Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_topology.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 #include <linux/log2.h>
31
32 #include "kfd_priv.h"
33 #include "kfd_crat.h"
34 #include "kfd_topology.h"
35
36 static struct list_head topology_device_list;
37 static int topology_crat_parsed;
38 static struct kfd_system_properties sys_props;
39
40 static DECLARE_RWSEM(topology_lock);
41
42 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
43 {
44         struct kfd_topology_device *top_dev;
45         struct kfd_dev *device = NULL;
46
47         down_read(&topology_lock);
48
49         list_for_each_entry(top_dev, &topology_device_list, list)
50                 if (top_dev->gpu_id == gpu_id) {
51                         device = top_dev->gpu;
52                         break;
53                 }
54
55         up_read(&topology_lock);
56
57         return device;
58 }
59
60 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
61 {
62         struct kfd_topology_device *top_dev;
63         struct kfd_dev *device = NULL;
64
65         down_read(&topology_lock);
66
67         list_for_each_entry(top_dev, &topology_device_list, list)
68                 if (top_dev->gpu->pdev == pdev) {
69                         device = top_dev->gpu;
70                         break;
71                 }
72
73         up_read(&topology_lock);
74
75         return device;
76 }
77
78 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
79 {
80         struct acpi_table_header *crat_table;
81         acpi_status status;
82
83         if (!size)
84                 return -EINVAL;
85
86         /*
87          * Fetch the CRAT table from ACPI
88          */
89         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
90         if (status == AE_NOT_FOUND) {
91                 pr_warn("CRAT table not found\n");
92                 return -ENODATA;
93         } else if (ACPI_FAILURE(status)) {
94                 const char *err = acpi_format_exception(status);
95
96                 pr_err("CRAT table error: %s\n", err);
97                 return -EINVAL;
98         }
99
100         if (*size >= crat_table->length && crat_image != NULL)
101                 memcpy(crat_image, crat_table, crat_table->length);
102
103         *size = crat_table->length;
104
105         return 0;
106 }
107
108 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
109                 struct crat_subtype_computeunit *cu)
110 {
111         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
112         dev->node_props.cpu_core_id_base = cu->processor_id_low;
113         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
114                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
115
116         pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
117                         cu->processor_id_low);
118 }
119
120 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
121                 struct crat_subtype_computeunit *cu)
122 {
123         dev->node_props.simd_id_base = cu->processor_id_low;
124         dev->node_props.simd_count = cu->num_simd_cores;
125         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
126         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
127         dev->node_props.wave_front_size = cu->wave_front_size;
128         dev->node_props.mem_banks_count = cu->num_banks;
129         dev->node_props.array_count = cu->num_arrays;
130         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
131         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
132         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
133         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
134                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
135         pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
136                                 cu->processor_id_low);
137 }
138
139 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
140 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
141 {
142         struct kfd_topology_device *dev;
143         int i = 0;
144
145         pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
146                         cu->proximity_domain, cu->hsa_capability);
147         list_for_each_entry(dev, &topology_device_list, list) {
148                 if (cu->proximity_domain == i) {
149                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
150                                 kfd_populated_cu_info_cpu(dev, cu);
151
152                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
153                                 kfd_populated_cu_info_gpu(dev, cu);
154                         break;
155                 }
156                 i++;
157         }
158
159         return 0;
160 }
161
162 /*
163  * kfd_parse_subtype_mem is called when the topology mutex is
164  * already acquired
165  */
166 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
167 {
168         struct kfd_mem_properties *props;
169         struct kfd_topology_device *dev;
170         int i = 0;
171
172         pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
173                         mem->promixity_domain);
174         list_for_each_entry(dev, &topology_device_list, list) {
175                 if (mem->promixity_domain == i) {
176                         props = kfd_alloc_struct(props);
177                         if (props == NULL)
178                                 return -ENOMEM;
179
180                         if (dev->node_props.cpu_cores_count == 0)
181                                 props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
182                         else
183                                 props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
184
185                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
186                                 props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
187                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
188                                 props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
189
190                         props->size_in_bytes =
191                                 ((uint64_t)mem->length_high << 32) +
192                                                         mem->length_low;
193                         props->width = mem->width;
194
195                         dev->mem_bank_count++;
196                         list_add_tail(&props->list, &dev->mem_props);
197
198                         break;
199                 }
200                 i++;
201         }
202
203         return 0;
204 }
205
206 /*
207  * kfd_parse_subtype_cache is called when the topology mutex
208  * is already acquired
209  */
210 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
211 {
212         struct kfd_cache_properties *props;
213         struct kfd_topology_device *dev;
214         uint32_t id;
215
216         id = cache->processor_id_low;
217
218         pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
219         list_for_each_entry(dev, &topology_device_list, list)
220                 if (id == dev->node_props.cpu_core_id_base ||
221                     id == dev->node_props.simd_id_base) {
222                         props = kfd_alloc_struct(props);
223                         if (props == NULL)
224                                 return -ENOMEM;
225
226                         props->processor_id_low = id;
227                         props->cache_level = cache->cache_level;
228                         props->cache_size = cache->cache_size;
229                         props->cacheline_size = cache->cache_line_size;
230                         props->cachelines_per_tag = cache->lines_per_tag;
231                         props->cache_assoc = cache->associativity;
232                         props->cache_latency = cache->cache_latency;
233
234                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
235                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
236                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
237                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
238                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
239                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
240                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
241                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
242
243                         dev->cache_count++;
244                         dev->node_props.caches_count++;
245                         list_add_tail(&props->list, &dev->cache_props);
246
247                         break;
248                 }
249
250         return 0;
251 }
252
253 /*
254  * kfd_parse_subtype_iolink is called when the topology mutex
255  * is already acquired
256  */
257 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
258 {
259         struct kfd_iolink_properties *props;
260         struct kfd_topology_device *dev;
261         uint32_t i = 0;
262         uint32_t id_from;
263         uint32_t id_to;
264
265         id_from = iolink->proximity_domain_from;
266         id_to = iolink->proximity_domain_to;
267
268         pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
269         list_for_each_entry(dev, &topology_device_list, list) {
270                 if (id_from == i) {
271                         props = kfd_alloc_struct(props);
272                         if (props == NULL)
273                                 return -ENOMEM;
274
275                         props->node_from = id_from;
276                         props->node_to = id_to;
277                         props->ver_maj = iolink->version_major;
278                         props->ver_min = iolink->version_minor;
279
280                         /*
281                          * weight factor (derived from CDIR), currently always 1
282                          */
283                         props->weight = 1;
284
285                         props->min_latency = iolink->minimum_latency;
286                         props->max_latency = iolink->maximum_latency;
287                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
288                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
289                         props->rec_transfer_size =
290                                         iolink->recommended_transfer_size;
291
292                         dev->io_link_count++;
293                         dev->node_props.io_links_count++;
294                         list_add_tail(&props->list, &dev->io_link_props);
295
296                         break;
297                 }
298                 i++;
299         }
300
301         return 0;
302 }
303
304 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
305 {
306         struct crat_subtype_computeunit *cu;
307         struct crat_subtype_memory *mem;
308         struct crat_subtype_cache *cache;
309         struct crat_subtype_iolink *iolink;
310         int ret = 0;
311
312         switch (sub_type_hdr->type) {
313         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
314                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
315                 ret = kfd_parse_subtype_cu(cu);
316                 break;
317         case CRAT_SUBTYPE_MEMORY_AFFINITY:
318                 mem = (struct crat_subtype_memory *)sub_type_hdr;
319                 ret = kfd_parse_subtype_mem(mem);
320                 break;
321         case CRAT_SUBTYPE_CACHE_AFFINITY:
322                 cache = (struct crat_subtype_cache *)sub_type_hdr;
323                 ret = kfd_parse_subtype_cache(cache);
324                 break;
325         case CRAT_SUBTYPE_TLB_AFFINITY:
326                 /*
327                  * For now, nothing to do here
328                  */
329                 pr_info("Found TLB entry in CRAT table (not processing)\n");
330                 break;
331         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
332                 /*
333                  * For now, nothing to do here
334                  */
335                 pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
336                 break;
337         case CRAT_SUBTYPE_IOLINK_AFFINITY:
338                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
339                 ret = kfd_parse_subtype_iolink(iolink);
340                 break;
341         default:
342                 pr_warn("Unknown subtype (%d) in CRAT\n",
343                                 sub_type_hdr->type);
344         }
345
346         return ret;
347 }
348
349 static void kfd_release_topology_device(struct kfd_topology_device *dev)
350 {
351         struct kfd_mem_properties *mem;
352         struct kfd_cache_properties *cache;
353         struct kfd_iolink_properties *iolink;
354
355         list_del(&dev->list);
356
357         while (dev->mem_props.next != &dev->mem_props) {
358                 mem = container_of(dev->mem_props.next,
359                                 struct kfd_mem_properties, list);
360                 list_del(&mem->list);
361                 kfree(mem);
362         }
363
364         while (dev->cache_props.next != &dev->cache_props) {
365                 cache = container_of(dev->cache_props.next,
366                                 struct kfd_cache_properties, list);
367                 list_del(&cache->list);
368                 kfree(cache);
369         }
370
371         while (dev->io_link_props.next != &dev->io_link_props) {
372                 iolink = container_of(dev->io_link_props.next,
373                                 struct kfd_iolink_properties, list);
374                 list_del(&iolink->list);
375                 kfree(iolink);
376         }
377
378         kfree(dev);
379
380         sys_props.num_devices--;
381 }
382
383 static void kfd_release_live_view(void)
384 {
385         struct kfd_topology_device *dev;
386
387         while (topology_device_list.next != &topology_device_list) {
388                 dev = container_of(topology_device_list.next,
389                                  struct kfd_topology_device, list);
390                 kfd_release_topology_device(dev);
391 }
392
393         memset(&sys_props, 0, sizeof(sys_props));
394 }
395
396 static struct kfd_topology_device *kfd_create_topology_device(void)
397 {
398         struct kfd_topology_device *dev;
399
400         dev = kfd_alloc_struct(dev);
401         if (!dev) {
402                 pr_err("No memory to allocate a topology device");
403                 return NULL;
404         }
405
406         INIT_LIST_HEAD(&dev->mem_props);
407         INIT_LIST_HEAD(&dev->cache_props);
408         INIT_LIST_HEAD(&dev->io_link_props);
409
410         list_add_tail(&dev->list, &topology_device_list);
411         sys_props.num_devices++;
412
413         return dev;
414 }
415
416 static int kfd_parse_crat_table(void *crat_image)
417 {
418         struct kfd_topology_device *top_dev;
419         struct crat_subtype_generic *sub_type_hdr;
420         uint16_t node_id;
421         int ret;
422         struct crat_header *crat_table = (struct crat_header *)crat_image;
423         uint16_t num_nodes;
424         uint32_t image_len;
425
426         if (!crat_image)
427                 return -EINVAL;
428
429         num_nodes = crat_table->num_domains;
430         image_len = crat_table->length;
431
432         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
433
434         for (node_id = 0; node_id < num_nodes; node_id++) {
435                 top_dev = kfd_create_topology_device();
436                 if (!top_dev) {
437                         kfd_release_live_view();
438                         return -ENOMEM;
439                 }
440         }
441
442         sys_props.platform_id =
443                 (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
444         sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
445         sys_props.platform_rev = crat_table->revision;
446
447         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
448         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
449                         ((char *)crat_image) + image_len) {
450                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
451                         ret = kfd_parse_subtype(sub_type_hdr);
452                         if (ret != 0) {
453                                 kfd_release_live_view();
454                                 return ret;
455                         }
456                 }
457
458                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
459                                 sub_type_hdr->length);
460         }
461
462         sys_props.generation_count++;
463         topology_crat_parsed = 1;
464
465         return 0;
466 }
467
468
469 #define sysfs_show_gen_prop(buffer, fmt, ...) \
470                 snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
471 #define sysfs_show_32bit_prop(buffer, name, value) \
472                 sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
473 #define sysfs_show_64bit_prop(buffer, name, value) \
474                 sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
475 #define sysfs_show_32bit_val(buffer, value) \
476                 sysfs_show_gen_prop(buffer, "%u\n", value)
477 #define sysfs_show_str_val(buffer, value) \
478                 sysfs_show_gen_prop(buffer, "%s\n", value)
479
480 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
481                 char *buffer)
482 {
483         ssize_t ret;
484
485         /* Making sure that the buffer is an empty string */
486         buffer[0] = 0;
487
488         if (attr == &sys_props.attr_genid) {
489                 ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
490         } else if (attr == &sys_props.attr_props) {
491                 sysfs_show_64bit_prop(buffer, "platform_oem",
492                                 sys_props.platform_oem);
493                 sysfs_show_64bit_prop(buffer, "platform_id",
494                                 sys_props.platform_id);
495                 ret = sysfs_show_64bit_prop(buffer, "platform_rev",
496                                 sys_props.platform_rev);
497         } else {
498                 ret = -EINVAL;
499         }
500
501         return ret;
502 }
503
504 static const struct sysfs_ops sysprops_ops = {
505         .show = sysprops_show,
506 };
507
508 static struct kobj_type sysprops_type = {
509         .sysfs_ops = &sysprops_ops,
510 };
511
512 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
513                 char *buffer)
514 {
515         ssize_t ret;
516         struct kfd_iolink_properties *iolink;
517
518         /* Making sure that the buffer is an empty string */
519         buffer[0] = 0;
520
521         iolink = container_of(attr, struct kfd_iolink_properties, attr);
522         sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
523         sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
524         sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
525         sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
526         sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
527         sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
528         sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
529         sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
530         sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
531         sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
532         sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
533                         iolink->rec_transfer_size);
534         ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
535
536         return ret;
537 }
538
539 static const struct sysfs_ops iolink_ops = {
540         .show = iolink_show,
541 };
542
543 static struct kobj_type iolink_type = {
544         .sysfs_ops = &iolink_ops,
545 };
546
547 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
548                 char *buffer)
549 {
550         ssize_t ret;
551         struct kfd_mem_properties *mem;
552
553         /* Making sure that the buffer is an empty string */
554         buffer[0] = 0;
555
556         mem = container_of(attr, struct kfd_mem_properties, attr);
557         sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
558         sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
559         sysfs_show_32bit_prop(buffer, "flags", mem->flags);
560         sysfs_show_32bit_prop(buffer, "width", mem->width);
561         ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
562
563         return ret;
564 }
565
566 static const struct sysfs_ops mem_ops = {
567         .show = mem_show,
568 };
569
570 static struct kobj_type mem_type = {
571         .sysfs_ops = &mem_ops,
572 };
573
574 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
575                 char *buffer)
576 {
577         ssize_t ret;
578         uint32_t i;
579         struct kfd_cache_properties *cache;
580
581         /* Making sure that the buffer is an empty string */
582         buffer[0] = 0;
583
584         cache = container_of(attr, struct kfd_cache_properties, attr);
585         sysfs_show_32bit_prop(buffer, "processor_id_low",
586                         cache->processor_id_low);
587         sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
588         sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
589         sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
590         sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
591                         cache->cachelines_per_tag);
592         sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
593         sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
594         sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
595         snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
596         for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
597                 ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
598                                 buffer, cache->sibling_map[i],
599                                 (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
600                                                 "\n" : ",");
601
602         return ret;
603 }
604
605 static const struct sysfs_ops cache_ops = {
606         .show = kfd_cache_show,
607 };
608
609 static struct kobj_type cache_type = {
610         .sysfs_ops = &cache_ops,
611 };
612
613 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
614                 char *buffer)
615 {
616         struct kfd_topology_device *dev;
617         char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
618         uint32_t i;
619         uint32_t log_max_watch_addr;
620
621         /* Making sure that the buffer is an empty string */
622         buffer[0] = 0;
623
624         if (strcmp(attr->name, "gpu_id") == 0) {
625                 dev = container_of(attr, struct kfd_topology_device,
626                                 attr_gpuid);
627                 return sysfs_show_32bit_val(buffer, dev->gpu_id);
628         }
629
630         if (strcmp(attr->name, "name") == 0) {
631                 dev = container_of(attr, struct kfd_topology_device,
632                                 attr_name);
633                 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
634                         public_name[i] =
635                                         (char)dev->node_props.marketing_name[i];
636                         if (dev->node_props.marketing_name[i] == 0)
637                                 break;
638                 }
639                 public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
640                 return sysfs_show_str_val(buffer, public_name);
641         }
642
643         dev = container_of(attr, struct kfd_topology_device,
644                         attr_props);
645         sysfs_show_32bit_prop(buffer, "cpu_cores_count",
646                         dev->node_props.cpu_cores_count);
647         sysfs_show_32bit_prop(buffer, "simd_count",
648                         dev->node_props.simd_count);
649
650         if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
651                 pr_info_once("mem_banks_count truncated from %d to %d\n",
652                                 dev->node_props.mem_banks_count,
653                                 dev->mem_bank_count);
654                 sysfs_show_32bit_prop(buffer, "mem_banks_count",
655                                 dev->mem_bank_count);
656         } else {
657                 sysfs_show_32bit_prop(buffer, "mem_banks_count",
658                                 dev->node_props.mem_banks_count);
659         }
660
661         sysfs_show_32bit_prop(buffer, "caches_count",
662                         dev->node_props.caches_count);
663         sysfs_show_32bit_prop(buffer, "io_links_count",
664                         dev->node_props.io_links_count);
665         sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
666                         dev->node_props.cpu_core_id_base);
667         sysfs_show_32bit_prop(buffer, "simd_id_base",
668                         dev->node_props.simd_id_base);
669         sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
670                         dev->node_props.max_waves_per_simd);
671         sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
672                         dev->node_props.lds_size_in_kb);
673         sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
674                         dev->node_props.gds_size_in_kb);
675         sysfs_show_32bit_prop(buffer, "wave_front_size",
676                         dev->node_props.wave_front_size);
677         sysfs_show_32bit_prop(buffer, "array_count",
678                         dev->node_props.array_count);
679         sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
680                         dev->node_props.simd_arrays_per_engine);
681         sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
682                         dev->node_props.cu_per_simd_array);
683         sysfs_show_32bit_prop(buffer, "simd_per_cu",
684                         dev->node_props.simd_per_cu);
685         sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
686                         dev->node_props.max_slots_scratch_cu);
687         sysfs_show_32bit_prop(buffer, "vendor_id",
688                         dev->node_props.vendor_id);
689         sysfs_show_32bit_prop(buffer, "device_id",
690                         dev->node_props.device_id);
691         sysfs_show_32bit_prop(buffer, "location_id",
692                         dev->node_props.location_id);
693
694         if (dev->gpu) {
695                 log_max_watch_addr =
696                         __ilog2_u32(dev->gpu->device_info->num_of_watch_points);
697
698                 if (log_max_watch_addr) {
699                         dev->node_props.capability |=
700                                         HSA_CAP_WATCH_POINTS_SUPPORTED;
701
702                         dev->node_props.capability |=
703                                 ((log_max_watch_addr <<
704                                         HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
705                                 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
706                 }
707
708                 sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
709                         dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
710                                         dev->gpu->kgd));
711
712                 sysfs_show_64bit_prop(buffer, "local_mem_size",
713                                 (unsigned long long int) 0);
714
715                 sysfs_show_32bit_prop(buffer, "fw_version",
716                         dev->gpu->kfd2kgd->get_fw_version(
717                                                 dev->gpu->kgd,
718                                                 KGD_ENGINE_MEC1));
719                 sysfs_show_32bit_prop(buffer, "capability",
720                                 dev->node_props.capability);
721         }
722
723         return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
724                                         cpufreq_quick_get_max(0)/1000);
725 }
726
727 static const struct sysfs_ops node_ops = {
728         .show = node_show,
729 };
730
731 static struct kobj_type node_type = {
732         .sysfs_ops = &node_ops,
733 };
734
735 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
736 {
737         sysfs_remove_file(kobj, attr);
738         kobject_del(kobj);
739         kobject_put(kobj);
740 }
741
742 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
743 {
744         struct kfd_iolink_properties *iolink;
745         struct kfd_cache_properties *cache;
746         struct kfd_mem_properties *mem;
747
748         if (dev->kobj_iolink) {
749                 list_for_each_entry(iolink, &dev->io_link_props, list)
750                         if (iolink->kobj) {
751                                 kfd_remove_sysfs_file(iolink->kobj,
752                                                         &iolink->attr);
753                                 iolink->kobj = NULL;
754                         }
755                 kobject_del(dev->kobj_iolink);
756                 kobject_put(dev->kobj_iolink);
757                 dev->kobj_iolink = NULL;
758         }
759
760         if (dev->kobj_cache) {
761                 list_for_each_entry(cache, &dev->cache_props, list)
762                         if (cache->kobj) {
763                                 kfd_remove_sysfs_file(cache->kobj,
764                                                         &cache->attr);
765                                 cache->kobj = NULL;
766                         }
767                 kobject_del(dev->kobj_cache);
768                 kobject_put(dev->kobj_cache);
769                 dev->kobj_cache = NULL;
770         }
771
772         if (dev->kobj_mem) {
773                 list_for_each_entry(mem, &dev->mem_props, list)
774                         if (mem->kobj) {
775                                 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
776                                 mem->kobj = NULL;
777                         }
778                 kobject_del(dev->kobj_mem);
779                 kobject_put(dev->kobj_mem);
780                 dev->kobj_mem = NULL;
781         }
782
783         if (dev->kobj_node) {
784                 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
785                 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
786                 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
787                 kobject_del(dev->kobj_node);
788                 kobject_put(dev->kobj_node);
789                 dev->kobj_node = NULL;
790         }
791 }
792
793 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
794                 uint32_t id)
795 {
796         struct kfd_iolink_properties *iolink;
797         struct kfd_cache_properties *cache;
798         struct kfd_mem_properties *mem;
799         int ret;
800         uint32_t i;
801
802         if (WARN_ON(dev->kobj_node))
803                 return -EEXIST;
804
805         /*
806          * Creating the sysfs folders
807          */
808         dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
809         if (!dev->kobj_node)
810                 return -ENOMEM;
811
812         ret = kobject_init_and_add(dev->kobj_node, &node_type,
813                         sys_props.kobj_nodes, "%d", id);
814         if (ret < 0)
815                 return ret;
816
817         dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
818         if (!dev->kobj_mem)
819                 return -ENOMEM;
820
821         dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
822         if (!dev->kobj_cache)
823                 return -ENOMEM;
824
825         dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
826         if (!dev->kobj_iolink)
827                 return -ENOMEM;
828
829         /*
830          * Creating sysfs files for node properties
831          */
832         dev->attr_gpuid.name = "gpu_id";
833         dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
834         sysfs_attr_init(&dev->attr_gpuid);
835         dev->attr_name.name = "name";
836         dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
837         sysfs_attr_init(&dev->attr_name);
838         dev->attr_props.name = "properties";
839         dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
840         sysfs_attr_init(&dev->attr_props);
841         ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
842         if (ret < 0)
843                 return ret;
844         ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
845         if (ret < 0)
846                 return ret;
847         ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
848         if (ret < 0)
849                 return ret;
850
851         i = 0;
852         list_for_each_entry(mem, &dev->mem_props, list) {
853                 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
854                 if (!mem->kobj)
855                         return -ENOMEM;
856                 ret = kobject_init_and_add(mem->kobj, &mem_type,
857                                 dev->kobj_mem, "%d", i);
858                 if (ret < 0)
859                         return ret;
860
861                 mem->attr.name = "properties";
862                 mem->attr.mode = KFD_SYSFS_FILE_MODE;
863                 sysfs_attr_init(&mem->attr);
864                 ret = sysfs_create_file(mem->kobj, &mem->attr);
865                 if (ret < 0)
866                         return ret;
867                 i++;
868         }
869
870         i = 0;
871         list_for_each_entry(cache, &dev->cache_props, list) {
872                 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
873                 if (!cache->kobj)
874                         return -ENOMEM;
875                 ret = kobject_init_and_add(cache->kobj, &cache_type,
876                                 dev->kobj_cache, "%d", i);
877                 if (ret < 0)
878                         return ret;
879
880                 cache->attr.name = "properties";
881                 cache->attr.mode = KFD_SYSFS_FILE_MODE;
882                 sysfs_attr_init(&cache->attr);
883                 ret = sysfs_create_file(cache->kobj, &cache->attr);
884                 if (ret < 0)
885                         return ret;
886                 i++;
887         }
888
889         i = 0;
890         list_for_each_entry(iolink, &dev->io_link_props, list) {
891                 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
892                 if (!iolink->kobj)
893                         return -ENOMEM;
894                 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
895                                 dev->kobj_iolink, "%d", i);
896                 if (ret < 0)
897                         return ret;
898
899                 iolink->attr.name = "properties";
900                 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
901                 sysfs_attr_init(&iolink->attr);
902                 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
903                 if (ret < 0)
904                         return ret;
905                 i++;
906 }
907
908         return 0;
909 }
910
911 static int kfd_build_sysfs_node_tree(void)
912 {
913         struct kfd_topology_device *dev;
914         int ret;
915         uint32_t i = 0;
916
917         list_for_each_entry(dev, &topology_device_list, list) {
918                 ret = kfd_build_sysfs_node_entry(dev, i);
919                 if (ret < 0)
920                         return ret;
921                 i++;
922         }
923
924         return 0;
925 }
926
927 static void kfd_remove_sysfs_node_tree(void)
928 {
929         struct kfd_topology_device *dev;
930
931         list_for_each_entry(dev, &topology_device_list, list)
932                 kfd_remove_sysfs_node_entry(dev);
933 }
934
935 static int kfd_topology_update_sysfs(void)
936 {
937         int ret;
938
939         pr_info("Creating topology SYSFS entries\n");
940         if (!sys_props.kobj_topology) {
941                 sys_props.kobj_topology =
942                                 kfd_alloc_struct(sys_props.kobj_topology);
943                 if (!sys_props.kobj_topology)
944                         return -ENOMEM;
945
946                 ret = kobject_init_and_add(sys_props.kobj_topology,
947                                 &sysprops_type,  &kfd_device->kobj,
948                                 "topology");
949                 if (ret < 0)
950                         return ret;
951
952                 sys_props.kobj_nodes = kobject_create_and_add("nodes",
953                                 sys_props.kobj_topology);
954                 if (!sys_props.kobj_nodes)
955                         return -ENOMEM;
956
957                 sys_props.attr_genid.name = "generation_id";
958                 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
959                 sysfs_attr_init(&sys_props.attr_genid);
960                 ret = sysfs_create_file(sys_props.kobj_topology,
961                                 &sys_props.attr_genid);
962                 if (ret < 0)
963                         return ret;
964
965                 sys_props.attr_props.name = "system_properties";
966                 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
967                 sysfs_attr_init(&sys_props.attr_props);
968                 ret = sysfs_create_file(sys_props.kobj_topology,
969                                 &sys_props.attr_props);
970                 if (ret < 0)
971                         return ret;
972         }
973
974         kfd_remove_sysfs_node_tree();
975
976         return kfd_build_sysfs_node_tree();
977 }
978
979 static void kfd_topology_release_sysfs(void)
980 {
981         kfd_remove_sysfs_node_tree();
982         if (sys_props.kobj_topology) {
983                 sysfs_remove_file(sys_props.kobj_topology,
984                                 &sys_props.attr_genid);
985                 sysfs_remove_file(sys_props.kobj_topology,
986                                 &sys_props.attr_props);
987                 if (sys_props.kobj_nodes) {
988                         kobject_del(sys_props.kobj_nodes);
989                         kobject_put(sys_props.kobj_nodes);
990                         sys_props.kobj_nodes = NULL;
991                 }
992                 kobject_del(sys_props.kobj_topology);
993                 kobject_put(sys_props.kobj_topology);
994                 sys_props.kobj_topology = NULL;
995         }
996 }
997
998 int kfd_topology_init(void)
999 {
1000         void *crat_image = NULL;
1001         size_t image_size = 0;
1002         int ret;
1003
1004         /*
1005          * Initialize the head for the topology device list
1006          */
1007         INIT_LIST_HEAD(&topology_device_list);
1008         init_rwsem(&topology_lock);
1009         topology_crat_parsed = 0;
1010
1011         memset(&sys_props, 0, sizeof(sys_props));
1012
1013         /*
1014          * Get the CRAT image from the ACPI
1015          */
1016         ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1017         if (ret == 0 && image_size > 0) {
1018                 pr_info("Found CRAT image with size=%zd\n", image_size);
1019                 crat_image = kmalloc(image_size, GFP_KERNEL);
1020                 if (!crat_image) {
1021                         ret = -ENOMEM;
1022                         pr_err("No memory for allocating CRAT image\n");
1023                         goto err;
1024                 }
1025                 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1026
1027                 if (ret == 0) {
1028                         down_write(&topology_lock);
1029                         ret = kfd_parse_crat_table(crat_image);
1030                         if (ret == 0)
1031                                 ret = kfd_topology_update_sysfs();
1032                         up_write(&topology_lock);
1033                 } else {
1034                         pr_err("Couldn't get CRAT table size from ACPI\n");
1035                 }
1036                 kfree(crat_image);
1037         } else if (ret == -ENODATA) {
1038                 ret = 0;
1039         } else {
1040                 pr_err("Couldn't get CRAT table size from ACPI\n");
1041         }
1042
1043 err:
1044         pr_info("Finished initializing topology ret=%d\n", ret);
1045         return ret;
1046 }
1047
1048 void kfd_topology_shutdown(void)
1049 {
1050         kfd_topology_release_sysfs();
1051         kfd_release_live_view();
1052 }
1053
1054 static void kfd_debug_print_topology(void)
1055 {
1056         struct kfd_topology_device *dev;
1057         uint32_t i = 0;
1058
1059         pr_info("DEBUG PRINT OF TOPOLOGY:");
1060         list_for_each_entry(dev, &topology_device_list, list) {
1061                 pr_info("Node: %d\n", i);
1062                 pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1063                 pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1064                 pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1065                 i++;
1066         }
1067 }
1068
1069 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1070 {
1071         uint32_t hashout;
1072         uint32_t buf[7];
1073         uint64_t local_mem_size;
1074         int i;
1075
1076         if (!gpu)
1077                 return 0;
1078
1079         local_mem_size = gpu->kfd2kgd->get_vmem_size(gpu->kgd);
1080
1081         buf[0] = gpu->pdev->devfn;
1082         buf[1] = gpu->pdev->subsystem_vendor;
1083         buf[2] = gpu->pdev->subsystem_device;
1084         buf[3] = gpu->pdev->device;
1085         buf[4] = gpu->pdev->bus->number;
1086         buf[5] = lower_32_bits(local_mem_size);
1087         buf[6] = upper_32_bits(local_mem_size);
1088
1089         for (i = 0, hashout = 0; i < 7; i++)
1090                 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1091
1092         return hashout;
1093 }
1094
1095 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1096 {
1097         struct kfd_topology_device *dev;
1098         struct kfd_topology_device *out_dev = NULL;
1099
1100         list_for_each_entry(dev, &topology_device_list, list)
1101                 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1102                         dev->gpu = gpu;
1103                         out_dev = dev;
1104                         break;
1105                 }
1106
1107         return out_dev;
1108 }
1109
1110 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1111 {
1112         /*
1113          * TODO: Generate an event for thunk about the arrival/removal
1114          * of the GPU
1115          */
1116 }
1117
1118 int kfd_topology_add_device(struct kfd_dev *gpu)
1119 {
1120         uint32_t gpu_id;
1121         struct kfd_topology_device *dev;
1122         int res;
1123
1124         gpu_id = kfd_generate_gpu_id(gpu);
1125
1126         pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1127
1128         down_write(&topology_lock);
1129         /*
1130          * Try to assign the GPU to existing topology device (generated from
1131          * CRAT table
1132          */
1133         dev = kfd_assign_gpu(gpu);
1134         if (!dev) {
1135                 pr_info("GPU was not found in the current topology. Extending.\n");
1136                 kfd_debug_print_topology();
1137                 dev = kfd_create_topology_device();
1138                 if (!dev) {
1139                         res = -ENOMEM;
1140                         goto err;
1141                 }
1142                 dev->gpu = gpu;
1143
1144                 /*
1145                  * TODO: Make a call to retrieve topology information from the
1146                  * GPU vBIOS
1147                  */
1148
1149                 /* Update the SYSFS tree, since we added another topology
1150                  * device
1151                  */
1152                 if (kfd_topology_update_sysfs() < 0)
1153                         kfd_topology_release_sysfs();
1154
1155         }
1156
1157         dev->gpu_id = gpu_id;
1158         gpu->id = gpu_id;
1159         dev->node_props.vendor_id = gpu->pdev->vendor;
1160         dev->node_props.device_id = gpu->pdev->device;
1161         dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1162                         (gpu->pdev->devfn & 0xffffff);
1163         /*
1164          * TODO: Retrieve max engine clock values from KGD
1165          */
1166
1167         if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1168                 dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE;
1169                 pr_info("Adding doorbell packet type capability\n");
1170         }
1171
1172         res = 0;
1173
1174 err:
1175         up_write(&topology_lock);
1176
1177         if (res == 0)
1178                 kfd_notify_gpu_change(gpu_id, 1);
1179
1180         return res;
1181 }
1182
1183 int kfd_topology_remove_device(struct kfd_dev *gpu)
1184 {
1185         struct kfd_topology_device *dev;
1186         uint32_t gpu_id;
1187         int res = -ENODEV;
1188
1189         down_write(&topology_lock);
1190
1191         list_for_each_entry(dev, &topology_device_list, list)
1192                 if (dev->gpu == gpu) {
1193                         gpu_id = dev->gpu_id;
1194                         kfd_remove_sysfs_node_entry(dev);
1195                         kfd_release_topology_device(dev);
1196                         res = 0;
1197                         if (kfd_topology_update_sysfs() < 0)
1198                                 kfd_topology_release_sysfs();
1199                         break;
1200                 }
1201
1202         up_write(&topology_lock);
1203
1204         if (res == 0)
1205                 kfd_notify_gpu_change(gpu_id, 0);
1206
1207         return res;
1208 }
1209
1210 /*
1211  * When idx is out of bounds, the function will return NULL
1212  */
1213 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1214 {
1215
1216         struct kfd_topology_device *top_dev;
1217         struct kfd_dev *device = NULL;
1218         uint8_t device_idx = 0;
1219
1220         down_read(&topology_lock);
1221
1222         list_for_each_entry(top_dev, &topology_device_list, list) {
1223                 if (device_idx == idx) {
1224                         device = top_dev->gpu;
1225                         break;
1226                 }
1227
1228                 device_idx++;
1229         }
1230
1231         up_read(&topology_lock);
1232
1233         return device;
1234
1235 }