Merge tag 'ceph-for-5.4-rc4' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / powerplay / smumgr / vegam_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38
39 #include "smu7_dyn_defaults.h"
40
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
48
49 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
50
51 #define VOLTAGE_VID_OFFSET_SCALE1   625
52 #define VOLTAGE_VID_OFFSET_SCALE2   100
53 #define POWERTUNE_DEFAULT_SET_MAX    1
54 #define VDDC_VDDCI_DELTA            200
55 #define MC_CG_ARB_FREQ_F1           0x0b
56
57 #define STRAP_ASIC_RO_LSB    2168
58 #define STRAP_ASIC_RO_MSB    2175
59
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
62
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65         /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
67         { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68         { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
70 };
71
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73                         {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
74                         {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75                         {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
76                         {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
77                         {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
78                         {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
79                         {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
80                         {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
81
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
83 {
84         struct vegam_smumgr *smu_data;
85
86         smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87         if (smu_data == NULL)
88                 return -ENOMEM;
89
90         hwmgr->smu_backend = smu_data;
91
92         if (smu7_init(hwmgr)) {
93                 kfree(smu_data);
94                 return -EINVAL;
95         }
96
97         return 0;
98 }
99
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 {
102         int result = 0;
103
104         /* Wait for smc boot up */
105         /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
106
107         /* Assert reset */
108         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110
111         result = smu7_upload_smu_firmware_image(hwmgr);
112         if (result != 0)
113                 return result;
114
115         /* Clear status */
116         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
117
118         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121         /* De-assert reset */
122         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125
126         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
127
128
129         /* Call Test SMU message with 0x20000 offset to trigger SMU start */
130         smu7_send_msg_to_smc_offset(hwmgr);
131
132         /* Wait done bit to be set */
133         /* Check pass/failed indicator */
134
135         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
136
137         if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138                                                 SMU_STATUS, SMU_PASS))
139                 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
140
141         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
142
143         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
145
146         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
148
149         /* Wait for firmware to initialize */
150         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151
152         return result;
153 }
154
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157         int result = 0;
158
159         /* wait for smc boot up */
160         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
161
162         /* Clear firmware interrupt enable flag */
163         /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
164         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165                                 ixFIRMWARE_FLAGS, 0);
166
167         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168                                         SMC_SYSCON_RESET_CNTL,
169                                         rst_reg, 1);
170
171         result = smu7_upload_smu_firmware_image(hwmgr);
172         if (result != 0)
173                 return result;
174
175         /* Set smc instruct start point at 0x0 */
176         smu7_program_jump_on_start(hwmgr);
177
178         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
180
181         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
183
184         /* Wait for firmware to initialize */
185
186         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187                                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
188
189         return result;
190 }
191
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
193 {
194         int result = 0;
195         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
196
197         /* Only start SMC if SMC RAM is not running */
198         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199                 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200                                 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201                 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202                                 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
203
204                 /* Check if SMU is running in protected mode */
205                 if (smu_data->protected_mode == 0)
206                         result = vegam_start_smu_in_non_protection_mode(hwmgr);
207                 else
208                         result = vegam_start_smu_in_protection_mode(hwmgr);
209
210                 if (result != 0)
211                         PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
212         }
213
214         /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
215         smu7_read_smc_sram_dword(hwmgr,
216                         SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217                         &(smu_data->smu7_data.soft_regs_start),
218                         0x40000);
219
220         result = smu7_request_smu_load_fw(hwmgr);
221
222         return result;
223 }
224
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
226 {
227         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229         uint32_t tmp;
230         int result;
231         bool error = false;
232
233         result = smu7_read_smc_sram_dword(hwmgr,
234                         SMU7_FIRMWARE_HEADER_LOCATION +
235                         offsetof(SMU75_Firmware_Header, DpmTable),
236                         &tmp, SMC_RAM_END);
237
238         if (0 == result)
239                 smu_data->smu7_data.dpm_table_start = tmp;
240
241         error |= (0 != result);
242
243         result = smu7_read_smc_sram_dword(hwmgr,
244                         SMU7_FIRMWARE_HEADER_LOCATION +
245                         offsetof(SMU75_Firmware_Header, SoftRegisters),
246                         &tmp, SMC_RAM_END);
247
248         if (!result) {
249                 data->soft_regs_start = tmp;
250                 smu_data->smu7_data.soft_regs_start = tmp;
251         }
252
253         error |= (0 != result);
254
255         result = smu7_read_smc_sram_dword(hwmgr,
256                         SMU7_FIRMWARE_HEADER_LOCATION +
257                         offsetof(SMU75_Firmware_Header, mcRegisterTable),
258                         &tmp, SMC_RAM_END);
259
260         if (!result)
261                 smu_data->smu7_data.mc_reg_table_start = tmp;
262
263         result = smu7_read_smc_sram_dword(hwmgr,
264                         SMU7_FIRMWARE_HEADER_LOCATION +
265                         offsetof(SMU75_Firmware_Header, FanTable),
266                         &tmp, SMC_RAM_END);
267
268         if (!result)
269                 smu_data->smu7_data.fan_table_start = tmp;
270
271         error |= (0 != result);
272
273         result = smu7_read_smc_sram_dword(hwmgr,
274                         SMU7_FIRMWARE_HEADER_LOCATION +
275                         offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276                         &tmp, SMC_RAM_END);
277
278         if (!result)
279                 smu_data->smu7_data.arb_table_start = tmp;
280
281         error |= (0 != result);
282
283         result = smu7_read_smc_sram_dword(hwmgr,
284                         SMU7_FIRMWARE_HEADER_LOCATION +
285                         offsetof(SMU75_Firmware_Header, Version),
286                         &tmp, SMC_RAM_END);
287
288         if (!result)
289                 hwmgr->microcode_version_info.SMC = tmp;
290
291         error |= (0 != result);
292
293         return error ? -1 : 0;
294 }
295
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
297 {
298         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
300                         ? true : false;
301 }
302
303 static uint32_t vegam_get_mac_definition(uint32_t value)
304 {
305         switch (value) {
306         case SMU_MAX_LEVELS_GRAPHICS:
307                 return SMU75_MAX_LEVELS_GRAPHICS;
308         case SMU_MAX_LEVELS_MEMORY:
309                 return SMU75_MAX_LEVELS_MEMORY;
310         case SMU_MAX_LEVELS_LINK:
311                 return SMU75_MAX_LEVELS_LINK;
312         case SMU_MAX_ENTRIES_SMIO:
313                 return SMU75_MAX_ENTRIES_SMIO;
314         case SMU_MAX_LEVELS_VDDC:
315                 return SMU75_MAX_LEVELS_VDDC;
316         case SMU_MAX_LEVELS_VDDGFX:
317                 return SMU75_MAX_LEVELS_VDDGFX;
318         case SMU_MAX_LEVELS_VDDCI:
319                 return SMU75_MAX_LEVELS_VDDCI;
320         case SMU_MAX_LEVELS_MVDD:
321                 return SMU75_MAX_LEVELS_MVDD;
322         case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
323                 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
324                                 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
325         }
326
327         pr_warn("can't get the mac of %x\n", value);
328         return 0;
329 }
330
331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
332 {
333         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
334         uint32_t mm_boot_level_offset, mm_boot_level_value;
335         struct phm_ppt_v1_information *table_info =
336                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
337
338         smu_data->smc_state_table.UvdBootLevel = 0;
339         if (table_info->mm_dep_table->count > 0)
340                 smu_data->smc_state_table.UvdBootLevel =
341                                 (uint8_t) (table_info->mm_dep_table->count - 1);
342         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
343                                                 UvdBootLevel);
344         mm_boot_level_offset /= 4;
345         mm_boot_level_offset *= 4;
346         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
347                         CGS_IND_REG__SMC, mm_boot_level_offset);
348         mm_boot_level_value &= 0x00FFFFFF;
349         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
350         cgs_write_ind_register(hwmgr->device,
351                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
352
353         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
354                         PHM_PlatformCaps_UVDDPM) ||
355                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
356                         PHM_PlatformCaps_StablePState))
357                 smum_send_msg_to_smc_with_parameter(hwmgr,
358                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
359                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
360         return 0;
361 }
362
363 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
364 {
365         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
366         uint32_t mm_boot_level_offset, mm_boot_level_value;
367         struct phm_ppt_v1_information *table_info =
368                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
369
370         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
371                                         PHM_PlatformCaps_StablePState))
372                 smu_data->smc_state_table.VceBootLevel =
373                         (uint8_t) (table_info->mm_dep_table->count - 1);
374         else
375                 smu_data->smc_state_table.VceBootLevel = 0;
376
377         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
378                                         offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
379         mm_boot_level_offset /= 4;
380         mm_boot_level_offset *= 4;
381         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
382                         CGS_IND_REG__SMC, mm_boot_level_offset);
383         mm_boot_level_value &= 0xFF00FFFF;
384         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
385         cgs_write_ind_register(hwmgr->device,
386                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
387
388         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
389                 smum_send_msg_to_smc_with_parameter(hwmgr,
390                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
391                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
392         return 0;
393 }
394
395 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
396 {
397         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
398         struct phm_ppt_v1_information *table_info =
399                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
400         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
401         int max_entry, i;
402
403         max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
404                                                 SMU75_MAX_LEVELS_LINK :
405                                                 pcie_table->count;
406         /* Setup BIF_SCLK levels */
407         for (i = 0; i < max_entry; i++)
408                 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
409         return 0;
410 }
411
412 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
413 {
414         switch (type) {
415         case SMU_UVD_TABLE:
416                 vegam_update_uvd_smc_table(hwmgr);
417                 break;
418         case SMU_VCE_TABLE:
419                 vegam_update_vce_smc_table(hwmgr);
420                 break;
421         case SMU_BIF_TABLE:
422                 vegam_update_bif_smc_table(hwmgr);
423                 break;
424         default:
425                 break;
426         }
427         return 0;
428 }
429
430 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
431 {
432         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
433         struct  phm_ppt_v1_information *table_info =
434                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
435
436         if (table_info &&
437                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
438                         table_info->cac_dtp_table->usPowerTuneDataSetID)
439                 smu_data->power_tune_defaults =
440                                 &vegam_power_tune_data_set_array
441                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
442         else
443                 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
444
445 }
446
447 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
448                         SMU75_Discrete_DpmTable *table)
449 {
450         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
451         uint32_t count, level;
452
453         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
454                 count = data->mvdd_voltage_table.count;
455                 if (count > SMU_MAX_SMIO_LEVELS)
456                         count = SMU_MAX_SMIO_LEVELS;
457                 for (level = 0; level < count; level++) {
458                         table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
459                                         data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
460                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
461                         table->SmioTable2.Pattern[level].Smio =
462                                 (uint8_t) level;
463                         table->Smio[level] |=
464                                 data->mvdd_voltage_table.entries[level].smio_low;
465                 }
466                 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
467
468                 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
469         }
470
471         return 0;
472 }
473
474 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
475                                         struct SMU75_Discrete_DpmTable *table)
476 {
477         uint32_t count, level;
478         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
479
480         count = data->vddci_voltage_table.count;
481
482         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
483                 if (count > SMU_MAX_SMIO_LEVELS)
484                         count = SMU_MAX_SMIO_LEVELS;
485                 for (level = 0; level < count; ++level) {
486                         table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
487                                         data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
488                         table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
489
490                         table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
491                 }
492         }
493
494         table->SmioMask1 = data->vddci_voltage_table.mask_low;
495
496         return 0;
497 }
498
499 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
500                 struct SMU75_Discrete_DpmTable *table)
501 {
502         uint32_t count;
503         uint8_t index;
504         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
505         struct phm_ppt_v1_information *table_info =
506                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
507         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
508                         table_info->vddc_lookup_table;
509         /* tables is already swapped, so in order to use the value from it,
510          * we need to swap it back.
511          * We are populating vddc CAC data to BapmVddc table
512          * in split and merged mode
513          */
514         for (count = 0; count < lookup_table->count; count++) {
515                 index = phm_get_voltage_index(lookup_table,
516                                 data->vddc_voltage_table.entries[count].value);
517                 table->BapmVddcVidLoSidd[count] =
518                                 convert_to_vid(lookup_table->entries[index].us_cac_low);
519                 table->BapmVddcVidHiSidd[count] =
520                                 convert_to_vid(lookup_table->entries[index].us_cac_mid);
521                 table->BapmVddcVidHiSidd2[count] =
522                                 convert_to_vid(lookup_table->entries[index].us_cac_high);
523         }
524
525         return 0;
526 }
527
528 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
529                 struct SMU75_Discrete_DpmTable *table)
530 {
531         vegam_populate_smc_vddci_table(hwmgr, table);
532         vegam_populate_smc_mvdd_table(hwmgr, table);
533         vegam_populate_cac_table(hwmgr, table);
534
535         return 0;
536 }
537
538 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
539                 struct SMU75_Discrete_Ulv *state)
540 {
541         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542         struct phm_ppt_v1_information *table_info =
543                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
544
545         state->CcPwrDynRm = 0;
546         state->CcPwrDynRm1 = 0;
547
548         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
549         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
550                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
551
552         state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
553
554         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
555         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
556         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
557
558         return 0;
559 }
560
561 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
562                 struct SMU75_Discrete_DpmTable *table)
563 {
564         return vegam_populate_ulv_level(hwmgr, &table->Ulv);
565 }
566
567 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
568                 struct SMU75_Discrete_DpmTable *table)
569 {
570         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
571         struct vegam_smumgr *smu_data =
572                         (struct vegam_smumgr *)(hwmgr->smu_backend);
573         struct smu7_dpm_table *dpm_table = &data->dpm_table;
574         int i;
575
576         /* Index (dpm_table->pcie_speed_table.count)
577          * is reserved for PCIE boot level. */
578         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
579                 table->LinkLevel[i].PcieGenSpeed  =
580                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
581                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
582                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
583                 table->LinkLevel[i].EnabledForActivity = 1;
584                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
585                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
586                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
587         }
588
589         smu_data->smc_state_table.LinkLevelCount =
590                         (uint8_t)dpm_table->pcie_speed_table.count;
591
592 /* To Do move to hwmgr */
593         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
594                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
595
596         return 0;
597 }
598
599 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
600                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
601                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
602 {
603         uint32_t i;
604         uint16_t vddci;
605         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
606
607         *voltage = *mvdd = 0;
608
609         /* clock - voltage dependency table is empty table */
610         if (dep_table->count == 0)
611                 return -EINVAL;
612
613         for (i = 0; i < dep_table->count; i++) {
614                 /* find first sclk bigger than request */
615                 if (dep_table->entries[i].clk >= clock) {
616                         *voltage |= (dep_table->entries[i].vddc *
617                                         VOLTAGE_SCALE) << VDDC_SHIFT;
618                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
619                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
620                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
621                         else if (dep_table->entries[i].vddci)
622                                 *voltage |= (dep_table->entries[i].vddci *
623                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
624                         else {
625                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
626                                                 (dep_table->entries[i].vddc -
627                                                                 (uint16_t)VDDC_VDDCI_DELTA));
628                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
629                         }
630
631                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
632                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
633                                         VOLTAGE_SCALE;
634                         else if (dep_table->entries[i].mvdd)
635                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
636                                         VOLTAGE_SCALE;
637
638                         *voltage |= 1 << PHASES_SHIFT;
639                         return 0;
640                 }
641         }
642
643         /* sclk is bigger than max sclk in the dependence table */
644         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
645         vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
646                         (dep_table->entries[i - 1].vddc -
647                                         (uint16_t)VDDC_VDDCI_DELTA));
648
649         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
650                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
651                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
652         else if (dep_table->entries[i - 1].vddci)
653                 *voltage |= (dep_table->entries[i - 1].vddci *
654                                 VOLTAGE_SCALE) << VDDC_SHIFT;
655         else
656                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
657
658         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
659                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
660         else if (dep_table->entries[i].mvdd)
661                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
662
663         return 0;
664 }
665
666 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
667                                    SMU75_Discrete_DpmTable  *table)
668 {
669         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
670         uint32_t i, ref_clk;
671
672         struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
673
674         ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
675
676         if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
677                 for (i = 0; i < NUM_SCLK_RANGE; i++) {
678                         table->SclkFcwRangeTable[i].vco_setting =
679                                         range_table_from_vbios.entry[i].ucVco_setting;
680                         table->SclkFcwRangeTable[i].postdiv =
681                                         range_table_from_vbios.entry[i].ucPostdiv;
682                         table->SclkFcwRangeTable[i].fcw_pcc =
683                                         range_table_from_vbios.entry[i].usFcw_pcc;
684
685                         table->SclkFcwRangeTable[i].fcw_trans_upper =
686                                         range_table_from_vbios.entry[i].usFcw_trans_upper;
687                         table->SclkFcwRangeTable[i].fcw_trans_lower =
688                                         range_table_from_vbios.entry[i].usRcw_trans_lower;
689
690                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
691                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
692                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
693                 }
694                 return;
695         }
696
697         for (i = 0; i < NUM_SCLK_RANGE; i++) {
698                 smu_data->range_table[i].trans_lower_frequency =
699                                 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
700                 smu_data->range_table[i].trans_upper_frequency =
701                                 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
702
703                 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
704                 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
705                 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
706
707                 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
708                 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
709
710                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
711                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
712                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
713         }
714 }
715
716 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
717                 uint32_t clock, SMU_SclkSetting *sclk_setting)
718 {
719         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
720         const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
721         struct pp_atomctrl_clock_dividers_ai dividers;
722         uint32_t ref_clock;
723         uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
724         uint8_t i;
725         int result;
726         uint64_t temp;
727
728         sclk_setting->SclkFrequency = clock;
729         /* get the engine clock dividers for this clock value */
730         result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
731         if (result == 0) {
732                 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
733                 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
734                 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
735                 sclk_setting->PllRange = dividers.ucSclkPllRange;
736                 sclk_setting->Sclk_slew_rate = 0x400;
737                 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
738                 sclk_setting->Pcc_down_slew_rate = 0xffff;
739                 sclk_setting->SSc_En = dividers.ucSscEnable;
740                 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
741                 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
742                 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
743                 return result;
744         }
745
746         ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
747
748         for (i = 0; i < NUM_SCLK_RANGE; i++) {
749                 if (clock > smu_data->range_table[i].trans_lower_frequency
750                 && clock <= smu_data->range_table[i].trans_upper_frequency) {
751                         sclk_setting->PllRange = i;
752                         break;
753                 }
754         }
755
756         sclk_setting->Fcw_int = (uint16_t)
757                         ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
758                                         ref_clock);
759         temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
760         temp <<= 0x10;
761         do_div(temp, ref_clock);
762         sclk_setting->Fcw_frac = temp & 0xffff;
763
764         pcc_target_percent = 10; /*  Hardcode 10% for now. */
765         pcc_target_freq = clock - (clock * pcc_target_percent / 100);
766         sclk_setting->Pcc_fcw_int = (uint16_t)
767                         ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
768                                         ref_clock);
769
770         ss_target_percent = 2; /*  Hardcode 2% for now. */
771         sclk_setting->SSc_En = 0;
772         if (ss_target_percent) {
773                 sclk_setting->SSc_En = 1;
774                 ss_target_freq = clock - (clock * ss_target_percent / 100);
775                 sclk_setting->Fcw1_int = (uint16_t)
776                                 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
777                                                 ref_clock);
778                 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
779                 temp <<= 0x10;
780                 do_div(temp, ref_clock);
781                 sclk_setting->Fcw1_frac = temp & 0xffff;
782         }
783
784         return 0;
785 }
786
787 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
788                 uint32_t clock_insr)
789 {
790         uint8_t i;
791         uint32_t temp;
792         uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
793
794         PP_ASSERT_WITH_CODE((clock >= min),
795                         "Engine clock can't satisfy stutter requirement!",
796                         return 0);
797         for (i = 31;  ; i--) {
798                 temp = clock / (i + 1);
799
800                 if (temp >= min || i == 0)
801                         break;
802         }
803         return i;
804 }
805
806 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
807                 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
808 {
809         int result;
810         /* PP_Clocks minClocks; */
811         uint32_t mvdd;
812         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
813         struct phm_ppt_v1_information *table_info =
814                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
815         SMU_SclkSetting curr_sclk_setting = { 0 };
816
817         result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
818
819         /* populate graphics levels */
820         result = vegam_get_dependency_volt_by_clk(hwmgr,
821                         table_info->vdd_dep_on_sclk, clock,
822                         &level->MinVoltage, &mvdd);
823
824         PP_ASSERT_WITH_CODE((0 == result),
825                         "can not find VDDC voltage value for "
826                         "VDDC engine clock dependency table",
827                         return result);
828         level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
829
830         level->CcPwrDynRm = 0;
831         level->CcPwrDynRm1 = 0;
832         level->EnabledForActivity = 0;
833         level->EnabledForThrottle = 1;
834         level->VoltageDownHyst = 0;
835         level->PowerThrottle = 0;
836         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
837
838         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
839                 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
840                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
841
842         level->SclkSetting = curr_sclk_setting;
843
844         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
845         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
846         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
847         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
848         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
849         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
850         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
851         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
852         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
853         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
854         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
855         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
856         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
857         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
858         return 0;
859 }
860
861 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
862 {
863         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
864         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
865         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
866         struct phm_ppt_v1_information *table_info =
867                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
868         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
869         uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
870         int result = 0;
871         uint32_t array = smu_data->smu7_data.dpm_table_start +
872                         offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
873         uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
874                         SMU75_MAX_LEVELS_GRAPHICS;
875         struct SMU75_Discrete_GraphicsLevel *levels =
876                         smu_data->smc_state_table.GraphicsLevel;
877         uint32_t i, max_entry;
878         uint8_t hightest_pcie_level_enabled = 0,
879                 lowest_pcie_level_enabled = 0,
880                 mid_pcie_level_enabled = 0,
881                 count = 0;
882
883         vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
884
885         for (i = 0; i < dpm_table->sclk_table.count; i++) {
886
887                 result = vegam_populate_single_graphic_level(hwmgr,
888                                 dpm_table->sclk_table.dpm_levels[i].value,
889                                 &(smu_data->smc_state_table.GraphicsLevel[i]));
890                 if (result)
891                         return result;
892
893                 levels[i].UpHyst = (uint8_t)
894                                 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
895                 levels[i].DownHyst = (uint8_t)
896                                 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
897                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
898                 if (i > 1)
899                         levels[i].DeepSleepDivId = 0;
900         }
901         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
902                                         PHM_PlatformCaps_SPLLShutdownSupport))
903                 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
904
905         smu_data->smc_state_table.GraphicsDpmLevelCount =
906                         (uint8_t)dpm_table->sclk_table.count;
907         hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
908                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
909
910         for (i = 0; i < dpm_table->sclk_table.count; i++)
911                 levels[i].EnabledForActivity =
912                                 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
913
914         if (pcie_table != NULL) {
915                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
916                                 "There must be 1 or more PCIE levels defined in PPTable.",
917                                 return -EINVAL);
918                 max_entry = pcie_entry_cnt - 1;
919                 for (i = 0; i < dpm_table->sclk_table.count; i++)
920                         levels[i].pcieDpmLevel =
921                                         (uint8_t) ((i < max_entry) ? i : max_entry);
922         } else {
923                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
924                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
925                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
926                         hightest_pcie_level_enabled++;
927
928                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930                                                 (1 << lowest_pcie_level_enabled)) == 0))
931                         lowest_pcie_level_enabled++;
932
933                 while ((count < hightest_pcie_level_enabled) &&
934                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
936                         count++;
937
938                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
939                                 hightest_pcie_level_enabled ?
940                                                 (lowest_pcie_level_enabled + 1 + count) :
941                                                 hightest_pcie_level_enabled;
942
943                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
944                 for (i = 2; i < dpm_table->sclk_table.count; i++)
945                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
946
947                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
948                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
949
950                 /* set pcieDpmLevel to mid_pcie_level_enabled */
951                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
952         }
953         /* level count will send to smc once at init smc table and never change */
954         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
955                         (uint32_t)array_size, SMC_RAM_END);
956
957         return result;
958 }
959
960 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
961                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
962 {
963         struct pp_atomctrl_memory_clock_param_ai mpll_param;
964
965         PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
966                         clock, &mpll_param),
967                         "Failed to retrieve memory pll parameter.",
968                         return -EINVAL);
969
970         mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
971         mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
972         mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
973         mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
974
975         return 0;
976 }
977
978 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
979                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
980 {
981         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
982         struct phm_ppt_v1_information *table_info =
983                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
984         int result = 0;
985         uint32_t mclk_stutter_mode_threshold = 60000;
986
987
988         if (table_info->vdd_dep_on_mclk) {
989                 result = vegam_get_dependency_volt_by_clk(hwmgr,
990                                 table_info->vdd_dep_on_mclk, clock,
991                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
992                 PP_ASSERT_WITH_CODE(!result,
993                                 "can not find MinVddc voltage value from memory "
994                                 "VDDC voltage dependency table", return result);
995         }
996
997         result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
998         PP_ASSERT_WITH_CODE(!result,
999                         "Failed to calculate mclk params.",
1000                         return -EINVAL);
1001
1002         mem_level->EnabledForThrottle = 1;
1003         mem_level->EnabledForActivity = 0;
1004         mem_level->VoltageDownHyst = 0;
1005         mem_level->ActivityLevel = (uint16_t)
1006                         (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1007         mem_level->StutterEnable = false;
1008         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1009
1010         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1011         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1012
1013         if (mclk_stutter_mode_threshold &&
1014                 (clock <= mclk_stutter_mode_threshold) &&
1015                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1016                                 STUTTER_ENABLE) & 0x1))
1017                 mem_level->StutterEnable = true;
1018
1019         if (!result) {
1020                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1021                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1022                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1023                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1024                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1025                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1026         }
1027
1028         return result;
1029 }
1030
1031 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1032 {
1033         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1034         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1035         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1036         int result;
1037         /* populate MCLK dpm table to SMU7 */
1038         uint32_t array = smu_data->smu7_data.dpm_table_start +
1039                         offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1040         uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1041                         SMU75_MAX_LEVELS_MEMORY;
1042         struct SMU75_Discrete_MemoryLevel *levels =
1043                         smu_data->smc_state_table.MemoryLevel;
1044         uint32_t i;
1045
1046         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1047                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1048                                 "can not populate memory level as memory clock is zero",
1049                                 return -EINVAL);
1050                 result = vegam_populate_single_memory_level(hwmgr,
1051                                 dpm_table->mclk_table.dpm_levels[i].value,
1052                                 &levels[i]);
1053
1054                 if (result)
1055                         return result;
1056
1057                 levels[i].UpHyst = (uint8_t)
1058                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1059                 levels[i].DownHyst = (uint8_t)
1060                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1061         }
1062
1063         smu_data->smc_state_table.MemoryDpmLevelCount =
1064                         (uint8_t)dpm_table->mclk_table.count;
1065         hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1066                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1067
1068         for (i = 0; i < dpm_table->mclk_table.count; i++)
1069                 levels[i].EnabledForActivity =
1070                                 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1071
1072         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1073                         PPSMC_DISPLAY_WATERMARK_HIGH;
1074
1075         /* level count will send to smc once at init smc table and never change */
1076         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1077                         (uint32_t)array_size, SMC_RAM_END);
1078
1079         return result;
1080 }
1081
1082 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1083                 uint32_t mclk, SMIO_Pattern *smio_pat)
1084 {
1085         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1086         struct phm_ppt_v1_information *table_info =
1087                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1088         uint32_t i = 0;
1089
1090         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1091                 /* find mvdd value which clock is more than request */
1092                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1093                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1094                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1095                                 break;
1096                         }
1097                 }
1098                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1099                                 "MVDD Voltage is outside the supported range.",
1100                                 return -EINVAL);
1101         } else
1102                 return -EINVAL;
1103
1104         return 0;
1105 }
1106
1107 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1108                 SMU75_Discrete_DpmTable *table)
1109 {
1110         int result = 0;
1111         uint32_t sclk_frequency;
1112         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1113         struct phm_ppt_v1_information *table_info =
1114                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1115         SMIO_Pattern vol_level;
1116         uint32_t mvdd;
1117         uint16_t us_mvdd;
1118
1119         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1120
1121         /* Get MinVoltage and Frequency from DPM0,
1122          * already converted to SMC_UL */
1123         sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1124         result = vegam_get_dependency_volt_by_clk(hwmgr,
1125                         table_info->vdd_dep_on_sclk,
1126                         sclk_frequency,
1127                         &table->ACPILevel.MinVoltage, &mvdd);
1128         PP_ASSERT_WITH_CODE(!result,
1129                         "Cannot find ACPI VDDC voltage value "
1130                         "in Clock Dependency Table",
1131                         );
1132
1133         result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1134                         &(table->ACPILevel.SclkSetting));
1135         PP_ASSERT_WITH_CODE(!result,
1136                         "Error retrieving Engine Clock dividers from VBIOS.",
1137                         return result);
1138
1139         table->ACPILevel.DeepSleepDivId = 0;
1140         table->ACPILevel.CcPwrDynRm = 0;
1141         table->ACPILevel.CcPwrDynRm1 = 0;
1142
1143         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1144         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1145         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1146         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1147
1148         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1149         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1150         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1151         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1152         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1153         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1154         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1155         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1156         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1157         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1158
1159
1160         /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1161         table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1162         result = vegam_get_dependency_volt_by_clk(hwmgr,
1163                         table_info->vdd_dep_on_mclk,
1164                         table->MemoryACPILevel.MclkFrequency,
1165                         &table->MemoryACPILevel.MinVoltage, &mvdd);
1166         PP_ASSERT_WITH_CODE((0 == result),
1167                         "Cannot find ACPI VDDCI voltage value "
1168                         "in Clock Dependency Table",
1169                         );
1170
1171         us_mvdd = 0;
1172         if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1173                         (data->mclk_dpm_key_disabled))
1174                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1175         else {
1176                 if (!vegam_populate_mvdd_value(hwmgr,
1177                                 data->dpm_table.mclk_table.dpm_levels[0].value,
1178                                 &vol_level))
1179                         us_mvdd = vol_level.Voltage;
1180         }
1181
1182         if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1183                 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1184         else
1185                 table->MemoryACPILevel.MinMvdd = 0;
1186
1187         table->MemoryACPILevel.StutterEnable = false;
1188
1189         table->MemoryACPILevel.EnabledForThrottle = 0;
1190         table->MemoryACPILevel.EnabledForActivity = 0;
1191         table->MemoryACPILevel.UpHyst = 0;
1192         table->MemoryACPILevel.DownHyst = 100;
1193         table->MemoryACPILevel.VoltageDownHyst = 0;
1194         table->MemoryACPILevel.ActivityLevel =
1195                 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1196
1197         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1198         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1199
1200         return result;
1201 }
1202
1203 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1204                 SMU75_Discrete_DpmTable *table)
1205 {
1206         int result = -EINVAL;
1207         uint8_t count;
1208         struct pp_atomctrl_clock_dividers_vi dividers;
1209         struct phm_ppt_v1_information *table_info =
1210                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1211         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1212                         table_info->mm_dep_table;
1213         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1214         uint32_t vddci;
1215
1216         table->VceLevelCount = (uint8_t)(mm_table->count);
1217         table->VceBootLevel = 0;
1218
1219         for (count = 0; count < table->VceLevelCount; count++) {
1220                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1221                 table->VceLevel[count].MinVoltage = 0;
1222                 table->VceLevel[count].MinVoltage |=
1223                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1224
1225                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1226                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1227                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1228                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1229                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1230                 else
1231                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1232
1233
1234                 table->VceLevel[count].MinVoltage |=
1235                                 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1236                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1237
1238                 /*retrieve divider value for VBIOS */
1239                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1240                                 table->VceLevel[count].Frequency, &dividers);
1241                 PP_ASSERT_WITH_CODE((0 == result),
1242                                 "can not find divide id for VCE engine clock",
1243                                 return result);
1244
1245                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1246
1247                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1248                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1249         }
1250         return result;
1251 }
1252
1253 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1254                 int32_t eng_clock, int32_t mem_clock,
1255                 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1256 {
1257         uint32_t dram_timing;
1258         uint32_t dram_timing2;
1259         uint32_t burst_time;
1260         uint32_t rfsh_rate;
1261         uint32_t misc3;
1262
1263         int result;
1264
1265         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1266                         eng_clock, mem_clock);
1267         PP_ASSERT_WITH_CODE(result == 0,
1268                         "Error calling VBIOS to set DRAM_TIMING.",
1269                         return result);
1270
1271         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1272         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1273         burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1274         rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1275         misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1276
1277         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1278         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1279         arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1280         arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1281         arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1282
1283         return 0;
1284 }
1285
1286 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1287 {
1288         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1289         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1290         struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1291         uint32_t i, j;
1292         int result = 0;
1293
1294         memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1295
1296         for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1297                 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1298                         result = vegam_populate_memory_timing_parameters(hwmgr,
1299                                         hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1300                                         hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1301                                         &arb_regs.entries[i][j]);
1302                         if (result)
1303                                 return result;
1304                 }
1305         }
1306
1307         result = smu7_copy_bytes_to_smc(
1308                         hwmgr,
1309                         smu_data->smu7_data.arb_table_start,
1310                         (uint8_t *)&arb_regs,
1311                         sizeof(SMU75_Discrete_MCArbDramTimingTable),
1312                         SMC_RAM_END);
1313         return result;
1314 }
1315
1316 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1317                 struct SMU75_Discrete_DpmTable *table)
1318 {
1319         int result = -EINVAL;
1320         uint8_t count;
1321         struct pp_atomctrl_clock_dividers_vi dividers;
1322         struct phm_ppt_v1_information *table_info =
1323                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1324         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1325                         table_info->mm_dep_table;
1326         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1327         uint32_t vddci;
1328
1329         table->UvdLevelCount = (uint8_t)(mm_table->count);
1330         table->UvdBootLevel = 0;
1331
1332         for (count = 0; count < table->UvdLevelCount; count++) {
1333                 table->UvdLevel[count].MinVoltage = 0;
1334                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1335                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1336                 table->UvdLevel[count].MinVoltage |=
1337                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1338
1339                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1340                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1341                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1342                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1343                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1344                 else
1345                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1346
1347                 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1348                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1349
1350                 /* retrieve divider value for VBIOS */
1351                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1352                                 table->UvdLevel[count].VclkFrequency, &dividers);
1353                 PP_ASSERT_WITH_CODE((0 == result),
1354                                 "can not find divide id for Vclk clock", return result);
1355
1356                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1357
1358                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1359                                 table->UvdLevel[count].DclkFrequency, &dividers);
1360                 PP_ASSERT_WITH_CODE((0 == result),
1361                                 "can not find divide id for Dclk clock", return result);
1362
1363                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1364
1365                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1366                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1367                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1368         }
1369
1370         return result;
1371 }
1372
1373 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1374                 struct SMU75_Discrete_DpmTable *table)
1375 {
1376         int result = 0;
1377         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1378
1379         table->GraphicsBootLevel = 0;
1380         table->MemoryBootLevel = 0;
1381
1382         /* find boot level from dpm table */
1383         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1384                         data->vbios_boot_state.sclk_bootup_value,
1385                         (uint32_t *)&(table->GraphicsBootLevel));
1386
1387         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1388                         data->vbios_boot_state.mclk_bootup_value,
1389                         (uint32_t *)&(table->MemoryBootLevel));
1390
1391         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1392                         VOLTAGE_SCALE;
1393         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1394                         VOLTAGE_SCALE;
1395         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1396                         VOLTAGE_SCALE;
1397
1398         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1399         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1400         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1401
1402         return 0;
1403 }
1404
1405 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1406 {
1407         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1408         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1409         struct phm_ppt_v1_information *table_info =
1410                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1411         uint8_t count, level;
1412
1413         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1414
1415         for (level = 0; level < count; level++) {
1416                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1417                                 hw_data->vbios_boot_state.sclk_bootup_value) {
1418                         smu_data->smc_state_table.GraphicsBootLevel = level;
1419                         break;
1420                 }
1421         }
1422
1423         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1424         for (level = 0; level < count; level++) {
1425                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1426                                 hw_data->vbios_boot_state.mclk_bootup_value) {
1427                         smu_data->smc_state_table.MemoryBootLevel = level;
1428                         break;
1429                 }
1430         }
1431
1432         return 0;
1433 }
1434
1435 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1436 {
1437         uint32_t tmp;
1438         tmp = raw_setting * 4096 / 100;
1439         return (uint16_t)tmp;
1440 }
1441
1442 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1443 {
1444         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1445
1446         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1447         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1448         struct phm_ppt_v1_information *table_info =
1449                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1450         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1451         struct pp_advance_fan_control_parameters *fan_table =
1452                         &hwmgr->thermal_controller.advanceFanControlParameters;
1453         int i, j, k;
1454         const uint16_t *pdef1;
1455         const uint16_t *pdef2;
1456
1457         table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1458         table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1459
1460         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1461                                 "Target Operating Temp is out of Range!",
1462                                 );
1463
1464         table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1465                         cac_dtp_table->usTargetOperatingTemp * 256);
1466         table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1467                         cac_dtp_table->usTemperatureLimitHotspot * 256);
1468         table->FanGainEdge = PP_HOST_TO_SMC_US(
1469                         scale_fan_gain_settings(fan_table->usFanGainEdge));
1470         table->FanGainHotspot = PP_HOST_TO_SMC_US(
1471                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
1472
1473         pdef1 = defaults->BAPMTI_R;
1474         pdef2 = defaults->BAPMTI_RC;
1475
1476         for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1477                 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1478                         for (k = 0; k < SMU75_DTE_SINKS; k++) {
1479                                 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1480                                 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1481                                 pdef1++;
1482                                 pdef2++;
1483                         }
1484                 }
1485         }
1486
1487         return 0;
1488 }
1489
1490 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1491 {
1492         uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1493         struct vegam_smumgr *smu_data =
1494                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1495
1496         uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
1497         struct phm_ppt_v1_information *table_info =
1498                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1499         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1500                         table_info->vdd_dep_on_sclk;
1501         uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1502
1503         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1504
1505         atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1506                         mask, &efuse);
1507
1508         min = 1200;
1509         max = 2500;
1510
1511         ro = efuse * (max - min) / 255 + min;
1512
1513         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1514         for (i = 0; i < sclk_table->count; i++) {
1515                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1516                                 sclk_table->entries[i].cks_enable << i;
1517                 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1518                                 136418 - (ro - 70) * 1000000) /
1519                                 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1520                 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1521                                 3232 - (ro - 65) * 1000000) /
1522                                 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1523
1524                 if (volt_without_cks >= volt_with_cks)
1525                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1526                                         sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1527
1528                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1529         }
1530
1531         smu_data->smc_state_table.LdoRefSel =
1532                         (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1533                         table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1534         /* Populate CKS Lookup Table */
1535         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1536                 stretch_amount2 = 0;
1537         else if (stretch_amount == 3 || stretch_amount == 4)
1538                 stretch_amount2 = 1;
1539         else {
1540                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1541                                 PHM_PlatformCaps_ClockStretcher);
1542                 PP_ASSERT_WITH_CODE(false,
1543                                 "Stretch Amount in PPTable not supported\n",
1544                                 return -EINVAL);
1545         }
1546
1547         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1548         value &= 0xFFFFFFFE;
1549         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1550
1551         return 0;
1552 }
1553
1554 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1555 {
1556         uint32_t efuse;
1557
1558         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1559                         ixSMU_EFUSE_0 + (49 * 4));
1560         efuse &= 0x00000001;
1561
1562         if (efuse)
1563                 return true;
1564
1565         return false;
1566 }
1567
1568 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1569 {
1570         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1571         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1572
1573         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1574         int result = 0;
1575         struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1576         AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1577         AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1578         uint32_t tmp, i;
1579
1580         struct phm_ppt_v1_information *table_info =
1581                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1582         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1583                         table_info->vdd_dep_on_sclk;
1584
1585         if (!hwmgr->avfs_supported)
1586                 return 0;
1587
1588         result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1589
1590         if (0 == result) {
1591                 table->BTCGB_VDROOP_TABLE[0].a0 =
1592                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1593                 table->BTCGB_VDROOP_TABLE[0].a1 =
1594                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1595                 table->BTCGB_VDROOP_TABLE[0].a2 =
1596                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1597                 table->BTCGB_VDROOP_TABLE[1].a0 =
1598                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1599                 table->BTCGB_VDROOP_TABLE[1].a1 =
1600                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1601                 table->BTCGB_VDROOP_TABLE[1].a2 =
1602                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1603                 table->AVFSGB_FUSE_TABLE[0].m1 =
1604                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1605                 table->AVFSGB_FUSE_TABLE[0].m2 =
1606                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1607                 table->AVFSGB_FUSE_TABLE[0].b =
1608                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1609                 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1610                 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1611                 table->AVFSGB_FUSE_TABLE[1].m1 =
1612                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1613                 table->AVFSGB_FUSE_TABLE[1].m2 =
1614                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1615                 table->AVFSGB_FUSE_TABLE[1].b =
1616                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1617                 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1618                 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1619                 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1620                 AVFS_meanNsigma.Aconstant[0] =
1621                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1622                 AVFS_meanNsigma.Aconstant[1] =
1623                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1624                 AVFS_meanNsigma.Aconstant[2] =
1625                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1626                 AVFS_meanNsigma.DC_tol_sigma =
1627                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1628                 AVFS_meanNsigma.Platform_mean =
1629                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1630                 AVFS_meanNsigma.PSM_Age_CompFactor =
1631                                 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1632                 AVFS_meanNsigma.Platform_sigma =
1633                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1634
1635                 for (i = 0; i < sclk_table->count; i++) {
1636                         AVFS_meanNsigma.Static_Voltage_Offset[i] =
1637                                         (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1638                         AVFS_SclkOffset.Sclk_Offset[i] =
1639                                         PP_HOST_TO_SMC_US((uint16_t)
1640                                                         (sclk_table->entries[i].sclk_offset) / 100);
1641                 }
1642
1643                 result = smu7_read_smc_sram_dword(hwmgr,
1644                                 SMU7_FIRMWARE_HEADER_LOCATION +
1645                                 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1646                                 &tmp, SMC_RAM_END);
1647                 smu7_copy_bytes_to_smc(hwmgr,
1648                                         tmp,
1649                                         (uint8_t *)&AVFS_meanNsigma,
1650                                         sizeof(AVFS_meanNsigma_t),
1651                                         SMC_RAM_END);
1652
1653                 result = smu7_read_smc_sram_dword(hwmgr,
1654                                 SMU7_FIRMWARE_HEADER_LOCATION +
1655                                 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1656                                 &tmp, SMC_RAM_END);
1657                 smu7_copy_bytes_to_smc(hwmgr,
1658                                         tmp,
1659                                         (uint8_t *)&AVFS_SclkOffset,
1660                                         sizeof(AVFS_Sclk_Offset_t),
1661                                         SMC_RAM_END);
1662
1663                 data->avfs_vdroop_override_setting =
1664                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1665                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1666                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1667                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1668                 data->apply_avfs_cks_off_voltage =
1669                                 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1670         }
1671         return result;
1672 }
1673
1674 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1675                 struct SMU75_Discrete_DpmTable *table)
1676 {
1677         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1678         struct vegam_smumgr *smu_data =
1679                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1680         uint16_t config;
1681
1682         config = VR_MERGED_WITH_VDDC;
1683         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1684
1685         /* Set Vddc Voltage Controller */
1686         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1687                 config = VR_SVI2_PLANE_1;
1688                 table->VRConfig |= config;
1689         } else {
1690                 PP_ASSERT_WITH_CODE(false,
1691                                 "VDDC should be on SVI2 control in merged mode!",
1692                                 );
1693         }
1694         /* Set Vddci Voltage Controller */
1695         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1696                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1697                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1698         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1699                 config = VR_SMIO_PATTERN_1;
1700                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1701         } else {
1702                 config = VR_STATIC_VOLTAGE;
1703                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1704         }
1705         /* Set Mvdd Voltage Controller */
1706         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1707                 if (config != VR_SVI2_PLANE_2) {
1708                         config = VR_SVI2_PLANE_2;
1709                         table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1710                         cgs_write_ind_register(hwmgr->device,
1711                                         CGS_IND_REG__SMC,
1712                                         smu_data->smu7_data.soft_regs_start +
1713                                         offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1714                                         0x1);
1715                 } else {
1716                         PP_ASSERT_WITH_CODE(false,
1717                                         "SVI2 Plane 2 is already taken, set MVDD as Static",);
1718                         config = VR_STATIC_VOLTAGE;
1719                         table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1720                 }
1721         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1722                 config = VR_SMIO_PATTERN_2;
1723                 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1724                 cgs_write_ind_register(hwmgr->device,
1725                                 CGS_IND_REG__SMC,
1726                                 smu_data->smu7_data.soft_regs_start +
1727                                 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1728                                 0x1);
1729         } else {
1730                 config = VR_STATIC_VOLTAGE;
1731                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1732         }
1733
1734         return 0;
1735 }
1736
1737 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1738 {
1739         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1740         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1741
1742         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1743         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1744         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1745         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1746
1747         return 0;
1748 }
1749
1750 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1751 {
1752         uint16_t tdc_limit;
1753         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1754         struct phm_ppt_v1_information *table_info =
1755                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1756         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1757
1758         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1759         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1760                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1761         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1762                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1763         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1764
1765         return 0;
1766 }
1767
1768 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1769 {
1770         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1771         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1772         uint32_t temp;
1773
1774         if (smu7_read_smc_sram_dword(hwmgr,
1775                         fuse_table_offset +
1776                         offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1777                         (uint32_t *)&temp, SMC_RAM_END))
1778                 PP_ASSERT_WITH_CODE(false,
1779                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1780                                 return -EINVAL);
1781         else {
1782                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1783                 smu_data->power_tune_table.LPMLTemperatureMin =
1784                                 (uint8_t)((temp >> 16) & 0xff);
1785                 smu_data->power_tune_table.LPMLTemperatureMax =
1786                                 (uint8_t)((temp >> 8) & 0xff);
1787                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1788         }
1789         return 0;
1790 }
1791
1792 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1793 {
1794         int i;
1795         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1796
1797         /* Currently not used. Set all to zero. */
1798         for (i = 0; i < 16; i++)
1799                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1800
1801         return 0;
1802 }
1803
1804 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1805 {
1806         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1807
1808 /* TO DO move to hwmgr */
1809         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1810                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1811                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1812                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1813
1814         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1815                                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1816         return 0;
1817 }
1818
1819 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1820 {
1821         int i;
1822         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1823
1824         /* Currently not used. Set all to zero. */
1825         for (i = 0; i < 16; i++)
1826                 smu_data->power_tune_table.GnbLPML[i] = 0;
1827
1828         return 0;
1829 }
1830
1831 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1832 {
1833         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1834         struct phm_ppt_v1_information *table_info =
1835                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1836         uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1837         uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1838         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1839
1840         hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1841         lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1842
1843         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1844                         CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1845         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1846                         CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1847
1848         return 0;
1849 }
1850
1851 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1852 {
1853         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1854         uint32_t pm_fuse_table_offset;
1855
1856         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1857                         PHM_PlatformCaps_PowerContainment)) {
1858                 if (smu7_read_smc_sram_dword(hwmgr,
1859                                 SMU7_FIRMWARE_HEADER_LOCATION +
1860                                 offsetof(SMU75_Firmware_Header, PmFuseTable),
1861                                 &pm_fuse_table_offset, SMC_RAM_END))
1862                         PP_ASSERT_WITH_CODE(false,
1863                                         "Attempt to get pm_fuse_table_offset Failed!",
1864                                         return -EINVAL);
1865
1866                 if (vegam_populate_svi_load_line(hwmgr))
1867                         PP_ASSERT_WITH_CODE(false,
1868                                         "Attempt to populate SviLoadLine Failed!",
1869                                         return -EINVAL);
1870
1871                 if (vegam_populate_tdc_limit(hwmgr))
1872                         PP_ASSERT_WITH_CODE(false,
1873                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
1874
1875                 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1876                         PP_ASSERT_WITH_CODE(false,
1877                                         "Attempt to populate TdcWaterfallCtl, "
1878                                         "LPMLTemperature Min and Max Failed!",
1879                                         return -EINVAL);
1880
1881                 if (0 != vegam_populate_temperature_scaler(hwmgr))
1882                         PP_ASSERT_WITH_CODE(false,
1883                                         "Attempt to populate LPMLTemperatureScaler Failed!",
1884                                         return -EINVAL);
1885
1886                 if (vegam_populate_fuzzy_fan(hwmgr))
1887                         PP_ASSERT_WITH_CODE(false,
1888                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
1889                                         return -EINVAL);
1890
1891                 if (vegam_populate_gnb_lpml(hwmgr))
1892                         PP_ASSERT_WITH_CODE(false,
1893                                         "Attempt to populate GnbLPML Failed!",
1894                                         return -EINVAL);
1895
1896                 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1897                         PP_ASSERT_WITH_CODE(false,
1898                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1899                                         "Sidd Failed!", return -EINVAL);
1900
1901                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1902                                 (uint8_t *)&smu_data->power_tune_table,
1903                                 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1904                                 SMC_RAM_END))
1905                         PP_ASSERT_WITH_CODE(false,
1906                                         "Attempt to download PmFuseTable Failed!",
1907                                         return -EINVAL);
1908         }
1909         return 0;
1910 }
1911
1912 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1913 {
1914         struct amdgpu_device *adev = hwmgr->adev;
1915
1916         smum_send_msg_to_smc_with_parameter(hwmgr,
1917                                             PPSMC_MSG_EnableModeSwitchRLCNotification,
1918                                             adev->gfx.cu_info.number);
1919
1920         return 0;
1921 }
1922
1923 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1924 {
1925         int result;
1926         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1927         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1928
1929         struct phm_ppt_v1_information *table_info =
1930                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1931         struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1932         uint8_t i;
1933         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1934         struct phm_ppt_v1_gpio_table *gpio_table =
1935                         (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1936         pp_atomctrl_clock_dividers_vi dividers;
1937
1938         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1939                         PHM_PlatformCaps_AutomaticDCTransition);
1940
1941         vegam_initialize_power_tune_defaults(hwmgr);
1942
1943         if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1944                 vegam_populate_smc_voltage_tables(hwmgr, table);
1945
1946         table->SystemFlags = 0;
1947         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1948                         PHM_PlatformCaps_AutomaticDCTransition))
1949                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1950
1951         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1952                         PHM_PlatformCaps_StepVddc))
1953                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1954
1955         if (hw_data->is_memory_gddr5)
1956                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1957
1958         if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1959                 result = vegam_populate_ulv_state(hwmgr, table);
1960                 PP_ASSERT_WITH_CODE(!result,
1961                                 "Failed to initialize ULV state!", return result);
1962                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963                                 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1964         }
1965
1966         result = vegam_populate_smc_link_level(hwmgr, table);
1967         PP_ASSERT_WITH_CODE(!result,
1968                         "Failed to initialize Link Level!", return result);
1969
1970         result = vegam_populate_all_graphic_levels(hwmgr);
1971         PP_ASSERT_WITH_CODE(!result,
1972                         "Failed to initialize Graphics Level!", return result);
1973
1974         result = vegam_populate_all_memory_levels(hwmgr);
1975         PP_ASSERT_WITH_CODE(!result,
1976                         "Failed to initialize Memory Level!", return result);
1977
1978         result = vegam_populate_smc_acpi_level(hwmgr, table);
1979         PP_ASSERT_WITH_CODE(!result,
1980                         "Failed to initialize ACPI Level!", return result);
1981
1982         result = vegam_populate_smc_vce_level(hwmgr, table);
1983         PP_ASSERT_WITH_CODE(!result,
1984                         "Failed to initialize VCE Level!", return result);
1985
1986         /* Since only the initial state is completely set up at this point
1987          * (the other states are just copies of the boot state) we only
1988          * need to populate the  ARB settings for the initial state.
1989          */
1990         result = vegam_program_memory_timing_parameters(hwmgr);
1991         PP_ASSERT_WITH_CODE(!result,
1992                         "Failed to Write ARB settings for the initial state.", return result);
1993
1994         result = vegam_populate_smc_uvd_level(hwmgr, table);
1995         PP_ASSERT_WITH_CODE(!result,
1996                         "Failed to initialize UVD Level!", return result);
1997
1998         result = vegam_populate_smc_boot_level(hwmgr, table);
1999         PP_ASSERT_WITH_CODE(!result,
2000                         "Failed to initialize Boot Level!", return result);
2001
2002         result = vegam_populate_smc_initial_state(hwmgr);
2003         PP_ASSERT_WITH_CODE(!result,
2004                         "Failed to initialize Boot State!", return result);
2005
2006         result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2007         PP_ASSERT_WITH_CODE(!result,
2008                         "Failed to populate BAPM Parameters!", return result);
2009
2010         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2011                         PHM_PlatformCaps_ClockStretcher)) {
2012                 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2013                 PP_ASSERT_WITH_CODE(!result,
2014                                 "Failed to populate Clock Stretcher Data Table!",
2015                                 return result);
2016         }
2017
2018         result = vegam_populate_avfs_parameters(hwmgr);
2019         PP_ASSERT_WITH_CODE(!result,
2020                         "Failed to populate AVFS Parameters!", return result;);
2021
2022         table->CurrSclkPllRange = 0xff;
2023         table->GraphicsVoltageChangeEnable  = 1;
2024         table->GraphicsThermThrottleEnable  = 1;
2025         table->GraphicsInterval = 1;
2026         table->VoltageInterval  = 1;
2027         table->ThermalInterval  = 1;
2028         table->TemperatureLimitHigh =
2029                         table_info->cac_dtp_table->usTargetOperatingTemp *
2030                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2031         table->TemperatureLimitLow  =
2032                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2033                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2034         table->MemoryVoltageChangeEnable = 1;
2035         table->MemoryInterval = 1;
2036         table->VoltageResponseTime = 0;
2037         table->PhaseResponseTime = 0;
2038         table->MemoryThermThrottleEnable = 1;
2039
2040         PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2041                         "There must be 1 or more PCIE levels defined in PPTable.",
2042                         return -EINVAL);
2043         table->PCIeBootLinkLevel =
2044                         hw_data->dpm_table.pcie_speed_table.count;
2045         table->PCIeGenInterval = 1;
2046         table->VRConfig = 0;
2047
2048         result = vegam_populate_vr_config(hwmgr, table);
2049         PP_ASSERT_WITH_CODE(!result,
2050                         "Failed to populate VRConfig setting!", return result);
2051
2052         table->ThermGpio = 17;
2053         table->SclkStepSize = 0x4000;
2054
2055         if (atomctrl_get_pp_assign_pin(hwmgr,
2056                         VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2057                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2058                 if (gpio_table)
2059                         table->VRHotLevel =
2060                                         table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2061         } else {
2062                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2063                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2064                                 PHM_PlatformCaps_RegulatorHot);
2065         }
2066
2067         if (atomctrl_get_pp_assign_pin(hwmgr,
2068                         PP_AC_DC_SWITCH_GPIO_PINID,     &gpio_pin)) {
2069                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2070                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2071                                 PHM_PlatformCaps_AutomaticDCTransition) &&
2072                                 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2073                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2074                                         PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2075         } else {
2076                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2077                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2078                                 PHM_PlatformCaps_AutomaticDCTransition);
2079         }
2080
2081         /* Thermal Output GPIO */
2082         if (atomctrl_get_pp_assign_pin(hwmgr,
2083                         THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2084                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2085
2086                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2087                  * since VBIOS will program this register to set 'inactive state',
2088                  * driver can then determine 'active state' from this and
2089                  * program SMU with correct polarity
2090                  */
2091                 table->ThermOutPolarity =
2092                                 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2093                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2094                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2095
2096                 /* if required, combine VRHot/PCC with thermal out GPIO */
2097                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2098                                 PHM_PlatformCaps_RegulatorHot) &&
2099                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2100                                 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2101                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2102         } else {
2103                 table->ThermOutGpio = 17;
2104                 table->ThermOutPolarity = 1;
2105                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2106         }
2107
2108         /* Populate BIF_SCLK levels into SMC DPM table */
2109         for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2110                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2111                                 smu_data->bif_sclk_table[i], &dividers);
2112                 PP_ASSERT_WITH_CODE(!result,
2113                                 "Can not find DFS divide id for Sclk",
2114                                 return result);
2115
2116                 if (i == 0)
2117                         table->Ulv.BifSclkDfs =
2118                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2119                 else
2120                         table->LinkLevel[i - 1].BifSclkDfs =
2121                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2122         }
2123
2124         for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2125                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2126
2127         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2128         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2129         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2130         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2131         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2132         CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2133         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2134         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2135         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2136         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2137
2138         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2139         result = smu7_copy_bytes_to_smc(hwmgr,
2140                         smu_data->smu7_data.dpm_table_start +
2141                         offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2142                         (uint8_t *)&(table->SystemFlags),
2143                         sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2144                         SMC_RAM_END);
2145         PP_ASSERT_WITH_CODE(!result,
2146                         "Failed to upload dpm data to SMC memory!", return result);
2147
2148         result = vegam_populate_pm_fuses(hwmgr);
2149         PP_ASSERT_WITH_CODE(!result,
2150                         "Failed to  populate PM fuses to SMC memory!", return result);
2151
2152         result = vegam_enable_reconfig_cus(hwmgr);
2153         PP_ASSERT_WITH_CODE(!result,
2154                         "Failed to enable reconfigurable CUs!", return result);
2155
2156         return 0;
2157 }
2158
2159 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2160 {
2161         switch (type) {
2162         case SMU_SoftRegisters:
2163                 switch (member) {
2164                 case HandshakeDisables:
2165                         return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2166                 case VoltageChangeTimeout:
2167                         return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2168                 case AverageGraphicsActivity:
2169                         return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2170                 case AverageMemoryActivity:
2171                         return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2172                 case PreVBlankGap:
2173                         return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2174                 case VBlankTimeout:
2175                         return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2176                 case UcodeLoadStatus:
2177                         return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2178                 case DRAM_LOG_ADDR_H:
2179                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2180                 case DRAM_LOG_ADDR_L:
2181                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2182                 case DRAM_LOG_PHY_ADDR_H:
2183                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2184                 case DRAM_LOG_PHY_ADDR_L:
2185                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2186                 case DRAM_LOG_BUFF_SIZE:
2187                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2188                 }
2189                 break;
2190         case SMU_Discrete_DpmTable:
2191                 switch (member) {
2192                 case UvdBootLevel:
2193                         return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2194                 case VceBootLevel:
2195                         return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2196                 case LowSclkInterruptThreshold:
2197                         return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2198                 }
2199                 break;
2200         }
2201         pr_warn("can't get the offset of type %x member %x\n", type, member);
2202         return 0;
2203 }
2204
2205 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2206 {
2207         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2208
2209         if (data->need_update_smu7_dpm_table &
2210                 (DPMTABLE_OD_UPDATE_SCLK +
2211                 DPMTABLE_UPDATE_SCLK +
2212                 DPMTABLE_UPDATE_MCLK))
2213                 return vegam_program_memory_timing_parameters(hwmgr);
2214
2215         return 0;
2216 }
2217
2218 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2219 {
2220         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2221         struct vegam_smumgr *smu_data =
2222                         (struct vegam_smumgr *)(hwmgr->smu_backend);
2223         int result = 0;
2224         uint32_t low_sclk_interrupt_threshold = 0;
2225
2226         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2227                         PHM_PlatformCaps_SclkThrottleLowNotification)
2228             && (data->low_sclk_interrupt_threshold != 0)) {
2229                 low_sclk_interrupt_threshold =
2230                                 data->low_sclk_interrupt_threshold;
2231
2232                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2233
2234                 result = smu7_copy_bytes_to_smc(
2235                                 hwmgr,
2236                                 smu_data->smu7_data.dpm_table_start +
2237                                 offsetof(SMU75_Discrete_DpmTable,
2238                                         LowSclkInterruptThreshold),
2239                                 (uint8_t *)&low_sclk_interrupt_threshold,
2240                                 sizeof(uint32_t),
2241                                 SMC_RAM_END);
2242         }
2243         PP_ASSERT_WITH_CODE((result == 0),
2244                         "Failed to update SCLK threshold!", return result);
2245
2246         result = vegam_program_mem_timing_parameters(hwmgr);
2247         PP_ASSERT_WITH_CODE((result == 0),
2248                         "Failed to program memory timing parameters!",
2249                         );
2250
2251         return result;
2252 }
2253
2254 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2255 {
2256         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2257         int ret;
2258
2259         if (!hwmgr->avfs_supported)
2260                 return 0;
2261
2262         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2263         if (!ret) {
2264                 if (data->apply_avfs_cks_off_voltage)
2265                         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2266         }
2267
2268         return ret;
2269 }
2270
2271 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2272 {
2273         PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2274                         "VBIOS fan info is not correct!",
2275                         );
2276         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2277                         PHM_PlatformCaps_MicrocodeFanControl);
2278         return 0;
2279 }
2280
2281 const struct pp_smumgr_func vegam_smu_funcs = {
2282         .name = "vegam_smu",
2283         .smu_init = vegam_smu_init,
2284         .smu_fini = smu7_smu_fini,
2285         .start_smu = vegam_start_smu,
2286         .check_fw_load_finish = smu7_check_fw_load_finish,
2287         .request_smu_load_fw = smu7_reload_firmware,
2288         .request_smu_load_specific_fw = NULL,
2289         .send_msg_to_smc = smu7_send_msg_to_smc,
2290         .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2291         .process_firmware_header = vegam_process_firmware_header,
2292         .is_dpm_running = vegam_is_dpm_running,
2293         .get_mac_definition = vegam_get_mac_definition,
2294         .update_smc_table = vegam_update_smc_table,
2295         .init_smc_table = vegam_init_smc_table,
2296         .get_offsetof = vegam_get_offsetof,
2297         .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2298         .populate_all_memory_levels = vegam_populate_all_memory_levels,
2299         .update_sclk_threshold = vegam_update_sclk_threshold,
2300         .is_hw_avfs_present = vegam_is_hw_avfs_present,
2301         .thermal_avfs_enable = vegam_thermal_avfs_enable,
2302         .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2303 };