device *dev,
17312                               struct drm_file *filp,
17313                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
17314 {
17315         struct drm_framebuffer *fb;
17316         struct drm_i915_gem_object *obj;
17317         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17318
17319         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17320         if (!obj)
17321                 return ERR_PTR(-ENOENT);
17322
17323         fb = intel_framebuffer_create(obj, &mode_cmd);
17324         i915_gem_object_put(obj);
17325
17326         return fb;
17327 }
17328
17329 static enum drm_mode_status
17330 intel_mode_valid(struct drm_device *dev,
17331                  const struct drm_display_mode *mode)
17332 {
17333         struct drm_i915_private *dev_priv = to_i915(dev);
17334         int hdisplay_max, htotal_max;
17335         int vdisplay_max, vtotal_max;
17336
17337         /*
17338          * Can't reject DBLSCAN here because Xorg ddxen can add piles
17339          * of DBLSCAN modes to the output's mode list when they detect
17340          * the scaling mode property on the connector. And they don't
17341          * ask the kernel to validate those modes in any way until
17342          * modeset time at which point the client gets a protocol error.
17343          * So in order to not upset those clients we silently ignore the
17344          * DBLSCAN flag on such connectors. For other connectors we will
17345          * reject modes with the DBLSCAN flag in encoder->compute_config().
17346          * And we always reject DBLSCAN modes in connector->mode_valid()
17347          * as we never want such modes on the connector's mode list.
17348          */
17349
17350         if (mode->vscan > 1)
17351                 return MODE_NO_VSCAN;
17352
17353         if (mode->flags & DRM_MODE_FLAG_HSKEW)
17354                 return MODE_H_ILLEGAL;
17355
17356         if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17357                            DRM_MODE_FLAG_NCSYNC |
17358                            DRM_MODE_FLAG_PCSYNC))
17359                 return MODE_HSYNC;
17360
17361         if (mode->flags & (DRM_MODE_FLAG_BCAST |
17362                            DRM_MODE_FLAG_PIXMUX |
17363                            DRM_MODE_FLAG_CLKDIV2))
17364                 return MODE_BAD;
17365
17366         /* Transcoder timing limits */
17367         if (INTEL_GEN(dev_priv) >= 11) {
17368                 hdisplay_max = 16384;
17369                 vdisplay_max = 8192;
17370                 htotal_max = 16384;
17371                 vtotal_max = 8192;
17372         } else if (INTEL_GEN(dev_priv) >= 9 ||
17373                    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17374                 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17375                 vdisplay_max = 4096;
17376                 htotal_max = 8192;
17377                 vtotal_max = 8192;
17378         } else if (INTEL_GEN(dev_priv) >= 3) {
17379                 hdisplay_max = 4096;
17380                 vdisplay_max = 4096;
17381                 htotal_max = 8192;
17382                 vtotal_max = 8192;
17383         } else {
17384                 hdisplay_max = 2048;
17385                 vdisplay_max = 2048;
17386                 htotal_max = 4096;
17387                 vtotal_max = 4096;
17388         }
17389
17390         if (mode->hdisplay > hdisplay_max ||
17391             mode->hsync_start > htotal_max ||
17392             mode->hsync_end > htotal_max ||
17393             mode->htotal > htotal_max)
17394                 return MODE_H_ILLEGAL;
17395
17396         if (mode->vdisplay > vdisplay_max ||
17397             mode->vsync_start > vtotal_max ||
17398             mode->vsync_end > vtotal_max ||
17399             mode->vtotal > vtotal_max)
17400                 return MODE_V_ILLEGAL;
17401
17402         if (INTEL_GEN(dev_priv) >= 5) {
17403                 if (mode->hdisplay < 64 ||
17404                     mode->htotal - mode->hdisplay < 32)
17405                         return MODE_H_ILLEGAL;
17406
17407                 if (mode->vtotal - mode->vdisplay < 5)
17408                         return MODE_V_ILLEGAL;
17409         } else {
17410                 if (mode->htotal - mode->hdisplay < 32)
17411                         return MODE_H_ILLEGAL;
17412
17413                 if (mode->vtotal - mode->vdisplay < 3)
17414                         return MODE_V_ILLEGAL;
17415         }
17416
17417         return MODE_OK;
17418 }
17419
17420 enum drm_mode_status
17421 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17422                                 const struct drm_display_mode *mode)
17423 {
17424         int plane_width_max, plane_height_max;
17425
17426         /*
17427          * intel_mode_valid() should be
17428          * sufficient on older platforms.
17429          */
17430         if (INTEL_GEN(dev_priv) < 9)
17431                 return MODE_OK;
17432
17433         /*
17434          * Most people will probably want a fullscreen
17435          * plane so let's not advertize modes that are
17436          * too big for that.
17437          */
17438         if (INTEL_GEN(dev_priv) >= 11) {
17439                 plane_width_max = 5120;
17440                 plane_height_max = 4320;
17441         } else {
17442                 plane_width_max = 5120;
17443                 plane_height_max = 4096;
17444         }
17445
17446         if (mode->hdisplay > plane_width_max)
17447                 return MODE_H_ILLEGAL;
17448
17449         if (mode->vdisplay > plane_height_max)
17450                 return MODE_V_ILLEGAL;
17451
17452         return MODE_OK;
17453 }
17454
17455 static const struct drm_mode_config_funcs intel_mode_funcs = {
17456         .fb_create = intel_user_framebuffer_create,
17457         .get_format_info = intel_get_format_info,
17458         .output_poll_changed = intel_fbdev_output_poll_changed,
17459         .mode_valid = intel_mode_valid,
17460         .atomic_check = intel_atomic_check,
17461         .atomic_commit = intel_atomic_commit,
17462         .atomic_state_alloc = intel_atomic_state_alloc,
17463         .atomic_state_clear = intel_atomic_state_clear,
17464         .atomic_state_free = intel_atomic_state_free,
17465 };
17466
17467 /**
17468  * intel_init_display_hooks - initialize the display modesetting hooks
17469  * @dev_priv: device private
17470  */
17471 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17472 {
17473         intel_init_cdclk_hooks(dev_priv);
17474
17475         if (INTEL_GEN(dev_priv) >= 9) {
17476                 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17477                 dev_priv->display.get_initial_plane_config =
17478                         skl_get_initial_plane_config;
17479                 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17480                 dev_priv->display.crtc_enable = hsw_crtc_enable;
17481                 dev_priv->display.crtc_disable = hsw_crtc_disable;
17482         } else if (HAS_DDI(dev_priv)) {
17483                 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17484                 dev_priv->display.get_initial_plane_config =
17485                         i9xx_get_initial_plane_config;
17486                 dev_priv->display.crtc_compute_clock =
17487                         hsw_crtc_compute_clock;
17488                 dev_priv->display.crtc_enable = hsw_crtc_enable;
17489                 dev_priv->display.crtc_disable = hsw_crtc_disable;
17490         } else if (HAS_PCH_SPLIT(dev_priv)) {
17491                 dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17492                 dev_priv->display.get_initial_plane_config =
17493                         i9xx_get_initial_plane_config;
17494                 dev_priv->display.crtc_compute_clock =
17495                         ilk_crtc_compute_clock;
17496                 dev_priv->display.crtc_enable = ilk_crtc_enable;
17497                 dev_priv->display.crtc_disable = ilk_crtc_disable;
17498         } else if (IS_CHERRYVIEW(dev_priv)) {
17499                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17500                 dev_priv->display.get_initial_plane_config =
17501                         i9xx_get_initial_plane_config;
17502                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17503                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17504                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17505         } else if (IS_VALLEYVIEW(dev_priv)) {
17506                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17507                 dev_priv->display.get_initial_plane_config =
17508                         i9xx_get_initial_plane_config;
17509                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17510                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17511                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17512         } else if (IS_G4X(dev_priv)) {
17513                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17514                 dev_priv->display.get_initial_plane_config =
17515                         i9xx_get_initial_plane_config;
17516                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17517                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17518                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17519         } else if (IS_PINEVIEW(dev_priv)) {
17520                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17521                 dev_priv->display.get_initial_plane_config =
17522                         i9xx_get_initial_plane_config;
17523                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17524                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17525                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17526         } else if (!IS_GEN(dev_priv, 2)) {
17527                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17528                 dev_priv->display.get_initial_plane_config =
17529                         i9xx_get_initial_plane_config;
17530                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17531                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17532                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17533         } else {
17534                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17535                 dev_priv->display.get_initial_plane_config =
17536                         i9xx_get_initial_plane_config;
17537                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17538                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17539                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17540         }
17541
17542         if (IS_GEN(dev_priv, 5)) {
17543                 dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17544         } else if (IS_GEN(dev_priv, 6)) {
17545                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17546         } else if (IS_IVYBRIDGE(dev_priv)) {
17547                 /* FIXME: detect B0+ stepping and use auto training */
17548                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17549         }
17550
17551         if (INTEL_GEN(dev_priv) >= 9)
17552                 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17553         else
17554                 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17555
17556 }
17557
17558 void intel_modeset_init_hw(struct drm_i915_private *i915)
17559 {
17560         struct intel_cdclk_state *cdclk_state =
17561                 to_intel_cdclk_state(i915->cdclk.obj.state);
17562         struct intel_dbuf_state *dbuf_state =
17563                 to_intel_dbuf_state(i915->dbuf.obj.state);
17564
17565         intel_update_cdclk(i915);
17566         intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17567         cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17568
17569         dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17570 }
17571
17572 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17573 {
17574         struct drm_plane *plane;
17575         struct intel_crtc *crtc;
17576
17577         for_each_intel_crtc(state->dev, crtc) {
17578                 struct intel_crtc_state *crtc_state;
17579
17580                 crtc_state = intel_atomic_get_crtc_state(state, crtc);
17581                 if (IS_ERR(crtc_state))
17582                         return PTR_ERR(crtc_state);
17583
17584                 if (crtc_state->hw.active) {
17585                         /*
17586                          * Preserve the inherited flag to avoid
17587                          * taking the full modeset path.
17588                          */
17589                         crtc_state->inherited = true;
17590                 }
17591         }
17592
17593         drm_for_each_plane(plane, state->dev) {
17594                 struct drm_plane_state *plane_state;
17595
17596                 plane_state = drm_atomic_get_plane_state(state, plane);
17597                 if (IS_ERR(plane_state))
17598                         return PTR_ERR(plane_state);
17599         }
17600
17601         return 0;
17602 }
17603
17604 /*
17605  * Calculate what we think the watermarks should be for the state we've read
17606  * out of the hardware and then immediately program those watermarks so that
17607  * we ensure the hardware settings match our internal state.
17608  *
17609  * We can calculate what we think WM's should be by creating a duplicate of the
17610  * current state (which was constructed during hardware readout) and running it
17611  * through the atomic check code to calculate new watermark values in the
17612  * state object.
17613  */
17614 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17615 {
17616         struct drm_atomic_state *state;
17617         struct intel_atomic_state *intel_state;
17618         struct intel_crtc *crtc;
17619         struct intel_crtc_state *crtc_state;
17620         struct drm_modeset_acquire_ctx ctx;
17621         int ret;
17622         int i;
17623
17624         /* Only supported on platforms that use atomic watermark design */
17625         if (!dev_priv->display.optimize_watermarks)
17626                 return;
17627
17628         state = drm_atomic_state_alloc(&dev_priv->drm);
17629         if (drm_WARN_ON(&dev_priv->drm, !state))
17630                 return;
17631
17632         intel_state = to_intel_atomic_state(state);
17633
17634         drm_modeset_acquire_init(&ctx, 0);
17635
17636 retry:
17637         state->acquire_ctx = &ctx;
17638
17639         /*
17640          * Hardware readout is the only time we don't want to calculate
17641          * intermediate watermarks (since we don't trust the current
17642          * watermarks).
17643          */
17644         if (!HAS_GMCH(dev_priv))
17645                 intel_state->skip_intermediate_wm = true;
17646
17647         ret = sanitize_watermarks_add_affected(state);
17648         if (ret)
17649                 goto fail;
17650
17651         ret = intel_atomic_check(&dev_priv->drm, state);
17652         if (ret)
17653                 goto fail;
17654
17655         /* Write calculated watermark values back */
17656         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17657                 crtc_state->wm.need_postvbl_update = true;
17658                 dev_priv->display.optimize_watermarks(intel_state, crtc);
17659
17660                 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17661         }
17662
17663 fail:
17664         if (ret == -EDEADLK) {
17665                 drm_atomic_state_clear(state);
17666                 drm_modeset_backoff(&ctx);
17667                 goto retry;
17668         }
17669
17670         /*
17671          * If we fail here, it means that the hardware appears to be
17672          * programmed in a way that shouldn't be possible, given our
17673          * understanding of watermark requirements.  This might mean a
17674          * mistake in the hardware readout code or a mistake in the
17675          * watermark calculations for a given platform.  Raise a WARN
17676          * so that this is noticeable.
17677          *
17678          * If this actually happens, we'll have to just leave the
17679          * BIOS-programmed watermarks untouched and hope for the best.
17680          */
17681         drm_WARN(&dev_priv->drm, ret,
17682                  "Could not determine valid watermarks for inherited state\n");
17683
17684         drm_atomic_state_put(state);
17685
17686         drm_modeset_drop_locks(&ctx);
17687         drm_modeset_acquire_fini(&ctx);
17688 }
17689
17690 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17691 {
17692         if (IS_GEN(dev_priv, 5)) {
17693                 u32 fdi_pll_clk =
17694                         intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17695
17696                 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17697         } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17698                 dev_priv->fdi_pll_freq = 270000;
17699         } else {
17700                 return;
17701         }
17702
17703         drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17704 }
17705
17706 static int intel_initial_commit(struct drm_device *dev)
17707 {
17708         struct drm_atomic_state *state = NULL;
17709         struct drm_modeset_acquire_ctx ctx;
17710         struct intel_crtc *crtc;
17711         int ret = 0;
17712
17713         state = drm_atomic_state_alloc(dev);
17714         if (!state)
17715                 return -ENOMEM;
17716
17717         drm_modeset_acquire_init(&ctx, 0);
17718
17719 retry:
17720         state->acquire_ctx = &ctx;
17721
17722         for_each_intel_crtc(dev, crtc) {
17723                 struct intel_crtc_state *crtc_state =
17724                         intel_atomic_get_crtc_state(state, crtc);
17725
17726                 if (IS_ERR(crtc_state)) {
17727                         ret = PTR_ERR(crtc_state);
17728                         goto out;
17729                 }
17730
17731                 if (crtc_state->hw.active) {
17732                         /*
17733                          * We've not yet detected sink capabilities
17734                          * (audio,infoframes,etc.) and thus we don't want to
17735                          * force a full state recomputation yet. We want that to
17736                          * happen only for the first real commit from userspace.
17737                          * So preserve the inherited flag for the time being.
17738                          */
17739                         crtc_state->inherited = true;
17740
17741                         ret = drm_atomic_add_affected_planes(state, &crtc->base);
17742                         if (ret)
17743                                 goto out;
17744
17745                         /*
17746                          * FIXME hack to force a LUT update to avoid the
17747                          * plane update forcing the pipe gamma on without
17748                          * having a proper LUT loaded. Remove once we
17749                          * have readout for pipe gamma enable.
17750                          */
17751                         crtc_state->uapi.color_mgmt_changed = true;
17752
17753                         /*
17754                          * FIXME hack to force full modeset when DSC is being
17755                          * used.
17756                          *
17757                          * As long as we do not have full state readout and
17758                          * config comparison of crtc_state->dsc, we have no way
17759                          * to ensure reliable fastset. Remove once we have
17760                          * readout for DSC.
17761                          */
17762                         if (crtc_state->dsc.compression_enable) {
17763                                 ret = drm_atomic_add_affected_connectors(state,
17764                                                                          &crtc->base);
17765                                 if (ret)
17766                                         goto out;
17767                                 crtc_state->uapi.mode_changed = true;
17768                                 drm_dbg_kms(dev, "Force full modeset for DSC\n");
17769                         }
17770                 }
17771         }
17772
17773         ret = drm_atomic_commit(state);
17774
17775 out:
17776         if (ret == -EDEADLK) {
17777                 drm_atomic_state_clear(state);
17778                 drm_modeset_backoff(&ctx);
17779                 goto retry;
17780         }
17781
17782         drm_atomic_state_put(state);
17783
17784         drm_modeset_drop_locks(&ctx);
17785         drm_modeset_acquire_fini(&ctx);
17786
17787         return ret;
17788 }
17789
17790 static void intel_mode_config_init(struct drm_i915_private *i915)
17791 {
17792         struct drm_mode_config *mode_config = &i915->drm.mode_config;
17793
17794         drm_mode_config_init(&i915->drm);
17795         INIT_LIST_HEAD(&i915->global_obj_list);
17796
17797         mode_config->min_width = 0;
17798         mode_config->min_height = 0;
17799
17800         mode_config->preferred_depth = 24;
17801         mode_config->prefer_shadow = 1;
17802
17803         mode_config->allow_fb_modifiers = true;
17804
17805         mode_config->funcs = &intel_mode_funcs;
17806
17807         /*
17808          * Maximum framebuffer dimensions, chosen to match
17809          * the maximum render engine surface size on gen4+.
17810          */
17811         if (INTEL_GEN(i915) >= 7) {
17812                 mode_config->max_width = 16384;
17813                 mode_config->max_height = 16384;
17814         } else if (INTEL_GEN(i915) >= 4) {
17815                 mode_config->max_width = 8192;
17816                 mode_config->max_height = 8192;
17817         } else if (IS_GEN(i915, 3)) {
17818                 mode_config->max_width = 4096;
17819                 mode_config->max_height = 4096;
17820         } else {
17821                 mode_config->max_width = 2048;
17822                 mode_config->max_height = 2048;
17823         }
17824
17825         if (IS_I845G(i915) || IS_I865G(i915)) {
17826                 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17827                 mode_config->cursor_height = 1023;
17828         } else if (IS_I830(i915) || IS_I85X(i915) ||
17829                    IS_I915G(i915) || IS_I915GM(i915)) {
17830                 mode_config->cursor_width = 64;
17831                 mode_config->cursor_height = 64;
17832         } else {
17833                 mode_config->cursor_width = 256;
17834                 mode_config->cursor_height = 256;
17835         }
17836 }
17837
17838 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17839 {
17840         intel_atomic_global_obj_cleanup(i915);
17841         drm_mode_config_cleanup(&i915->drm);
17842 }
17843
17844 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17845 {
17846         if (plane_config->fb) {
17847                 struct drm_framebuffer *fb = &plane_config->fb->base;
17848
17849                 /* We may only have the stub and not a full framebuffer */
17850                 if (drm_framebuffer_read_refcount(fb))
17851                         drm_framebuffer_put(fb);
17852                 else
17853                         kfree(fb);
17854         }
17855
17856         if (plane_config->vma)
17857                 i915_vma_put(plane_config->vma);
17858 }
17859
17860 /* part #1: call before irq install */
17861 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17862 {
17863         int ret;
17864
17865         if (i915_inject_probe_failure(i915))
17866                 return -ENODEV;
17867
17868         if (HAS_DISPLAY(i915)) {
17869                 ret = drm_vblank_init(&i915->drm,
17870                                       INTEL_NUM_PIPES(i915));
17871                 if (ret)
17872                         return ret;
17873         }
17874
17875         intel_bios_init(i915);
17876
17877         ret = intel_vga_register(i915);
17878         if (ret)
17879                 goto cleanup_bios;
17880
17881         /* FIXME: completely on the wrong abstraction layer */
17882         intel_power_domains_init_hw(i915, false);
17883
17884         intel_csr_ucode_init(i915);
17885
17886         i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17887         i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17888                                         WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17889
17890         intel_mode_config_init(i915);
17891
17892         ret = intel_cdclk_init(i915);
17893         if (ret)
17894                 goto cleanup_vga_client_pw_domain_csr;
17895
17896         ret = intel_dbuf_init(i915);
17897         if (ret)
17898                 goto cleanup_vga_client_pw_domain_csr;
17899
17900         ret = intel_bw_init(i915);
17901         if (ret)
17902                 goto cleanup_vga_client_pw_domain_csr;
17903
17904         init_llist_head(&i915->atomic_helper.free_list);
17905         INIT_WORK(&i915->atomic_helper.free_work,
17906                   intel_atomic_helper_free_state_worker);
17907
17908         intel_init_quirks(i915);
17909
17910         intel_fbc_init(i915);
17911
17912         return 0;
17913
17914 cleanup_vga_client_pw_domain_csr:
17915         intel_csr_ucode_fini(i915);
17916         intel_power_domains_driver_remove(i915);
17917         intel_vga_unregister(i915);
17918 cleanup_bios:
17919         intel_bios_driver_remove(i915);
17920
17921         return ret;
17922 }
17923
17924 /* part #2: call after irq install, but before gem init */
17925 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17926 {
17927         struct drm_device *dev = &i915->drm;
17928         enum pipe pipe;
17929         struct intel_crtc *crtc;
17930         int ret;
17931
17932         intel_init_pm(i915);
17933
17934         intel_panel_sanitize_ssc(i915);
17935
17936         intel_gmbus_setup(i915);
17937
17938         drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17939                     INTEL_NUM_PIPES(i915),
17940                     INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17941
17942         if (HAS_DISPLAY(i915)) {
17943                 for_each_pipe(i915, pipe) {
17944                         ret = intel_crtc_init(i915, pipe);
17945                         if (ret) {
17946                                 intel_mode_config_cleanup(i915);
17947                                 return ret;
17948                         }
17949                 }
17950         }
17951
17952         intel_plane_possible_crtcs_init(i915);
17953         intel_shared_dpll_init(dev);
17954         intel_update_fdi_pll_freq(i915);
17955
17956         intel_update_czclk(i915);
17957         intel_modeset_init_hw(i915);
17958
17959         intel_hdcp_component_init(i915);
17960
17961         if (i915->max_cdclk_freq == 0)
17962                 intel_update_max_cdclk(i915);
17963
17964         /*
17965          * If the platform has HTI, we need to find out whether it has reserved
17966          * any display resources before we create our display outputs.
17967          */
17968         if (INTEL_INFO(i915)->display.has_hti)
17969                 i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17970
17971         /* Just disable it once at startup */
17972         intel_vga_disable(i915);
17973         intel_setup_outputs(i915);
17974
17975         drm_modeset_lock_all(dev);
17976         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17977         drm_modeset_unlock_all(dev);
17978
17979         for_each_intel_crtc(dev, crtc) {
17980                 struct intel_initial_plane_config plane_config = {};
17981
17982                 if (!crtc->active)
17983                         continue;
17984
17985                 /*
17986                  * Note that reserving the BIOS fb up front prevents us
17987                  * from stuffing other stolen allocations like the ring
17988                  * on top.  This prevents some ugliness at boot time, and
17989                  * can even allow for smooth boot transitions if the BIOS
17990                  * fb is large enough for the active pipe configuration.
17991                  */
17992                 i915->display.get_initial_plane_config(crtc, &plane_config);
17993
17994                 /*
17995                  * If the fb is shared between multiple heads, we'll
17996                  * just get the first one.
17997                  */
17998                 intel_find_initial_plane_obj(crtc, &plane_config);
17999
18000                 plane_config_fini(&plane_config);
18001         }
18002
18003         /*
18004          * Make sure hardware watermarks really match the state we read out.
18005          * Note that we need to do this after reconstructing the BIOS fb's
18006          * since the watermark calculation done here will use pstate->fb.
18007          */
18008         if (!HAS_GMCH(i915))
18009                 sanitize_watermarks(i915);
18010
18011         /*
18012          * Force all active planes to recompute their states. So that on
18013          * mode_setcrtc after probe, all the intel_plane_state variables
18014          * are already calculated and there is no assert_plane warnings
18015          * during bootup.
18016          */
18017         ret = intel_initial_commit(dev);
18018         if (ret)
18019                 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n");
18020
18021         return 0;
18022 }
18023
18024 /* part #3: call after gem init */
18025 int intel_modeset_init(struct drm_i915_private *i915)
18026 {
18027         int ret;
18028
18029         intel_overlay_setup(i915);
18030
18031         if (!HAS_DISPLAY(i915))
18032                 return 0;
18033
18034         ret = intel_fbdev_init(&i915->drm);
18035         if (ret)
18036                 return ret;
18037
18038         /* Only enable hotplug handling once the fbdev is fully set up. */
18039         intel_hpd_init(i915);
18040
18041         intel_init_ipc(i915);
18042
18043         intel_psr_set_force_mode_changed(i915->psr.dp);
18044
18045         return 0;
18046 }
18047
18048 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18049 {
18050         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18051         /* 640x480@60Hz, ~25175 kHz */
18052         struct dpll clock = {
18053                 .m1 = 18,
18054                 .m2 = 7,
18055                 .p1 = 13,
18056                 .p2 = 4,
18057                 .n = 2,
18058         };
18059         u32 dpll, fp;
18060         int i;
18061
18062         drm_WARN_ON(&dev_priv->drm,
18063                     i9xx_calc_dpll_params(48000, &clock) != 25154);
18064
18065         drm_dbg_kms(&dev_priv->drm,
18066                     "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18067                     pipe_name(pipe), clock.vco, clock.dot);
18068
18069         fp = i9xx_dpll_compute_fp(&clock);
18070         dpll = DPLL_DVO_2X_MODE |
18071                 DPLL_VGA_MODE_DIS |
18072                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18073                 PLL_P2_DIVIDE_BY_4 |
18074                 PLL_REF_INPUT_DREFCLK |
18075                 DPLL_VCO_ENABLE;
18076
18077         intel_de_write(dev_priv, FP0(pipe), fp);
18078         intel_de_write(dev_priv, FP1(pipe), fp);
18079
18080         intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18081         intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18082         intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18083         intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18084         intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18085         intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18086         intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18087
18088         /*
18089          * Apparently we need to have VGA mode enabled prior to changing
18090          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18091          * dividers, even though the register value does change.
18092          */
18093         intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18094         intel_de_write(dev_priv, DPLL(pipe), dpll);
18095
18096         /* Wait for the clocks to stabilize. */
18097         intel_de_posting_read(dev_priv, DPLL(pipe));
18098         udelay(150);
18099
18100         /* The pixel multiplier can only be updated once the
18101          * DPLL is enabled and the clocks are stable.
18102          *
18103          * So write it again.
18104          */
18105         intel_de_write(dev_priv, DPLL(pipe), dpll);
18106
18107         /* We do this three times for luck */
18108         for (i = 0; i < 3 ; i++) {
18109                 intel_de_write(dev_priv, DPLL(pipe), dpll);
18110                 intel_de_posting_read(dev_priv, DPLL(pipe));
18111                 udelay(150); /* wait for warmup */
18112         }
18113
18114         intel_de_write(dev_priv, PIPECONF(pipe),
18115                        PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18116         intel_de_posting_read(dev_priv, PIPECONF(pipe));
18117
18118         intel_wait_for_pipe_scanline_moving(crtc);
18119 }
18120
18121 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18122 {
18123         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18124
18125         drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18126                     pipe_name(pipe));
18127
18128         drm_WARN_ON(&dev_priv->drm,
18129                     intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18130                     DISPLAY_PLANE_ENABLE);
18131         drm_WARN_ON(&dev_priv->drm,
18132                     intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18133                     DISPLAY_PLANE_ENABLE);
18134         drm_WARN_ON(&dev_priv->drm,
18135                     intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18136                     DISPLAY_PLANE_ENABLE);
18137         drm_WARN_ON(&dev_priv->drm,
18138                     intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18139         drm_WARN_ON(&dev_priv->drm,
18140                     intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18141
18142         intel_de_write(dev_priv, PIPECONF(pipe), 0);
18143         intel_de_posting_read(dev_priv, PIPECONF(pipe));
18144
18145         intel_wait_for_pipe_scanline_stopped(crtc);
18146
18147         intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18148         intel_de_posting_read(dev_priv, DPLL(pipe));
18149 }
18150
18151 static void
18152 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18153 {
18154         struct intel_crtc *crtc;
18155
18156         if (INTEL_GEN(dev_priv) >= 4)
18157                 return;
18158
18159         for_each_intel_crtc(&dev_priv->drm, crtc) {
18160                 struct intel_plane *plane =
18161                         to_intel_plane(crtc->base.primary);
18162                 struct intel_crtc *plane_crtc;
18163                 enum pipe pipe;
18164
18165                 if (!plane->get_hw_state(plane, &pipe))
18166                         continue;
18167
18168                 if (pipe == crtc->pipe)
18169                         continue;
18170
18171                 drm_dbg_kms(&dev_priv->drm,
18172                             "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18173                             plane->base.base.id, plane->base.name);
18174
18175                 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18176                 intel_plane_disable_noatomic(plane_crtc, plane);
18177         }
18178 }
18179
18180 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18181 {
18182         struct drm_device *dev = crtc->base.dev;
18183         struct intel_encoder *encoder;
18184
18185         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18186                 return true;
18187
18188         return false;
18189 }
18190
18191 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18192 {
18193         struct drm_device *dev = encoder->base.dev;
18194         struct intel_connector *connector;
18195
18196         for_each_connector_on_encoder(dev, &encoder->base, connector)
18197                 return connector;
18198
18199         return NULL;
18200 }
18201
18202 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18203                               enum pipe pch_transcoder)
18204 {
18205         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18206                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18207 }
18208
18209 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18210 {
18211         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18212         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18213         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18214
18215         if (INTEL_GEN(dev_priv) >= 9 ||
18216             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18217                 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18218                 u32 val;
18219
18220                 if (transcoder_is_dsi(cpu_transcoder))
18221                         return;
18222
18223                 val = intel_de_read(dev_priv, reg);
18224                 val &= ~HSW_FRAME_START_DELAY_MASK;
18225                 val |= HSW_FRAME_START_DELAY(0);
18226                 intel_de_write(dev_priv, reg, val);
18227         } else {
18228                 i915_reg_t reg = PIPECONF(cpu_transcoder);
18229                 u32 val;
18230
18231                 val = intel_de_read(dev_priv, reg);
18232                 val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18233                 val |= PIPECONF_FRAME_START_DELAY(0);
18234                 intel_de_write(dev_priv, reg, val);
18235         }
18236
18237         if (!crtc_state->has_pch_encoder)
18238                 return;
18239
18240         if (HAS_PCH_IBX(dev_priv)) {
18241                 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18242                 u32 val;
18243
18244                 val = intel_de_read(dev_priv, reg);
18245                 val &= ~TRANS_FRAME_START_DELAY_MASK;
18246                 val |= TRANS_FRAME_START_DELAY(0);
18247                 intel_de_write(dev_priv, reg, val);
18248         } else {
18249                 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18250                 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18251                 u32 val;
18252
18253                 val = intel_de_read(dev_priv, reg);
18254                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18255                 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18256                 intel_de_write(dev_priv, reg, val);
18257         }
18258 }
18259
18260 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18261                                 struct drm_modeset_acquire_ctx *ctx)
18262 {
18263         struct drm_device *dev = crtc->base.dev;
18264         struct drm_i915_private *dev_priv = to_i915(dev);
18265         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18266
18267         if (crtc_state->hw.active) {
18268                 struct intel_plane *plane;
18269
18270                 /* Clear any frame start delays used for debugging left by the BIOS */
18271                 intel_sanitize_frame_start_delay(crtc_state);
18272
18273                 /* Disable everything but the primary plane */
18274                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
18275                         const struct intel_plane_state *plane_state =
18276                                 to_intel_plane_state(plane->base.state);
18277
18278                         if (plane_state->uapi.visible &&
18279                             plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18280                                 intel_plane_disable_noatomic(crtc, plane);
18281                 }
18282
18283                 /*
18284                  * Disable any background color set by the BIOS, but enable the
18285                  * gamma and CSC to match how we program our planes.
18286                  */
18287                 if (INTEL_GEN(dev_priv) >= 9)
18288                         intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18289                                        SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18290         }
18291
18292         /* Adjust the state of the output pipe according to whether we
18293          * have active connectors/encoders. */
18294         if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18295                 intel_crtc_disable_noatomic(crtc, ctx);
18296
18297         if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18298                 /*
18299                  * We start out with underrun reporting disabled to avoid races.
18300                  * For correct bookkeeping mark this on active crtcs.
18301                  *
18302                  * Also on gmch platforms we dont have any hardware bits to
18303                  * disable the underrun reporting. Which means we need to start
18304                  * out with underrun reporting disabled also on inactive pipes,
18305                  * since otherwise we'll complain about the garbage we read when
18306                  * e.g. coming up after runtime pm.
18307                  *
18308                  * No protection against concurrent access is required - at
18309                  * worst a fifo underrun happens which also sets this to false.
18310                  */
18311                 crtc->cpu_fifo_underrun_disabled = true;
18312                 /*
18313                  * We track the PCH trancoder underrun reporting state
18314                  * within the crtc. With crtc for pipe A housing the underrun
18315                  * reporting state for PCH transcoder A, crtc for pipe B housing
18316                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18317                  * and marking underrun reporting as disabled for the non-existing
18318                  * PCH transcoders B and C would prevent enabling the south
18319                  * error interrupt (see cpt_can_enable_serr_int()).
18320                  */
18321                 if (has_pch_trancoder(dev_priv, crtc->pipe))
18322                         crtc->pch_fifo_underrun_disabled = true;
18323         }
18324 }
18325
18326 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18327 {
18328         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18329
18330         /*
18331          * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18332          * the hardware when a high res displays plugged in. DPLL P
18333          * divider is zero, and the pipe timings are bonkers. We'll
18334          * try to disable everything in that case.
18335          *
18336          * FIXME would be nice to be able to sanitize this state
18337          * without several WARNs, but for now let's take the easy
18338          * road.
18339          */
18340         return IS_GEN(dev_priv, 6) &&
18341                 crtc_state->hw.active &&
18342                 crtc_state->shared_dpll &&
18343                 crtc_state->port_clock == 0;
18344 }
18345
18346 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18347 {
18348         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18349         struct intel_connector *connector;
18350         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18351         struct intel_crtc_state *crtc_state = crtc ?
18352                 to_intel_crtc_state(crtc->base.state) : NULL;
18353
18354         /* We need to check both for a crtc link (meaning that the
18355          * encoder is active and trying to read from a pipe) and the
18356          * pipe itself being active. */
18357         bool has_active_crtc = crtc_state &&
18358                 crtc_state->hw.active;
18359
18360         if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18361                 drm_dbg_kms(&dev_priv->drm,
18362                             "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18363                             pipe_name(crtc->pipe));
18364                 has_active_crtc = false;
18365         }
18366
18367         connector = intel_encoder_find_connector(encoder);
18368         if (connector && !has_active_crtc) {
18369                 drm_dbg_kms(&dev_priv->drm,
18370                             "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18371                             encoder->base.base.id,
18372                             encoder->base.name);
18373
18374                 /* Connector is active, but has no active pipe. This is
18375                  * fallout from our resume register restoring. Disable
18376                  * the encoder manually again. */
18377                 if (crtc_state) {
18378                         struct drm_encoder *best_encoder;
18379
18380                         drm_dbg_kms(&dev_priv->drm,
18381                                     "[ENCODER:%d:%s] manually disabled\n",
18382                                     encoder->base.base.id,
18383                                     encoder->base.name);
18384
18385                         /* avoid oopsing in case the hooks consult best_encoder */
18386                         best_encoder = connector->base.state->best_encoder;
18387                         connector->base.state->best_encoder = &encoder->base;
18388
18389                         /* FIXME NULL atomic state passed! */
18390                         if (encoder->disable)
18391                                 encoder->disable(NULL, encoder, crtc_state,
18392                                                  connector->base.state);
18393                         if (encoder->post_disable)
18394                                 encoder->post_disable(NULL, encoder, crtc_state,
18395                                                       connector->base.state);
18396
18397                         connector->base.state->best_encoder = best_encoder;
18398                 }
18399                 encoder->base.crtc = NULL;
18400
18401                 /* Inconsistent output/port/pipe state happens presumably due to
18402                  * a bug in one of the get_hw_state functions. Or someplace else
18403                  * in our code, like the register restore mess on resume. Clamp
18404                  * things to off as a safer default. */
18405
18406                 connector->base.dpms = DRM_MODE_DPMS_OFF;
18407                 connector->base.encoder = NULL;
18408         }
18409
18410         /* notify opregion of the sanitized encoder state */
18411         intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18412
18413         if (INTEL_GEN(dev_priv) >= 11)
18414                 icl_sanitize_encoder_pll_mapping(encoder);
18415 }
18416
18417 /* FIXME read out full plane state for all planes */
18418 static void readout_plane_state(struct drm_i915_private *dev_priv)
18419 {
18420         struct intel_plane *plane;
18421         struct intel_crtc *crtc;
18422
18423         for_each_intel_plane(&dev_priv->drm, plane) {
18424                 struct intel_plane_state *plane_state =
18425                         to_intel_plane_state(plane->base.state);
18426                 struct intel_crtc_state *crtc_state;
18427                 enum pipe pipe = PIPE_A;
18428                 bool visible;
18429
18430                 visible = plane->get_hw_state(plane, &pipe);
18431
18432                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18433                 crtc_state = to_intel_crtc_state(crtc->base.state);
18434
18435                 intel_set_plane_visible(crtc_state, plane_state, visible);
18436
18437                 drm_dbg_kms(&dev_priv->drm,
18438                             "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18439                             plane->base.base.id, plane->base.name,
18440                             enableddisabled(visible), pipe_name(pipe));
18441         }
18442
18443         for_each_intel_crtc(&dev_priv->drm, crtc) {
18444                 struct intel_crtc_state *crtc_state =
18445                         to_intel_crtc_state(crtc->base.state);
18446
18447                 fixup_active_planes(crtc_state);
18448         }
18449 }
18450
18451 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18452 {
18453         struct drm_i915_private *dev_priv = to_i915(dev);
18454         struct intel_cdclk_state *cdclk_state =
18455                 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18456         struct intel_dbuf_state *dbuf_state =
18457                 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18458         enum pipe pipe;
18459         struct intel_crtc *crtc;
18460         struct intel_encoder *encoder;
18461         struct intel_connector *connector;
18462         struct drm_connector_list_iter conn_iter;
18463         u8 active_pipes = 0;
18464
18465         for_each_intel_crtc(dev, crtc) {
18466                 struct intel_crtc_state *crtc_state =
18467                         to_intel_crtc_state(crtc->base.state);
18468
18469                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18470                 intel_crtc_free_hw_state(crtc_state);
18471                 intel_crtc_state_reset(crtc_state, crtc);
18472
18473                 crtc_state->hw.active = crtc_state->hw.enable =
18474                         dev_priv->display.get_pipe_config(crtc, crtc_state);
18475
18476                 crtc->base.enabled = crtc_state->hw.enable;
18477                 crtc->active = crtc_state->hw.active;
18478
18479                 if (crtc_state->hw.active)
18480                         active_pipes |= BIT(crtc->pipe);
18481
18482                 drm_dbg_kms(&dev_priv->drm,
18483                             "[CRTC:%d:%s] hw state readout: %s\n",
18484                             crtc->base.base.id, crtc->base.name,
18485                             enableddisabled(crtc_state->hw.active));
18486         }
18487
18488         dev_priv->active_pipes = cdclk_state->active_pipes =
18489                 dbuf_state->active_pipes = active_pipes;
18490
18491         readout_plane_state(dev_priv);
18492
18493         intel_dpll_readout_hw_state(dev_priv);
18494
18495         for_each_intel_encoder(dev, encoder) {
18496                 pipe = 0;
18497
18498                 if (encoder->get_hw_state(encoder, &pipe)) {
18499                         struct intel_crtc_state *crtc_state;
18500
18501                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18502                         crtc_state = to_intel_crtc_state(crtc->base.state);
18503
18504                         encoder->base.crtc = &crtc->base;
18505                         encoder->get_config(encoder, crtc_state);
18506                 } else {
18507                         encoder->base.crtc = NULL;
18508                 }
18509
18510                 drm_dbg_kms(&dev_priv->drm,
18511                             "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18512                             encoder->base.base.id, encoder->base.name,
18513                             enableddisabled(encoder->base.crtc),
18514                             pipe_name(pipe));
18515         }
18516
18517         drm_connector_list_iter_begin(dev, &conn_iter);
18518         for_each_intel_connector_iter(connector, &conn_iter) {
18519                 if (connector->get_hw_state(connector)) {
18520                         struct intel_crtc_state *crtc_state;
18521                         struct intel_crtc *crtc;
18522
18523                         connector->base.dpms = DRM_MODE_DPMS_ON;
18524
18525                         encoder = intel_attached_encoder(connector);
18526                         connector->base.encoder = &encoder->base;
18527
18528                         crtc = to_intel_crtc(encoder->base.crtc);
18529                         crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18530
18531                         if (crtc_state && crtc_state->hw.active) {
18532                                 /*
18533                                  * This has to be done during hardware readout
18534                                  * because anything calling .crtc_disable may
18535                                  * rely on the connector_mask being accurate.
18536                                  */
18537                                 crtc_state->uapi.connector_mask |=
18538                                         drm_connector_mask(&connector->base);
18539                                 crtc_state->uapi.encoder_mask |=
18540                                         drm_encoder_mask(&encoder->base);
18541                         }
18542                 } else {
18543                         connector->base.dpms = DRM_MODE_DPMS_OFF;
18544                         connector->base.encoder = NULL;
18545                 }
18546                 drm_dbg_kms(&dev_priv->drm,
18547                             "[CONNECTOR:%d:%s] hw state readout: %s\n",
18548                             connector->base.base.id, connector->base.name,
18549                             enableddisabled(connector->base.encoder));
18550         }
18551         drm_connector_list_iter_end(&conn_iter);
18552
18553         for_each_intel_crtc(dev, crtc) {
18554                 struct intel_bw_state *bw_state =
18555                         to_intel_bw_state(dev_priv->bw_obj.state);
18556                 struct intel_crtc_state *crtc_state =
18557                         to_intel_crtc_state(crtc->base.state);
18558                 struct intel_plane *plane;
18559                 int min_cdclk = 0;
18560
18561                 if (crtc_state->hw.active) {
18562                         struct drm_display_mode *mode = &crtc_state->hw.mode;
18563
18564                         intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18565                                                     crtc_state);
18566
18567                         *mode = crtc_state->hw.adjusted_mode;
18568                         mode->hdisplay = crtc_state->pipe_src_w;
18569                         mode->vdisplay = crtc_state->pipe_src_h;
18570
18571                         /*
18572                          * The initial mode needs to be set in order to keep
18573                          * the atomic core happy. It wants a valid mode if the
18574                          * crtc's enabled, so we do the above call.
18575                          *
18576                          * But we don't set all the derived state fully, hence
18577                          * set a flag to indicate that a full recalculation is
18578                          * needed on the next commit.
18579                          */
18580                         crtc_state->inherited = true;
18581
18582                         intel_crtc_compute_pixel_rate(crtc_state);
18583
18584                         intel_crtc_update_active_timings(crtc_state);
18585
18586                         intel_crtc_copy_hw_to_uapi_state(crtc_state);
18587                 }
18588
18589                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18590                         const struct intel_plane_state *plane_state =
18591                                 to_intel_plane_state(plane->base.state);
18592
18593                         /*
18594                          * FIXME don't have the fb yet, so can't
18595                          * use intel_plane_data_rate() :(
18596                          */
18597                         if (plane_state->uapi.visible)
18598                                 crtc_state->data_rate[plane->id] =
18599                                         4 * crtc_state->pixel_rate;
18600                         /*
18601                          * FIXME don't have the fb yet, so can't
18602                          * use plane->min_cdclk() :(
18603                          */
18604                         if (plane_state->uapi.visible && plane->min_cdclk) {
18605                                 if (crtc_state->double_wide ||
18606                                     INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18607                                         crtc_state->min_cdclk[plane->id] =
18608                                                 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18609                                 else
18610                                         crtc_state->min_cdclk[plane->id] =
18611                                                 crtc_state->pixel_rate;
18612                         }
18613                         drm_dbg_kms(&dev_priv->drm,
18614                                     "[PLANE:%d:%s] min_cdclk %d kHz\n",
18615                                     plane->base.base.id, plane->base.name,
18616                                     crtc_state->min_cdclk[plane->id]);
18617                 }
18618
18619                 if (crtc_state->hw.active) {
18620                         min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18621                         if (drm_WARN_ON(dev, min_cdclk < 0))
18622                                 min_cdclk = 0;
18623                 }
18624
18625                 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18626                 cdclk_state->min_voltage_level[crtc->pipe] =
18627                         crtc_state->min_voltage_level;
18628
18629                 intel_bw_crtc_update(bw_state, crtc_state);
18630
18631                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
18632         }
18633 }
18634
18635 static void
18636 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18637 {
18638         struct intel_encoder *encoder;
18639
18640         for_each_intel_encoder(&dev_priv->drm, encoder) {
18641                 struct intel_crtc_state *crtc_state;
18642
18643                 if (!encoder->get_power_domains)
18644                         continue;
18645
18646                 /*
18647                  * MST-primary and inactive encoders don't have a crtc state
18648                  * and neither of these require any power domain references.
18649                  */
18650                 if (!encoder->base.crtc)
18651                         continue;
18652
18653                 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18654                 encoder->get_power_domains(encoder, crtc_state);
18655         }
18656 }
18657
18658 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18659 {
18660         /*
18661          * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18662          * Also known as Wa_14010480278.
18663          */
18664         if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18665                 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18666                                intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18667
18668         if (IS_HASWELL(dev_priv)) {
18669                 /*
18670                  * WaRsPkgCStateDisplayPMReq:hsw
18671                  * System hang if this isn't done before disabling all planes!
18672                  */
18673                 intel_de_write(dev_priv, CHICKEN_PAR1_1,
18674                                intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18675         }
18676 }
18677
18678 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18679                                        enum port port, i915_reg_t hdmi_reg)
18680 {
18681         u32 val = intel_de_read(dev_priv, hdmi_reg);
18682
18683         if (val & SDVO_ENABLE ||
18684             (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18685                 return;
18686
18687         drm_dbg_kms(&dev_priv->drm,
18688                     "Sanitizing transcoder select for HDMI %c\n",
18689                     port_name(port));
18690
18691         val &= ~SDVO_PIPE_SEL_MASK;
18692         val |= SDVO_PIPE_SEL(PIPE_A);
18693
18694         intel_de_write(dev_priv, hdmi_reg, val);
18695 }
18696
18697 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18698                                      enum port port, i915_reg_t dp_reg)
18699 {
18700         u32 val = intel_de_read(dev_priv, dp_reg);
18701
18702         if (val & DP_PORT_EN ||
18703             (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18704                 return;
18705
18706         drm_dbg_kms(&dev_priv->drm,
18707                     "Sanitizing transcoder select for DP %c\n",
18708                     port_name(port));
18709
18710         val &= ~DP_PIPE_SEL_MASK;
18711         val |= DP_PIPE_SEL(PIPE_A);
18712
18713         intel_de_write(dev_priv, dp_reg, val);
18714 }
18715
18716 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18717 {
18718         /*
18719          * The BIOS may select transcoder B on some of the PCH
18720          * ports even it doesn't enable the port. This would trip
18721          * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18722          * Sanitize the transcoder select bits to prevent that. We
18723          * assume that the BIOS never actually enabled the port,
18724          * because if it did we'd actually have to toggle the port
18725          * on and back off to make the transcoder A select stick
18726          * (see. intel_dp_link_down(), intel_disable_hdmi(),
18727          * intel_disable_sdvo()).
18728          */
18729         ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18730         ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18731         ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18732
18733         /* PCH SDVOB multiplex with HDMIB */
18734         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18735         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18736         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18737 }
18738
18739 /* Scan out the current hw modeset state,
18740  * and sanitizes it to the current state
18741  */
18742 static void
18743 intel_modeset_setup_hw_state(struct drm_device *dev,
18744                              struct drm_modeset_acquire_ctx *ctx)
18745 {
18746         struct drm_i915_private *dev_priv = to_i915(dev);
18747         struct intel_encoder *encoder;
18748         struct intel_crtc *crtc;
18749         intel_wakeref_t wakeref;
18750
18751         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18752
18753         intel_early_display_was(dev_priv);
18754         intel_modeset_readout_hw_state(dev);
18755
18756         /* HW state is read out, now we need to sanitize this mess. */
18757
18758         /* Sanitize the TypeC port mode upfront, encoders depend on this */
18759         for_each_intel_encoder(dev, encoder) {
18760                 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18761
18762                 /* We need to sanitize only the MST primary port. */
18763                 if (encoder->type != INTEL_OUTPUT_DP_MST &&
18764                     intel_phy_is_tc(dev_priv, phy))
18765                         intel_tc_port_sanitize(enc_to_dig_port(encoder));
18766         }
18767
18768         get_encoder_power_domains(dev_priv);
18769
18770         if (HAS_PCH_IBX(dev_priv))
18771                 ibx_sanitize_pch_ports(dev_priv);
18772
18773         /*
18774          * intel_sanitize_plane_mapping() may need to do vblank
18775          * waits, so we need vblank interrupts restored beforehand.
18776          */
18777         for_each_intel_crtc(&dev_priv->drm, crtc) {
18778                 struct intel_crtc_state *crtc_state =
18779                         to_intel_crtc_state(crtc->base.state);
18780
18781                 drm_crtc_vblank_reset(&crtc->base);
18782
18783                 if (crtc_state->hw.active)
18784                         intel_crtc_vblank_on(crtc_state);
18785         }
18786
18787         intel_sanitize_plane_mapping(dev_priv);
18788
18789         for_each_intel_encoder(dev, encoder)
18790                 intel_sanitize_encoder(encoder);
18791
18792         for_each_intel_crtc(&dev_priv->drm, crtc) {
18793                 struct intel_crtc_state *crtc_state =
18794                         to_intel_crtc_state(crtc->base.state);
18795
18796                 intel_sanitize_crtc(crtc, ctx);
18797                 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18798         }
18799
18800         intel_modeset_update_connector_atomic_state(dev);
18801
18802         intel_dpll_sanitize_state(dev_priv);
18803
18804         if (IS_G4X(dev_priv)) {
18805                 g4x_wm_get_hw_state(dev_priv);
18806                 g4x_wm_sanitize(dev_priv);
18807         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18808                 vlv_wm_get_hw_state(dev_priv);
18809                 vlv_wm_sanitize(dev_priv);
18810         } else if (INTEL_GEN(dev_priv) >= 9) {
18811                 skl_wm_get_hw_state(dev_priv);
18812         } else if (HAS_PCH_SPLIT(dev_priv)) {
18813                 ilk_wm_get_hw_state(dev_priv);
18814         }
18815
18816         for_each_intel_crtc(dev, crtc) {
18817                 struct intel_crtc_state *crtc_state =
18818                         to_intel_crtc_state(crtc->base.state);
18819                 u64 put_domains;
18820
18821                 put_domains = modeset_get_crtc_power_domains(crtc_state);
18822                 if (drm_WARN_ON(dev, put_domains))
18823                         modeset_put_power_domains(dev_priv, put_domains);
18824         }
18825
18826         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18827 }
18828
18829 void intel_display_resume(struct drm_device *dev)
18830 {
18831         struct drm_i915_private *dev_priv = to_i915(dev);
18832         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18833         struct drm_modeset_acquire_ctx ctx;
18834         int ret;
18835
18836         dev_priv->modeset_restore_state = NULL;
18837         if (state)
18838                 state->acquire_ctx = &ctx;
18839
18840         drm_modeset_acquire_init(&ctx, 0);
18841
18842         while (1) {
18843                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
18844                 if (ret != -EDEADLK)
18845                         break;
18846
18847                 drm_modeset_backoff(&ctx);
18848         }
18849
18850         if (!ret)
18851                 ret = __intel_display_resume(dev, state, &ctx);
18852
18853         intel_enable_ipc(dev_priv);
18854         drm_modeset_drop_locks(&ctx);
18855         drm_modeset_acquire_fini(&ctx);
18856
18857         if (ret)
18858                 drm_err(&dev_priv->drm,
18859                         "Restoring old state failed with %i\n", ret);
18860         if (state)
18861                 drm_atomic_state_put(state);
18862 }
18863
18864 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18865 {
18866         struct intel_connector *connector;
18867         struct drm_connector_list_iter conn_iter;
18868
18869         /* Kill all the work that may have been queued by hpd. */
18870         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18871         for_each_intel_connector_iter(connector, &conn_iter) {
18872                 if (connector->modeset_retry_work.func)
18873                         cancel_work_sync(&connector->modeset_retry_work);
18874                 if (connector->hdcp.shim) {
18875                         cancel_delayed_work_sync(&connector->hdcp.check_work);
18876                         cancel_work_sync(&connector->hdcp.prop_work);
18877                 }
18878         }
18879         drm_connector_list_iter_end(&conn_iter);
18880 }
18881
18882 /* part #1: call before irq uninstall */
18883 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18884 {
18885         flush_workqueue(i915->flip_wq);
18886         flush_workqueue(i915->modeset_wq);
18887
18888         flush_work(&i915->atomic_helper.free_work);
18889         drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18890 }
18891
18892 /* part #2: call after irq uninstall */
18893 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18894 {
18895         /*
18896          * Due to the hpd irq storm handling the hotplug work can re-arm the
18897          * poll handlers. Hence disable polling after hpd handling is shut down.
18898          */
18899         intel_hpd_poll_fini(i915);
18900
18901         /*
18902          * MST topology needs to be suspended so we don't have any calls to
18903          * fbdev after it's finalized. MST will be destroyed later as part of
18904          * drm_mode_config_cleanup()
18905          */
18906         intel_dp_mst_suspend(i915);
18907
18908         /* poll work can call into fbdev, hence clean that up afterwards */
18909         intel_fbdev_fini(i915);
18910
18911         intel_unregister_dsm_handler();
18912
18913         intel_fbc_global_disable(i915);
18914
18915         /* flush any delayed tasks or pending work */
18916         flush_scheduled_work();
18917
18918         intel_hdcp_component_fini(i915);
18919
18920         intel_mode_config_cleanup(i915);
18921
18922         intel_overlay_cleanup(i915);
18923
18924         intel_gmbus_teardown(i915);
18925
18926         destroy_workqueue(i915->flip_wq);
18927         destroy_workqueue(i915->modeset_wq);
18928
18929         intel_fbc_cleanup_cfb(i915);
18930 }
18931
18932 /* part #3: call after gem init */
18933 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18934 {
18935         intel_csr_ucode_fini(i915);
18936
18937         intel_power_domains_driver_remove(i915);
18938
18939         intel_vga_unregister(i915);
18940
18941         intel_bios_driver_remove(i915);
18942 }
18943
18944 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18945
18946 struct intel_display_error_state {
18947
18948         u32 power_well_driver;
18949
18950         struct intel_cursor_error_state {
18951                 u32 control;
18952                 u32 position;
18953                 u32 base;
18954                 u32 size;
18955         } cursor[I915_MAX_PIPES];
18956
18957         struct intel_pipe_error_state {
18958                 bool power_domain_on;
18959                 u32 source;
18960                 u32 stat;
18961         } pipe[I915_MAX_PIPES];
18962
18963         struct intel_plane_error_state {
18964                 u32 control;
18965                 u32 stride;
18966                 u32 size;
18967                 u32 pos;
18968                 u32 addr;
18969                 u32 surface;
18970                 u32 tile_offset;
18971         } plane[I915_MAX_PIPES];
18972
18973         struct intel_transcoder_error_state {
18974                 bool available;
18975                 bool power_domain_on;
18976                 enum transcoder cpu_transcoder;
18977
18978                 u32 conf;
18979
18980                 u32 htotal;
18981                 u32 hblank;
18982                 u32 hsync;
18983                 u32 vtotal;
18984                 u32 vblank;
18985                 u32 vsync;
18986         } transcoder[5];
18987 };
18988
18989 struct intel_display_error_state *
18990 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18991 {
18992         struct intel_display_error_state *error;
18993         int transcoders[] = {
18994                 TRANSCODER_A,
18995                 TRANSCODER_B,
18996                 TRANSCODER_C,
18997                 TRANSCODER_D,
18998                 TRANSCODER_EDP,
18999         };
19000         int i;
19001
19002         BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19003
19004         if (!HAS_DISPLAY(dev_priv))
19005                 return NULL;
19006
19007         error = kzalloc(sizeof(*error), GFP_ATOMIC);
19008         if (error == NULL)
19009                 return NULL;
19010
19011         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19012                 error->power_well_driver = intel_de_read(dev_priv,
19013                                                          HSW_PWR_WELL_CTL2);
19014
19015         for_each_pipe(dev_priv, i) {
19016                 error->pipe[i].power_domain_on =
19017                         __intel_display_power_is_enabled(dev_priv,
19018                                                          POWER_DOMAIN_PIPE(i));
19019                 if (!error->pipe[i].power_domain_on)
19020                         continue;
19021
19022                 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19023                 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19024                 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19025
19026                 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19027                 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19028                 if (INTEL_GEN(dev_priv) <= 3) {
19029                         error->plane[i].size = intel_de_read(dev_priv,
19030                                                              DSPSIZE(i));
19031                         error->plane[i].pos = intel_de_read(dev_priv,
19032                                                             DSPPOS(i));
19033                 }
19034                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19035                         error->plane[i].addr = intel_de_read(dev_priv,
19036                                                              DSPADDR(i));
19037                 if (INTEL_GEN(dev_priv) >= 4) {
19038                         error->plane[i].surface = intel_de_read(dev_priv,
19039                                                                 DSPSURF(i));
19040                         error->plane[i].tile_offset = intel_de_read(dev_priv,
19041                                                                     DSPTILEOFF(i));
19042                 }
19043
19044                 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19045
19046                 if (HAS_GMCH(dev_priv))
19047                         error->pipe[i].stat = intel_de_read(dev_priv,
19048                                                             PIPESTAT(i));
19049         }
19050
19051         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19052                 enum transcoder cpu_transcoder = transcoders[i];
19053
19054                 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19055                         continue;
19056
19057                 error->transcoder[i].available = true;
19058                 error->transcoder[i].power_domain_on =
19059                         __intel_display_power_is_enabled(dev_priv,
19060                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19061                 if (!error->transcoder[i].power_domain_on)
19062                         continue;
19063
19064                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
19065
19066                 error->transcoder[i].conf = intel_de_read(dev_priv,
19067                                                           PIPECONF(cpu_transcoder));
19068                 error->transcoder[i].htotal = intel_de_read(dev_priv,
19069                                                             HTOTAL(cpu_transcoder));
19070                 error->transcoder[i].hblank = intel_de_read(dev_priv,
19071                                                             HBLANK(cpu_transcoder));
19072                 error->transcoder[i].hsync = intel_de_read(dev_priv,
19073                                                            HSYNC(cpu_transcoder));
19074                 error->transcoder[i].vtotal = intel_de_read(dev_priv,
19075                                                             VTOTAL(cpu_transcoder));
19076                 error->transcoder[i].vblank = intel_de_read(dev_priv,
19077                                                             VBLANK(cpu_transcoder));
19078                 error->transcoder[i].vsync = intel_de_read(dev_priv,
19079                                                            VSYNC(cpu_transcoder));
19080         }
19081
19082         return error;
19083 }
19084
19085 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19086
19087 void
19088 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19089                                 struct intel_display_error_state *error)
19090 {
19091         struct drm_i915_private *dev_priv = m->i915;
19092         int i;
19093
19094         if (!error)
19095                 return;
19096
19097         err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19098         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19099                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
19100                            error->power_well_driver);
19101         for_each_pipe(dev_priv, i) {
19102                 err_printf(m, "Pipe [%d]:\n", i);
19103                 err_printf(m, "  Power: %s\n",
19104                            onoff(error->pipe[i].power_domain_on));
19105                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
19106                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
19107
19108                 err_printf(m, "Plane [%d]:\n", i);
19109                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
19110                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
19111                 if (INTEL_GEN(dev_priv) <= 3) {
19112                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
19113                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
19114                 }
19115                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19116                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
19117                 if (INTEL_GEN(dev_priv) >= 4) {
19118                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
19119                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
19120                 }
19121
19122                 err_printf(m, "Cursor [%d]:\n", i);
19123                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
19124                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
19125                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
19126         }
19127
19128         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19129                 if (!error->transcoder[i].available)
19130                         continue;
19131
19132                 err_printf(m, "CPU transcoder: %s\n",
19133                            transcoder_name(error->transcoder[i].cpu_transcoder));
19134                 err_printf(m, "  Power: %s\n",
19135                            onoff(error->transcoder[i].power_domain_on));
19136                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
19137                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
19138                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
19139                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
19140                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
19141                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
19142                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
19143         }
19144 }
19145
19146 #endif