drm/amd/powerplay: return errno code to caller when error occur
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / powerplay / smumgr / vegam_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38
39 #include "smu7_dyn_defaults.h"
40
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
48
49 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
50
51 #define VOLTAGE_VID_OFFSET_SCALE1   625
52 #define VOLTAGE_VID_OFFSET_SCALE2   100
53 #define POWERTUNE_DEFAULT_SET_MAX    1
54 #define VDDC_VDDCI_DELTA            200
55 #define MC_CG_ARB_FREQ_F1           0x0b
56
57 #define STRAP_ASIC_RO_LSB    2168
58 #define STRAP_ASIC_RO_MSB    2175
59
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
62
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65         /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
67         { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68         { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
70 };
71
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73                         {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
74                         {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75                         {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
76                         {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
77                         {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
78                         {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
79                         {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
80                         {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
81
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
83 {
84         struct vegam_smumgr *smu_data;
85
86         smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87         if (smu_data == NULL)
88                 return -ENOMEM;
89
90         hwmgr->smu_backend = smu_data;
91
92         if (smu7_init(hwmgr)) {
93                 kfree(smu_data);
94                 return -EINVAL;
95         }
96
97         return 0;
98 }
99
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 {
102         int result = 0;
103
104         /* Wait for smc boot up */
105         /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
106
107         /* Assert reset */
108         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110
111         result = smu7_upload_smu_firmware_image(hwmgr);
112         if (result != 0)
113                 return result;
114
115         /* Clear status */
116         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
117
118         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121         /* De-assert reset */
122         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125
126         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
127
128
129         /* Call Test SMU message with 0x20000 offset to trigger SMU start */
130         smu7_send_msg_to_smc_offset(hwmgr);
131
132         /* Wait done bit to be set */
133         /* Check pass/failed indicator */
134
135         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
136
137         if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138                                                 SMU_STATUS, SMU_PASS))
139                 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
140
141         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
142
143         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
145
146         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
148
149         /* Wait for firmware to initialize */
150         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151
152         return result;
153 }
154
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157         int result = 0;
158
159         /* wait for smc boot up */
160         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
161
162         /* Clear firmware interrupt enable flag */
163         /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
164         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165                                 ixFIRMWARE_FLAGS, 0);
166
167         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168                                         SMC_SYSCON_RESET_CNTL,
169                                         rst_reg, 1);
170
171         result = smu7_upload_smu_firmware_image(hwmgr);
172         if (result != 0)
173                 return result;
174
175         /* Set smc instruct start point at 0x0 */
176         smu7_program_jump_on_start(hwmgr);
177
178         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
180
181         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
183
184         /* Wait for firmware to initialize */
185
186         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187                                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
188
189         return result;
190 }
191
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
193 {
194         int result = 0;
195         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
196
197         /* Only start SMC if SMC RAM is not running */
198         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199                 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200                                 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201                 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202                                 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
203
204                 /* Check if SMU is running in protected mode */
205                 if (smu_data->protected_mode == 0)
206                         result = vegam_start_smu_in_non_protection_mode(hwmgr);
207                 else
208                         result = vegam_start_smu_in_protection_mode(hwmgr);
209
210                 if (result != 0)
211                         PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
212         }
213
214         /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
215         smu7_read_smc_sram_dword(hwmgr,
216                         SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217                         &(smu_data->smu7_data.soft_regs_start),
218                         0x40000);
219
220         result = smu7_request_smu_load_fw(hwmgr);
221
222         return result;
223 }
224
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
226 {
227         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229         uint32_t tmp;
230         int result;
231         bool error = false;
232
233         result = smu7_read_smc_sram_dword(hwmgr,
234                         SMU7_FIRMWARE_HEADER_LOCATION +
235                         offsetof(SMU75_Firmware_Header, DpmTable),
236                         &tmp, SMC_RAM_END);
237
238         if (0 == result)
239                 smu_data->smu7_data.dpm_table_start = tmp;
240
241         error |= (0 != result);
242
243         result = smu7_read_smc_sram_dword(hwmgr,
244                         SMU7_FIRMWARE_HEADER_LOCATION +
245                         offsetof(SMU75_Firmware_Header, SoftRegisters),
246                         &tmp, SMC_RAM_END);
247
248         if (!result) {
249                 data->soft_regs_start = tmp;
250                 smu_data->smu7_data.soft_regs_start = tmp;
251         }
252
253         error |= (0 != result);
254
255         result = smu7_read_smc_sram_dword(hwmgr,
256                         SMU7_FIRMWARE_HEADER_LOCATION +
257                         offsetof(SMU75_Firmware_Header, mcRegisterTable),
258                         &tmp, SMC_RAM_END);
259
260         if (!result)
261                 smu_data->smu7_data.mc_reg_table_start = tmp;
262
263         result = smu7_read_smc_sram_dword(hwmgr,
264                         SMU7_FIRMWARE_HEADER_LOCATION +
265                         offsetof(SMU75_Firmware_Header, FanTable),
266                         &tmp, SMC_RAM_END);
267
268         if (!result)
269                 smu_data->smu7_data.fan_table_start = tmp;
270
271         error |= (0 != result);
272
273         result = smu7_read_smc_sram_dword(hwmgr,
274                         SMU7_FIRMWARE_HEADER_LOCATION +
275                         offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276                         &tmp, SMC_RAM_END);
277
278         if (!result)
279                 smu_data->smu7_data.arb_table_start = tmp;
280
281         error |= (0 != result);
282
283         result = smu7_read_smc_sram_dword(hwmgr,
284                         SMU7_FIRMWARE_HEADER_LOCATION +
285                         offsetof(SMU75_Firmware_Header, Version),
286                         &tmp, SMC_RAM_END);
287
288         if (!result)
289                 hwmgr->microcode_version_info.SMC = tmp;
290
291         error |= (0 != result);
292
293         return error ? -1 : 0;
294 }
295
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
297 {
298         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
300                         ? true : false;
301 }
302
303 static uint32_t vegam_get_mac_definition(uint32_t value)
304 {
305         switch (value) {
306         case SMU_MAX_LEVELS_GRAPHICS:
307                 return SMU75_MAX_LEVELS_GRAPHICS;
308         case SMU_MAX_LEVELS_MEMORY:
309                 return SMU75_MAX_LEVELS_MEMORY;
310         case SMU_MAX_LEVELS_LINK:
311                 return SMU75_MAX_LEVELS_LINK;
312         case SMU_MAX_ENTRIES_SMIO:
313                 return SMU75_MAX_ENTRIES_SMIO;
314         case SMU_MAX_LEVELS_VDDC:
315                 return SMU75_MAX_LEVELS_VDDC;
316         case SMU_MAX_LEVELS_VDDGFX:
317                 return SMU75_MAX_LEVELS_VDDGFX;
318         case SMU_MAX_LEVELS_VDDCI:
319                 return SMU75_MAX_LEVELS_VDDCI;
320         case SMU_MAX_LEVELS_MVDD:
321                 return SMU75_MAX_LEVELS_MVDD;
322         case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
323                 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
324                                 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
325         }
326
327         pr_warn("can't get the mac of %x\n", value);
328         return 0;
329 }
330
331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
332 {
333         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
334         uint32_t mm_boot_level_offset, mm_boot_level_value;
335         struct phm_ppt_v1_information *table_info =
336                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
337
338         smu_data->smc_state_table.UvdBootLevel = 0;
339         if (table_info->mm_dep_table->count > 0)
340                 smu_data->smc_state_table.UvdBootLevel =
341                                 (uint8_t) (table_info->mm_dep_table->count - 1);
342         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
343                                                 UvdBootLevel);
344         mm_boot_level_offset /= 4;
345         mm_boot_level_offset *= 4;
346         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
347                         CGS_IND_REG__SMC, mm_boot_level_offset);
348         mm_boot_level_value &= 0x00FFFFFF;
349         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
350         cgs_write_ind_register(hwmgr->device,
351                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
352
353         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
354                         PHM_PlatformCaps_UVDDPM) ||
355                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
356                         PHM_PlatformCaps_StablePState))
357                 smum_send_msg_to_smc_with_parameter(hwmgr,
358                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
359                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
360         return 0;
361 }
362
363 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
364 {
365         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
366         uint32_t mm_boot_level_offset, mm_boot_level_value;
367         struct phm_ppt_v1_information *table_info =
368                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
369
370         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
371                                         PHM_PlatformCaps_StablePState))
372                 smu_data->smc_state_table.VceBootLevel =
373                         (uint8_t) (table_info->mm_dep_table->count - 1);
374         else
375                 smu_data->smc_state_table.VceBootLevel = 0;
376
377         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
378                                         offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
379         mm_boot_level_offset /= 4;
380         mm_boot_level_offset *= 4;
381         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
382                         CGS_IND_REG__SMC, mm_boot_level_offset);
383         mm_boot_level_value &= 0xFF00FFFF;
384         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
385         cgs_write_ind_register(hwmgr->device,
386                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
387
388         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
389                 smum_send_msg_to_smc_with_parameter(hwmgr,
390                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
391                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
392         return 0;
393 }
394
395 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
396 {
397         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
398         struct phm_ppt_v1_information *table_info =
399                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
400         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
401         int max_entry, i;
402
403         max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
404                                                 SMU75_MAX_LEVELS_LINK :
405                                                 pcie_table->count;
406         /* Setup BIF_SCLK levels */
407         for (i = 0; i < max_entry; i++)
408                 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
409         return 0;
410 }
411
412 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
413 {
414         switch (type) {
415         case SMU_UVD_TABLE:
416                 vegam_update_uvd_smc_table(hwmgr);
417                 break;
418         case SMU_VCE_TABLE:
419                 vegam_update_vce_smc_table(hwmgr);
420                 break;
421         case SMU_BIF_TABLE:
422                 vegam_update_bif_smc_table(hwmgr);
423                 break;
424         default:
425                 break;
426         }
427         return 0;
428 }
429
430 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
431 {
432         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
433         struct  phm_ppt_v1_information *table_info =
434                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
435
436         if (table_info &&
437                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
438                         table_info->cac_dtp_table->usPowerTuneDataSetID)
439                 smu_data->power_tune_defaults =
440                                 &vegam_power_tune_data_set_array
441                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
442         else
443                 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
444
445 }
446
447 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
448                         SMU75_Discrete_DpmTable *table)
449 {
450         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
451         uint32_t count, level;
452
453         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
454                 count = data->mvdd_voltage_table.count;
455                 if (count > SMU_MAX_SMIO_LEVELS)
456                         count = SMU_MAX_SMIO_LEVELS;
457                 for (level = 0; level < count; level++) {
458                         table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
459                                         data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
460                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
461                         table->SmioTable2.Pattern[level].Smio =
462                                 (uint8_t) level;
463                         table->Smio[level] |=
464                                 data->mvdd_voltage_table.entries[level].smio_low;
465                 }
466                 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
467
468                 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
469         }
470
471         return 0;
472 }
473
474 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
475                                         struct SMU75_Discrete_DpmTable *table)
476 {
477         uint32_t count, level;
478         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
479
480         count = data->vddci_voltage_table.count;
481
482         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
483                 if (count > SMU_MAX_SMIO_LEVELS)
484                         count = SMU_MAX_SMIO_LEVELS;
485                 for (level = 0; level < count; ++level) {
486                         table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
487                                         data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
488                         table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
489
490                         table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
491                 }
492         }
493
494         table->SmioMask1 = data->vddci_voltage_table.mask_low;
495
496         return 0;
497 }
498
499 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
500                 struct SMU75_Discrete_DpmTable *table)
501 {
502         uint32_t count;
503         uint8_t index;
504         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
505         struct phm_ppt_v1_information *table_info =
506                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
507         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
508                         table_info->vddc_lookup_table;
509         /* tables is already swapped, so in order to use the value from it,
510          * we need to swap it back.
511          * We are populating vddc CAC data to BapmVddc table
512          * in split and merged mode
513          */
514         for (count = 0; count < lookup_table->count; count++) {
515                 index = phm_get_voltage_index(lookup_table,
516                                 data->vddc_voltage_table.entries[count].value);
517                 table->BapmVddcVidLoSidd[count] =
518                                 convert_to_vid(lookup_table->entries[index].us_cac_low);
519                 table->BapmVddcVidHiSidd[count] =
520                                 convert_to_vid(lookup_table->entries[index].us_cac_mid);
521                 table->BapmVddcVidHiSidd2[count] =
522                                 convert_to_vid(lookup_table->entries[index].us_cac_high);
523         }
524
525         return 0;
526 }
527
528 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
529                 struct SMU75_Discrete_DpmTable *table)
530 {
531         vegam_populate_smc_vddci_table(hwmgr, table);
532         vegam_populate_smc_mvdd_table(hwmgr, table);
533         vegam_populate_cac_table(hwmgr, table);
534
535         return 0;
536 }
537
538 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
539                 struct SMU75_Discrete_Ulv *state)
540 {
541         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542         struct phm_ppt_v1_information *table_info =
543                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
544
545         state->CcPwrDynRm = 0;
546         state->CcPwrDynRm1 = 0;
547
548         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
549         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
550                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
551
552         state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
553
554         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
555         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
556         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
557
558         return 0;
559 }
560
561 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
562                 struct SMU75_Discrete_DpmTable *table)
563 {
564         return vegam_populate_ulv_level(hwmgr, &table->Ulv);
565 }
566
567 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
568                 struct SMU75_Discrete_DpmTable *table)
569 {
570         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
571         struct vegam_smumgr *smu_data =
572                         (struct vegam_smumgr *)(hwmgr->smu_backend);
573         struct smu7_dpm_table *dpm_table = &data->dpm_table;
574         int i;
575
576         /* Index (dpm_table->pcie_speed_table.count)
577          * is reserved for PCIE boot level. */
578         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
579                 table->LinkLevel[i].PcieGenSpeed  =
580                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
581                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
582                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
583                 table->LinkLevel[i].EnabledForActivity = 1;
584                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
585                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
586                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
587         }
588
589         smu_data->smc_state_table.LinkLevelCount =
590                         (uint8_t)dpm_table->pcie_speed_table.count;
591
592 /* To Do move to hwmgr */
593         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
594                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
595
596         return 0;
597 }
598
599 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
600                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
601                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
602 {
603         uint32_t i;
604         uint16_t vddci;
605         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
606
607         *voltage = *mvdd = 0;
608
609         /* clock - voltage dependency table is empty table */
610         if (dep_table->count == 0)
611                 return -EINVAL;
612
613         for (i = 0; i < dep_table->count; i++) {
614                 /* find first sclk bigger than request */
615                 if (dep_table->entries[i].clk >= clock) {
616                         *voltage |= (dep_table->entries[i].vddc *
617                                         VOLTAGE_SCALE) << VDDC_SHIFT;
618                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
619                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
620                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
621                         else if (dep_table->entries[i].vddci)
622                                 *voltage |= (dep_table->entries[i].vddci *
623                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
624                         else {
625                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
626                                                 (dep_table->entries[i].vddc -
627                                                                 (uint16_t)VDDC_VDDCI_DELTA));
628                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
629                         }
630
631                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
632                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
633                                         VOLTAGE_SCALE;
634                         else if (dep_table->entries[i].mvdd)
635                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
636                                         VOLTAGE_SCALE;
637
638                         *voltage |= 1 << PHASES_SHIFT;
639                         return 0;
640                 }
641         }
642
643         /* sclk is bigger than max sclk in the dependence table */
644         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
645         vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
646                         (dep_table->entries[i - 1].vddc -
647                                         (uint16_t)VDDC_VDDCI_DELTA));
648
649         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
650                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
651                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
652         else if (dep_table->entries[i - 1].vddci)
653                 *voltage |= (dep_table->entries[i - 1].vddci *
654                                 VOLTAGE_SCALE) << VDDC_SHIFT;
655         else
656                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
657
658         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
659                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
660         else if (dep_table->entries[i].mvdd)
661                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
662
663         return 0;
664 }
665
666 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
667                                    SMU75_Discrete_DpmTable  *table)
668 {
669         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
670         uint32_t i, ref_clk;
671
672         struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
673
674         ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
675
676         if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
677                 for (i = 0; i < NUM_SCLK_RANGE; i++) {
678                         table->SclkFcwRangeTable[i].vco_setting =
679                                         range_table_from_vbios.entry[i].ucVco_setting;
680                         table->SclkFcwRangeTable[i].postdiv =
681                                         range_table_from_vbios.entry[i].ucPostdiv;
682                         table->SclkFcwRangeTable[i].fcw_pcc =
683                                         range_table_from_vbios.entry[i].usFcw_pcc;
684
685                         table->SclkFcwRangeTable[i].fcw_trans_upper =
686                                         range_table_from_vbios.entry[i].usFcw_trans_upper;
687                         table->SclkFcwRangeTable[i].fcw_trans_lower =
688                                         range_table_from_vbios.entry[i].usRcw_trans_lower;
689
690                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
691                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
692                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
693                 }
694                 return;
695         }
696
697         for (i = 0; i < NUM_SCLK_RANGE; i++) {
698                 smu_data->range_table[i].trans_lower_frequency =
699                                 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
700                 smu_data->range_table[i].trans_upper_frequency =
701                                 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
702
703                 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
704                 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
705                 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
706
707                 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
708                 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
709
710                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
711                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
712                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
713         }
714 }
715
716 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
717                 uint32_t clock, SMU_SclkSetting *sclk_setting)
718 {
719         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
720         const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
721         struct pp_atomctrl_clock_dividers_ai dividers;
722         uint32_t ref_clock;
723         uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
724         uint8_t i;
725         int result;
726         uint64_t temp;
727
728         sclk_setting->SclkFrequency = clock;
729         /* get the engine clock dividers for this clock value */
730         result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
731         if (result == 0) {
732                 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
733                 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
734                 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
735                 sclk_setting->PllRange = dividers.ucSclkPllRange;
736                 sclk_setting->Sclk_slew_rate = 0x400;
737                 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
738                 sclk_setting->Pcc_down_slew_rate = 0xffff;
739                 sclk_setting->SSc_En = dividers.ucSscEnable;
740                 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
741                 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
742                 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
743                 return result;
744         }
745
746         ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
747
748         for (i = 0; i < NUM_SCLK_RANGE; i++) {
749                 if (clock > smu_data->range_table[i].trans_lower_frequency
750                 && clock <= smu_data->range_table[i].trans_upper_frequency) {
751                         sclk_setting->PllRange = i;
752                         break;
753                 }
754         }
755
756         sclk_setting->Fcw_int = (uint16_t)
757                         ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
758                                         ref_clock);
759         temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
760         temp <<= 0x10;
761         do_div(temp, ref_clock);
762         sclk_setting->Fcw_frac = temp & 0xffff;
763
764         pcc_target_percent = 10; /*  Hardcode 10% for now. */
765         pcc_target_freq = clock - (clock * pcc_target_percent / 100);
766         sclk_setting->Pcc_fcw_int = (uint16_t)
767                         ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
768                                         ref_clock);
769
770         ss_target_percent = 2; /*  Hardcode 2% for now. */
771         sclk_setting->SSc_En = 0;
772         if (ss_target_percent) {
773                 sclk_setting->SSc_En = 1;
774                 ss_target_freq = clock - (clock * ss_target_percent / 100);
775                 sclk_setting->Fcw1_int = (uint16_t)
776                                 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
777                                                 ref_clock);
778                 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
779                 temp <<= 0x10;
780                 do_div(temp, ref_clock);
781                 sclk_setting->Fcw1_frac = temp & 0xffff;
782         }
783
784         return 0;
785 }
786
787 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
788                 uint32_t clock_insr)
789 {
790         uint8_t i;
791         uint32_t temp;
792         uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
793
794         PP_ASSERT_WITH_CODE((clock >= min),
795                         "Engine clock can't satisfy stutter requirement!",
796                         return 0);
797         for (i = 31;  ; i--) {
798                 temp = clock / (i + 1);
799
800                 if (temp >= min || i == 0)
801                         break;
802         }
803         return i;
804 }
805
806 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
807                 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
808 {
809         int result;
810         /* PP_Clocks minClocks; */
811         uint32_t mvdd;
812         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
813         struct phm_ppt_v1_information *table_info =
814                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
815         SMU_SclkSetting curr_sclk_setting = { 0 };
816
817         result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
818
819         /* populate graphics levels */
820         result = vegam_get_dependency_volt_by_clk(hwmgr,
821                         table_info->vdd_dep_on_sclk, clock,
822                         &level->MinVoltage, &mvdd);
823
824         PP_ASSERT_WITH_CODE((0 == result),
825                         "can not find VDDC voltage value for "
826                         "VDDC engine clock dependency table",
827                         return result);
828         level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
829
830         level->CcPwrDynRm = 0;
831         level->CcPwrDynRm1 = 0;
832         level->EnabledForActivity = 0;
833         level->EnabledForThrottle = 1;
834         level->VoltageDownHyst = 0;
835         level->PowerThrottle = 0;
836         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
837
838         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
839                 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
840                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
841
842         level->SclkSetting = curr_sclk_setting;
843
844         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
845         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
846         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
847         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
848         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
849         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
850         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
851         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
852         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
853         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
854         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
855         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
856         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
857         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
858         return 0;
859 }
860
861 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
862 {
863         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
864         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
865         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
866         struct phm_ppt_v1_information *table_info =
867                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
868         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
869         uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
870         int result = 0;
871         uint32_t array = smu_data->smu7_data.dpm_table_start +
872                         offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
873         uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
874                         SMU75_MAX_LEVELS_GRAPHICS;
875         struct SMU75_Discrete_GraphicsLevel *levels =
876                         smu_data->smc_state_table.GraphicsLevel;
877         uint32_t i, max_entry;
878         uint8_t hightest_pcie_level_enabled = 0,
879                 lowest_pcie_level_enabled = 0,
880                 mid_pcie_level_enabled = 0,
881                 count = 0;
882
883         vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
884
885         for (i = 0; i < dpm_table->sclk_table.count; i++) {
886
887                 result = vegam_populate_single_graphic_level(hwmgr,
888                                 dpm_table->sclk_table.dpm_levels[i].value,
889                                 &(smu_data->smc_state_table.GraphicsLevel[i]));
890                 if (result)
891                         return result;
892
893                 levels[i].UpHyst = (uint8_t)
894                                 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
895                 levels[i].DownHyst = (uint8_t)
896                                 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
897                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
898                 if (i > 1)
899                         levels[i].DeepSleepDivId = 0;
900         }
901         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
902                                         PHM_PlatformCaps_SPLLShutdownSupport))
903                 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
904
905         smu_data->smc_state_table.GraphicsDpmLevelCount =
906                         (uint8_t)dpm_table->sclk_table.count;
907         hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
908                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
909
910         for (i = 0; i < dpm_table->sclk_table.count; i++)
911                 levels[i].EnabledForActivity =
912                                 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
913
914         if (pcie_table != NULL) {
915                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
916                                 "There must be 1 or more PCIE levels defined in PPTable.",
917                                 return -EINVAL);
918                 max_entry = pcie_entry_cnt - 1;
919                 for (i = 0; i < dpm_table->sclk_table.count; i++)
920                         levels[i].pcieDpmLevel =
921                                         (uint8_t) ((i < max_entry) ? i : max_entry);
922         } else {
923                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
924                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
925                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
926                         hightest_pcie_level_enabled++;
927
928                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930                                                 (1 << lowest_pcie_level_enabled)) == 0))
931                         lowest_pcie_level_enabled++;
932
933                 while ((count < hightest_pcie_level_enabled) &&
934                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
936                         count++;
937
938                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
939                                 hightest_pcie_level_enabled ?
940                                                 (lowest_pcie_level_enabled + 1 + count) :
941                                                 hightest_pcie_level_enabled;
942
943                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
944                 for (i = 2; i < dpm_table->sclk_table.count; i++)
945                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
946
947                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
948                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
949
950                 /* set pcieDpmLevel to mid_pcie_level_enabled */
951                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
952         }
953         /* level count will send to smc once at init smc table and never change */
954         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
955                         (uint32_t)array_size, SMC_RAM_END);
956
957         return result;
958 }
959
960 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
961                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
962 {
963         struct pp_atomctrl_memory_clock_param_ai mpll_param;
964
965         PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
966                         clock, &mpll_param),
967                         "Failed to retrieve memory pll parameter.",
968                         return -EINVAL);
969
970         mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
971         mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
972         mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
973         mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
974
975         return 0;
976 }
977
978 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
979                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
980 {
981         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
982         struct phm_ppt_v1_information *table_info =
983                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
984         int result = 0;
985         uint32_t mclk_stutter_mode_threshold = 60000;
986
987
988         if (table_info->vdd_dep_on_mclk) {
989                 result = vegam_get_dependency_volt_by_clk(hwmgr,
990                                 table_info->vdd_dep_on_mclk, clock,
991                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
992                 PP_ASSERT_WITH_CODE(!result,
993                                 "can not find MinVddc voltage value from memory "
994                                 "VDDC voltage dependency table", return result);
995         }
996
997         result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
998         PP_ASSERT_WITH_CODE(!result,
999                         "Failed to calculate mclk params.",
1000                         return -EINVAL);
1001
1002         mem_level->EnabledForThrottle = 1;
1003         mem_level->EnabledForActivity = 0;
1004         mem_level->VoltageDownHyst = 0;
1005         mem_level->ActivityLevel = (uint16_t)
1006                         (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1007         mem_level->StutterEnable = false;
1008         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1009
1010         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1011         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1012
1013         if (mclk_stutter_mode_threshold &&
1014                 (clock <= mclk_stutter_mode_threshold) &&
1015                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1016                                 STUTTER_ENABLE) & 0x1))
1017                 mem_level->StutterEnable = true;
1018
1019         if (!result) {
1020                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1021                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1022                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1023                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1024                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1025                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1026         }
1027
1028         return result;
1029 }
1030
1031 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1032 {
1033         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1034         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1035         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1036         int result;
1037         /* populate MCLK dpm table to SMU7 */
1038         uint32_t array = smu_data->smu7_data.dpm_table_start +
1039                         offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1040         uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1041                         SMU75_MAX_LEVELS_MEMORY;
1042         struct SMU75_Discrete_MemoryLevel *levels =
1043                         smu_data->smc_state_table.MemoryLevel;
1044         uint32_t i;
1045
1046         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1047                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1048                                 "can not populate memory level as memory clock is zero",
1049                                 return -EINVAL);
1050                 result = vegam_populate_single_memory_level(hwmgr,
1051                                 dpm_table->mclk_table.dpm_levels[i].value,
1052                                 &levels[i]);
1053
1054                 if (result)
1055                         return result;
1056
1057                 levels[i].UpHyst = (uint8_t)
1058                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1059                 levels[i].DownHyst = (uint8_t)
1060                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1061         }
1062
1063         smu_data->smc_state_table.MemoryDpmLevelCount =
1064                         (uint8_t)dpm_table->mclk_table.count;
1065         hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1066                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1067
1068         for (i = 0; i < dpm_table->mclk_table.count; i++)
1069                 levels[i].EnabledForActivity =
1070                                 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1071
1072         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1073                         PPSMC_DISPLAY_WATERMARK_HIGH;
1074
1075         /* level count will send to smc once at init smc table and never change */
1076         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1077                         (uint32_t)array_size, SMC_RAM_END);
1078
1079         return result;
1080 }
1081
1082 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1083                 uint32_t mclk, SMIO_Pattern *smio_pat)
1084 {
1085         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1086         struct phm_ppt_v1_information *table_info =
1087                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1088         uint32_t i = 0;
1089
1090         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1091                 /* find mvdd value which clock is more than request */
1092                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1093                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1094                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1095                                 break;
1096                         }
1097                 }
1098                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1099                                 "MVDD Voltage is outside the supported range.",
1100                                 return -EINVAL);
1101         } else
1102                 return -EINVAL;
1103
1104         return 0;
1105 }
1106
1107 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1108                 SMU75_Discrete_DpmTable *table)
1109 {
1110         int result = 0;
1111         uint32_t sclk_frequency;
1112         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1113         struct phm_ppt_v1_information *table_info =
1114                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1115         SMIO_Pattern vol_level;
1116         uint32_t mvdd;
1117
1118         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1119
1120         /* Get MinVoltage and Frequency from DPM0,
1121          * already converted to SMC_UL */
1122         sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1123         result = vegam_get_dependency_volt_by_clk(hwmgr,
1124                         table_info->vdd_dep_on_sclk,
1125                         sclk_frequency,
1126                         &table->ACPILevel.MinVoltage, &mvdd);
1127         PP_ASSERT_WITH_CODE(!result,
1128                         "Cannot find ACPI VDDC voltage value "
1129                         "in Clock Dependency Table",
1130                         );
1131
1132         result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1133                         &(table->ACPILevel.SclkSetting));
1134         PP_ASSERT_WITH_CODE(!result,
1135                         "Error retrieving Engine Clock dividers from VBIOS.",
1136                         return result);
1137
1138         table->ACPILevel.DeepSleepDivId = 0;
1139         table->ACPILevel.CcPwrDynRm = 0;
1140         table->ACPILevel.CcPwrDynRm1 = 0;
1141
1142         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1143         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1144         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1145         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1146
1147         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1148         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1149         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1150         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1151         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1152         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1153         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1154         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1155         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1156         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1157
1158
1159         /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1160         table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1161         result = vegam_get_dependency_volt_by_clk(hwmgr,
1162                         table_info->vdd_dep_on_mclk,
1163                         table->MemoryACPILevel.MclkFrequency,
1164                         &table->MemoryACPILevel.MinVoltage, &mvdd);
1165         PP_ASSERT_WITH_CODE((0 == result),
1166                         "Cannot find ACPI VDDCI voltage value "
1167                         "in Clock Dependency Table",
1168                         );
1169
1170         if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1171                 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1172         else
1173                 table->MemoryACPILevel.MinMvdd = 0;
1174
1175         table->MemoryACPILevel.StutterEnable = false;
1176
1177         table->MemoryACPILevel.EnabledForThrottle = 0;
1178         table->MemoryACPILevel.EnabledForActivity = 0;
1179         table->MemoryACPILevel.UpHyst = 0;
1180         table->MemoryACPILevel.DownHyst = 100;
1181         table->MemoryACPILevel.VoltageDownHyst = 0;
1182         table->MemoryACPILevel.ActivityLevel =
1183                 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1184
1185         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1186         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1187
1188         return result;
1189 }
1190
1191 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1192                 SMU75_Discrete_DpmTable *table)
1193 {
1194         int result = -EINVAL;
1195         uint8_t count;
1196         struct pp_atomctrl_clock_dividers_vi dividers;
1197         struct phm_ppt_v1_information *table_info =
1198                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1199         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1200                         table_info->mm_dep_table;
1201         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1202         uint32_t vddci;
1203
1204         table->VceLevelCount = (uint8_t)(mm_table->count);
1205         table->VceBootLevel = 0;
1206
1207         for (count = 0; count < table->VceLevelCount; count++) {
1208                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1209                 table->VceLevel[count].MinVoltage = 0;
1210                 table->VceLevel[count].MinVoltage |=
1211                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1212
1213                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1214                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1215                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1216                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1217                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1218                 else
1219                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1220
1221
1222                 table->VceLevel[count].MinVoltage |=
1223                                 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1224                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1225
1226                 /*retrieve divider value for VBIOS */
1227                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1228                                 table->VceLevel[count].Frequency, &dividers);
1229                 PP_ASSERT_WITH_CODE((0 == result),
1230                                 "can not find divide id for VCE engine clock",
1231                                 return result);
1232
1233                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1234
1235                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1236                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1237         }
1238         return result;
1239 }
1240
1241 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1242                 int32_t eng_clock, int32_t mem_clock,
1243                 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1244 {
1245         uint32_t dram_timing;
1246         uint32_t dram_timing2;
1247         uint32_t burst_time;
1248         uint32_t rfsh_rate;
1249         uint32_t misc3;
1250
1251         int result;
1252
1253         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1254                         eng_clock, mem_clock);
1255         PP_ASSERT_WITH_CODE(result == 0,
1256                         "Error calling VBIOS to set DRAM_TIMING.",
1257                         return result);
1258
1259         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1260         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1261         burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1262         rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1263         misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1264
1265         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1266         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1267         arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1268         arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1269         arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1270
1271         return 0;
1272 }
1273
1274 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1275 {
1276         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1277         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1278         struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1279         uint32_t i, j;
1280         int result = 0;
1281
1282         memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1283
1284         for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1285                 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1286                         result = vegam_populate_memory_timing_parameters(hwmgr,
1287                                         hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1288                                         hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1289                                         &arb_regs.entries[i][j]);
1290                         if (result)
1291                                 return result;
1292                 }
1293         }
1294
1295         result = smu7_copy_bytes_to_smc(
1296                         hwmgr,
1297                         smu_data->smu7_data.arb_table_start,
1298                         (uint8_t *)&arb_regs,
1299                         sizeof(SMU75_Discrete_MCArbDramTimingTable),
1300                         SMC_RAM_END);
1301         return result;
1302 }
1303
1304 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1305                 struct SMU75_Discrete_DpmTable *table)
1306 {
1307         int result = -EINVAL;
1308         uint8_t count;
1309         struct pp_atomctrl_clock_dividers_vi dividers;
1310         struct phm_ppt_v1_information *table_info =
1311                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1312         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1313                         table_info->mm_dep_table;
1314         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1315         uint32_t vddci;
1316
1317         table->UvdLevelCount = (uint8_t)(mm_table->count);
1318         table->UvdBootLevel = 0;
1319
1320         for (count = 0; count < table->UvdLevelCount; count++) {
1321                 table->UvdLevel[count].MinVoltage = 0;
1322                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1323                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1324                 table->UvdLevel[count].MinVoltage |=
1325                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1326
1327                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1328                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1329                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1330                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1331                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1332                 else
1333                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1334
1335                 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1336                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1337
1338                 /* retrieve divider value for VBIOS */
1339                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1340                                 table->UvdLevel[count].VclkFrequency, &dividers);
1341                 PP_ASSERT_WITH_CODE((0 == result),
1342                                 "can not find divide id for Vclk clock", return result);
1343
1344                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1345
1346                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1347                                 table->UvdLevel[count].DclkFrequency, &dividers);
1348                 PP_ASSERT_WITH_CODE((0 == result),
1349                                 "can not find divide id for Dclk clock", return result);
1350
1351                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1352
1353                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1354                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1355                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1356         }
1357
1358         return result;
1359 }
1360
1361 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1362                 struct SMU75_Discrete_DpmTable *table)
1363 {
1364         int result = 0;
1365         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1366
1367         table->GraphicsBootLevel = 0;
1368         table->MemoryBootLevel = 0;
1369
1370         /* find boot level from dpm table */
1371         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1372                         data->vbios_boot_state.sclk_bootup_value,
1373                         (uint32_t *)&(table->GraphicsBootLevel));
1374         if (result)
1375                 return result;
1376
1377         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1378                         data->vbios_boot_state.mclk_bootup_value,
1379                         (uint32_t *)&(table->MemoryBootLevel));
1380
1381         if (result)
1382                 return result;
1383
1384         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1385                         VOLTAGE_SCALE;
1386         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1387                         VOLTAGE_SCALE;
1388         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1389                         VOLTAGE_SCALE;
1390
1391         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1392         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1393         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1394
1395         return 0;
1396 }
1397
1398 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1399 {
1400         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1401         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1402         struct phm_ppt_v1_information *table_info =
1403                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1404         uint8_t count, level;
1405
1406         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1407
1408         for (level = 0; level < count; level++) {
1409                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1410                                 hw_data->vbios_boot_state.sclk_bootup_value) {
1411                         smu_data->smc_state_table.GraphicsBootLevel = level;
1412                         break;
1413                 }
1414         }
1415
1416         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1417         for (level = 0; level < count; level++) {
1418                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1419                                 hw_data->vbios_boot_state.mclk_bootup_value) {
1420                         smu_data->smc_state_table.MemoryBootLevel = level;
1421                         break;
1422                 }
1423         }
1424
1425         return 0;
1426 }
1427
1428 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1429 {
1430         uint32_t tmp;
1431         tmp = raw_setting * 4096 / 100;
1432         return (uint16_t)tmp;
1433 }
1434
1435 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1436 {
1437         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1438
1439         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1440         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1441         struct phm_ppt_v1_information *table_info =
1442                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1443         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1444         struct pp_advance_fan_control_parameters *fan_table =
1445                         &hwmgr->thermal_controller.advanceFanControlParameters;
1446         int i, j, k;
1447         const uint16_t *pdef1;
1448         const uint16_t *pdef2;
1449
1450         table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1451         table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1452
1453         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1454                                 "Target Operating Temp is out of Range!",
1455                                 );
1456
1457         table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1458                         cac_dtp_table->usTargetOperatingTemp * 256);
1459         table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1460                         cac_dtp_table->usTemperatureLimitHotspot * 256);
1461         table->FanGainEdge = PP_HOST_TO_SMC_US(
1462                         scale_fan_gain_settings(fan_table->usFanGainEdge));
1463         table->FanGainHotspot = PP_HOST_TO_SMC_US(
1464                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
1465
1466         pdef1 = defaults->BAPMTI_R;
1467         pdef2 = defaults->BAPMTI_RC;
1468
1469         for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1470                 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1471                         for (k = 0; k < SMU75_DTE_SINKS; k++) {
1472                                 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1473                                 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1474                                 pdef1++;
1475                                 pdef2++;
1476                         }
1477                 }
1478         }
1479
1480         return 0;
1481 }
1482
1483 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1484 {
1485         uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1486         struct vegam_smumgr *smu_data =
1487                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1488
1489         uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
1490         struct phm_ppt_v1_information *table_info =
1491                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1492         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1493                         table_info->vdd_dep_on_sclk;
1494         uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1495
1496         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1497
1498         atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1499                         mask, &efuse);
1500
1501         min = 1200;
1502         max = 2500;
1503
1504         ro = efuse * (max - min) / 255 + min;
1505
1506         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1507         for (i = 0; i < sclk_table->count; i++) {
1508                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1509                                 sclk_table->entries[i].cks_enable << i;
1510                 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1511                                 136418 - (ro - 70) * 1000000) /
1512                                 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1513                 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1514                                 3232 - (ro - 65) * 1000000) /
1515                                 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1516
1517                 if (volt_without_cks >= volt_with_cks)
1518                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1519                                         sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1520
1521                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1522         }
1523
1524         smu_data->smc_state_table.LdoRefSel =
1525                         (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1526                         table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1527         /* Populate CKS Lookup Table */
1528         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1529                 stretch_amount2 = 0;
1530         else if (stretch_amount == 3 || stretch_amount == 4)
1531                 stretch_amount2 = 1;
1532         else {
1533                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1534                                 PHM_PlatformCaps_ClockStretcher);
1535                 PP_ASSERT_WITH_CODE(false,
1536                                 "Stretch Amount in PPTable not supported\n",
1537                                 return -EINVAL);
1538         }
1539
1540         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1541         value &= 0xFFFFFFFE;
1542         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1543
1544         return 0;
1545 }
1546
1547 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1548 {
1549         uint32_t efuse;
1550
1551         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1552                         ixSMU_EFUSE_0 + (49 * 4));
1553         efuse &= 0x00000001;
1554
1555         if (efuse)
1556                 return true;
1557
1558         return false;
1559 }
1560
1561 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1562 {
1563         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1564         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1565
1566         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1567         int result = 0;
1568         struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1569         AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1570         AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1571         uint32_t tmp, i;
1572
1573         struct phm_ppt_v1_information *table_info =
1574                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1575         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1576                         table_info->vdd_dep_on_sclk;
1577
1578         if (!hwmgr->avfs_supported)
1579                 return 0;
1580
1581         result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1582
1583         if (0 == result) {
1584                 table->BTCGB_VDROOP_TABLE[0].a0 =
1585                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1586                 table->BTCGB_VDROOP_TABLE[0].a1 =
1587                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1588                 table->BTCGB_VDROOP_TABLE[0].a2 =
1589                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1590                 table->BTCGB_VDROOP_TABLE[1].a0 =
1591                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1592                 table->BTCGB_VDROOP_TABLE[1].a1 =
1593                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1594                 table->BTCGB_VDROOP_TABLE[1].a2 =
1595                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1596                 table->AVFSGB_FUSE_TABLE[0].m1 =
1597                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1598                 table->AVFSGB_FUSE_TABLE[0].m2 =
1599                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1600                 table->AVFSGB_FUSE_TABLE[0].b =
1601                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1602                 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1603                 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1604                 table->AVFSGB_FUSE_TABLE[1].m1 =
1605                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1606                 table->AVFSGB_FUSE_TABLE[1].m2 =
1607                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1608                 table->AVFSGB_FUSE_TABLE[1].b =
1609                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1610                 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1611                 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1612                 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1613                 AVFS_meanNsigma.Aconstant[0] =
1614                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1615                 AVFS_meanNsigma.Aconstant[1] =
1616                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1617                 AVFS_meanNsigma.Aconstant[2] =
1618                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1619                 AVFS_meanNsigma.DC_tol_sigma =
1620                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1621                 AVFS_meanNsigma.Platform_mean =
1622                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1623                 AVFS_meanNsigma.PSM_Age_CompFactor =
1624                                 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1625                 AVFS_meanNsigma.Platform_sigma =
1626                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1627
1628                 for (i = 0; i < sclk_table->count; i++) {
1629                         AVFS_meanNsigma.Static_Voltage_Offset[i] =
1630                                         (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1631                         AVFS_SclkOffset.Sclk_Offset[i] =
1632                                         PP_HOST_TO_SMC_US((uint16_t)
1633                                                         (sclk_table->entries[i].sclk_offset) / 100);
1634                 }
1635
1636                 result = smu7_read_smc_sram_dword(hwmgr,
1637                                 SMU7_FIRMWARE_HEADER_LOCATION +
1638                                 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1639                                 &tmp, SMC_RAM_END);
1640                 smu7_copy_bytes_to_smc(hwmgr,
1641                                         tmp,
1642                                         (uint8_t *)&AVFS_meanNsigma,
1643                                         sizeof(AVFS_meanNsigma_t),
1644                                         SMC_RAM_END);
1645
1646                 result = smu7_read_smc_sram_dword(hwmgr,
1647                                 SMU7_FIRMWARE_HEADER_LOCATION +
1648                                 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1649                                 &tmp, SMC_RAM_END);
1650                 smu7_copy_bytes_to_smc(hwmgr,
1651                                         tmp,
1652                                         (uint8_t *)&AVFS_SclkOffset,
1653                                         sizeof(AVFS_Sclk_Offset_t),
1654                                         SMC_RAM_END);
1655
1656                 data->avfs_vdroop_override_setting =
1657                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1658                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1659                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1660                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1661                 data->apply_avfs_cks_off_voltage =
1662                                 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1663         }
1664         return result;
1665 }
1666
1667 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1668                 struct SMU75_Discrete_DpmTable *table)
1669 {
1670         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1671         struct vegam_smumgr *smu_data =
1672                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1673         uint16_t config;
1674
1675         config = VR_MERGED_WITH_VDDC;
1676         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1677
1678         /* Set Vddc Voltage Controller */
1679         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1680                 config = VR_SVI2_PLANE_1;
1681                 table->VRConfig |= config;
1682         } else {
1683                 PP_ASSERT_WITH_CODE(false,
1684                                 "VDDC should be on SVI2 control in merged mode!",
1685                                 );
1686         }
1687         /* Set Vddci Voltage Controller */
1688         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1689                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1690                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1691         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1692                 config = VR_SMIO_PATTERN_1;
1693                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1694         } else {
1695                 config = VR_STATIC_VOLTAGE;
1696                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1697         }
1698         /* Set Mvdd Voltage Controller */
1699         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1700                 if (config != VR_SVI2_PLANE_2) {
1701                         config = VR_SVI2_PLANE_2;
1702                         table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1703                         cgs_write_ind_register(hwmgr->device,
1704                                         CGS_IND_REG__SMC,
1705                                         smu_data->smu7_data.soft_regs_start +
1706                                         offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1707                                         0x1);
1708                 } else {
1709                         PP_ASSERT_WITH_CODE(false,
1710                                         "SVI2 Plane 2 is already taken, set MVDD as Static",);
1711                         config = VR_STATIC_VOLTAGE;
1712                         table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1713                 }
1714         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1715                 config = VR_SMIO_PATTERN_2;
1716                 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1717                 cgs_write_ind_register(hwmgr->device,
1718                                 CGS_IND_REG__SMC,
1719                                 smu_data->smu7_data.soft_regs_start +
1720                                 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1721                                 0x1);
1722         } else {
1723                 config = VR_STATIC_VOLTAGE;
1724                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1725         }
1726
1727         return 0;
1728 }
1729
1730 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1731 {
1732         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1733         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1734
1735         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1736         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1737         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1738         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1739
1740         return 0;
1741 }
1742
1743 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1744 {
1745         uint16_t tdc_limit;
1746         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1747         struct phm_ppt_v1_information *table_info =
1748                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1749         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1750
1751         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1752         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1753                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1754         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1755                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1756         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1757
1758         return 0;
1759 }
1760
1761 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1762 {
1763         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1764         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1765         uint32_t temp;
1766
1767         if (smu7_read_smc_sram_dword(hwmgr,
1768                         fuse_table_offset +
1769                         offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1770                         (uint32_t *)&temp, SMC_RAM_END))
1771                 PP_ASSERT_WITH_CODE(false,
1772                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1773                                 return -EINVAL);
1774         else {
1775                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1776                 smu_data->power_tune_table.LPMLTemperatureMin =
1777                                 (uint8_t)((temp >> 16) & 0xff);
1778                 smu_data->power_tune_table.LPMLTemperatureMax =
1779                                 (uint8_t)((temp >> 8) & 0xff);
1780                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1781         }
1782         return 0;
1783 }
1784
1785 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1786 {
1787         int i;
1788         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1789
1790         /* Currently not used. Set all to zero. */
1791         for (i = 0; i < 16; i++)
1792                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1793
1794         return 0;
1795 }
1796
1797 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1798 {
1799         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1800
1801 /* TO DO move to hwmgr */
1802         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1803                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1804                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1805                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1806
1807         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1808                                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1809         return 0;
1810 }
1811
1812 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1813 {
1814         int i;
1815         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1816
1817         /* Currently not used. Set all to zero. */
1818         for (i = 0; i < 16; i++)
1819                 smu_data->power_tune_table.GnbLPML[i] = 0;
1820
1821         return 0;
1822 }
1823
1824 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1825 {
1826         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1827         struct phm_ppt_v1_information *table_info =
1828                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1829         uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1830         uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1831         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1832
1833         hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1834         lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1835
1836         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1837                         CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1838         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1839                         CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1840
1841         return 0;
1842 }
1843
1844 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1845 {
1846         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1847         uint32_t pm_fuse_table_offset;
1848
1849         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1850                         PHM_PlatformCaps_PowerContainment)) {
1851                 if (smu7_read_smc_sram_dword(hwmgr,
1852                                 SMU7_FIRMWARE_HEADER_LOCATION +
1853                                 offsetof(SMU75_Firmware_Header, PmFuseTable),
1854                                 &pm_fuse_table_offset, SMC_RAM_END))
1855                         PP_ASSERT_WITH_CODE(false,
1856                                         "Attempt to get pm_fuse_table_offset Failed!",
1857                                         return -EINVAL);
1858
1859                 if (vegam_populate_svi_load_line(hwmgr))
1860                         PP_ASSERT_WITH_CODE(false,
1861                                         "Attempt to populate SviLoadLine Failed!",
1862                                         return -EINVAL);
1863
1864                 if (vegam_populate_tdc_limit(hwmgr))
1865                         PP_ASSERT_WITH_CODE(false,
1866                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
1867
1868                 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1869                         PP_ASSERT_WITH_CODE(false,
1870                                         "Attempt to populate TdcWaterfallCtl, "
1871                                         "LPMLTemperature Min and Max Failed!",
1872                                         return -EINVAL);
1873
1874                 if (0 != vegam_populate_temperature_scaler(hwmgr))
1875                         PP_ASSERT_WITH_CODE(false,
1876                                         "Attempt to populate LPMLTemperatureScaler Failed!",
1877                                         return -EINVAL);
1878
1879                 if (vegam_populate_fuzzy_fan(hwmgr))
1880                         PP_ASSERT_WITH_CODE(false,
1881                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
1882                                         return -EINVAL);
1883
1884                 if (vegam_populate_gnb_lpml(hwmgr))
1885                         PP_ASSERT_WITH_CODE(false,
1886                                         "Attempt to populate GnbLPML Failed!",
1887                                         return -EINVAL);
1888
1889                 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1890                         PP_ASSERT_WITH_CODE(false,
1891                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1892                                         "Sidd Failed!", return -EINVAL);
1893
1894                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1895                                 (uint8_t *)&smu_data->power_tune_table,
1896                                 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1897                                 SMC_RAM_END))
1898                         PP_ASSERT_WITH_CODE(false,
1899                                         "Attempt to download PmFuseTable Failed!",
1900                                         return -EINVAL);
1901         }
1902         return 0;
1903 }
1904
1905 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1906 {
1907         struct amdgpu_device *adev = hwmgr->adev;
1908
1909         smum_send_msg_to_smc_with_parameter(hwmgr,
1910                                             PPSMC_MSG_EnableModeSwitchRLCNotification,
1911                                             adev->gfx.cu_info.number);
1912
1913         return 0;
1914 }
1915
1916 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1917 {
1918         int result;
1919         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1920         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1921
1922         struct phm_ppt_v1_information *table_info =
1923                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1924         struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1925         uint8_t i;
1926         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1927         struct phm_ppt_v1_gpio_table *gpio_table =
1928                         (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1929         pp_atomctrl_clock_dividers_vi dividers;
1930
1931         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1932                         PHM_PlatformCaps_AutomaticDCTransition);
1933
1934         vegam_initialize_power_tune_defaults(hwmgr);
1935
1936         if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1937                 vegam_populate_smc_voltage_tables(hwmgr, table);
1938
1939         table->SystemFlags = 0;
1940         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1941                         PHM_PlatformCaps_AutomaticDCTransition))
1942                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1943
1944         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1945                         PHM_PlatformCaps_StepVddc))
1946                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1947
1948         if (hw_data->is_memory_gddr5)
1949                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1950
1951         if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1952                 result = vegam_populate_ulv_state(hwmgr, table);
1953                 PP_ASSERT_WITH_CODE(!result,
1954                                 "Failed to initialize ULV state!", return result);
1955                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1956                                 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1957         }
1958
1959         result = vegam_populate_smc_link_level(hwmgr, table);
1960         PP_ASSERT_WITH_CODE(!result,
1961                         "Failed to initialize Link Level!", return result);
1962
1963         result = vegam_populate_all_graphic_levels(hwmgr);
1964         PP_ASSERT_WITH_CODE(!result,
1965                         "Failed to initialize Graphics Level!", return result);
1966
1967         result = vegam_populate_all_memory_levels(hwmgr);
1968         PP_ASSERT_WITH_CODE(!result,
1969                         "Failed to initialize Memory Level!", return result);
1970
1971         result = vegam_populate_smc_acpi_level(hwmgr, table);
1972         PP_ASSERT_WITH_CODE(!result,
1973                         "Failed to initialize ACPI Level!", return result);
1974
1975         result = vegam_populate_smc_vce_level(hwmgr, table);
1976         PP_ASSERT_WITH_CODE(!result,
1977                         "Failed to initialize VCE Level!", return result);
1978
1979         /* Since only the initial state is completely set up at this point
1980          * (the other states are just copies of the boot state) we only
1981          * need to populate the  ARB settings for the initial state.
1982          */
1983         result = vegam_program_memory_timing_parameters(hwmgr);
1984         PP_ASSERT_WITH_CODE(!result,
1985                         "Failed to Write ARB settings for the initial state.", return result);
1986
1987         result = vegam_populate_smc_uvd_level(hwmgr, table);
1988         PP_ASSERT_WITH_CODE(!result,
1989                         "Failed to initialize UVD Level!", return result);
1990
1991         result = vegam_populate_smc_boot_level(hwmgr, table);
1992         PP_ASSERT_WITH_CODE(!result,
1993                         "Failed to initialize Boot Level!", return result);
1994
1995         result = vegam_populate_smc_initial_state(hwmgr);
1996         PP_ASSERT_WITH_CODE(!result,
1997                         "Failed to initialize Boot State!", return result);
1998
1999         result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2000         PP_ASSERT_WITH_CODE(!result,
2001                         "Failed to populate BAPM Parameters!", return result);
2002
2003         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2004                         PHM_PlatformCaps_ClockStretcher)) {
2005                 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2006                 PP_ASSERT_WITH_CODE(!result,
2007                                 "Failed to populate Clock Stretcher Data Table!",
2008                                 return result);
2009         }
2010
2011         result = vegam_populate_avfs_parameters(hwmgr);
2012         PP_ASSERT_WITH_CODE(!result,
2013                         "Failed to populate AVFS Parameters!", return result;);
2014
2015         table->CurrSclkPllRange = 0xff;
2016         table->GraphicsVoltageChangeEnable  = 1;
2017         table->GraphicsThermThrottleEnable  = 1;
2018         table->GraphicsInterval = 1;
2019         table->VoltageInterval  = 1;
2020         table->ThermalInterval  = 1;
2021         table->TemperatureLimitHigh =
2022                         table_info->cac_dtp_table->usTargetOperatingTemp *
2023                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2024         table->TemperatureLimitLow  =
2025                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2026                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027         table->MemoryVoltageChangeEnable = 1;
2028         table->MemoryInterval = 1;
2029         table->VoltageResponseTime = 0;
2030         table->PhaseResponseTime = 0;
2031         table->MemoryThermThrottleEnable = 1;
2032
2033         PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2034                         "There must be 1 or more PCIE levels defined in PPTable.",
2035                         return -EINVAL);
2036         table->PCIeBootLinkLevel =
2037                         hw_data->dpm_table.pcie_speed_table.count;
2038         table->PCIeGenInterval = 1;
2039         table->VRConfig = 0;
2040
2041         result = vegam_populate_vr_config(hwmgr, table);
2042         PP_ASSERT_WITH_CODE(!result,
2043                         "Failed to populate VRConfig setting!", return result);
2044
2045         table->ThermGpio = 17;
2046         table->SclkStepSize = 0x4000;
2047
2048         if (atomctrl_get_pp_assign_pin(hwmgr,
2049                         VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2050                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2051                 if (gpio_table)
2052                         table->VRHotLevel =
2053                                         table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2054         } else {
2055                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2056                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2057                                 PHM_PlatformCaps_RegulatorHot);
2058         }
2059
2060         if (atomctrl_get_pp_assign_pin(hwmgr,
2061                         PP_AC_DC_SWITCH_GPIO_PINID,     &gpio_pin)) {
2062                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2063                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2064                                 PHM_PlatformCaps_AutomaticDCTransition) &&
2065                                 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2066                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2067                                         PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2068         } else {
2069                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2070                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2071                                 PHM_PlatformCaps_AutomaticDCTransition);
2072         }
2073
2074         /* Thermal Output GPIO */
2075         if (atomctrl_get_pp_assign_pin(hwmgr,
2076                         THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2077                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2078
2079                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2080                  * since VBIOS will program this register to set 'inactive state',
2081                  * driver can then determine 'active state' from this and
2082                  * program SMU with correct polarity
2083                  */
2084                 table->ThermOutPolarity =
2085                                 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2086                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2087                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2088
2089                 /* if required, combine VRHot/PCC with thermal out GPIO */
2090                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2091                                 PHM_PlatformCaps_RegulatorHot) &&
2092                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2093                                 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2094                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2095         } else {
2096                 table->ThermOutGpio = 17;
2097                 table->ThermOutPolarity = 1;
2098                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2099         }
2100
2101         /* Populate BIF_SCLK levels into SMC DPM table */
2102         for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2103                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2104                                 smu_data->bif_sclk_table[i], &dividers);
2105                 PP_ASSERT_WITH_CODE(!result,
2106                                 "Can not find DFS divide id for Sclk",
2107                                 return result);
2108
2109                 if (i == 0)
2110                         table->Ulv.BifSclkDfs =
2111                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2112                 else
2113                         table->LinkLevel[i - 1].BifSclkDfs =
2114                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2115         }
2116
2117         for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2118                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2119
2120         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2121         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2122         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2123         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2124         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2125         CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2126         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2127         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2128         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2129         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2130
2131         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2132         result = smu7_copy_bytes_to_smc(hwmgr,
2133                         smu_data->smu7_data.dpm_table_start +
2134                         offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2135                         (uint8_t *)&(table->SystemFlags),
2136                         sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2137                         SMC_RAM_END);
2138         PP_ASSERT_WITH_CODE(!result,
2139                         "Failed to upload dpm data to SMC memory!", return result);
2140
2141         result = vegam_populate_pm_fuses(hwmgr);
2142         PP_ASSERT_WITH_CODE(!result,
2143                         "Failed to  populate PM fuses to SMC memory!", return result);
2144
2145         result = vegam_enable_reconfig_cus(hwmgr);
2146         PP_ASSERT_WITH_CODE(!result,
2147                         "Failed to enable reconfigurable CUs!", return result);
2148
2149         return 0;
2150 }
2151
2152 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2153 {
2154         switch (type) {
2155         case SMU_SoftRegisters:
2156                 switch (member) {
2157                 case HandshakeDisables:
2158                         return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2159                 case VoltageChangeTimeout:
2160                         return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2161                 case AverageGraphicsActivity:
2162                         return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2163                 case AverageMemoryActivity:
2164                         return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2165                 case PreVBlankGap:
2166                         return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2167                 case VBlankTimeout:
2168                         return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2169                 case UcodeLoadStatus:
2170                         return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2171                 case DRAM_LOG_ADDR_H:
2172                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2173                 case DRAM_LOG_ADDR_L:
2174                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2175                 case DRAM_LOG_PHY_ADDR_H:
2176                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2177                 case DRAM_LOG_PHY_ADDR_L:
2178                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2179                 case DRAM_LOG_BUFF_SIZE:
2180                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2181                 }
2182                 break;
2183         case SMU_Discrete_DpmTable:
2184                 switch (member) {
2185                 case UvdBootLevel:
2186                         return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2187                 case VceBootLevel:
2188                         return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2189                 case LowSclkInterruptThreshold:
2190                         return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2191                 }
2192                 break;
2193         }
2194         pr_warn("can't get the offset of type %x member %x\n", type, member);
2195         return 0;
2196 }
2197
2198 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2199 {
2200         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2201
2202         if (data->need_update_smu7_dpm_table &
2203                 (DPMTABLE_OD_UPDATE_SCLK +
2204                 DPMTABLE_UPDATE_SCLK +
2205                 DPMTABLE_UPDATE_MCLK))
2206                 return vegam_program_memory_timing_parameters(hwmgr);
2207
2208         return 0;
2209 }
2210
2211 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2212 {
2213         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2214         struct vegam_smumgr *smu_data =
2215                         (struct vegam_smumgr *)(hwmgr->smu_backend);
2216         int result = 0;
2217         uint32_t low_sclk_interrupt_threshold = 0;
2218
2219         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2220                         PHM_PlatformCaps_SclkThrottleLowNotification)
2221             && (data->low_sclk_interrupt_threshold != 0)) {
2222                 low_sclk_interrupt_threshold =
2223                                 data->low_sclk_interrupt_threshold;
2224
2225                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2226
2227                 result = smu7_copy_bytes_to_smc(
2228                                 hwmgr,
2229                                 smu_data->smu7_data.dpm_table_start +
2230                                 offsetof(SMU75_Discrete_DpmTable,
2231                                         LowSclkInterruptThreshold),
2232                                 (uint8_t *)&low_sclk_interrupt_threshold,
2233                                 sizeof(uint32_t),
2234                                 SMC_RAM_END);
2235         }
2236         PP_ASSERT_WITH_CODE((result == 0),
2237                         "Failed to update SCLK threshold!", return result);
2238
2239         result = vegam_program_mem_timing_parameters(hwmgr);
2240         PP_ASSERT_WITH_CODE((result == 0),
2241                         "Failed to program memory timing parameters!",
2242                         );
2243
2244         return result;
2245 }
2246
2247 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2248 {
2249         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2250         int ret;
2251
2252         if (!hwmgr->avfs_supported)
2253                 return 0;
2254
2255         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2256         if (!ret) {
2257                 if (data->apply_avfs_cks_off_voltage)
2258                         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2259         }
2260
2261         return ret;
2262 }
2263
2264 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2265 {
2266         PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2267                         "VBIOS fan info is not correct!",
2268                         );
2269         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2270                         PHM_PlatformCaps_MicrocodeFanControl);
2271         return 0;
2272 }
2273
2274 const struct pp_smumgr_func vegam_smu_funcs = {
2275         .name = "vegam_smu",
2276         .smu_init = vegam_smu_init,
2277         .smu_fini = smu7_smu_fini,
2278         .start_smu = vegam_start_smu,
2279         .check_fw_load_finish = smu7_check_fw_load_finish,
2280         .request_smu_load_fw = smu7_reload_firmware,
2281         .request_smu_load_specific_fw = NULL,
2282         .send_msg_to_smc = smu7_send_msg_to_smc,
2283         .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2284         .process_firmware_header = vegam_process_firmware_header,
2285         .is_dpm_running = vegam_is_dpm_running,
2286         .get_mac_definition = vegam_get_mac_definition,
2287         .update_smc_table = vegam_update_smc_table,
2288         .init_smc_table = vegam_init_smc_table,
2289         .get_offsetof = vegam_get_offsetof,
2290         .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2291         .populate_all_memory_levels = vegam_populate_all_memory_levels,
2292         .update_sclk_threshold = vegam_update_sclk_threshold,
2293         .is_hw_avfs_present = vegam_is_hw_avfs_present,
2294         .thermal_avfs_enable = vegam_thermal_avfs_enable,
2295         .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2296 };