x86/platform/uv: Recognize UV5 hubless system identifier
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58
59 #include "amdgpu_ras.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75
76 #define WREG32_SDMA(instance, offset, value) \
77         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278         0, 0,
279         },
280         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282         0, 0,
283         },
284         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286         0, 0,
287         },
288         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290         0, 0,
291         },
292         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294         0, 0,
295         },
296         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298         0, 0,
299         },
300         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302         0, 0,
303         },
304         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306         0, 0,
307         },
308         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310         0, 0,
311         },
312         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314         0, 0,
315         },
316         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362         0, 0,
363         },
364         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366         0, 0,
367         },
368         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370         0, 0,
371         },
372 };
373
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375                 u32 instance, u32 offset)
376 {
377         switch (instance) {
378         case 0:
379                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380         case 1:
381                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382         case 2:
383                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384         case 3:
385                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386         case 4:
387                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388         case 5:
389                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390         case 6:
391                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392         case 7:
393                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394         default:
395                 break;
396         }
397         return 0;
398 }
399
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402         switch (seq_num) {
403         case 0:
404                 return SOC15_IH_CLIENTID_SDMA0;
405         case 1:
406                 return SOC15_IH_CLIENTID_SDMA1;
407         case 2:
408                 return SOC15_IH_CLIENTID_SDMA2;
409         case 3:
410                 return SOC15_IH_CLIENTID_SDMA3;
411         case 4:
412                 return SOC15_IH_CLIENTID_SDMA4;
413         case 5:
414                 return SOC15_IH_CLIENTID_SDMA5;
415         case 6:
416                 return SOC15_IH_CLIENTID_SDMA6;
417         case 7:
418                 return SOC15_IH_CLIENTID_SDMA7;
419         default:
420                 break;
421         }
422         return -EINVAL;
423 }
424
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427         switch (client_id) {
428         case SOC15_IH_CLIENTID_SDMA0:
429                 return 0;
430         case SOC15_IH_CLIENTID_SDMA1:
431                 return 1;
432         case SOC15_IH_CLIENTID_SDMA2:
433                 return 2;
434         case SOC15_IH_CLIENTID_SDMA3:
435                 return 3;
436         case SOC15_IH_CLIENTID_SDMA4:
437                 return 4;
438         case SOC15_IH_CLIENTID_SDMA5:
439                 return 5;
440         case SOC15_IH_CLIENTID_SDMA6:
441                 return 6;
442         case SOC15_IH_CLIENTID_SDMA7:
443                 return 7;
444         default:
445                 break;
446         }
447         return -EINVAL;
448 }
449
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452         switch (adev->asic_type) {
453         case CHIP_VEGA10:
454                 soc15_program_register_sequence(adev,
455                                                 golden_settings_sdma_4,
456                                                 ARRAY_SIZE(golden_settings_sdma_4));
457                 soc15_program_register_sequence(adev,
458                                                 golden_settings_sdma_vg10,
459                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
460                 break;
461         case CHIP_VEGA12:
462                 soc15_program_register_sequence(adev,
463                                                 golden_settings_sdma_4,
464                                                 ARRAY_SIZE(golden_settings_sdma_4));
465                 soc15_program_register_sequence(adev,
466                                                 golden_settings_sdma_vg12,
467                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
468                 break;
469         case CHIP_VEGA20:
470                 soc15_program_register_sequence(adev,
471                                                 golden_settings_sdma0_4_2_init,
472                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473                 soc15_program_register_sequence(adev,
474                                                 golden_settings_sdma0_4_2,
475                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
476                 soc15_program_register_sequence(adev,
477                                                 golden_settings_sdma1_4_2,
478                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
479                 break;
480         case CHIP_ARCTURUS:
481                 soc15_program_register_sequence(adev,
482                                                 golden_settings_sdma_arct,
483                                                 ARRAY_SIZE(golden_settings_sdma_arct));
484                 break;
485         case CHIP_RAVEN:
486                 soc15_program_register_sequence(adev,
487                                                 golden_settings_sdma_4_1,
488                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
489                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490                         soc15_program_register_sequence(adev,
491                                                         golden_settings_sdma_rv2,
492                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
493                 else
494                         soc15_program_register_sequence(adev,
495                                                         golden_settings_sdma_rv1,
496                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
497                 break;
498         case CHIP_RENOIR:
499                 soc15_program_register_sequence(adev,
500                                                 golden_settings_sdma_4_3,
501                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
502                 break;
503         default:
504                 break;
505         }
506 }
507
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510         int i;
511
512         /*
513          * The only chips with SDMAv4 and ULV are VG10 and VG20.
514          * Server SKUs take a different hysteresis setting from other SKUs.
515          */
516         switch (adev->asic_type) {
517         case CHIP_VEGA10:
518                 if (adev->pdev->device == 0x6860)
519                         break;
520                 return;
521         case CHIP_VEGA20:
522                 if (adev->pdev->device == 0x66a1)
523                         break;
524                 return;
525         default:
526                 return;
527         }
528
529         for (i = 0; i < adev->sdma.num_instances; i++) {
530                 uint32_t temp;
531
532                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535         }
536 }
537
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540         int err = 0;
541         const struct sdma_firmware_header_v1_0 *hdr;
542
543         err = amdgpu_ucode_validate(sdma_inst->fw);
544         if (err)
545                 return err;
546
547         hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548         sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549         sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550
551         if (sdma_inst->feature_version >= 20)
552                 sdma_inst->burst_nop = true;
553
554         return 0;
555 }
556
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559         int i;
560
561         for (i = 0; i < adev->sdma.num_instances; i++) {
562                 release_firmware(adev->sdma.instance[i].fw);
563                 adev->sdma.instance[i].fw = NULL;
564
565                 /* arcturus shares the same FW memory across
566                    all SDMA isntances */
567                 if (adev->asic_type == CHIP_ARCTURUS)
568                         break;
569         }
570
571         memset((void*)adev->sdma.instance, 0,
572                 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589         const char *chip_name;
590         char fw_name[30];
591         int err = 0, i;
592         struct amdgpu_firmware_info *info = NULL;
593         const struct common_firmware_header *header = NULL;
594
595         if (amdgpu_sriov_vf(adev))
596                 return 0;
597
598         DRM_DEBUG("\n");
599
600         switch (adev->asic_type) {
601         case CHIP_VEGA10:
602                 chip_name = "vega10";
603                 break;
604         case CHIP_VEGA12:
605                 chip_name = "vega12";
606                 break;
607         case CHIP_VEGA20:
608                 chip_name = "vega20";
609                 break;
610         case CHIP_RAVEN:
611                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
612                         chip_name = "raven2";
613                 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
614                         chip_name = "picasso";
615                 else
616                         chip_name = "raven";
617                 break;
618         case CHIP_ARCTURUS:
619                 chip_name = "arcturus";
620                 break;
621         case CHIP_RENOIR:
622                 chip_name = "renoir";
623                 break;
624         default:
625                 BUG();
626         }
627
628         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
629
630         err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
631         if (err)
632                 goto out;
633
634         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
635         if (err)
636                 goto out;
637
638         for (i = 1; i < adev->sdma.num_instances; i++) {
639                 if (adev->asic_type == CHIP_ARCTURUS) {
640                         /* Acturus will leverage the same FW memory
641                            for every SDMA instance */
642                         memcpy((void*)&adev->sdma.instance[i],
643                                (void*)&adev->sdma.instance[0],
644                                sizeof(struct amdgpu_sdma_instance));
645                 }
646                 else {
647                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
648
649                         err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
650                         if (err)
651                                 goto out;
652
653                         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
654                         if (err)
655                                 goto out;
656                 }
657         }
658
659         DRM_DEBUG("psp_load == '%s'\n",
660                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
661
662         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
663                 for (i = 0; i < adev->sdma.num_instances; i++) {
664                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
665                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
666                         info->fw = adev->sdma.instance[i].fw;
667                         header = (const struct common_firmware_header *)info->fw->data;
668                         adev->firmware.fw_size +=
669                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
670                 }
671         }
672
673 out:
674         if (err) {
675                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
676                 sdma_v4_0_destroy_inst_ctx(adev);
677         }
678         return err;
679 }
680
681 /**
682  * sdma_v4_0_ring_get_rptr - get the current read pointer
683  *
684  * @ring: amdgpu ring pointer
685  *
686  * Get the current rptr from the hardware (VEGA10+).
687  */
688 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
689 {
690         u64 *rptr;
691
692         /* XXX check if swapping is necessary on BE */
693         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
694
695         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
696         return ((*rptr) >> 2);
697 }
698
699 /**
700  * sdma_v4_0_ring_get_wptr - get the current write pointer
701  *
702  * @ring: amdgpu ring pointer
703  *
704  * Get the current wptr from the hardware (VEGA10+).
705  */
706 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
707 {
708         struct amdgpu_device *adev = ring->adev;
709         u64 wptr;
710
711         if (ring->use_doorbell) {
712                 /* XXX check if swapping is necessary on BE */
713                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
714                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
715         } else {
716                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
717                 wptr = wptr << 32;
718                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
719                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
720                                 ring->me, wptr);
721         }
722
723         return wptr >> 2;
724 }
725
726 /**
727  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
728  *
729  * @ring: amdgpu ring pointer
730  *
731  * Write the wptr back to the hardware (VEGA10+).
732  */
733 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
734 {
735         struct amdgpu_device *adev = ring->adev;
736
737         DRM_DEBUG("Setting write pointer\n");
738         if (ring->use_doorbell) {
739                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
740
741                 DRM_DEBUG("Using doorbell -- "
742                                 "wptr_offs == 0x%08x "
743                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
744                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
745                                 ring->wptr_offs,
746                                 lower_32_bits(ring->wptr << 2),
747                                 upper_32_bits(ring->wptr << 2));
748                 /* XXX check if swapping is necessary on BE */
749                 WRITE_ONCE(*wb, (ring->wptr << 2));
750                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
751                                 ring->doorbell_index, ring->wptr << 2);
752                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
753         } else {
754                 DRM_DEBUG("Not using doorbell -- "
755                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
756                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
757                                 ring->me,
758                                 lower_32_bits(ring->wptr << 2),
759                                 ring->me,
760                                 upper_32_bits(ring->wptr << 2));
761                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
762                             lower_32_bits(ring->wptr << 2));
763                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
764                             upper_32_bits(ring->wptr << 2));
765         }
766 }
767
768 /**
769  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
770  *
771  * @ring: amdgpu ring pointer
772  *
773  * Get the current wptr from the hardware (VEGA10+).
774  */
775 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
776 {
777         struct amdgpu_device *adev = ring->adev;
778         u64 wptr;
779
780         if (ring->use_doorbell) {
781                 /* XXX check if swapping is necessary on BE */
782                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
783         } else {
784                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
785                 wptr = wptr << 32;
786                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
787         }
788
789         return wptr >> 2;
790 }
791
792 /**
793  * sdma_v4_0_ring_set_wptr - commit the write pointer
794  *
795  * @ring: amdgpu ring pointer
796  *
797  * Write the wptr back to the hardware (VEGA10+).
798  */
799 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
800 {
801         struct amdgpu_device *adev = ring->adev;
802
803         if (ring->use_doorbell) {
804                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
805
806                 /* XXX check if swapping is necessary on BE */
807                 WRITE_ONCE(*wb, (ring->wptr << 2));
808                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
809         } else {
810                 uint64_t wptr = ring->wptr << 2;
811
812                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
813                             lower_32_bits(wptr));
814                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
815                             upper_32_bits(wptr));
816         }
817 }
818
819 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
820 {
821         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
822         int i;
823
824         for (i = 0; i < count; i++)
825                 if (sdma && sdma->burst_nop && (i == 0))
826                         amdgpu_ring_write(ring, ring->funcs->nop |
827                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
828                 else
829                         amdgpu_ring_write(ring, ring->funcs->nop);
830 }
831
832 /**
833  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
834  *
835  * @ring: amdgpu ring pointer
836  * @ib: IB object to schedule
837  *
838  * Schedule an IB in the DMA ring (VEGA10).
839  */
840 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
841                                    struct amdgpu_job *job,
842                                    struct amdgpu_ib *ib,
843                                    uint32_t flags)
844 {
845         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
846
847         /* IB packet must end on a 8 DW boundary */
848         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
849
850         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
851                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
852         /* base must be 32 byte aligned */
853         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
854         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
855         amdgpu_ring_write(ring, ib->length_dw);
856         amdgpu_ring_write(ring, 0);
857         amdgpu_ring_write(ring, 0);
858
859 }
860
861 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
862                                    int mem_space, int hdp,
863                                    uint32_t addr0, uint32_t addr1,
864                                    uint32_t ref, uint32_t mask,
865                                    uint32_t inv)
866 {
867         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
868                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
869                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
870                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
871         if (mem_space) {
872                 /* memory */
873                 amdgpu_ring_write(ring, addr0);
874                 amdgpu_ring_write(ring, addr1);
875         } else {
876                 /* registers */
877                 amdgpu_ring_write(ring, addr0 << 2);
878                 amdgpu_ring_write(ring, addr1 << 2);
879         }
880         amdgpu_ring_write(ring, ref); /* reference */
881         amdgpu_ring_write(ring, mask); /* mask */
882         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
883                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
884 }
885
886 /**
887  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
888  *
889  * @ring: amdgpu ring pointer
890  *
891  * Emit an hdp flush packet on the requested DMA ring.
892  */
893 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
894 {
895         struct amdgpu_device *adev = ring->adev;
896         u32 ref_and_mask = 0;
897         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
898
899         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
900
901         sdma_v4_0_wait_reg_mem(ring, 0, 1,
902                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
903                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
904                                ref_and_mask, ref_and_mask, 10);
905 }
906
907 /**
908  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
909  *
910  * @ring: amdgpu ring pointer
911  * @fence: amdgpu fence object
912  *
913  * Add a DMA fence packet to the ring to write
914  * the fence seq number and DMA trap packet to generate
915  * an interrupt if needed (VEGA10).
916  */
917 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
918                                       unsigned flags)
919 {
920         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
921         /* write the fence */
922         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
923         /* zero in first two bits */
924         BUG_ON(addr & 0x3);
925         amdgpu_ring_write(ring, lower_32_bits(addr));
926         amdgpu_ring_write(ring, upper_32_bits(addr));
927         amdgpu_ring_write(ring, lower_32_bits(seq));
928
929         /* optionally write high bits as well */
930         if (write64bit) {
931                 addr += 4;
932                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
933                 /* zero in first two bits */
934                 BUG_ON(addr & 0x3);
935                 amdgpu_ring_write(ring, lower_32_bits(addr));
936                 amdgpu_ring_write(ring, upper_32_bits(addr));
937                 amdgpu_ring_write(ring, upper_32_bits(seq));
938         }
939
940         /* generate an interrupt */
941         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
942         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
943 }
944
945
946 /**
947  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
948  *
949  * @adev: amdgpu_device pointer
950  *
951  * Stop the gfx async dma ring buffers (VEGA10).
952  */
953 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
954 {
955         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
956         u32 rb_cntl, ib_cntl;
957         int i, unset = 0;
958
959         for (i = 0; i < adev->sdma.num_instances; i++) {
960                 sdma[i] = &adev->sdma.instance[i].ring;
961
962                 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
963                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
964                         unset = 1;
965                 }
966
967                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
968                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
969                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
970                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
971                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
972                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
973         }
974 }
975
976 /**
977  * sdma_v4_0_rlc_stop - stop the compute async dma engines
978  *
979  * @adev: amdgpu_device pointer
980  *
981  * Stop the compute async dma queues (VEGA10).
982  */
983 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
984 {
985         /* XXX todo */
986 }
987
988 /**
989  * sdma_v4_0_page_stop - stop the page async dma engines
990  *
991  * @adev: amdgpu_device pointer
992  *
993  * Stop the page async dma ring buffers (VEGA10).
994  */
995 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
996 {
997         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
998         u32 rb_cntl, ib_cntl;
999         int i;
1000         bool unset = false;
1001
1002         for (i = 0; i < adev->sdma.num_instances; i++) {
1003                 sdma[i] = &adev->sdma.instance[i].page;
1004
1005                 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1006                         (!unset)) {
1007                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1008                         unset = true;
1009                 }
1010
1011                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1012                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1013                                         RB_ENABLE, 0);
1014                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1015                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1016                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1017                                         IB_ENABLE, 0);
1018                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1019         }
1020 }
1021
1022 /**
1023  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1024  *
1025  * @adev: amdgpu_device pointer
1026  * @enable: enable/disable the DMA MEs context switch.
1027  *
1028  * Halt or unhalt the async dma engines context switch (VEGA10).
1029  */
1030 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1031 {
1032         u32 f32_cntl, phase_quantum = 0;
1033         int i;
1034
1035         if (amdgpu_sdma_phase_quantum) {
1036                 unsigned value = amdgpu_sdma_phase_quantum;
1037                 unsigned unit = 0;
1038
1039                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1040                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1041                         value = (value + 1) >> 1;
1042                         unit++;
1043                 }
1044                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1045                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1046                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1047                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1048                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1049                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1050                         WARN_ONCE(1,
1051                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1052                                   value << unit);
1053                 }
1054                 phase_quantum =
1055                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1056                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1057         }
1058
1059         for (i = 0; i < adev->sdma.num_instances; i++) {
1060                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1061                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1062                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1063                 if (enable && amdgpu_sdma_phase_quantum) {
1064                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1065                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1066                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1067                 }
1068                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1069
1070                 /*
1071                  * Enable SDMA utilization. Its only supported on
1072                  * Arcturus for the moment and firmware version 14
1073                  * and above.
1074                  */
1075                 if (adev->asic_type == CHIP_ARCTURUS &&
1076                     adev->sdma.instance[i].fw_version >= 14)
1077                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1078         }
1079
1080 }
1081
1082 /**
1083  * sdma_v4_0_enable - stop the async dma engines
1084  *
1085  * @adev: amdgpu_device pointer
1086  * @enable: enable/disable the DMA MEs.
1087  *
1088  * Halt or unhalt the async dma engines (VEGA10).
1089  */
1090 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1091 {
1092         u32 f32_cntl;
1093         int i;
1094
1095         if (!enable) {
1096                 sdma_v4_0_gfx_stop(adev);
1097                 sdma_v4_0_rlc_stop(adev);
1098                 if (adev->sdma.has_page_queue)
1099                         sdma_v4_0_page_stop(adev);
1100         }
1101
1102         for (i = 0; i < adev->sdma.num_instances; i++) {
1103                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1104                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1105                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1106         }
1107 }
1108
1109 /**
1110  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1111  */
1112 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1113 {
1114         /* Set ring buffer size in dwords */
1115         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1116
1117         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1118 #ifdef __BIG_ENDIAN
1119         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1120         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1121                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1122 #endif
1123         return rb_cntl;
1124 }
1125
1126 /**
1127  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1128  *
1129  * @adev: amdgpu_device pointer
1130  * @i: instance to resume
1131  *
1132  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1133  * Returns 0 for success, error for failure.
1134  */
1135 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1136 {
1137         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1138         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1139         u32 wb_offset;
1140         u32 doorbell;
1141         u32 doorbell_offset;
1142         u64 wptr_gpu_addr;
1143
1144         wb_offset = (ring->rptr_offs * 4);
1145
1146         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1147         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1148         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1149
1150         /* Initialize the ring buffer's read and write pointers */
1151         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1152         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1153         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1154         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1155
1156         /* set the wb address whether it's enabled or not */
1157         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1158                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1159         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1160                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1161
1162         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1163                                 RPTR_WRITEBACK_ENABLE, 1);
1164
1165         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1166         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1167
1168         ring->wptr = 0;
1169
1170         /* before programing wptr to a less value, need set minor_ptr_update first */
1171         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1172
1173         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1174         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1175
1176         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1177                                  ring->use_doorbell);
1178         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1179                                         SDMA0_GFX_DOORBELL_OFFSET,
1180                                         OFFSET, ring->doorbell_index);
1181         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1182         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1183
1184         sdma_v4_0_ring_set_wptr(ring);
1185
1186         /* set minor_ptr_update to 0 after wptr programed */
1187         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1188
1189         /* setup the wptr shadow polling */
1190         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1191         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1192                     lower_32_bits(wptr_gpu_addr));
1193         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1194                     upper_32_bits(wptr_gpu_addr));
1195         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1196         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1197                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1198                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1199         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1200
1201         /* enable DMA RB */
1202         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1203         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1204
1205         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1206         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1207 #ifdef __BIG_ENDIAN
1208         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1209 #endif
1210         /* enable DMA IBs */
1211         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1212
1213         ring->sched.ready = true;
1214 }
1215
1216 /**
1217  * sdma_v4_0_page_resume - setup and start the async dma engines
1218  *
1219  * @adev: amdgpu_device pointer
1220  * @i: instance to resume
1221  *
1222  * Set up the page DMA ring buffers and enable them (VEGA10).
1223  * Returns 0 for success, error for failure.
1224  */
1225 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1226 {
1227         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1228         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1229         u32 wb_offset;
1230         u32 doorbell;
1231         u32 doorbell_offset;
1232         u64 wptr_gpu_addr;
1233
1234         wb_offset = (ring->rptr_offs * 4);
1235
1236         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1237         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1238         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1239
1240         /* Initialize the ring buffer's read and write pointers */
1241         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1242         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1243         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1244         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1245
1246         /* set the wb address whether it's enabled or not */
1247         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1248                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1249         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1250                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1251
1252         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1253                                 RPTR_WRITEBACK_ENABLE, 1);
1254
1255         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1256         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1257
1258         ring->wptr = 0;
1259
1260         /* before programing wptr to a less value, need set minor_ptr_update first */
1261         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1262
1263         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1264         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1265
1266         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1267                                  ring->use_doorbell);
1268         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1269                                         SDMA0_PAGE_DOORBELL_OFFSET,
1270                                         OFFSET, ring->doorbell_index);
1271         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1272         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1273
1274         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1275         sdma_v4_0_page_ring_set_wptr(ring);
1276
1277         /* set minor_ptr_update to 0 after wptr programed */
1278         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1279
1280         /* setup the wptr shadow polling */
1281         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1282         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1283                     lower_32_bits(wptr_gpu_addr));
1284         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1285                     upper_32_bits(wptr_gpu_addr));
1286         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1287         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1288                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1289                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1290         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1291
1292         /* enable DMA RB */
1293         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1294         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1295
1296         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1297         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1298 #ifdef __BIG_ENDIAN
1299         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1300 #endif
1301         /* enable DMA IBs */
1302         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1303
1304         ring->sched.ready = true;
1305 }
1306
1307 static void
1308 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1309 {
1310         uint32_t def, data;
1311
1312         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1313                 /* enable idle interrupt */
1314                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1315                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1316
1317                 if (data != def)
1318                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1319         } else {
1320                 /* disable idle interrupt */
1321                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1322                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1323                 if (data != def)
1324                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1325         }
1326 }
1327
1328 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1329 {
1330         uint32_t def, data;
1331
1332         /* Enable HW based PG. */
1333         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1334         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1335         if (data != def)
1336                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1337
1338         /* enable interrupt */
1339         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1340         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1341         if (data != def)
1342                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1343
1344         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1345         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1346         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1347         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1348         /* Configure switch time for hysteresis purpose. Use default right now */
1349         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1350         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1351         if(data != def)
1352                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1353 }
1354
1355 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1356 {
1357         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1358                 return;
1359
1360         switch (adev->asic_type) {
1361         case CHIP_RAVEN:
1362         case CHIP_RENOIR:
1363                 sdma_v4_1_init_power_gating(adev);
1364                 sdma_v4_1_update_power_gating(adev, true);
1365                 break;
1366         default:
1367                 break;
1368         }
1369 }
1370
1371 /**
1372  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1373  *
1374  * @adev: amdgpu_device pointer
1375  *
1376  * Set up the compute DMA queues and enable them (VEGA10).
1377  * Returns 0 for success, error for failure.
1378  */
1379 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1380 {
1381         sdma_v4_0_init_pg(adev);
1382
1383         return 0;
1384 }
1385
1386 /**
1387  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1388  *
1389  * @adev: amdgpu_device pointer
1390  *
1391  * Loads the sDMA0/1 ucode.
1392  * Returns 0 for success, -EINVAL if the ucode is not available.
1393  */
1394 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1395 {
1396         const struct sdma_firmware_header_v1_0 *hdr;
1397         const __le32 *fw_data;
1398         u32 fw_size;
1399         int i, j;
1400
1401         /* halt the MEs */
1402         sdma_v4_0_enable(adev, false);
1403
1404         for (i = 0; i < adev->sdma.num_instances; i++) {
1405                 if (!adev->sdma.instance[i].fw)
1406                         return -EINVAL;
1407
1408                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1409                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1410                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1411
1412                 fw_data = (const __le32 *)
1413                         (adev->sdma.instance[i].fw->data +
1414                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1415
1416                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1417
1418                 for (j = 0; j < fw_size; j++)
1419                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1420                                     le32_to_cpup(fw_data++));
1421
1422                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1423                             adev->sdma.instance[i].fw_version);
1424         }
1425
1426         return 0;
1427 }
1428
1429 /**
1430  * sdma_v4_0_start - setup and start the async dma engines
1431  *
1432  * @adev: amdgpu_device pointer
1433  *
1434  * Set up the DMA engines and enable them (VEGA10).
1435  * Returns 0 for success, error for failure.
1436  */
1437 static int sdma_v4_0_start(struct amdgpu_device *adev)
1438 {
1439         struct amdgpu_ring *ring;
1440         int i, r = 0;
1441
1442         if (amdgpu_sriov_vf(adev)) {
1443                 sdma_v4_0_ctx_switch_enable(adev, false);
1444                 sdma_v4_0_enable(adev, false);
1445         } else {
1446
1447                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1448                         r = sdma_v4_0_load_microcode(adev);
1449                         if (r)
1450                                 return r;
1451                 }
1452
1453                 /* unhalt the MEs */
1454                 sdma_v4_0_enable(adev, true);
1455                 /* enable sdma ring preemption */
1456                 sdma_v4_0_ctx_switch_enable(adev, true);
1457         }
1458
1459         /* start the gfx rings and rlc compute queues */
1460         for (i = 0; i < adev->sdma.num_instances; i++) {
1461                 uint32_t temp;
1462
1463                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1464                 sdma_v4_0_gfx_resume(adev, i);
1465                 if (adev->sdma.has_page_queue)
1466                         sdma_v4_0_page_resume(adev, i);
1467
1468                 /* set utc l1 enable flag always to 1 */
1469                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1470                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1471                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1472
1473                 if (!amdgpu_sriov_vf(adev)) {
1474                         /* unhalt engine */
1475                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1476                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1477                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1478                 }
1479         }
1480
1481         if (amdgpu_sriov_vf(adev)) {
1482                 sdma_v4_0_ctx_switch_enable(adev, true);
1483                 sdma_v4_0_enable(adev, true);
1484         } else {
1485                 r = sdma_v4_0_rlc_resume(adev);
1486                 if (r)
1487                         return r;
1488         }
1489
1490         for (i = 0; i < adev->sdma.num_instances; i++) {
1491                 ring = &adev->sdma.instance[i].ring;
1492
1493                 r = amdgpu_ring_test_helper(ring);
1494                 if (r)
1495                         return r;
1496
1497                 if (adev->sdma.has_page_queue) {
1498                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1499
1500                         r = amdgpu_ring_test_helper(page);
1501                         if (r)
1502                                 return r;
1503
1504                         if (adev->mman.buffer_funcs_ring == page)
1505                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1506                 }
1507
1508                 if (adev->mman.buffer_funcs_ring == ring)
1509                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1510         }
1511
1512         return r;
1513 }
1514
1515 /**
1516  * sdma_v4_0_ring_test_ring - simple async dma engine test
1517  *
1518  * @ring: amdgpu_ring structure holding ring information
1519  *
1520  * Test the DMA engine by writing using it to write an
1521  * value to memory. (VEGA10).
1522  * Returns 0 for success, error for failure.
1523  */
1524 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1525 {
1526         struct amdgpu_device *adev = ring->adev;
1527         unsigned i;
1528         unsigned index;
1529         int r;
1530         u32 tmp;
1531         u64 gpu_addr;
1532
1533         r = amdgpu_device_wb_get(adev, &index);
1534         if (r)
1535                 return r;
1536
1537         gpu_addr = adev->wb.gpu_addr + (index * 4);
1538         tmp = 0xCAFEDEAD;
1539         adev->wb.wb[index] = cpu_to_le32(tmp);
1540
1541         r = amdgpu_ring_alloc(ring, 5);
1542         if (r)
1543                 goto error_free_wb;
1544
1545         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1546                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1547         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1548         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1549         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1550         amdgpu_ring_write(ring, 0xDEADBEEF);
1551         amdgpu_ring_commit(ring);
1552
1553         for (i = 0; i < adev->usec_timeout; i++) {
1554                 tmp = le32_to_cpu(adev->wb.wb[index]);
1555                 if (tmp == 0xDEADBEEF)
1556                         break;
1557                 udelay(1);
1558         }
1559
1560         if (i >= adev->usec_timeout)
1561                 r = -ETIMEDOUT;
1562
1563 error_free_wb:
1564         amdgpu_device_wb_free(adev, index);
1565         return r;
1566 }
1567
1568 /**
1569  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1570  *
1571  * @ring: amdgpu_ring structure holding ring information
1572  *
1573  * Test a simple IB in the DMA ring (VEGA10).
1574  * Returns 0 on success, error on failure.
1575  */
1576 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1577 {
1578         struct amdgpu_device *adev = ring->adev;
1579         struct amdgpu_ib ib;
1580         struct dma_fence *f = NULL;
1581         unsigned index;
1582         long r;
1583         u32 tmp = 0;
1584         u64 gpu_addr;
1585
1586         r = amdgpu_device_wb_get(adev, &index);
1587         if (r)
1588                 return r;
1589
1590         gpu_addr = adev->wb.gpu_addr + (index * 4);
1591         tmp = 0xCAFEDEAD;
1592         adev->wb.wb[index] = cpu_to_le32(tmp);
1593         memset(&ib, 0, sizeof(ib));
1594         r = amdgpu_ib_get(adev, NULL, 256,
1595                                         AMDGPU_IB_POOL_DIRECT, &ib);
1596         if (r)
1597                 goto err0;
1598
1599         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1600                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1601         ib.ptr[1] = lower_32_bits(gpu_addr);
1602         ib.ptr[2] = upper_32_bits(gpu_addr);
1603         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1604         ib.ptr[4] = 0xDEADBEEF;
1605         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1606         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1607         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1608         ib.length_dw = 8;
1609
1610         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1611         if (r)
1612                 goto err1;
1613
1614         r = dma_fence_wait_timeout(f, false, timeout);
1615         if (r == 0) {
1616                 r = -ETIMEDOUT;
1617                 goto err1;
1618         } else if (r < 0) {
1619                 goto err1;
1620         }
1621         tmp = le32_to_cpu(adev->wb.wb[index]);
1622         if (tmp == 0xDEADBEEF)
1623                 r = 0;
1624         else
1625                 r = -EINVAL;
1626
1627 err1:
1628         amdgpu_ib_free(adev, &ib, NULL);
1629         dma_fence_put(f);
1630 err0:
1631         amdgpu_device_wb_free(adev, index);
1632         return r;
1633 }
1634
1635
1636 /**
1637  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1638  *
1639  * @ib: indirect buffer to fill with commands
1640  * @pe: addr of the page entry
1641  * @src: src addr to copy from
1642  * @count: number of page entries to update
1643  *
1644  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1645  */
1646 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1647                                   uint64_t pe, uint64_t src,
1648                                   unsigned count)
1649 {
1650         unsigned bytes = count * 8;
1651
1652         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1653                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1654         ib->ptr[ib->length_dw++] = bytes - 1;
1655         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1656         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1657         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1658         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1659         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1660
1661 }
1662
1663 /**
1664  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1665  *
1666  * @ib: indirect buffer to fill with commands
1667  * @pe: addr of the page entry
1668  * @addr: dst addr to write into pe
1669  * @count: number of page entries to update
1670  * @incr: increase next addr by incr bytes
1671  * @flags: access flags
1672  *
1673  * Update PTEs by writing them manually using sDMA (VEGA10).
1674  */
1675 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1676                                    uint64_t value, unsigned count,
1677                                    uint32_t incr)
1678 {
1679         unsigned ndw = count * 2;
1680
1681         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1682                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1683         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1684         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1685         ib->ptr[ib->length_dw++] = ndw - 1;
1686         for (; ndw > 0; ndw -= 2) {
1687                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1688                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1689                 value += incr;
1690         }
1691 }
1692
1693 /**
1694  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1695  *
1696  * @ib: indirect buffer to fill with commands
1697  * @pe: addr of the page entry
1698  * @addr: dst addr to write into pe
1699  * @count: number of page entries to update
1700  * @incr: increase next addr by incr bytes
1701  * @flags: access flags
1702  *
1703  * Update the page tables using sDMA (VEGA10).
1704  */
1705 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1706                                      uint64_t pe,
1707                                      uint64_t addr, unsigned count,
1708                                      uint32_t incr, uint64_t flags)
1709 {
1710         /* for physically contiguous pages (vram) */
1711         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1712         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1713         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1714         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1715         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1716         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1717         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1718         ib->ptr[ib->length_dw++] = incr; /* increment size */
1719         ib->ptr[ib->length_dw++] = 0;
1720         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1721 }
1722
1723 /**
1724  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1725  *
1726  * @ib: indirect buffer to fill with padding
1727  *
1728  */
1729 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1730 {
1731         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1732         u32 pad_count;
1733         int i;
1734
1735         pad_count = (-ib->length_dw) & 7;
1736         for (i = 0; i < pad_count; i++)
1737                 if (sdma && sdma->burst_nop && (i == 0))
1738                         ib->ptr[ib->length_dw++] =
1739                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1740                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1741                 else
1742                         ib->ptr[ib->length_dw++] =
1743                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1744 }
1745
1746
1747 /**
1748  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1749  *
1750  * @ring: amdgpu_ring pointer
1751  *
1752  * Make sure all previous operations are completed (CIK).
1753  */
1754 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1755 {
1756         uint32_t seq = ring->fence_drv.sync_seq;
1757         uint64_t addr = ring->fence_drv.gpu_addr;
1758
1759         /* wait for idle */
1760         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1761                                addr & 0xfffffffc,
1762                                upper_32_bits(addr) & 0xffffffff,
1763                                seq, 0xffffffff, 4);
1764 }
1765
1766
1767 /**
1768  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1769  *
1770  * @ring: amdgpu_ring pointer
1771  * @vm: amdgpu_vm pointer
1772  *
1773  * Update the page table base and flush the VM TLB
1774  * using sDMA (VEGA10).
1775  */
1776 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1777                                          unsigned vmid, uint64_t pd_addr)
1778 {
1779         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1780 }
1781
1782 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1783                                      uint32_t reg, uint32_t val)
1784 {
1785         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1786                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1787         amdgpu_ring_write(ring, reg);
1788         amdgpu_ring_write(ring, val);
1789 }
1790
1791 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1792                                          uint32_t val, uint32_t mask)
1793 {
1794         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1795 }
1796
1797 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1798 {
1799         uint fw_version = adev->sdma.instance[0].fw_version;
1800
1801         switch (adev->asic_type) {
1802         case CHIP_VEGA10:
1803                 return fw_version >= 430;
1804         case CHIP_VEGA12:
1805                 /*return fw_version >= 31;*/
1806                 return false;
1807         case CHIP_VEGA20:
1808                 return fw_version >= 123;
1809         default:
1810                 return false;
1811         }
1812 }
1813
1814 static int sdma_v4_0_early_init(void *handle)
1815 {
1816         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1817         int r;
1818
1819         if (adev->flags & AMD_IS_APU)
1820                 adev->sdma.num_instances = 1;
1821         else if (adev->asic_type == CHIP_ARCTURUS)
1822                 adev->sdma.num_instances = 8;
1823         else
1824                 adev->sdma.num_instances = 2;
1825
1826         r = sdma_v4_0_init_microcode(adev);
1827         if (r) {
1828                 DRM_ERROR("Failed to load sdma firmware!\n");
1829                 return r;
1830         }
1831
1832         /* TODO: Page queue breaks driver reload under SRIOV */
1833         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1834                 adev->sdma.has_page_queue = false;
1835         else if (sdma_v4_0_fw_support_paging_queue(adev))
1836                 adev->sdma.has_page_queue = true;
1837
1838         sdma_v4_0_set_ring_funcs(adev);
1839         sdma_v4_0_set_buffer_funcs(adev);
1840         sdma_v4_0_set_vm_pte_funcs(adev);
1841         sdma_v4_0_set_irq_funcs(adev);
1842         sdma_v4_0_set_ras_funcs(adev);
1843
1844         return 0;
1845 }
1846
1847 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1848                 void *err_data,
1849                 struct amdgpu_iv_entry *entry);
1850
1851 static int sdma_v4_0_late_init(void *handle)
1852 {
1853         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1854         struct ras_ih_if ih_info = {
1855                 .cb = sdma_v4_0_process_ras_data_cb,
1856         };
1857
1858         sdma_v4_0_setup_ulv(adev);
1859
1860         if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1861                 adev->sdma.funcs->reset_ras_error_count(adev);
1862
1863         if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1864                 return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1865         else
1866                 return 0;
1867 }
1868
1869 static int sdma_v4_0_sw_init(void *handle)
1870 {
1871         struct amdgpu_ring *ring;
1872         int r, i;
1873         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1874
1875         /* SDMA trap event */
1876         for (i = 0; i < adev->sdma.num_instances; i++) {
1877                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1878                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1879                                       &adev->sdma.trap_irq);
1880                 if (r)
1881                         return r;
1882         }
1883
1884         /* SDMA SRAM ECC event */
1885         for (i = 0; i < adev->sdma.num_instances; i++) {
1886                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1887                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1888                                       &adev->sdma.ecc_irq);
1889                 if (r)
1890                         return r;
1891         }
1892
1893         for (i = 0; i < adev->sdma.num_instances; i++) {
1894                 ring = &adev->sdma.instance[i].ring;
1895                 ring->ring_obj = NULL;
1896                 ring->use_doorbell = true;
1897
1898                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1899                                 ring->use_doorbell?"true":"false");
1900
1901                 /* doorbell size is 2 dwords, get DWORD offset */
1902                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1903
1904                 sprintf(ring->name, "sdma%d", i);
1905                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1906                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1907                                      AMDGPU_RING_PRIO_DEFAULT);
1908                 if (r)
1909                         return r;
1910
1911                 if (adev->sdma.has_page_queue) {
1912                         ring = &adev->sdma.instance[i].page;
1913                         ring->ring_obj = NULL;
1914                         ring->use_doorbell = true;
1915
1916                         /* paging queue use same doorbell index/routing as gfx queue
1917                          * with 0x400 (4096 dwords) offset on second doorbell page
1918                          */
1919                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1920                         ring->doorbell_index += 0x400;
1921
1922                         sprintf(ring->name, "page%d", i);
1923                         r = amdgpu_ring_init(adev, ring, 1024,
1924                                              &adev->sdma.trap_irq,
1925                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1926                                              AMDGPU_RING_PRIO_DEFAULT);
1927                         if (r)
1928                                 return r;
1929                 }
1930         }
1931
1932         return r;
1933 }
1934
1935 static int sdma_v4_0_sw_fini(void *handle)
1936 {
1937         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1938         int i;
1939
1940         if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1941                 adev->sdma.funcs->ras_fini(adev);
1942
1943         for (i = 0; i < adev->sdma.num_instances; i++) {
1944                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1945                 if (adev->sdma.has_page_queue)
1946                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1947         }
1948
1949         sdma_v4_0_destroy_inst_ctx(adev);
1950
1951         return 0;
1952 }
1953
1954 static int sdma_v4_0_hw_init(void *handle)
1955 {
1956         int r;
1957         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1958
1959         if (adev->flags & AMD_IS_APU)
1960                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1961
1962         if (!amdgpu_sriov_vf(adev))
1963                 sdma_v4_0_init_golden_registers(adev);
1964
1965         r = sdma_v4_0_start(adev);
1966
1967         return r;
1968 }
1969
1970 static int sdma_v4_0_hw_fini(void *handle)
1971 {
1972         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1973         int i;
1974
1975         if (amdgpu_sriov_vf(adev))
1976                 return 0;
1977
1978         for (i = 0; i < adev->sdma.num_instances; i++) {
1979                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1980                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1981         }
1982
1983         sdma_v4_0_ctx_switch_enable(adev, false);
1984         sdma_v4_0_enable(adev, false);
1985
1986         if (adev->flags & AMD_IS_APU)
1987                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1988
1989         return 0;
1990 }
1991
1992 static int sdma_v4_0_suspend(void *handle)
1993 {
1994         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1995
1996         return sdma_v4_0_hw_fini(adev);
1997 }
1998
1999 static int sdma_v4_0_resume(void *handle)
2000 {
2001         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2002
2003         return sdma_v4_0_hw_init(adev);
2004 }
2005
2006 static bool sdma_v4_0_is_idle(void *handle)
2007 {
2008         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2009         u32 i;
2010
2011         for (i = 0; i < adev->sdma.num_instances; i++) {
2012                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2013
2014                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2015                         return false;
2016         }
2017
2018         return true;
2019 }
2020
2021 static int sdma_v4_0_wait_for_idle(void *handle)
2022 {
2023         unsigned i, j;
2024         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2025         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2026
2027         for (i = 0; i < adev->usec_timeout; i++) {
2028                 for (j = 0; j < adev->sdma.num_instances; j++) {
2029                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2030                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2031                                 break;
2032                 }
2033                 if (j == adev->sdma.num_instances)
2034                         return 0;
2035                 udelay(1);
2036         }
2037         return -ETIMEDOUT;
2038 }
2039
2040 static int sdma_v4_0_soft_reset(void *handle)
2041 {
2042         /* todo */
2043
2044         return 0;
2045 }
2046
2047 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2048                                         struct amdgpu_irq_src *source,
2049                                         unsigned type,
2050                                         enum amdgpu_interrupt_state state)
2051 {
2052         u32 sdma_cntl;
2053
2054         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2055         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2056                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2057         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2058
2059         return 0;
2060 }
2061
2062 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2063                                       struct amdgpu_irq_src *source,
2064                                       struct amdgpu_iv_entry *entry)
2065 {
2066         uint32_t instance;
2067
2068         DRM_DEBUG("IH: SDMA trap\n");
2069         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2070         switch (entry->ring_id) {
2071         case 0:
2072                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2073                 break;
2074         case 1:
2075                 if (adev->asic_type == CHIP_VEGA20)
2076                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2077                 break;
2078         case 2:
2079                 /* XXX compute */
2080                 break;
2081         case 3:
2082                 if (adev->asic_type != CHIP_VEGA20)
2083                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2084                 break;
2085         }
2086         return 0;
2087 }
2088
2089 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2090                 void *err_data,
2091                 struct amdgpu_iv_entry *entry)
2092 {
2093         int instance;
2094
2095         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2096          * be disabled and the driver should only look for the aggregated
2097          * interrupt via sync flood
2098          */
2099         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2100                 goto out;
2101
2102         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2103         if (instance < 0)
2104                 goto out;
2105
2106         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2107
2108 out:
2109         return AMDGPU_RAS_SUCCESS;
2110 }
2111
2112 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2113                                               struct amdgpu_irq_src *source,
2114                                               struct amdgpu_iv_entry *entry)
2115 {
2116         int instance;
2117
2118         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2119
2120         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2121         if (instance < 0)
2122                 return 0;
2123
2124         switch (entry->ring_id) {
2125         case 0:
2126                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2127                 break;
2128         }
2129         return 0;
2130 }
2131
2132 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2133                                         struct amdgpu_irq_src *source,
2134                                         unsigned type,
2135                                         enum amdgpu_interrupt_state state)
2136 {
2137         u32 sdma_edc_config;
2138
2139         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2140         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2141                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2142         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2143
2144         return 0;
2145 }
2146
2147 static void sdma_v4_0_update_medium_grain_clock_gating(
2148                 struct amdgpu_device *adev,
2149                 bool enable)
2150 {
2151         uint32_t data, def;
2152         int i;
2153
2154         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2155                 for (i = 0; i < adev->sdma.num_instances; i++) {
2156                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2157                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2158                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2159                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2160                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2161                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2162                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2163                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2164                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2165                         if (def != data)
2166                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2167                 }
2168         } else {
2169                 for (i = 0; i < adev->sdma.num_instances; i++) {
2170                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2171                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2172                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2173                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2174                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2175                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2176                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2177                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2178                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2179                         if (def != data)
2180                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2181                 }
2182         }
2183 }
2184
2185
2186 static void sdma_v4_0_update_medium_grain_light_sleep(
2187                 struct amdgpu_device *adev,
2188                 bool enable)
2189 {
2190         uint32_t data, def;
2191         int i;
2192
2193         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2194                 for (i = 0; i < adev->sdma.num_instances; i++) {
2195                         /* 1-not override: enable sdma mem light sleep */
2196                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2197                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2198                         if (def != data)
2199                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2200                 }
2201         } else {
2202                 for (i = 0; i < adev->sdma.num_instances; i++) {
2203                 /* 0-override:disable sdma mem light sleep */
2204                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2205                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2206                         if (def != data)
2207                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2208                 }
2209         }
2210 }
2211
2212 static int sdma_v4_0_set_clockgating_state(void *handle,
2213                                           enum amd_clockgating_state state)
2214 {
2215         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2216
2217         if (amdgpu_sriov_vf(adev))
2218                 return 0;
2219
2220         switch (adev->asic_type) {
2221         case CHIP_VEGA10:
2222         case CHIP_VEGA12:
2223         case CHIP_VEGA20:
2224         case CHIP_RAVEN:
2225         case CHIP_ARCTURUS:
2226         case CHIP_RENOIR:
2227                 sdma_v4_0_update_medium_grain_clock_gating(adev,
2228                                 state == AMD_CG_STATE_GATE);
2229                 sdma_v4_0_update_medium_grain_light_sleep(adev,
2230                                 state == AMD_CG_STATE_GATE);
2231                 break;
2232         default:
2233                 break;
2234         }
2235         return 0;
2236 }
2237
2238 static int sdma_v4_0_set_powergating_state(void *handle,
2239                                           enum amd_powergating_state state)
2240 {
2241         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2242
2243         switch (adev->asic_type) {
2244         case CHIP_RAVEN:
2245         case CHIP_RENOIR:
2246                 sdma_v4_1_update_power_gating(adev,
2247                                 state == AMD_PG_STATE_GATE ? true : false);
2248                 break;
2249         default:
2250                 break;
2251         }
2252
2253         return 0;
2254 }
2255
2256 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2257 {
2258         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2259         int data;
2260
2261         if (amdgpu_sriov_vf(adev))
2262                 *flags = 0;
2263
2264         /* AMD_CG_SUPPORT_SDMA_MGCG */
2265         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2266         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2267                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2268
2269         /* AMD_CG_SUPPORT_SDMA_LS */
2270         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2271         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2272                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2273 }
2274
2275 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2276         .name = "sdma_v4_0",
2277         .early_init = sdma_v4_0_early_init,
2278         .late_init = sdma_v4_0_late_init,
2279         .sw_init = sdma_v4_0_sw_init,
2280         .sw_fini = sdma_v4_0_sw_fini,
2281         .hw_init = sdma_v4_0_hw_init,
2282         .hw_fini = sdma_v4_0_hw_fini,
2283         .suspend = sdma_v4_0_suspend,
2284         .resume = sdma_v4_0_resume,
2285         .is_idle = sdma_v4_0_is_idle,
2286         .wait_for_idle = sdma_v4_0_wait_for_idle,
2287         .soft_reset = sdma_v4_0_soft_reset,
2288         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2289         .set_powergating_state = sdma_v4_0_set_powergating_state,
2290         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2291 };
2292
2293 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2294         .type = AMDGPU_RING_TYPE_SDMA,
2295         .align_mask = 0xf,
2296         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2297         .support_64bit_ptrs = true,
2298         .vmhub = AMDGPU_MMHUB_0,
2299         .get_rptr = sdma_v4_0_ring_get_rptr,
2300         .get_wptr = sdma_v4_0_ring_get_wptr,
2301         .set_wptr = sdma_v4_0_ring_set_wptr,
2302         .emit_frame_size =
2303                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2304                 3 + /* hdp invalidate */
2305                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2306                 /* sdma_v4_0_ring_emit_vm_flush */
2307                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2308                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2309                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2310         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2311         .emit_ib = sdma_v4_0_ring_emit_ib,
2312         .emit_fence = sdma_v4_0_ring_emit_fence,
2313         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2314         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2315         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2316         .test_ring = sdma_v4_0_ring_test_ring,
2317         .test_ib = sdma_v4_0_ring_test_ib,
2318         .insert_nop = sdma_v4_0_ring_insert_nop,
2319         .pad_ib = sdma_v4_0_ring_pad_ib,
2320         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2321         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2322         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2323 };
2324
2325 /*
2326  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2327  * So create a individual constant ring_funcs for those instances.
2328  */
2329 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2330         .type = AMDGPU_RING_TYPE_SDMA,
2331         .align_mask = 0xf,
2332         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2333         .support_64bit_ptrs = true,
2334         .vmhub = AMDGPU_MMHUB_1,
2335         .get_rptr = sdma_v4_0_ring_get_rptr,
2336         .get_wptr = sdma_v4_0_ring_get_wptr,
2337         .set_wptr = sdma_v4_0_ring_set_wptr,
2338         .emit_frame_size =
2339                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2340                 3 + /* hdp invalidate */
2341                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2342                 /* sdma_v4_0_ring_emit_vm_flush */
2343                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2344                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2345                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2346         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2347         .emit_ib = sdma_v4_0_ring_emit_ib,
2348         .emit_fence = sdma_v4_0_ring_emit_fence,
2349         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2350         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2351         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2352         .test_ring = sdma_v4_0_ring_test_ring,
2353         .test_ib = sdma_v4_0_ring_test_ib,
2354         .insert_nop = sdma_v4_0_ring_insert_nop,
2355         .pad_ib = sdma_v4_0_ring_pad_ib,
2356         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2357         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2358         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2359 };
2360
2361 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2362         .type = AMDGPU_RING_TYPE_SDMA,
2363         .align_mask = 0xf,
2364         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2365         .support_64bit_ptrs = true,
2366         .vmhub = AMDGPU_MMHUB_0,
2367         .get_rptr = sdma_v4_0_ring_get_rptr,
2368         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2369         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2370         .emit_frame_size =
2371                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2372                 3 + /* hdp invalidate */
2373                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2374                 /* sdma_v4_0_ring_emit_vm_flush */
2375                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2376                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2377                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2378         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2379         .emit_ib = sdma_v4_0_ring_emit_ib,
2380         .emit_fence = sdma_v4_0_ring_emit_fence,
2381         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2382         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2383         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2384         .test_ring = sdma_v4_0_ring_test_ring,
2385         .test_ib = sdma_v4_0_ring_test_ib,
2386         .insert_nop = sdma_v4_0_ring_insert_nop,
2387         .pad_ib = sdma_v4_0_ring_pad_ib,
2388         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2389         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2390         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2391 };
2392
2393 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2394         .type = AMDGPU_RING_TYPE_SDMA,
2395         .align_mask = 0xf,
2396         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2397         .support_64bit_ptrs = true,
2398         .vmhub = AMDGPU_MMHUB_1,
2399         .get_rptr = sdma_v4_0_ring_get_rptr,
2400         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2401         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2402         .emit_frame_size =
2403                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2404                 3 + /* hdp invalidate */
2405                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2406                 /* sdma_v4_0_ring_emit_vm_flush */
2407                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2408                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2409                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2410         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2411         .emit_ib = sdma_v4_0_ring_emit_ib,
2412         .emit_fence = sdma_v4_0_ring_emit_fence,
2413         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2414         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2415         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2416         .test_ring = sdma_v4_0_ring_test_ring,
2417         .test_ib = sdma_v4_0_ring_test_ib,
2418         .insert_nop = sdma_v4_0_ring_insert_nop,
2419         .pad_ib = sdma_v4_0_ring_pad_ib,
2420         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2421         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2422         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2423 };
2424
2425 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2426 {
2427         int i;
2428
2429         for (i = 0; i < adev->sdma.num_instances; i++) {
2430                 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2431                         adev->sdma.instance[i].ring.funcs =
2432                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2433                 else
2434                         adev->sdma.instance[i].ring.funcs =
2435                                         &sdma_v4_0_ring_funcs;
2436                 adev->sdma.instance[i].ring.me = i;
2437                 if (adev->sdma.has_page_queue) {
2438                         if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2439                                 adev->sdma.instance[i].page.funcs =
2440                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2441                         else
2442                                 adev->sdma.instance[i].page.funcs =
2443                                         &sdma_v4_0_page_ring_funcs;
2444                         adev->sdma.instance[i].page.me = i;
2445                 }
2446         }
2447 }
2448
2449 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2450         .set = sdma_v4_0_set_trap_irq_state,
2451         .process = sdma_v4_0_process_trap_irq,
2452 };
2453
2454 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2455         .process = sdma_v4_0_process_illegal_inst_irq,
2456 };
2457
2458 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2459         .set = sdma_v4_0_set_ecc_irq_state,
2460         .process = amdgpu_sdma_process_ecc_irq,
2461 };
2462
2463
2464
2465 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2466 {
2467         switch (adev->sdma.num_instances) {
2468         case 1:
2469                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2470                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2471                 break;
2472         case 8:
2473                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2474                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2475                 break;
2476         case 2:
2477         default:
2478                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2479                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2480                 break;
2481         }
2482         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2483         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2484         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2485 }
2486
2487 /**
2488  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2489  *
2490  * @ring: amdgpu_ring structure holding ring information
2491  * @src_offset: src GPU address
2492  * @dst_offset: dst GPU address
2493  * @byte_count: number of bytes to xfer
2494  *
2495  * Copy GPU buffers using the DMA engine (VEGA10/12).
2496  * Used by the amdgpu ttm implementation to move pages if
2497  * registered as the asic copy callback.
2498  */
2499 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2500                                        uint64_t src_offset,
2501                                        uint64_t dst_offset,
2502                                        uint32_t byte_count,
2503                                        bool tmz)
2504 {
2505         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2506                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2507                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2508         ib->ptr[ib->length_dw++] = byte_count - 1;
2509         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2510         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2511         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2512         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2513         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2514 }
2515
2516 /**
2517  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2518  *
2519  * @ring: amdgpu_ring structure holding ring information
2520  * @src_data: value to write to buffer
2521  * @dst_offset: dst GPU address
2522  * @byte_count: number of bytes to xfer
2523  *
2524  * Fill GPU buffers using the DMA engine (VEGA10/12).
2525  */
2526 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2527                                        uint32_t src_data,
2528                                        uint64_t dst_offset,
2529                                        uint32_t byte_count)
2530 {
2531         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2532         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2533         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2534         ib->ptr[ib->length_dw++] = src_data;
2535         ib->ptr[ib->length_dw++] = byte_count - 1;
2536 }
2537
2538 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2539         .copy_max_bytes = 0x400000,
2540         .copy_num_dw = 7,
2541         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2542
2543         .fill_max_bytes = 0x400000,
2544         .fill_num_dw = 5,
2545         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2546 };
2547
2548 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2549 {
2550         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2551         if (adev->sdma.has_page_queue)
2552                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2553         else
2554                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2555 }
2556
2557 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2558         .copy_pte_num_dw = 7,
2559         .copy_pte = sdma_v4_0_vm_copy_pte,
2560
2561         .write_pte = sdma_v4_0_vm_write_pte,
2562         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2563 };
2564
2565 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2566 {
2567         struct drm_gpu_scheduler *sched;
2568         unsigned i;
2569
2570         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2571         for (i = 0; i < adev->sdma.num_instances; i++) {
2572                 if (adev->sdma.has_page_queue)
2573                         sched = &adev->sdma.instance[i].page.sched;
2574                 else
2575                         sched = &adev->sdma.instance[i].ring.sched;
2576                 adev->vm_manager.vm_pte_scheds[i] = sched;
2577         }
2578         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2579 }
2580
2581 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2582                                         uint32_t instance,
2583                                         uint32_t *sec_count)
2584 {
2585         uint32_t i;
2586         uint32_t sec_cnt;
2587
2588         /* double bits error (multiple bits) error detection is not supported */
2589         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2590                 /* the SDMA_EDC_COUNTER register in each sdma instance
2591                  * shares the same sed shift_mask
2592                  * */
2593                 sec_cnt = (value &
2594                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2595                         sdma_v4_0_ras_fields[i].sec_count_shift;
2596                 if (sec_cnt) {
2597                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2598                                 sdma_v4_0_ras_fields[i].name,
2599                                 instance, sec_cnt);
2600                         *sec_count += sec_cnt;
2601                 }
2602         }
2603 }
2604
2605 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2606                         uint32_t instance, void *ras_error_status)
2607 {
2608         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2609         uint32_t sec_count = 0;
2610         uint32_t reg_value = 0;
2611
2612         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2613         /* double bit error is not supported */
2614         if (reg_value)
2615                 sdma_v4_0_get_ras_error_count(reg_value,
2616                                 instance, &sec_count);
2617         /* err_data->ce_count should be initialized to 0
2618          * before calling into this function */
2619         err_data->ce_count += sec_count;
2620         /* double bit error is not supported
2621          * set ue count to 0 */
2622         err_data->ue_count = 0;
2623
2624         return 0;
2625 };
2626
2627 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2628 {
2629         int i;
2630
2631         /* read back edc counter registers to clear the counters */
2632         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2633                 for (i = 0; i < adev->sdma.num_instances; i++)
2634                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2635         }
2636 }
2637
2638 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2639         .ras_late_init = amdgpu_sdma_ras_late_init,
2640         .ras_fini = amdgpu_sdma_ras_fini,
2641         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2642         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2643 };
2644
2645 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2646 {
2647         switch (adev->asic_type) {
2648         case CHIP_VEGA20:
2649         case CHIP_ARCTURUS:
2650                 adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2651                 break;
2652         default:
2653                 break;
2654         }
2655 }
2656
2657 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2658         .type = AMD_IP_BLOCK_TYPE_SDMA,
2659         .major = 4,
2660         .minor = 0,
2661         .rev = 0,
2662         .funcs = &sdma_v4_0_ip_funcs,
2663 };