drm/amd/display: Update RN/VGH active display count workaround
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn301 / vg_clk_mgr.c
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34
35
36
37 #include "vg_clk_mgr.h"
38 #include "reg_helper.h"
39 #include "core_types.h"
40 #include "dm_helpers.h"
41
42 #include "atomfirmware.h"
43 #include "vangogh_ip_offset.h"
44 #include "clk/clk_11_5_0_offset.h"
45 #include "clk/clk_11_5_0_sh_mask.h"
46
47 /* Constants */
48
49 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
57 int vg_get_active_display_cnt_wa(
58                 struct dc *dc,
59                 struct dc_state *context)
60 {
61         int i, display_count;
62         bool tmds_present = false;
63
64         display_count = 0;
65         for (i = 0; i < context->stream_count; i++) {
66                 const struct dc_stream_state *stream = context->streams[i];
67
68                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
69                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
70                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
71                         tmds_present = true;
72         }
73
74         for (i = 0; i < dc->link_count; i++) {
75                 const struct dc_link *link = dc->links[i];
76
77                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
78                 if (link->link_enc->funcs->is_dig_enabled(link->link_enc))
79                         display_count++;
80         }
81
82         /* WA for hang on HDMI after display off back back on*/
83         if (display_count == 0 && tmds_present)
84                 display_count = 1;
85
86         return display_count;
87 }
88
89 void vg_update_clocks(struct clk_mgr *clk_mgr_base,
90                         struct dc_state *context,
91                         bool safe_to_lower)
92 {
93         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
94         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
95         struct dc *dc = clk_mgr_base->ctx->dc;
96         int display_count;
97         bool update_dppclk = false;
98         bool update_dispclk = false;
99         bool dpp_clock_lowered = false;
100
101         if (dc->work_arounds.skip_clock_update)
102                 return;
103
104         /*
105          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
106          * also if safe to lower is false, we just go in the higher state
107          */
108         if (safe_to_lower) {
109                 /* check that we're not already in lower */
110                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
111
112                         display_count = vg_get_active_display_cnt_wa(dc, context);
113                         /* if we can go lower, go lower */
114                         if (display_count == 0) {
115                                 union display_idle_optimization_u idle_info = { 0 };
116
117                                 idle_info.idle_info.df_request_disabled = 1;
118                                 idle_info.idle_info.phy_ref_clk_off = 1;
119
120                                 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
121                                 /* update power state */
122                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
123                         }
124                 }
125         } else {
126                 /* check that we're not already in D0 */
127                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
128                         union display_idle_optimization_u idle_info = { 0 };
129
130                         dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
131                         /* update power state */
132                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
133                 }
134         }
135
136         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
137                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
138                 dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
139         }
140
141         if (should_set_clock(safe_to_lower,
142                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
143                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
144                 dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
145         }
146
147         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
148         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
149                 if (new_clocks->dppclk_khz < 100000)
150                         new_clocks->dppclk_khz = 100000;
151         }
152
153         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
154                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
155                         dpp_clock_lowered = true;
156                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
157                 update_dppclk = true;
158         }
159
160         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
161                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
162                 dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
163
164                 update_dispclk = true;
165         }
166
167         if (dpp_clock_lowered) {
168                 // increase per DPP DTO before lowering global dppclk
169                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
170                 dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
171         } else {
172                 // increase global DPPCLK before lowering per DPP DTO
173                 if (update_dppclk || update_dispclk)
174                         dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
175                 // always update dtos unless clock is lowered and not safe to lower
176                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
177                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
178         }
179 }
180
181
182 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
183 {
184         /* get FbMult value */
185         struct fixed31_32 pll_req;
186         unsigned int fbmult_frac_val = 0;
187         unsigned int fbmult_int_val = 0;
188
189
190         /*
191          * Register value of fbmult is in 8.16 format, we are converting to 31.32
192          * to leverage the fix point operations available in driver
193          */
194
195         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
196         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
197
198         pll_req = dc_fixpt_from_int(fbmult_int_val);
199
200         /*
201          * since fractional part is only 16 bit in register definition but is 32 bit
202          * in our fix point definiton, need to shift left by 16 to obtain correct value
203          */
204         pll_req.value |= fbmult_frac_val << 16;
205
206         /* multiply by REFCLK period */
207         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
208
209         /* integer part is now VCO frequency in kHz */
210         return dc_fixpt_floor(pll_req);
211 }
212
213 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
214 {
215         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
216
217         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
218         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
219
220         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);       //dcf deep sleep divider
221         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
222
223         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
224         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
225
226         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
227         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
228
229         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
230         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
231 }
232
233 /* This function collect raw clk register values */
234 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
235                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
236 {
237         struct dcn301_clk_internal internal = {0};
238         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
239         unsigned int chars_printed = 0;
240         unsigned int remaining_buffer = log_info->bufSize;
241
242         vg_dump_clk_registers_internal(&internal, clk_mgr_base);
243
244         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
245         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
246         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
247         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
248         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
249         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
250
251         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
252         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
253                 regs_and_bypass->dppclk_bypass = 0;
254         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
255         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
256                 regs_and_bypass->dcfclk_bypass = 0;
257         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
258         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
259                 regs_and_bypass->dispclk_bypass = 0;
260         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
261         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
262                 regs_and_bypass->dprefclk_bypass = 0;
263
264         if (log_info->enabled) {
265                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
266                 remaining_buffer -= chars_printed;
267                 *log_info->sum_chars_printed += chars_printed;
268                 log_info->pBuf += chars_printed;
269
270                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
271                         regs_and_bypass->dcfclk,
272                         regs_and_bypass->dcf_deep_sleep_divider,
273                         regs_and_bypass->dcf_deep_sleep_allow,
274                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
275                 remaining_buffer -= chars_printed;
276                 *log_info->sum_chars_printed += chars_printed;
277                 log_info->pBuf += chars_printed;
278
279                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
280                         regs_and_bypass->dprefclk,
281                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
282                 remaining_buffer -= chars_printed;
283                 *log_info->sum_chars_printed += chars_printed;
284                 log_info->pBuf += chars_printed;
285
286                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
287                         regs_and_bypass->dispclk,
288                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
289                 remaining_buffer -= chars_printed;
290                 *log_info->sum_chars_printed += chars_printed;
291                 log_info->pBuf += chars_printed;
292
293                 //split
294                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
295                 remaining_buffer -= chars_printed;
296                 *log_info->sum_chars_printed += chars_printed;
297                 log_info->pBuf += chars_printed;
298
299                 // REGISTER VALUES
300                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
301                 remaining_buffer -= chars_printed;
302                 *log_info->sum_chars_printed += chars_printed;
303                 log_info->pBuf += chars_printed;
304
305                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
306                                 internal.CLK1_CLK3_CURRENT_CNT);
307                 remaining_buffer -= chars_printed;
308                 *log_info->sum_chars_printed += chars_printed;
309                 log_info->pBuf += chars_printed;
310
311                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
312                                         internal.CLK1_CLK3_DS_CNTL);
313                 remaining_buffer -= chars_printed;
314                 *log_info->sum_chars_printed += chars_printed;
315                 log_info->pBuf += chars_printed;
316
317                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
318                                         internal.CLK1_CLK3_ALLOW_DS);
319                 remaining_buffer -= chars_printed;
320                 *log_info->sum_chars_printed += chars_printed;
321                 log_info->pBuf += chars_printed;
322
323                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
324                                         internal.CLK1_CLK2_CURRENT_CNT);
325                 remaining_buffer -= chars_printed;
326                 *log_info->sum_chars_printed += chars_printed;
327                 log_info->pBuf += chars_printed;
328
329                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
330                                         internal.CLK1_CLK0_CURRENT_CNT);
331                 remaining_buffer -= chars_printed;
332                 *log_info->sum_chars_printed += chars_printed;
333                 log_info->pBuf += chars_printed;
334
335                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
336                                         internal.CLK1_CLK1_CURRENT_CNT);
337                 remaining_buffer -= chars_printed;
338                 *log_info->sum_chars_printed += chars_printed;
339                 log_info->pBuf += chars_printed;
340
341                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
342                                         internal.CLK1_CLK3_BYPASS_CNTL);
343                 remaining_buffer -= chars_printed;
344                 *log_info->sum_chars_printed += chars_printed;
345                 log_info->pBuf += chars_printed;
346
347                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
348                                         internal.CLK1_CLK2_BYPASS_CNTL);
349                 remaining_buffer -= chars_printed;
350                 *log_info->sum_chars_printed += chars_printed;
351                 log_info->pBuf += chars_printed;
352
353                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
354                                         internal.CLK1_CLK0_BYPASS_CNTL);
355                 remaining_buffer -= chars_printed;
356                 *log_info->sum_chars_printed += chars_printed;
357                 log_info->pBuf += chars_printed;
358
359                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
360                                         internal.CLK1_CLK1_BYPASS_CNTL);
361                 remaining_buffer -= chars_printed;
362                 *log_info->sum_chars_printed += chars_printed;
363                 log_info->pBuf += chars_printed;
364         }
365 }
366
367 /* This function produce translated logical clk state values*/
368 void vg_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
369 {
370
371         struct clk_state_registers_and_bypass sb = { 0 };
372         struct clk_log_info log_info = { 0 };
373
374         vg_dump_clk_registers(&sb, clk_mgr_base, &log_info);
375
376         s->dprefclk_khz = sb.dprefclk * 1000;
377 }
378
379 void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
380 {
381         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
382
383         dcn301_smu_enable_pme_wa(clk_mgr);
384 }
385
386 void vg_init_clocks(struct clk_mgr *clk_mgr)
387 {
388         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
389         // Assumption is that boot state always supports pstate
390         clk_mgr->clks.p_state_change_support = true;
391         clk_mgr->clks.prev_p_state_change_support = true;
392         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
393 }
394
395 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
396 {
397         int i, num_valid_sets;
398
399         num_valid_sets = 0;
400
401         for (i = 0; i < WM_SET_COUNT; i++) {
402                 /* skip empty entries, the smu array has no holes*/
403                 if (!bw_params->wm_table.entries[i].valid)
404                         continue;
405
406                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
407                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
408                 /* We will not select WM based on fclk, so leave it as unconstrained */
409                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
410                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
411
412                 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
413                         if (i == 0)
414                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
415                         else {
416                                 /* add 1 to make it non-overlapping with next lvl */
417                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
418                                                 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
419                         }
420                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
421                                         bw_params->clk_table.entries[i].dcfclk_mhz;
422
423                 } else {
424                         /* unconstrained for memory retraining */
425                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
426                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
427
428                         /* Modify previous watermark range to cover up to max */
429                         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
430                 }
431                 num_valid_sets++;
432         }
433
434         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
435
436         /* modify the min and max to make sure we cover the whole range*/
437         table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
438         table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
439         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
440         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
441
442         /* This is for writeback only, does not matter currently as no writeback support*/
443         table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
444         table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
445         table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
446         table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
447         table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
448 }
449
450
451 void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
452 {
453         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
454         struct watermarks *table = clk_mgr_base->smu_wm_set.wm_set;
455
456         if (!clk_mgr->smu_ver)
457                 return;
458
459         if (!table || clk_mgr_base->smu_wm_set.mc_address.quad_part == 0)
460                 return;
461
462         memset(table, 0, sizeof(*table));
463
464         vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
465
466         dcn301_smu_set_dram_addr_high(clk_mgr,
467                         clk_mgr_base->smu_wm_set.mc_address.high_part);
468         dcn301_smu_set_dram_addr_low(clk_mgr,
469                         clk_mgr_base->smu_wm_set.mc_address.low_part);
470         dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
471 }
472
473 static bool vg_are_clock_states_equal(struct dc_clocks *a,
474                 struct dc_clocks *b)
475 {
476         if (a->dispclk_khz != b->dispclk_khz)
477                 return false;
478         else if (a->dppclk_khz != b->dppclk_khz)
479                 return false;
480         else if (a->dcfclk_khz != b->dcfclk_khz)
481                 return false;
482         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
483                 return false;
484
485         return true;
486 }
487
488
489 static struct clk_mgr_funcs vg_funcs = {
490         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
491         .update_clocks = vg_update_clocks,
492         .init_clocks = vg_init_clocks,
493         .enable_pme_wa = vg_enable_pme_wa,
494         .are_clock_states_equal = vg_are_clock_states_equal,
495         .notify_wm_ranges = vg_notify_wm_ranges
496 };
497
498 static struct clk_bw_params vg_bw_params = {
499         .vram_type = Ddr4MemType,
500         .num_channels = 1,
501         .clk_table = {
502                 .entries = {
503                         {
504                                 .voltage = 0,
505                                 .dcfclk_mhz = 400,
506                                 .fclk_mhz = 400,
507                                 .memclk_mhz = 800,
508                                 .socclk_mhz = 0,
509                         },
510                         {
511                                 .voltage = 0,
512                                 .dcfclk_mhz = 483,
513                                 .fclk_mhz = 800,
514                                 .memclk_mhz = 1600,
515                                 .socclk_mhz = 0,
516                         },
517                         {
518                                 .voltage = 0,
519                                 .dcfclk_mhz = 602,
520                                 .fclk_mhz = 1067,
521                                 .memclk_mhz = 1067,
522                                 .socclk_mhz = 0,
523                         },
524                         {
525                                 .voltage = 0,
526                                 .dcfclk_mhz = 738,
527                                 .fclk_mhz = 1333,
528                                 .memclk_mhz = 1600,
529                                 .socclk_mhz = 0,
530                         },
531                 },
532
533                 .num_entries = 4,
534         },
535
536 };
537
538 static struct wm_table ddr4_wm_table = {
539         .entries = {
540                 {
541                         .wm_inst = WM_A,
542                         .wm_type = WM_TYPE_PSTATE_CHG,
543                         .pstate_latency_us = 11.72,
544                         .sr_exit_time_us = 6.09,
545                         .sr_enter_plus_exit_time_us = 7.14,
546                         .valid = true,
547                 },
548                 {
549                         .wm_inst = WM_B,
550                         .wm_type = WM_TYPE_PSTATE_CHG,
551                         .pstate_latency_us = 11.72,
552                         .sr_exit_time_us = 10.12,
553                         .sr_enter_plus_exit_time_us = 11.48,
554                         .valid = true,
555                 },
556                 {
557                         .wm_inst = WM_C,
558                         .wm_type = WM_TYPE_PSTATE_CHG,
559                         .pstate_latency_us = 11.72,
560                         .sr_exit_time_us = 10.12,
561                         .sr_enter_plus_exit_time_us = 11.48,
562                         .valid = true,
563                 },
564                 {
565                         .wm_inst = WM_D,
566                         .wm_type = WM_TYPE_PSTATE_CHG,
567                         .pstate_latency_us = 11.72,
568                         .sr_exit_time_us = 10.12,
569                         .sr_enter_plus_exit_time_us = 11.48,
570                         .valid = true,
571                 },
572         }
573 };
574
575 static struct wm_table lpddr5_wm_table = {
576         .entries = {
577                 {
578                         .wm_inst = WM_A,
579                         .wm_type = WM_TYPE_PSTATE_CHG,
580                         .pstate_latency_us = 11.65333,
581                         .sr_exit_time_us = 5.32,
582                         .sr_enter_plus_exit_time_us = 6.38,
583                         .valid = true,
584                 },
585                 {
586                         .wm_inst = WM_B,
587                         .wm_type = WM_TYPE_PSTATE_CHG,
588                         .pstate_latency_us = 11.65333,
589                         .sr_exit_time_us = 9.82,
590                         .sr_enter_plus_exit_time_us = 11.196,
591                         .valid = true,
592                 },
593                 {
594                         .wm_inst = WM_C,
595                         .wm_type = WM_TYPE_PSTATE_CHG,
596                         .pstate_latency_us = 11.65333,
597                         .sr_exit_time_us = 9.89,
598                         .sr_enter_plus_exit_time_us = 11.24,
599                         .valid = true,
600                 },
601                 {
602                         .wm_inst = WM_D,
603                         .wm_type = WM_TYPE_PSTATE_CHG,
604                         .pstate_latency_us = 11.65333,
605                         .sr_exit_time_us = 9.748,
606                         .sr_enter_plus_exit_time_us = 11.102,
607                         .valid = true,
608                 },
609         }
610 };
611
612
613 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
614                 unsigned int voltage)
615 {
616         int i;
617
618         for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
619                 if (clock_table->SocVoltage[i] == voltage)
620                         return clock_table->DcfClocks[i];
621         }
622
623         ASSERT(0);
624         return 0;
625 }
626
627 void vg_clk_mgr_helper_populate_bw_params(
628                 struct clk_mgr_internal *clk_mgr,
629                 struct integrated_info *bios_info,
630                 const struct vg_dpm_clocks *clock_table)
631 {
632         int i, j;
633         struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
634
635         j = -1;
636
637         ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
638
639         /* Find lowest DPM, FCLK is filled in reverse order*/
640
641         for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
642                 if (clock_table->DfPstateTable[i].fclk != 0) {
643                         j = i;
644                         break;
645                 }
646         }
647
648         if (j == -1) {
649                 /* clock table is all 0s, just use our own hardcode */
650                 ASSERT(0);
651                 return;
652         }
653
654         bw_params->clk_table.num_entries = j + 1;
655
656         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
657                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
658                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
659                 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
660                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
661         }
662
663         bw_params->vram_type = bios_info->memory_type;
664         bw_params->num_channels = bios_info->ma_channel_number;
665
666         for (i = 0; i < WM_SET_COUNT; i++) {
667                 bw_params->wm_table.entries[i].wm_inst = i;
668
669                 if (i >= bw_params->clk_table.num_entries) {
670                         bw_params->wm_table.entries[i].valid = false;
671                         continue;
672                 }
673
674                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
675                 bw_params->wm_table.entries[i].valid = true;
676         }
677
678         if (bw_params->vram_type == LpDdr4MemType) {
679                 /*
680                  * WM set D will be re-purposed for memory retraining
681                  */
682                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
683                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
684                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
685                 bw_params->wm_table.entries[WM_D].valid = true;
686         }
687
688 }
689
690 /* Temporary Place holder until we can get them from fuse */
691 static struct vg_dpm_clocks dummy_clocks = {
692                 .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
693                 .SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
694                 .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
695                 .DfPstateTable = {
696                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
697                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
698                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
699                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 }
700                 }
701 };
702
703 static struct watermarks dummy_wms = { 0 };
704
705 void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
706                 struct smu_dpm_clks *smu_dpm_clks)
707 {
708         struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
709
710         if (!clk_mgr->smu_ver)
711                 return;
712
713         if (!table || smu_dpm_clks->mc_address.quad_part == 0)
714                 return;
715
716         memset(table, 0, sizeof(*table));
717
718         dcn301_smu_set_dram_addr_high(clk_mgr,
719                         smu_dpm_clks->mc_address.high_part);
720         dcn301_smu_set_dram_addr_low(clk_mgr,
721                         smu_dpm_clks->mc_address.low_part);
722         dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
723 }
724
725 void vg_clk_mgr_construct(
726                 struct dc_context *ctx,
727                 struct clk_mgr_internal *clk_mgr,
728                 struct pp_smu_funcs *pp_smu,
729                 struct dccg *dccg)
730 {
731         struct smu_dpm_clks smu_dpm_clks = { 0 };
732
733         clk_mgr->base.ctx = ctx;
734         clk_mgr->base.funcs = &vg_funcs;
735
736         clk_mgr->pp_smu = pp_smu;
737
738         clk_mgr->dccg = dccg;
739         clk_mgr->dfs_bypass_disp_clk = 0;
740
741         clk_mgr->dprefclk_ss_percentage = 0;
742         clk_mgr->dprefclk_ss_divider = 1000;
743         clk_mgr->ss_on_dprefclk = false;
744         clk_mgr->dfs_ref_freq_khz = 48000;
745
746         clk_mgr->base.smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
747                                 clk_mgr->base.ctx,
748                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
749                                 sizeof(struct watermarks),
750                                 &clk_mgr->base.smu_wm_set.mc_address.quad_part);
751
752         if (clk_mgr->base.smu_wm_set.wm_set == 0) {
753                 clk_mgr->base.smu_wm_set.wm_set = &dummy_wms;
754                 clk_mgr->base.smu_wm_set.mc_address.quad_part = 0;
755         }
756         ASSERT(clk_mgr->base.smu_wm_set.wm_set);
757
758         smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
759                                 clk_mgr->base.ctx,
760                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
761                                 sizeof(struct vg_dpm_clocks),
762                                 &smu_dpm_clks.mc_address.quad_part);
763
764         if (smu_dpm_clks.dpm_clks == NULL) {
765                 smu_dpm_clks.dpm_clks = &dummy_clocks;
766                 smu_dpm_clks.mc_address.quad_part = 0;
767         }
768
769         ASSERT(smu_dpm_clks.dpm_clks);
770
771         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
772                 vg_funcs.update_clocks = dcn2_update_clocks_fpga;
773                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
774         } else {
775                 struct clk_log_info log_info = {0};
776
777                 clk_mgr->smu_ver = dcn301_smu_get_smu_version(clk_mgr);
778
779                 if (clk_mgr->smu_ver)
780                         clk_mgr->smu_present = true;
781
782                 /* TODO: Check we get what we expect during bringup */
783                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
784
785                 /* in case we don't get a value from the register, use default */
786                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
787                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
788
789                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
790                         vg_bw_params.wm_table = lpddr5_wm_table;
791                 } else {
792                         vg_bw_params.wm_table = ddr4_wm_table;
793                 }
794                 /* Saved clocks configured at boot for debug purposes */
795                 vg_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
796         }
797
798         clk_mgr->base.dprefclk_khz = 600000;
799         dce_clock_read_ss_info(clk_mgr);
800
801         clk_mgr->base.bw_params = &vg_bw_params;
802
803         vg_get_dpm_table_from_smu(clk_mgr, &smu_dpm_clks);
804         if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
805                 vg_clk_mgr_helper_populate_bw_params(
806                                 clk_mgr,
807                                 ctx->dc_bios->integrated_info,
808                                 smu_dpm_clks.dpm_clks);
809         }
810
811         if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
812                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
813                                 smu_dpm_clks.dpm_clks);
814 /*
815         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver) {
816                  enable powerfeatures when displaycount goes to 0
817                 dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
818         }
819 */
820 }
821
822 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr)
823 {
824         if (clk_mgr->base.smu_wm_set.wm_set && clk_mgr->base.smu_wm_set.mc_address.quad_part != 0)
825                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
826                                 clk_mgr->base.smu_wm_set.wm_set);
827 }