Merge tag 'devicetree-fixes-for-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn301 / vg_clk_mgr.c
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34
35
36
37 #include "vg_clk_mgr.h"
38 #include "reg_helper.h"
39 #include "core_types.h"
40 #include "dm_helpers.h"
41
42 #include "atomfirmware.h"
43 #include "vangogh_ip_offset.h"
44 #include "clk/clk_11_5_0_offset.h"
45 #include "clk/clk_11_5_0_sh_mask.h"
46
47 /* Constants */
48
49 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
57 int vg_get_active_display_cnt_wa(
58                 struct dc *dc,
59                 struct dc_state *context)
60 {
61         int i, display_count;
62         bool tmds_present = false;
63
64         display_count = 0;
65         for (i = 0; i < context->stream_count; i++) {
66                 const struct dc_stream_state *stream = context->streams[i];
67
68                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
69                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
70                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
71                         tmds_present = true;
72         }
73
74         for (i = 0; i < dc->link_count; i++) {
75                 const struct dc_link *link = dc->links[i];
76
77                 /*
78                  * Only notify active stream or virtual stream.
79                  * Need to notify virtual stream to work around
80                  * headless case. HPD does not fire when system is in
81                  * S0i2.
82                  */
83                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
84                 if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
85                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
86                         display_count++;
87         }
88
89         /* WA for hang on HDMI after display off back back on*/
90         if (display_count == 0 && tmds_present)
91                 display_count = 1;
92
93         return display_count;
94 }
95
96 void vg_update_clocks(struct clk_mgr *clk_mgr_base,
97                         struct dc_state *context,
98                         bool safe_to_lower)
99 {
100         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
101         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
102         struct dc *dc = clk_mgr_base->ctx->dc;
103         int display_count;
104         bool update_dppclk = false;
105         bool update_dispclk = false;
106         bool dpp_clock_lowered = false;
107
108         if (dc->work_arounds.skip_clock_update)
109                 return;
110
111         /*
112          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
113          * also if safe to lower is false, we just go in the higher state
114          */
115         if (safe_to_lower) {
116                 /* check that we're not already in lower */
117                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
118
119                         display_count = vg_get_active_display_cnt_wa(dc, context);
120                         /* if we can go lower, go lower */
121                         if (display_count == 0) {
122                                 union display_idle_optimization_u idle_info = { 0 };
123
124                                 idle_info.idle_info.df_request_disabled = 1;
125                                 idle_info.idle_info.phy_ref_clk_off = 1;
126
127                                 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
128                                 /* update power state */
129                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
130                         }
131                 }
132         } else {
133                 /* check that we're not already in D0 */
134                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
135                         union display_idle_optimization_u idle_info = { 0 };
136
137                         dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
138                         /* update power state */
139                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
140                 }
141         }
142
143         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
144                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
145                 dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
146         }
147
148         if (should_set_clock(safe_to_lower,
149                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
150                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
151                 dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
152         }
153
154         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
155         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
156                 if (new_clocks->dppclk_khz < 100000)
157                         new_clocks->dppclk_khz = 100000;
158         }
159
160         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
161                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
162                         dpp_clock_lowered = true;
163                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
164                 update_dppclk = true;
165         }
166
167         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
168                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
169                 dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
170
171                 update_dispclk = true;
172         }
173
174         if (dpp_clock_lowered) {
175                 // increase per DPP DTO before lowering global dppclk
176                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
177                 dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
178         } else {
179                 // increase global DPPCLK before lowering per DPP DTO
180                 if (update_dppclk || update_dispclk)
181                         dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
182                 // always update dtos unless clock is lowered and not safe to lower
183                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
184                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
185         }
186 }
187
188
189 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
190 {
191         /* get FbMult value */
192         struct fixed31_32 pll_req;
193         unsigned int fbmult_frac_val = 0;
194         unsigned int fbmult_int_val = 0;
195
196
197         /*
198          * Register value of fbmult is in 8.16 format, we are converting to 31.32
199          * to leverage the fix point operations available in driver
200          */
201
202         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
203         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
204
205         pll_req = dc_fixpt_from_int(fbmult_int_val);
206
207         /*
208          * since fractional part is only 16 bit in register definition but is 32 bit
209          * in our fix point definiton, need to shift left by 16 to obtain correct value
210          */
211         pll_req.value |= fbmult_frac_val << 16;
212
213         /* multiply by REFCLK period */
214         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
215
216         /* integer part is now VCO frequency in kHz */
217         return dc_fixpt_floor(pll_req);
218 }
219
220 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
221 {
222         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
223
224         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
225         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
226
227         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);       //dcf deep sleep divider
228         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
229
230         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
231         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
232
233         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
234         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
235
236         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
237         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
238 }
239
240 /* This function collect raw clk register values */
241 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
242                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
243 {
244         struct dcn301_clk_internal internal = {0};
245         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
246         unsigned int chars_printed = 0;
247         unsigned int remaining_buffer = log_info->bufSize;
248
249         vg_dump_clk_registers_internal(&internal, clk_mgr_base);
250
251         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
252         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
253         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
254         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
255         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
256         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
257
258         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
259         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
260                 regs_and_bypass->dppclk_bypass = 0;
261         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
262         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
263                 regs_and_bypass->dcfclk_bypass = 0;
264         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
265         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
266                 regs_and_bypass->dispclk_bypass = 0;
267         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
268         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
269                 regs_and_bypass->dprefclk_bypass = 0;
270
271         if (log_info->enabled) {
272                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
273                 remaining_buffer -= chars_printed;
274                 *log_info->sum_chars_printed += chars_printed;
275                 log_info->pBuf += chars_printed;
276
277                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
278                         regs_and_bypass->dcfclk,
279                         regs_and_bypass->dcf_deep_sleep_divider,
280                         regs_and_bypass->dcf_deep_sleep_allow,
281                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
282                 remaining_buffer -= chars_printed;
283                 *log_info->sum_chars_printed += chars_printed;
284                 log_info->pBuf += chars_printed;
285
286                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
287                         regs_and_bypass->dprefclk,
288                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
289                 remaining_buffer -= chars_printed;
290                 *log_info->sum_chars_printed += chars_printed;
291                 log_info->pBuf += chars_printed;
292
293                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
294                         regs_and_bypass->dispclk,
295                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
296                 remaining_buffer -= chars_printed;
297                 *log_info->sum_chars_printed += chars_printed;
298                 log_info->pBuf += chars_printed;
299
300                 //split
301                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
302                 remaining_buffer -= chars_printed;
303                 *log_info->sum_chars_printed += chars_printed;
304                 log_info->pBuf += chars_printed;
305
306                 // REGISTER VALUES
307                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
308                 remaining_buffer -= chars_printed;
309                 *log_info->sum_chars_printed += chars_printed;
310                 log_info->pBuf += chars_printed;
311
312                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
313                                 internal.CLK1_CLK3_CURRENT_CNT);
314                 remaining_buffer -= chars_printed;
315                 *log_info->sum_chars_printed += chars_printed;
316                 log_info->pBuf += chars_printed;
317
318                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
319                                         internal.CLK1_CLK3_DS_CNTL);
320                 remaining_buffer -= chars_printed;
321                 *log_info->sum_chars_printed += chars_printed;
322                 log_info->pBuf += chars_printed;
323
324                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
325                                         internal.CLK1_CLK3_ALLOW_DS);
326                 remaining_buffer -= chars_printed;
327                 *log_info->sum_chars_printed += chars_printed;
328                 log_info->pBuf += chars_printed;
329
330                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
331                                         internal.CLK1_CLK2_CURRENT_CNT);
332                 remaining_buffer -= chars_printed;
333                 *log_info->sum_chars_printed += chars_printed;
334                 log_info->pBuf += chars_printed;
335
336                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
337                                         internal.CLK1_CLK0_CURRENT_CNT);
338                 remaining_buffer -= chars_printed;
339                 *log_info->sum_chars_printed += chars_printed;
340                 log_info->pBuf += chars_printed;
341
342                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
343                                         internal.CLK1_CLK1_CURRENT_CNT);
344                 remaining_buffer -= chars_printed;
345                 *log_info->sum_chars_printed += chars_printed;
346                 log_info->pBuf += chars_printed;
347
348                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
349                                         internal.CLK1_CLK3_BYPASS_CNTL);
350                 remaining_buffer -= chars_printed;
351                 *log_info->sum_chars_printed += chars_printed;
352                 log_info->pBuf += chars_printed;
353
354                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
355                                         internal.CLK1_CLK2_BYPASS_CNTL);
356                 remaining_buffer -= chars_printed;
357                 *log_info->sum_chars_printed += chars_printed;
358                 log_info->pBuf += chars_printed;
359
360                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
361                                         internal.CLK1_CLK0_BYPASS_CNTL);
362                 remaining_buffer -= chars_printed;
363                 *log_info->sum_chars_printed += chars_printed;
364                 log_info->pBuf += chars_printed;
365
366                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
367                                         internal.CLK1_CLK1_BYPASS_CNTL);
368                 remaining_buffer -= chars_printed;
369                 *log_info->sum_chars_printed += chars_printed;
370                 log_info->pBuf += chars_printed;
371         }
372 }
373
374 /* This function produce translated logical clk state values*/
375 void vg_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
376 {
377
378         struct clk_state_registers_and_bypass sb = { 0 };
379         struct clk_log_info log_info = { 0 };
380
381         vg_dump_clk_registers(&sb, clk_mgr_base, &log_info);
382
383         s->dprefclk_khz = sb.dprefclk * 1000;
384 }
385
386 void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
387 {
388         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
389
390         dcn301_smu_enable_pme_wa(clk_mgr);
391 }
392
393 void vg_init_clocks(struct clk_mgr *clk_mgr)
394 {
395         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
396         // Assumption is that boot state always supports pstate
397         clk_mgr->clks.p_state_change_support = true;
398         clk_mgr->clks.prev_p_state_change_support = true;
399         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
400 }
401
402 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
403 {
404         int i, num_valid_sets;
405
406         num_valid_sets = 0;
407
408         for (i = 0; i < WM_SET_COUNT; i++) {
409                 /* skip empty entries, the smu array has no holes*/
410                 if (!bw_params->wm_table.entries[i].valid)
411                         continue;
412
413                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
414                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
415                 /* We will not select WM based on fclk, so leave it as unconstrained */
416                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
417                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
418
419                 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
420                         if (i == 0)
421                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
422                         else {
423                                 /* add 1 to make it non-overlapping with next lvl */
424                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
425                                                 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
426                         }
427                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
428                                         bw_params->clk_table.entries[i].dcfclk_mhz;
429
430                 } else {
431                         /* unconstrained for memory retraining */
432                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
433                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
434
435                         /* Modify previous watermark range to cover up to max */
436                         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
437                 }
438                 num_valid_sets++;
439         }
440
441         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
442
443         /* modify the min and max to make sure we cover the whole range*/
444         table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
445         table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
446         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
447         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
448
449         /* This is for writeback only, does not matter currently as no writeback support*/
450         table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
451         table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
452         table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
453         table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
454         table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
455 }
456
457
458 void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
459 {
460         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
461         struct watermarks *table = clk_mgr_base->smu_wm_set.wm_set;
462
463         if (!clk_mgr->smu_ver)
464                 return;
465
466         if (!table || clk_mgr_base->smu_wm_set.mc_address.quad_part == 0)
467                 return;
468
469         memset(table, 0, sizeof(*table));
470
471         vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
472
473         dcn301_smu_set_dram_addr_high(clk_mgr,
474                         clk_mgr_base->smu_wm_set.mc_address.high_part);
475         dcn301_smu_set_dram_addr_low(clk_mgr,
476                         clk_mgr_base->smu_wm_set.mc_address.low_part);
477         dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
478 }
479
480 static bool vg_are_clock_states_equal(struct dc_clocks *a,
481                 struct dc_clocks *b)
482 {
483         if (a->dispclk_khz != b->dispclk_khz)
484                 return false;
485         else if (a->dppclk_khz != b->dppclk_khz)
486                 return false;
487         else if (a->dcfclk_khz != b->dcfclk_khz)
488                 return false;
489         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
490                 return false;
491
492         return true;
493 }
494
495
496 static struct clk_mgr_funcs vg_funcs = {
497         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
498         .update_clocks = vg_update_clocks,
499         .init_clocks = vg_init_clocks,
500         .enable_pme_wa = vg_enable_pme_wa,
501         .are_clock_states_equal = vg_are_clock_states_equal,
502         .notify_wm_ranges = vg_notify_wm_ranges
503 };
504
505 static struct clk_bw_params vg_bw_params = {
506         .vram_type = Ddr4MemType,
507         .num_channels = 1,
508         .clk_table = {
509                 .entries = {
510                         {
511                                 .voltage = 0,
512                                 .dcfclk_mhz = 400,
513                                 .fclk_mhz = 400,
514                                 .memclk_mhz = 800,
515                                 .socclk_mhz = 0,
516                         },
517                         {
518                                 .voltage = 0,
519                                 .dcfclk_mhz = 483,
520                                 .fclk_mhz = 800,
521                                 .memclk_mhz = 1600,
522                                 .socclk_mhz = 0,
523                         },
524                         {
525                                 .voltage = 0,
526                                 .dcfclk_mhz = 602,
527                                 .fclk_mhz = 1067,
528                                 .memclk_mhz = 1067,
529                                 .socclk_mhz = 0,
530                         },
531                         {
532                                 .voltage = 0,
533                                 .dcfclk_mhz = 738,
534                                 .fclk_mhz = 1333,
535                                 .memclk_mhz = 1600,
536                                 .socclk_mhz = 0,
537                         },
538                 },
539
540                 .num_entries = 4,
541         },
542
543 };
544
545 static struct wm_table ddr4_wm_table = {
546         .entries = {
547                 {
548                         .wm_inst = WM_A,
549                         .wm_type = WM_TYPE_PSTATE_CHG,
550                         .pstate_latency_us = 11.72,
551                         .sr_exit_time_us = 6.09,
552                         .sr_enter_plus_exit_time_us = 7.14,
553                         .valid = true,
554                 },
555                 {
556                         .wm_inst = WM_B,
557                         .wm_type = WM_TYPE_PSTATE_CHG,
558                         .pstate_latency_us = 11.72,
559                         .sr_exit_time_us = 10.12,
560                         .sr_enter_plus_exit_time_us = 11.48,
561                         .valid = true,
562                 },
563                 {
564                         .wm_inst = WM_C,
565                         .wm_type = WM_TYPE_PSTATE_CHG,
566                         .pstate_latency_us = 11.72,
567                         .sr_exit_time_us = 10.12,
568                         .sr_enter_plus_exit_time_us = 11.48,
569                         .valid = true,
570                 },
571                 {
572                         .wm_inst = WM_D,
573                         .wm_type = WM_TYPE_PSTATE_CHG,
574                         .pstate_latency_us = 11.72,
575                         .sr_exit_time_us = 10.12,
576                         .sr_enter_plus_exit_time_us = 11.48,
577                         .valid = true,
578                 },
579         }
580 };
581
582 static struct wm_table lpddr5_wm_table = {
583         .entries = {
584                 {
585                         .wm_inst = WM_A,
586                         .wm_type = WM_TYPE_PSTATE_CHG,
587                         .pstate_latency_us = 11.65333,
588                         .sr_exit_time_us = 5.32,
589                         .sr_enter_plus_exit_time_us = 6.38,
590                         .valid = true,
591                 },
592                 {
593                         .wm_inst = WM_B,
594                         .wm_type = WM_TYPE_PSTATE_CHG,
595                         .pstate_latency_us = 11.65333,
596                         .sr_exit_time_us = 9.82,
597                         .sr_enter_plus_exit_time_us = 11.196,
598                         .valid = true,
599                 },
600                 {
601                         .wm_inst = WM_C,
602                         .wm_type = WM_TYPE_PSTATE_CHG,
603                         .pstate_latency_us = 11.65333,
604                         .sr_exit_time_us = 9.89,
605                         .sr_enter_plus_exit_time_us = 11.24,
606                         .valid = true,
607                 },
608                 {
609                         .wm_inst = WM_D,
610                         .wm_type = WM_TYPE_PSTATE_CHG,
611                         .pstate_latency_us = 11.65333,
612                         .sr_exit_time_us = 9.748,
613                         .sr_enter_plus_exit_time_us = 11.102,
614                         .valid = true,
615                 },
616         }
617 };
618
619
620 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
621                 unsigned int voltage)
622 {
623         int i;
624
625         for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
626                 if (clock_table->SocVoltage[i] == voltage)
627                         return clock_table->DcfClocks[i];
628         }
629
630         ASSERT(0);
631         return 0;
632 }
633
634 void vg_clk_mgr_helper_populate_bw_params(
635                 struct clk_mgr_internal *clk_mgr,
636                 struct integrated_info *bios_info,
637                 const struct vg_dpm_clocks *clock_table)
638 {
639         int i, j;
640         struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
641
642         j = -1;
643
644         ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
645
646         /* Find lowest DPM, FCLK is filled in reverse order*/
647
648         for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
649                 if (clock_table->DfPstateTable[i].fclk != 0) {
650                         j = i;
651                         break;
652                 }
653         }
654
655         if (j == -1) {
656                 /* clock table is all 0s, just use our own hardcode */
657                 ASSERT(0);
658                 return;
659         }
660
661         bw_params->clk_table.num_entries = j + 1;
662
663         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
664                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
665                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
666                 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
667                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
668         }
669
670         bw_params->vram_type = bios_info->memory_type;
671         bw_params->num_channels = bios_info->ma_channel_number;
672
673         for (i = 0; i < WM_SET_COUNT; i++) {
674                 bw_params->wm_table.entries[i].wm_inst = i;
675
676                 if (i >= bw_params->clk_table.num_entries) {
677                         bw_params->wm_table.entries[i].valid = false;
678                         continue;
679                 }
680
681                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
682                 bw_params->wm_table.entries[i].valid = true;
683         }
684
685         if (bw_params->vram_type == LpDdr4MemType) {
686                 /*
687                  * WM set D will be re-purposed for memory retraining
688                  */
689                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
690                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
691                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
692                 bw_params->wm_table.entries[WM_D].valid = true;
693         }
694
695 }
696
697 /* Temporary Place holder until we can get them from fuse */
698 static struct vg_dpm_clocks dummy_clocks = {
699                 .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
700                 .SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
701                 .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
702                 .DfPstateTable = {
703                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
704                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
705                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
706                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 }
707                 }
708 };
709
710 static struct watermarks dummy_wms = { 0 };
711
712 void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
713                 struct smu_dpm_clks *smu_dpm_clks)
714 {
715         struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
716
717         if (!clk_mgr->smu_ver)
718                 return;
719
720         if (!table || smu_dpm_clks->mc_address.quad_part == 0)
721                 return;
722
723         memset(table, 0, sizeof(*table));
724
725         dcn301_smu_set_dram_addr_high(clk_mgr,
726                         smu_dpm_clks->mc_address.high_part);
727         dcn301_smu_set_dram_addr_low(clk_mgr,
728                         smu_dpm_clks->mc_address.low_part);
729         dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
730 }
731
732 void vg_clk_mgr_construct(
733                 struct dc_context *ctx,
734                 struct clk_mgr_internal *clk_mgr,
735                 struct pp_smu_funcs *pp_smu,
736                 struct dccg *dccg)
737 {
738         struct smu_dpm_clks smu_dpm_clks = { 0 };
739
740         clk_mgr->base.ctx = ctx;
741         clk_mgr->base.funcs = &vg_funcs;
742
743         clk_mgr->pp_smu = pp_smu;
744
745         clk_mgr->dccg = dccg;
746         clk_mgr->dfs_bypass_disp_clk = 0;
747
748         clk_mgr->dprefclk_ss_percentage = 0;
749         clk_mgr->dprefclk_ss_divider = 1000;
750         clk_mgr->ss_on_dprefclk = false;
751         clk_mgr->dfs_ref_freq_khz = 48000;
752
753         clk_mgr->base.smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
754                                 clk_mgr->base.ctx,
755                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
756                                 sizeof(struct watermarks),
757                                 &clk_mgr->base.smu_wm_set.mc_address.quad_part);
758
759         if (clk_mgr->base.smu_wm_set.wm_set == 0) {
760                 clk_mgr->base.smu_wm_set.wm_set = &dummy_wms;
761                 clk_mgr->base.smu_wm_set.mc_address.quad_part = 0;
762         }
763         ASSERT(clk_mgr->base.smu_wm_set.wm_set);
764
765         smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
766                                 clk_mgr->base.ctx,
767                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
768                                 sizeof(struct vg_dpm_clocks),
769                                 &smu_dpm_clks.mc_address.quad_part);
770
771         if (smu_dpm_clks.dpm_clks == NULL) {
772                 smu_dpm_clks.dpm_clks = &dummy_clocks;
773                 smu_dpm_clks.mc_address.quad_part = 0;
774         }
775
776         ASSERT(smu_dpm_clks.dpm_clks);
777
778         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
779                 vg_funcs.update_clocks = dcn2_update_clocks_fpga;
780                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
781         } else {
782                 struct clk_log_info log_info = {0};
783
784                 clk_mgr->smu_ver = dcn301_smu_get_smu_version(clk_mgr);
785
786                 if (clk_mgr->smu_ver)
787                         clk_mgr->smu_present = true;
788
789                 /* TODO: Check we get what we expect during bringup */
790                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
791
792                 /* in case we don't get a value from the register, use default */
793                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
794                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
795
796                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
797                         vg_bw_params.wm_table = lpddr5_wm_table;
798                 } else {
799                         vg_bw_params.wm_table = ddr4_wm_table;
800                 }
801                 /* Saved clocks configured at boot for debug purposes */
802                 vg_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
803         }
804
805         clk_mgr->base.dprefclk_khz = 600000;
806         dce_clock_read_ss_info(clk_mgr);
807
808         clk_mgr->base.bw_params = &vg_bw_params;
809
810         vg_get_dpm_table_from_smu(clk_mgr, &smu_dpm_clks);
811         if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
812                 vg_clk_mgr_helper_populate_bw_params(
813                                 clk_mgr,
814                                 ctx->dc_bios->integrated_info,
815                                 smu_dpm_clks.dpm_clks);
816         }
817
818         if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
819                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
820                                 smu_dpm_clks.dpm_clks);
821 /*
822         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver) {
823                  enable powerfeatures when displaycount goes to 0
824                 dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
825         }
826 */
827 }
828
829 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr)
830 {
831         if (clk_mgr->base.smu_wm_set.wm_set && clk_mgr->base.smu_wm_set.mc_address.quad_part != 0)
832                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
833                                 clk_mgr->base.smu_wm_set.wm_set);
834 }