drm, iommu: Change type of pasid to u32
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45
46 /*
47  * List of struct kfd_process (field kfd_process).
48  * Unique/indexed by mm_struct*
49  */
50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
51 static DEFINE_MUTEX(kfd_processes_mutex);
52
53 DEFINE_SRCU(kfd_processes_srcu);
54
55 /* For process termination handling */
56 static struct workqueue_struct *kfd_process_wq;
57
58 /* Ordered, single-threaded workqueue for restoring evicted
59  * processes. Restoring multiple processes concurrently under memory
60  * pressure can lead to processes blocking each other from validating
61  * their BOs and result in a live-lock situation where processes
62  * remain evicted indefinitely.
63  */
64 static struct workqueue_struct *kfd_restore_wq;
65
66 static struct kfd_process *find_process(const struct task_struct *thread);
67 static void kfd_process_ref_release(struct kref *ref);
68 static struct kfd_process *create_process(const struct task_struct *thread);
69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
70
71 static void evict_process_worker(struct work_struct *work);
72 static void restore_process_worker(struct work_struct *work);
73
74 struct kfd_procfs_tree {
75         struct kobject *kobj;
76 };
77
78 static struct kfd_procfs_tree procfs;
79
80 /*
81  * Structure for SDMA activity tracking
82  */
83 struct kfd_sdma_activity_handler_workarea {
84         struct work_struct sdma_activity_work;
85         struct kfd_process_device *pdd;
86         uint64_t sdma_activity_counter;
87 };
88
89 struct temp_sdma_queue_list {
90         uint64_t rptr;
91         uint64_t sdma_val;
92         unsigned int queue_id;
93         struct list_head list;
94 };
95
96 static void kfd_sdma_activity_worker(struct work_struct *work)
97 {
98         struct kfd_sdma_activity_handler_workarea *workarea;
99         struct kfd_process_device *pdd;
100         uint64_t val;
101         struct mm_struct *mm;
102         struct queue *q;
103         struct qcm_process_device *qpd;
104         struct device_queue_manager *dqm;
105         int ret = 0;
106         struct temp_sdma_queue_list sdma_q_list;
107         struct temp_sdma_queue_list *sdma_q, *next;
108
109         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
110                                 sdma_activity_work);
111         if (!workarea)
112                 return;
113
114         pdd = workarea->pdd;
115         if (!pdd)
116                 return;
117         dqm = pdd->dev->dqm;
118         qpd = &pdd->qpd;
119         if (!dqm || !qpd)
120                 return;
121         /*
122          * Total SDMA activity is current SDMA activity + past SDMA activity
123          * Past SDMA count is stored in pdd.
124          * To get the current activity counters for all active SDMA queues,
125          * we loop over all SDMA queues and get their counts from user-space.
126          *
127          * We cannot call get_user() with dqm_lock held as it can cause
128          * a circular lock dependency situation. To read the SDMA stats,
129          * we need to do the following:
130          *
131          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
132          *    with dqm_lock/dqm_unlock().
133          * 2. Call get_user() for each node in temporary list without dqm_lock.
134          *    Save the SDMA count for each node and also add the count to the total
135          *    SDMA count counter.
136          *    Its possible, during this step, a few SDMA queue nodes got deleted
137          *    from the qpd->queues_list.
138          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
139          *    If any node got deleted, its SDMA count would be captured in the sdma
140          *    past activity counter. So subtract the SDMA counter stored in step 2
141          *    for this node from the total SDMA count.
142          */
143         INIT_LIST_HEAD(&sdma_q_list.list);
144
145         /*
146          * Create the temp list of all SDMA queues
147          */
148         dqm_lock(dqm);
149
150         list_for_each_entry(q, &qpd->queues_list, list) {
151                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
152                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
153                         continue;
154
155                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
156                 if (!sdma_q) {
157                         dqm_unlock(dqm);
158                         goto cleanup;
159                 }
160
161                 INIT_LIST_HEAD(&sdma_q->list);
162                 sdma_q->rptr = (uint64_t)q->properties.read_ptr;
163                 sdma_q->queue_id = q->properties.queue_id;
164                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
165         }
166
167         /*
168          * If the temp list is empty, then no SDMA queues nodes were found in
169          * qpd->queues_list. Return the past activity count as the total sdma
170          * count
171          */
172         if (list_empty(&sdma_q_list.list)) {
173                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
174                 dqm_unlock(dqm);
175                 return;
176         }
177
178         dqm_unlock(dqm);
179
180         /*
181          * Get the usage count for each SDMA queue in temp_list.
182          */
183         mm = get_task_mm(pdd->process->lead_thread);
184         if (!mm)
185                 goto cleanup;
186
187         kthread_use_mm(mm);
188
189         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
190                 val = 0;
191                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
192                 if (ret) {
193                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
194                                  sdma_q->queue_id);
195                 } else {
196                         sdma_q->sdma_val = val;
197                         workarea->sdma_activity_counter += val;
198                 }
199         }
200
201         kthread_unuse_mm(mm);
202         mmput(mm);
203
204         /*
205          * Do a second iteration over qpd_queues_list to check if any SDMA
206          * nodes got deleted while fetching SDMA counter.
207          */
208         dqm_lock(dqm);
209
210         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
211
212         list_for_each_entry(q, &qpd->queues_list, list) {
213                 if (list_empty(&sdma_q_list.list))
214                         break;
215
216                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
217                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
218                         continue;
219
220                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
221                         if (((uint64_t)q->properties.read_ptr == sdma_q->rptr) &&
222                              (sdma_q->queue_id == q->properties.queue_id)) {
223                                 list_del(&sdma_q->list);
224                                 kfree(sdma_q);
225                                 break;
226                         }
227                 }
228         }
229
230         dqm_unlock(dqm);
231
232         /*
233          * If temp list is not empty, it implies some queues got deleted
234          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
235          * count for each node from the total SDMA count.
236          */
237         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
238                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
239                 list_del(&sdma_q->list);
240                 kfree(sdma_q);
241         }
242
243         return;
244
245 cleanup:
246         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
247                 list_del(&sdma_q->list);
248                 kfree(sdma_q);
249         }
250 }
251
252 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
253                                char *buffer)
254 {
255         if (strcmp(attr->name, "pasid") == 0) {
256                 struct kfd_process *p = container_of(attr, struct kfd_process,
257                                                      attr_pasid);
258
259                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
260         } else if (strncmp(attr->name, "vram_", 5) == 0) {
261                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
262                                                               attr_vram);
263                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
264         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
265                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
266                                                               attr_sdma);
267                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
268
269                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
270                                         kfd_sdma_activity_worker);
271
272                 sdma_activity_work_handler.pdd = pdd;
273
274                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
275
276                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
277
278                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
279                                 (sdma_activity_work_handler.sdma_activity_counter)/
280                                  SDMA_ACTIVITY_DIVISOR);
281         } else {
282                 pr_err("Invalid attribute");
283                 return -EINVAL;
284         }
285
286         return 0;
287 }
288
289 static void kfd_procfs_kobj_release(struct kobject *kobj)
290 {
291         kfree(kobj);
292 }
293
294 static const struct sysfs_ops kfd_procfs_ops = {
295         .show = kfd_procfs_show,
296 };
297
298 static struct kobj_type procfs_type = {
299         .release = kfd_procfs_kobj_release,
300         .sysfs_ops = &kfd_procfs_ops,
301 };
302
303 void kfd_procfs_init(void)
304 {
305         int ret = 0;
306
307         procfs.kobj = kfd_alloc_struct(procfs.kobj);
308         if (!procfs.kobj)
309                 return;
310
311         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
312                                    &kfd_device->kobj, "proc");
313         if (ret) {
314                 pr_warn("Could not create procfs proc folder");
315                 /* If we fail to create the procfs, clean up */
316                 kfd_procfs_shutdown();
317         }
318 }
319
320 void kfd_procfs_shutdown(void)
321 {
322         if (procfs.kobj) {
323                 kobject_del(procfs.kobj);
324                 kobject_put(procfs.kobj);
325                 procfs.kobj = NULL;
326         }
327 }
328
329 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
330                                      struct attribute *attr, char *buffer)
331 {
332         struct queue *q = container_of(kobj, struct queue, kobj);
333
334         if (!strcmp(attr->name, "size"))
335                 return snprintf(buffer, PAGE_SIZE, "%llu",
336                                 q->properties.queue_size);
337         else if (!strcmp(attr->name, "type"))
338                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
339         else if (!strcmp(attr->name, "gpuid"))
340                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
341         else
342                 pr_err("Invalid attribute");
343
344         return 0;
345 }
346
347 static struct attribute attr_queue_size = {
348         .name = "size",
349         .mode = KFD_SYSFS_FILE_MODE
350 };
351
352 static struct attribute attr_queue_type = {
353         .name = "type",
354         .mode = KFD_SYSFS_FILE_MODE
355 };
356
357 static struct attribute attr_queue_gpuid = {
358         .name = "gpuid",
359         .mode = KFD_SYSFS_FILE_MODE
360 };
361
362 static struct attribute *procfs_queue_attrs[] = {
363         &attr_queue_size,
364         &attr_queue_type,
365         &attr_queue_gpuid,
366         NULL
367 };
368
369 static const struct sysfs_ops procfs_queue_ops = {
370         .show = kfd_procfs_queue_show,
371 };
372
373 static struct kobj_type procfs_queue_type = {
374         .sysfs_ops = &procfs_queue_ops,
375         .default_attrs = procfs_queue_attrs,
376 };
377
378 int kfd_procfs_add_queue(struct queue *q)
379 {
380         struct kfd_process *proc;
381         int ret;
382
383         if (!q || !q->process)
384                 return -EINVAL;
385         proc = q->process;
386
387         /* Create proc/<pid>/queues/<queue id> folder */
388         if (!proc->kobj_queues)
389                 return -EFAULT;
390         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
391                         proc->kobj_queues, "%u", q->properties.queue_id);
392         if (ret < 0) {
393                 pr_warn("Creating proc/<pid>/queues/%u failed",
394                         q->properties.queue_id);
395                 kobject_put(&q->kobj);
396                 return ret;
397         }
398
399         return 0;
400 }
401
402 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
403                                  char *name)
404 {
405         int ret = 0;
406
407         if (!p || !attr || !name)
408                 return -EINVAL;
409
410         attr->name = name;
411         attr->mode = KFD_SYSFS_FILE_MODE;
412         sysfs_attr_init(attr);
413
414         ret = sysfs_create_file(p->kobj, attr);
415
416         return ret;
417 }
418
419 static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
420 {
421         int ret = 0;
422         struct kfd_process_device *pdd;
423
424         if (!p)
425                 return -EINVAL;
426
427         if (!p->kobj)
428                 return -EFAULT;
429
430         /*
431          * Create sysfs files for each GPU:
432          * - proc/<pid>/vram_<gpuid>
433          * - proc/<pid>/sdma_<gpuid>
434          */
435         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
436                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
437                          pdd->dev->id);
438                 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
439                 if (ret)
440                         pr_warn("Creating vram usage for gpu id %d failed",
441                                 (int)pdd->dev->id);
442
443                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
444                          pdd->dev->id);
445                 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
446                 if (ret)
447                         pr_warn("Creating sdma usage for gpu id %d failed",
448                                 (int)pdd->dev->id);
449         }
450
451         return ret;
452 }
453
454
455 void kfd_procfs_del_queue(struct queue *q)
456 {
457         if (!q)
458                 return;
459
460         kobject_del(&q->kobj);
461         kobject_put(&q->kobj);
462 }
463
464 int kfd_process_create_wq(void)
465 {
466         if (!kfd_process_wq)
467                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
468         if (!kfd_restore_wq)
469                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
470
471         if (!kfd_process_wq || !kfd_restore_wq) {
472                 kfd_process_destroy_wq();
473                 return -ENOMEM;
474         }
475
476         return 0;
477 }
478
479 void kfd_process_destroy_wq(void)
480 {
481         if (kfd_process_wq) {
482                 destroy_workqueue(kfd_process_wq);
483                 kfd_process_wq = NULL;
484         }
485         if (kfd_restore_wq) {
486                 destroy_workqueue(kfd_restore_wq);
487                 kfd_restore_wq = NULL;
488         }
489 }
490
491 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
492                         struct kfd_process_device *pdd)
493 {
494         struct kfd_dev *dev = pdd->dev;
495
496         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm);
497         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL);
498 }
499
500 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
501  *      This function should be only called right after the process
502  *      is created and when kfd_processes_mutex is still being held
503  *      to avoid concurrency. Because of that exclusiveness, we do
504  *      not need to take p->mutex.
505  */
506 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
507                                    uint64_t gpu_va, uint32_t size,
508                                    uint32_t flags, void **kptr)
509 {
510         struct kfd_dev *kdev = pdd->dev;
511         struct kgd_mem *mem = NULL;
512         int handle;
513         int err;
514
515         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
516                                                  pdd->vm, &mem, NULL, flags);
517         if (err)
518                 goto err_alloc_mem;
519
520         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
521         if (err)
522                 goto err_map_mem;
523
524         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
525         if (err) {
526                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
527                 goto sync_memory_failed;
528         }
529
530         /* Create an obj handle so kfd_process_device_remove_obj_handle
531          * will take care of the bo removal when the process finishes.
532          * We do not need to take p->mutex, because the process is just
533          * created and the ioctls have not had the chance to run.
534          */
535         handle = kfd_process_device_create_obj_handle(pdd, mem);
536
537         if (handle < 0) {
538                 err = handle;
539                 goto free_gpuvm;
540         }
541
542         if (kptr) {
543                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
544                                 (struct kgd_mem *)mem, kptr, NULL);
545                 if (err) {
546                         pr_debug("Map GTT BO to kernel failed\n");
547                         goto free_obj_handle;
548                 }
549         }
550
551         return err;
552
553 free_obj_handle:
554         kfd_process_device_remove_obj_handle(pdd, handle);
555 free_gpuvm:
556 sync_memory_failed:
557         kfd_process_free_gpuvm(mem, pdd);
558         return err;
559
560 err_map_mem:
561         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL);
562 err_alloc_mem:
563         *kptr = NULL;
564         return err;
565 }
566
567 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
568  *      process for IB usage The memory reserved is for KFD to submit
569  *      IB to AMDGPU from kernel.  If the memory is reserved
570  *      successfully, ib_kaddr will have the CPU/kernel
571  *      address. Check ib_kaddr before accessing the memory.
572  */
573 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
574 {
575         struct qcm_process_device *qpd = &pdd->qpd;
576         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
577                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
578                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
579                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
580         void *kaddr;
581         int ret;
582
583         if (qpd->ib_kaddr || !qpd->ib_base)
584                 return 0;
585
586         /* ib_base is only set for dGPU */
587         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
588                                       &kaddr);
589         if (ret)
590                 return ret;
591
592         qpd->ib_kaddr = kaddr;
593
594         return 0;
595 }
596
597 struct kfd_process *kfd_create_process(struct file *filep)
598 {
599         struct kfd_process *process;
600         struct task_struct *thread = current;
601         int ret;
602
603         if (!thread->mm)
604                 return ERR_PTR(-EINVAL);
605
606         /* Only the pthreads threading model is supported. */
607         if (thread->group_leader->mm != thread->mm)
608                 return ERR_PTR(-EINVAL);
609
610         /*
611          * take kfd processes mutex before starting of process creation
612          * so there won't be a case where two threads of the same process
613          * create two kfd_process structures
614          */
615         mutex_lock(&kfd_processes_mutex);
616
617         /* A prior open of /dev/kfd could have already created the process. */
618         process = find_process(thread);
619         if (process) {
620                 pr_debug("Process already found\n");
621         } else {
622                 process = create_process(thread);
623                 if (IS_ERR(process))
624                         goto out;
625
626                 ret = kfd_process_init_cwsr_apu(process, filep);
627                 if (ret) {
628                         process = ERR_PTR(ret);
629                         goto out;
630                 }
631
632                 if (!procfs.kobj)
633                         goto out;
634
635                 process->kobj = kfd_alloc_struct(process->kobj);
636                 if (!process->kobj) {
637                         pr_warn("Creating procfs kobject failed");
638                         goto out;
639                 }
640                 ret = kobject_init_and_add(process->kobj, &procfs_type,
641                                            procfs.kobj, "%d",
642                                            (int)process->lead_thread->pid);
643                 if (ret) {
644                         pr_warn("Creating procfs pid directory failed");
645                         kobject_put(process->kobj);
646                         goto out;
647                 }
648
649                 process->attr_pasid.name = "pasid";
650                 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
651                 sysfs_attr_init(&process->attr_pasid);
652                 ret = sysfs_create_file(process->kobj, &process->attr_pasid);
653                 if (ret)
654                         pr_warn("Creating pasid for pid %d failed",
655                                         (int)process->lead_thread->pid);
656
657                 process->kobj_queues = kobject_create_and_add("queues",
658                                                         process->kobj);
659                 if (!process->kobj_queues)
660                         pr_warn("Creating KFD proc/queues folder failed");
661
662                 ret = kfd_procfs_add_sysfs_files(process);
663                 if (ret)
664                         pr_warn("Creating sysfs usage file for pid %d failed",
665                                 (int)process->lead_thread->pid);
666         }
667 out:
668         if (!IS_ERR(process))
669                 kref_get(&process->ref);
670         mutex_unlock(&kfd_processes_mutex);
671
672         return process;
673 }
674
675 struct kfd_process *kfd_get_process(const struct task_struct *thread)
676 {
677         struct kfd_process *process;
678
679         if (!thread->mm)
680                 return ERR_PTR(-EINVAL);
681
682         /* Only the pthreads threading model is supported. */
683         if (thread->group_leader->mm != thread->mm)
684                 return ERR_PTR(-EINVAL);
685
686         process = find_process(thread);
687         if (!process)
688                 return ERR_PTR(-EINVAL);
689
690         return process;
691 }
692
693 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
694 {
695         struct kfd_process *process;
696
697         hash_for_each_possible_rcu(kfd_processes_table, process,
698                                         kfd_processes, (uintptr_t)mm)
699                 if (process->mm == mm)
700                         return process;
701
702         return NULL;
703 }
704
705 static struct kfd_process *find_process(const struct task_struct *thread)
706 {
707         struct kfd_process *p;
708         int idx;
709
710         idx = srcu_read_lock(&kfd_processes_srcu);
711         p = find_process_by_mm(thread->mm);
712         srcu_read_unlock(&kfd_processes_srcu, idx);
713
714         return p;
715 }
716
717 void kfd_unref_process(struct kfd_process *p)
718 {
719         kref_put(&p->ref, kfd_process_ref_release);
720 }
721
722 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
723 {
724         struct kfd_process *p = pdd->process;
725         void *mem;
726         int id;
727
728         /*
729          * Remove all handles from idr and release appropriate
730          * local memory object
731          */
732         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
733                 struct kfd_process_device *peer_pdd;
734
735                 list_for_each_entry(peer_pdd, &p->per_device_data,
736                                     per_device_list) {
737                         if (!peer_pdd->vm)
738                                 continue;
739                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
740                                 peer_pdd->dev->kgd, mem, peer_pdd->vm);
741                 }
742
743                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL);
744                 kfd_process_device_remove_obj_handle(pdd, id);
745         }
746 }
747
748 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
749 {
750         struct kfd_process_device *pdd;
751
752         list_for_each_entry(pdd, &p->per_device_data, per_device_list)
753                 kfd_process_device_free_bos(pdd);
754 }
755
756 static void kfd_process_destroy_pdds(struct kfd_process *p)
757 {
758         struct kfd_process_device *pdd, *temp;
759
760         list_for_each_entry_safe(pdd, temp, &p->per_device_data,
761                                  per_device_list) {
762                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
763                                 pdd->dev->id, p->pasid);
764
765                 if (pdd->drm_file) {
766                         amdgpu_amdkfd_gpuvm_release_process_vm(
767                                         pdd->dev->kgd, pdd->vm);
768                         fput(pdd->drm_file);
769                 }
770                 else if (pdd->vm)
771                         amdgpu_amdkfd_gpuvm_destroy_process_vm(
772                                 pdd->dev->kgd, pdd->vm);
773
774                 list_del(&pdd->per_device_list);
775
776                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
777                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
778                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
779
780                 kfree(pdd->qpd.doorbell_bitmap);
781                 idr_destroy(&pdd->alloc_idr);
782
783                 /*
784                  * before destroying pdd, make sure to report availability
785                  * for auto suspend
786                  */
787                 if (pdd->runtime_inuse) {
788                         pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
789                         pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
790                         pdd->runtime_inuse = false;
791                 }
792
793                 kfree(pdd);
794         }
795 }
796
797 /* No process locking is needed in this function, because the process
798  * is not findable any more. We must assume that no other thread is
799  * using it any more, otherwise we couldn't safely free the process
800  * structure in the end.
801  */
802 static void kfd_process_wq_release(struct work_struct *work)
803 {
804         struct kfd_process *p = container_of(work, struct kfd_process,
805                                              release_work);
806         struct kfd_process_device *pdd;
807
808         /* Remove the procfs files */
809         if (p->kobj) {
810                 sysfs_remove_file(p->kobj, &p->attr_pasid);
811                 kobject_del(p->kobj_queues);
812                 kobject_put(p->kobj_queues);
813                 p->kobj_queues = NULL;
814
815                 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
816                         sysfs_remove_file(p->kobj, &pdd->attr_vram);
817                         sysfs_remove_file(p->kobj, &pdd->attr_sdma);
818                 }
819
820                 kobject_del(p->kobj);
821                 kobject_put(p->kobj);
822                 p->kobj = NULL;
823         }
824
825         kfd_iommu_unbind_process(p);
826
827         kfd_process_free_outstanding_kfd_bos(p);
828
829         kfd_process_destroy_pdds(p);
830         dma_fence_put(p->ef);
831
832         kfd_event_free_process(p);
833
834         kfd_pasid_free(p->pasid);
835         kfd_free_process_doorbells(p);
836
837         mutex_destroy(&p->mutex);
838
839         put_task_struct(p->lead_thread);
840
841         kfree(p);
842 }
843
844 static void kfd_process_ref_release(struct kref *ref)
845 {
846         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
847
848         INIT_WORK(&p->release_work, kfd_process_wq_release);
849         queue_work(kfd_process_wq, &p->release_work);
850 }
851
852 static void kfd_process_free_notifier(struct mmu_notifier *mn)
853 {
854         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
855 }
856
857 static void kfd_process_notifier_release(struct mmu_notifier *mn,
858                                         struct mm_struct *mm)
859 {
860         struct kfd_process *p;
861         struct kfd_process_device *pdd = NULL;
862
863         /*
864          * The kfd_process structure can not be free because the
865          * mmu_notifier srcu is read locked
866          */
867         p = container_of(mn, struct kfd_process, mmu_notifier);
868         if (WARN_ON(p->mm != mm))
869                 return;
870
871         mutex_lock(&kfd_processes_mutex);
872         hash_del_rcu(&p->kfd_processes);
873         mutex_unlock(&kfd_processes_mutex);
874         synchronize_srcu(&kfd_processes_srcu);
875
876         cancel_delayed_work_sync(&p->eviction_work);
877         cancel_delayed_work_sync(&p->restore_work);
878
879         mutex_lock(&p->mutex);
880
881         /* Iterate over all process device data structures and if the
882          * pdd is in debug mode, we should first force unregistration,
883          * then we will be able to destroy the queues
884          */
885         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
886                 struct kfd_dev *dev = pdd->dev;
887
888                 mutex_lock(kfd_get_dbgmgr_mutex());
889                 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
890                         if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
891                                 kfd_dbgmgr_destroy(dev->dbgmgr);
892                                 dev->dbgmgr = NULL;
893                         }
894                 }
895                 mutex_unlock(kfd_get_dbgmgr_mutex());
896         }
897
898         kfd_process_dequeue_from_all_devices(p);
899         pqm_uninit(&p->pqm);
900
901         /* Indicate to other users that MM is no longer valid */
902         p->mm = NULL;
903         /* Signal the eviction fence after user mode queues are
904          * destroyed. This allows any BOs to be freed without
905          * triggering pointless evictions or waiting for fences.
906          */
907         dma_fence_signal(p->ef);
908
909         mutex_unlock(&p->mutex);
910
911         mmu_notifier_put(&p->mmu_notifier);
912 }
913
914 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
915         .release = kfd_process_notifier_release,
916         .free_notifier = kfd_process_free_notifier,
917 };
918
919 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
920 {
921         unsigned long  offset;
922         struct kfd_process_device *pdd;
923
924         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
925                 struct kfd_dev *dev = pdd->dev;
926                 struct qcm_process_device *qpd = &pdd->qpd;
927
928                 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
929                         continue;
930
931                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
932                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
933                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
934                         MAP_SHARED, offset);
935
936                 if (IS_ERR_VALUE(qpd->tba_addr)) {
937                         int err = qpd->tba_addr;
938
939                         pr_err("Failure to set tba address. error %d.\n", err);
940                         qpd->tba_addr = 0;
941                         qpd->cwsr_kaddr = NULL;
942                         return err;
943                 }
944
945                 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
946
947                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
948                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
949                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
950         }
951
952         return 0;
953 }
954
955 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
956 {
957         struct kfd_dev *dev = pdd->dev;
958         struct qcm_process_device *qpd = &pdd->qpd;
959         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
960                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
961                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
962         void *kaddr;
963         int ret;
964
965         if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
966                 return 0;
967
968         /* cwsr_base is only set for dGPU */
969         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
970                                       KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
971         if (ret)
972                 return ret;
973
974         qpd->cwsr_kaddr = kaddr;
975         qpd->tba_addr = qpd->cwsr_base;
976
977         memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
978
979         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
980         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
981                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
982
983         return 0;
984 }
985
986 /*
987  * On return the kfd_process is fully operational and will be freed when the
988  * mm is released
989  */
990 static struct kfd_process *create_process(const struct task_struct *thread)
991 {
992         struct kfd_process *process;
993         int err = -ENOMEM;
994
995         process = kzalloc(sizeof(*process), GFP_KERNEL);
996         if (!process)
997                 goto err_alloc_process;
998
999         kref_init(&process->ref);
1000         mutex_init(&process->mutex);
1001         process->mm = thread->mm;
1002         process->lead_thread = thread->group_leader;
1003         INIT_LIST_HEAD(&process->per_device_data);
1004         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1005         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1006         process->last_restore_timestamp = get_jiffies_64();
1007         kfd_event_init_process(process);
1008         process->is_32bit_user_mode = in_compat_syscall();
1009
1010         process->pasid = kfd_pasid_alloc();
1011         if (process->pasid == 0)
1012                 goto err_alloc_pasid;
1013
1014         if (kfd_alloc_process_doorbells(process) < 0)
1015                 goto err_alloc_doorbells;
1016
1017         err = pqm_init(&process->pqm, process);
1018         if (err != 0)
1019                 goto err_process_pqm_init;
1020
1021         /* init process apertures*/
1022         err = kfd_init_apertures(process);
1023         if (err != 0)
1024                 goto err_init_apertures;
1025
1026         /* Must be last, have to use release destruction after this */
1027         process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
1028         err = mmu_notifier_register(&process->mmu_notifier, process->mm);
1029         if (err)
1030                 goto err_register_notifier;
1031
1032         get_task_struct(process->lead_thread);
1033         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1034                         (uintptr_t)process->mm);
1035
1036         return process;
1037
1038 err_register_notifier:
1039         kfd_process_free_outstanding_kfd_bos(process);
1040         kfd_process_destroy_pdds(process);
1041 err_init_apertures:
1042         pqm_uninit(&process->pqm);
1043 err_process_pqm_init:
1044         kfd_free_process_doorbells(process);
1045 err_alloc_doorbells:
1046         kfd_pasid_free(process->pasid);
1047 err_alloc_pasid:
1048         mutex_destroy(&process->mutex);
1049         kfree(process);
1050 err_alloc_process:
1051         return ERR_PTR(err);
1052 }
1053
1054 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1055                         struct kfd_dev *dev)
1056 {
1057         unsigned int i;
1058         int range_start = dev->shared_resources.non_cp_doorbells_start;
1059         int range_end = dev->shared_resources.non_cp_doorbells_end;
1060
1061         if (!KFD_IS_SOC15(dev->device_info->asic_family))
1062                 return 0;
1063
1064         qpd->doorbell_bitmap =
1065                 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1066                                      BITS_PER_BYTE), GFP_KERNEL);
1067         if (!qpd->doorbell_bitmap)
1068                 return -ENOMEM;
1069
1070         /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1071         pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1072         pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1073                         range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1074                         range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1075
1076         for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1077                 if (i >= range_start && i <= range_end) {
1078                         set_bit(i, qpd->doorbell_bitmap);
1079                         set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1080                                 qpd->doorbell_bitmap);
1081                 }
1082         }
1083
1084         return 0;
1085 }
1086
1087 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1088                                                         struct kfd_process *p)
1089 {
1090         struct kfd_process_device *pdd = NULL;
1091
1092         list_for_each_entry(pdd, &p->per_device_data, per_device_list)
1093                 if (pdd->dev == dev)
1094                         return pdd;
1095
1096         return NULL;
1097 }
1098
1099 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1100                                                         struct kfd_process *p)
1101 {
1102         struct kfd_process_device *pdd = NULL;
1103
1104         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1105         if (!pdd)
1106                 return NULL;
1107
1108         if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1109                 pr_err("Failed to init doorbell for process\n");
1110                 kfree(pdd);
1111                 return NULL;
1112         }
1113
1114         pdd->dev = dev;
1115         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1116         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1117         pdd->qpd.dqm = dev->dqm;
1118         pdd->qpd.pqm = &p->pqm;
1119         pdd->qpd.evicted = 0;
1120         pdd->qpd.mapped_gws_queue = false;
1121         pdd->process = p;
1122         pdd->bound = PDD_UNBOUND;
1123         pdd->already_dequeued = false;
1124         pdd->runtime_inuse = false;
1125         pdd->vram_usage = 0;
1126         pdd->sdma_past_activity_counter = 0;
1127         list_add(&pdd->per_device_list, &p->per_device_data);
1128
1129         /* Init idr used for memory handle translation */
1130         idr_init(&pdd->alloc_idr);
1131
1132         return pdd;
1133 }
1134
1135 /**
1136  * kfd_process_device_init_vm - Initialize a VM for a process-device
1137  *
1138  * @pdd: The process-device
1139  * @drm_file: Optional pointer to a DRM file descriptor
1140  *
1141  * If @drm_file is specified, it will be used to acquire the VM from
1142  * that file descriptor. If successful, the @pdd takes ownership of
1143  * the file descriptor.
1144  *
1145  * If @drm_file is NULL, a new VM is created.
1146  *
1147  * Returns 0 on success, -errno on failure.
1148  */
1149 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1150                                struct file *drm_file)
1151 {
1152         struct kfd_process *p;
1153         struct kfd_dev *dev;
1154         int ret;
1155
1156         if (pdd->vm)
1157                 return drm_file ? -EBUSY : 0;
1158
1159         p = pdd->process;
1160         dev = pdd->dev;
1161
1162         if (drm_file)
1163                 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1164                         dev->kgd, drm_file, p->pasid,
1165                         &pdd->vm, &p->kgd_process_info, &p->ef);
1166         else
1167                 ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid,
1168                         &pdd->vm, &p->kgd_process_info, &p->ef);
1169         if (ret) {
1170                 pr_err("Failed to create process VM object\n");
1171                 return ret;
1172         }
1173
1174         amdgpu_vm_set_task_info(pdd->vm);
1175
1176         ret = kfd_process_device_reserve_ib_mem(pdd);
1177         if (ret)
1178                 goto err_reserve_ib_mem;
1179         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1180         if (ret)
1181                 goto err_init_cwsr;
1182
1183         pdd->drm_file = drm_file;
1184
1185         return 0;
1186
1187 err_init_cwsr:
1188 err_reserve_ib_mem:
1189         kfd_process_device_free_bos(pdd);
1190         if (!drm_file)
1191                 amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm);
1192         pdd->vm = NULL;
1193
1194         return ret;
1195 }
1196
1197 /*
1198  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1199  * to the device.
1200  * Unbinding occurs when the process dies or the device is removed.
1201  *
1202  * Assumes that the process lock is held.
1203  */
1204 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1205                                                         struct kfd_process *p)
1206 {
1207         struct kfd_process_device *pdd;
1208         int err;
1209
1210         pdd = kfd_get_process_device_data(dev, p);
1211         if (!pdd) {
1212                 pr_err("Process device data doesn't exist\n");
1213                 return ERR_PTR(-ENOMEM);
1214         }
1215
1216         /*
1217          * signal runtime-pm system to auto resume and prevent
1218          * further runtime suspend once device pdd is created until
1219          * pdd is destroyed.
1220          */
1221         if (!pdd->runtime_inuse) {
1222                 err = pm_runtime_get_sync(dev->ddev->dev);
1223                 if (err < 0) {
1224                         pm_runtime_put_autosuspend(dev->ddev->dev);
1225                         return ERR_PTR(err);
1226                 }
1227         }
1228
1229         err = kfd_iommu_bind_process_to_device(pdd);
1230         if (err)
1231                 goto out;
1232
1233         err = kfd_process_device_init_vm(pdd, NULL);
1234         if (err)
1235                 goto out;
1236
1237         /*
1238          * make sure that runtime_usage counter is incremented just once
1239          * per pdd
1240          */
1241         pdd->runtime_inuse = true;
1242
1243         return pdd;
1244
1245 out:
1246         /* balance runpm reference count and exit with error */
1247         if (!pdd->runtime_inuse) {
1248                 pm_runtime_mark_last_busy(dev->ddev->dev);
1249                 pm_runtime_put_autosuspend(dev->ddev->dev);
1250         }
1251
1252         return ERR_PTR(err);
1253 }
1254
1255 struct kfd_process_device *kfd_get_first_process_device_data(
1256                                                 struct kfd_process *p)
1257 {
1258         return list_first_entry(&p->per_device_data,
1259                                 struct kfd_process_device,
1260                                 per_device_list);
1261 }
1262
1263 struct kfd_process_device *kfd_get_next_process_device_data(
1264                                                 struct kfd_process *p,
1265                                                 struct kfd_process_device *pdd)
1266 {
1267         if (list_is_last(&pdd->per_device_list, &p->per_device_data))
1268                 return NULL;
1269         return list_next_entry(pdd, per_device_list);
1270 }
1271
1272 bool kfd_has_process_device_data(struct kfd_process *p)
1273 {
1274         return !(list_empty(&p->per_device_data));
1275 }
1276
1277 /* Create specific handle mapped to mem from process local memory idr
1278  * Assumes that the process lock is held.
1279  */
1280 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1281                                         void *mem)
1282 {
1283         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1284 }
1285
1286 /* Translate specific handle from process local memory idr
1287  * Assumes that the process lock is held.
1288  */
1289 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1290                                         int handle)
1291 {
1292         if (handle < 0)
1293                 return NULL;
1294
1295         return idr_find(&pdd->alloc_idr, handle);
1296 }
1297
1298 /* Remove specific handle from process local memory idr
1299  * Assumes that the process lock is held.
1300  */
1301 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1302                                         int handle)
1303 {
1304         if (handle >= 0)
1305                 idr_remove(&pdd->alloc_idr, handle);
1306 }
1307
1308 /* This increments the process->ref counter. */
1309 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1310 {
1311         struct kfd_process *p, *ret_p = NULL;
1312         unsigned int temp;
1313
1314         int idx = srcu_read_lock(&kfd_processes_srcu);
1315
1316         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1317                 if (p->pasid == pasid) {
1318                         kref_get(&p->ref);
1319                         ret_p = p;
1320                         break;
1321                 }
1322         }
1323
1324         srcu_read_unlock(&kfd_processes_srcu, idx);
1325
1326         return ret_p;
1327 }
1328
1329 /* This increments the process->ref counter. */
1330 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1331 {
1332         struct kfd_process *p;
1333
1334         int idx = srcu_read_lock(&kfd_processes_srcu);
1335
1336         p = find_process_by_mm(mm);
1337         if (p)
1338                 kref_get(&p->ref);
1339
1340         srcu_read_unlock(&kfd_processes_srcu, idx);
1341
1342         return p;
1343 }
1344
1345 /* kfd_process_evict_queues - Evict all user queues of a process
1346  *
1347  * Eviction is reference-counted per process-device. This means multiple
1348  * evictions from different sources can be nested safely.
1349  */
1350 int kfd_process_evict_queues(struct kfd_process *p)
1351 {
1352         struct kfd_process_device *pdd;
1353         int r = 0;
1354         unsigned int n_evicted = 0;
1355
1356         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1357                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1358                                                             &pdd->qpd);
1359                 if (r) {
1360                         pr_err("Failed to evict process queues\n");
1361                         goto fail;
1362                 }
1363                 n_evicted++;
1364         }
1365
1366         return r;
1367
1368 fail:
1369         /* To keep state consistent, roll back partial eviction by
1370          * restoring queues
1371          */
1372         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1373                 if (n_evicted == 0)
1374                         break;
1375                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1376                                                               &pdd->qpd))
1377                         pr_err("Failed to restore queues\n");
1378
1379                 n_evicted--;
1380         }
1381
1382         return r;
1383 }
1384
1385 /* kfd_process_restore_queues - Restore all user queues of a process */
1386 int kfd_process_restore_queues(struct kfd_process *p)
1387 {
1388         struct kfd_process_device *pdd;
1389         int r, ret = 0;
1390
1391         list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1392                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1393                                                               &pdd->qpd);
1394                 if (r) {
1395                         pr_err("Failed to restore process queues\n");
1396                         if (!ret)
1397                                 ret = r;
1398                 }
1399         }
1400
1401         return ret;
1402 }
1403
1404 static void evict_process_worker(struct work_struct *work)
1405 {
1406         int ret;
1407         struct kfd_process *p;
1408         struct delayed_work *dwork;
1409
1410         dwork = to_delayed_work(work);
1411
1412         /* Process termination destroys this worker thread. So during the
1413          * lifetime of this thread, kfd_process p will be valid
1414          */
1415         p = container_of(dwork, struct kfd_process, eviction_work);
1416         WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1417                   "Eviction fence mismatch\n");
1418
1419         /* Narrow window of overlap between restore and evict work
1420          * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1421          * unreserves KFD BOs, it is possible to evicted again. But
1422          * restore has few more steps of finish. So lets wait for any
1423          * previous restore work to complete
1424          */
1425         flush_delayed_work(&p->restore_work);
1426
1427         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1428         ret = kfd_process_evict_queues(p);
1429         if (!ret) {
1430                 dma_fence_signal(p->ef);
1431                 dma_fence_put(p->ef);
1432                 p->ef = NULL;
1433                 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1434                                 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1435
1436                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1437         } else
1438                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1439 }
1440
1441 static void restore_process_worker(struct work_struct *work)
1442 {
1443         struct delayed_work *dwork;
1444         struct kfd_process *p;
1445         int ret = 0;
1446
1447         dwork = to_delayed_work(work);
1448
1449         /* Process termination destroys this worker thread. So during the
1450          * lifetime of this thread, kfd_process p will be valid
1451          */
1452         p = container_of(dwork, struct kfd_process, restore_work);
1453         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1454
1455         /* Setting last_restore_timestamp before successful restoration.
1456          * Otherwise this would have to be set by KGD (restore_process_bos)
1457          * before KFD BOs are unreserved. If not, the process can be evicted
1458          * again before the timestamp is set.
1459          * If restore fails, the timestamp will be set again in the next
1460          * attempt. This would mean that the minimum GPU quanta would be
1461          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1462          * functions)
1463          */
1464
1465         p->last_restore_timestamp = get_jiffies_64();
1466         ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1467                                                      &p->ef);
1468         if (ret) {
1469                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1470                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
1471                 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1472                                 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1473                 WARN(!ret, "reschedule restore work failed\n");
1474                 return;
1475         }
1476
1477         ret = kfd_process_restore_queues(p);
1478         if (!ret)
1479                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1480         else
1481                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1482 }
1483
1484 void kfd_suspend_all_processes(void)
1485 {
1486         struct kfd_process *p;
1487         unsigned int temp;
1488         int idx = srcu_read_lock(&kfd_processes_srcu);
1489
1490         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1491                 cancel_delayed_work_sync(&p->eviction_work);
1492                 cancel_delayed_work_sync(&p->restore_work);
1493
1494                 if (kfd_process_evict_queues(p))
1495                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
1496                 dma_fence_signal(p->ef);
1497                 dma_fence_put(p->ef);
1498                 p->ef = NULL;
1499         }
1500         srcu_read_unlock(&kfd_processes_srcu, idx);
1501 }
1502
1503 int kfd_resume_all_processes(void)
1504 {
1505         struct kfd_process *p;
1506         unsigned int temp;
1507         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1508
1509         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1510                 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1511                         pr_err("Restore process %d failed during resume\n",
1512                                p->pasid);
1513                         ret = -EFAULT;
1514                 }
1515         }
1516         srcu_read_unlock(&kfd_processes_srcu, idx);
1517         return ret;
1518 }
1519
1520 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1521                           struct vm_area_struct *vma)
1522 {
1523         struct kfd_process_device *pdd;
1524         struct qcm_process_device *qpd;
1525
1526         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1527                 pr_err("Incorrect CWSR mapping size.\n");
1528                 return -EINVAL;
1529         }
1530
1531         pdd = kfd_get_process_device_data(dev, process);
1532         if (!pdd)
1533                 return -EINVAL;
1534         qpd = &pdd->qpd;
1535
1536         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1537                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
1538         if (!qpd->cwsr_kaddr) {
1539                 pr_err("Error allocating per process CWSR buffer.\n");
1540                 return -ENOMEM;
1541         }
1542
1543         vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1544                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1545         /* Mapping pages to user process */
1546         return remap_pfn_range(vma, vma->vm_start,
1547                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1548                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1549 }
1550
1551 void kfd_flush_tlb(struct kfd_process_device *pdd)
1552 {
1553         struct kfd_dev *dev = pdd->dev;
1554
1555         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1556                 /* Nothing to flush until a VMID is assigned, which
1557                  * only happens when the first queue is created.
1558                  */
1559                 if (pdd->qpd.vmid)
1560                         amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1561                                                         pdd->qpd.vmid);
1562         } else {
1563                 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1564                                                 pdd->process->pasid);
1565         }
1566 }
1567
1568 #if defined(CONFIG_DEBUG_FS)
1569
1570 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1571 {
1572         struct kfd_process *p;
1573         unsigned int temp;
1574         int r = 0;
1575
1576         int idx = srcu_read_lock(&kfd_processes_srcu);
1577
1578         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1579                 seq_printf(m, "Process %d PASID 0x%x:\n",
1580                            p->lead_thread->tgid, p->pasid);
1581
1582                 mutex_lock(&p->mutex);
1583                 r = pqm_debugfs_mqds(m, &p->pqm);
1584                 mutex_unlock(&p->mutex);
1585
1586                 if (r)
1587                         break;
1588         }
1589
1590         srcu_read_unlock(&kfd_processes_srcu, idx);
1591
1592         return r;
1593 }
1594
1595 #endif
1596