drm/amdgpu: Fix size overflow
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
63
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65                                    struct ttm_tt *ttm,
66                                    struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68                                       struct ttm_tt *ttm);
69
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71                                     unsigned int type,
72                                     uint64_t size_in_page)
73 {
74         return ttm_range_man_init(&adev->mman.bdev, type,
75                                   false, size_in_page);
76 }
77
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87                                 struct ttm_placement *placement)
88 {
89         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90         struct amdgpu_bo *abo;
91         static const struct ttm_place placements = {
92                 .fpfn = 0,
93                 .lpfn = 0,
94                 .mem_type = TTM_PL_SYSTEM,
95                 .flags = 0
96         };
97
98         /* Don't handle scatter gather BOs */
99         if (bo->type == ttm_bo_type_sg) {
100                 placement->num_placement = 0;
101                 placement->num_busy_placement = 0;
102                 return;
103         }
104
105         /* Object isn't an AMDGPU object so ignore */
106         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107                 placement->placement = &placements;
108                 placement->busy_placement = &placements;
109                 placement->num_placement = 1;
110                 placement->num_busy_placement = 1;
111                 return;
112         }
113
114         abo = ttm_to_amdgpu_bo(bo);
115         switch (bo->mem.mem_type) {
116         case AMDGPU_PL_GDS:
117         case AMDGPU_PL_GWS:
118         case AMDGPU_PL_OA:
119                 placement->num_placement = 0;
120                 placement->num_busy_placement = 0;
121                 return;
122
123         case TTM_PL_VRAM:
124                 if (!adev->mman.buffer_funcs_enabled) {
125                         /* Move to system memory */
126                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
127                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
128                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
129                            amdgpu_bo_in_cpu_visible_vram(abo)) {
130
131                         /* Try evicting to the CPU inaccessible part of VRAM
132                          * first, but only set GTT as busy placement, so this
133                          * BO will be evicted to GTT rather than causing other
134                          * BOs to be evicted from VRAM
135                          */
136                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
137                                                          AMDGPU_GEM_DOMAIN_GTT);
138                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
139                         abo->placements[0].lpfn = 0;
140                         abo->placement.busy_placement = &abo->placements[1];
141                         abo->placement.num_busy_placement = 1;
142                 } else {
143                         /* Move to GTT memory */
144                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
145                 }
146                 break;
147         case TTM_PL_TT:
148         default:
149                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
150                 break;
151         }
152         *placement = abo->placement;
153 }
154
155 /**
156  * amdgpu_verify_access - Verify access for a mmap call
157  *
158  * @bo: The buffer object to map
159  * @filp: The file pointer from the process performing the mmap
160  *
161  * This is called by ttm_bo_mmap() to verify whether a process
162  * has the right to mmap a BO to their process space.
163  */
164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
165 {
166         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
167
168         /*
169          * Don't verify access for KFD BOs. They don't have a GEM
170          * object associated with them.
171          */
172         if (abo->kfd_bo)
173                 return 0;
174
175         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
176                 return -EPERM;
177         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
178                                           filp->private_data);
179 }
180
181 /**
182  * amdgpu_ttm_map_buffer - Map memory into the GART windows
183  * @bo: buffer object to map
184  * @mem: memory object to map
185  * @mm_cur: range to map
186  * @num_pages: number of pages to map
187  * @window: which GART window to use
188  * @ring: DMA ring to use for the copy
189  * @tmz: if we should setup a TMZ enabled mapping
190  * @addr: resulting address inside the MC address space
191  *
192  * Setup one of the GART windows to access a specific piece of memory or return
193  * the physical address for local memory.
194  */
195 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
196                                  struct ttm_resource *mem,
197                                  struct amdgpu_res_cursor *mm_cur,
198                                  unsigned num_pages, unsigned window,
199                                  struct amdgpu_ring *ring, bool tmz,
200                                  uint64_t *addr)
201 {
202         struct amdgpu_device *adev = ring->adev;
203         struct amdgpu_job *job;
204         unsigned num_dw, num_bytes;
205         struct dma_fence *fence;
206         uint64_t src_addr, dst_addr;
207         void *cpu_addr;
208         uint64_t flags;
209         unsigned int i;
210         int r;
211
212         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
213                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
214
215         /* Map only what can't be accessed directly */
216         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
217                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
218                         mm_cur->start;
219                 return 0;
220         }
221
222         *addr = adev->gmc.gart_start;
223         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
224                 AMDGPU_GPU_PAGE_SIZE;
225         *addr += mm_cur->start & ~PAGE_MASK;
226
227         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
228         num_bytes = num_pages * 8;
229
230         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
231                                      AMDGPU_IB_POOL_DELAYED, &job);
232         if (r)
233                 return r;
234
235         src_addr = num_dw * 4;
236         src_addr += job->ibs[0].gpu_addr;
237
238         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
239         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
240         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
241                                 dst_addr, num_bytes, false);
242
243         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
244         WARN_ON(job->ibs[0].length_dw > num_dw);
245
246         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
247         if (tmz)
248                 flags |= AMDGPU_PTE_TMZ;
249
250         cpu_addr = &job->ibs[0].ptr[num_dw];
251
252         if (mem->mem_type == TTM_PL_TT) {
253                 dma_addr_t *dma_addr;
254
255                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
256                 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
257                                     cpu_addr);
258                 if (r)
259                         goto error_free;
260         } else {
261                 dma_addr_t dma_address;
262
263                 dma_address = mm_cur->start;
264                 dma_address += adev->vm_manager.vram_base_offset;
265
266                 for (i = 0; i < num_pages; ++i) {
267                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
268                                             &dma_address, flags, cpu_addr);
269                         if (r)
270                                 goto error_free;
271
272                         dma_address += PAGE_SIZE;
273                 }
274         }
275
276         r = amdgpu_job_submit(job, &adev->mman.entity,
277                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
278         if (r)
279                 goto error_free;
280
281         dma_fence_put(fence);
282
283         return r;
284
285 error_free:
286         amdgpu_job_free(job);
287         return r;
288 }
289
290 /**
291  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
292  * @adev: amdgpu device
293  * @src: buffer/address where to read from
294  * @dst: buffer/address where to write to
295  * @size: number of bytes to copy
296  * @tmz: if a secure copy should be used
297  * @resv: resv object to sync to
298  * @f: Returns the last fence if multiple jobs are submitted.
299  *
300  * The function copies @size bytes from {src->mem + src->offset} to
301  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
302  * move and different for a BO to BO copy.
303  *
304  */
305 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
306                                const struct amdgpu_copy_mem *src,
307                                const struct amdgpu_copy_mem *dst,
308                                uint64_t size, bool tmz,
309                                struct dma_resv *resv,
310                                struct dma_fence **f)
311 {
312         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
313                                         AMDGPU_GPU_PAGE_SIZE);
314
315         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
316         struct amdgpu_res_cursor src_mm, dst_mm;
317         struct dma_fence *fence = NULL;
318         int r = 0;
319
320         if (!adev->mman.buffer_funcs_enabled) {
321                 DRM_ERROR("Trying to move memory with ring turned off.\n");
322                 return -EINVAL;
323         }
324
325         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
326         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
327
328         mutex_lock(&adev->mman.gtt_window_lock);
329         while (src_mm.remaining) {
330                 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
331                 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
332                 struct dma_fence *next;
333                 uint32_t cur_size;
334                 uint64_t from, to;
335
336                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
337                  * begins at an offset, then adjust the size accordingly
338                  */
339                 cur_size = max(src_page_offset, dst_page_offset);
340                 cur_size = min(min3(src_mm.size, dst_mm.size, size),
341                                (uint64_t)(GTT_MAX_BYTES - cur_size));
342
343                 /* Map src to window 0 and dst to window 1. */
344                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
345                                           PFN_UP(cur_size + src_page_offset),
346                                           0, ring, tmz, &from);
347                 if (r)
348                         goto error;
349
350                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
351                                           PFN_UP(cur_size + dst_page_offset),
352                                           1, ring, tmz, &to);
353                 if (r)
354                         goto error;
355
356                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
357                                        resv, &next, false, true, tmz);
358                 if (r)
359                         goto error;
360
361                 dma_fence_put(fence);
362                 fence = next;
363
364                 amdgpu_res_next(&src_mm, cur_size);
365                 amdgpu_res_next(&dst_mm, cur_size);
366         }
367 error:
368         mutex_unlock(&adev->mman.gtt_window_lock);
369         if (f)
370                 *f = dma_fence_get(fence);
371         dma_fence_put(fence);
372         return r;
373 }
374
375 /*
376  * amdgpu_move_blit - Copy an entire buffer to another buffer
377  *
378  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
379  * help move buffers to and from VRAM.
380  */
381 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
382                             bool evict,
383                             struct ttm_resource *new_mem,
384                             struct ttm_resource *old_mem)
385 {
386         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
387         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
388         struct amdgpu_copy_mem src, dst;
389         struct dma_fence *fence = NULL;
390         int r;
391
392         src.bo = bo;
393         dst.bo = bo;
394         src.mem = old_mem;
395         dst.mem = new_mem;
396         src.offset = 0;
397         dst.offset = 0;
398
399         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
400                                        new_mem->num_pages << PAGE_SHIFT,
401                                        amdgpu_bo_encrypted(abo),
402                                        bo->base.resv, &fence);
403         if (r)
404                 goto error;
405
406         /* clear the space being freed */
407         if (old_mem->mem_type == TTM_PL_VRAM &&
408             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
409                 struct dma_fence *wipe_fence = NULL;
410
411                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
412                                        NULL, &wipe_fence);
413                 if (r) {
414                         goto error;
415                 } else if (wipe_fence) {
416                         dma_fence_put(fence);
417                         fence = wipe_fence;
418                 }
419         }
420
421         /* Always block for VM page tables before committing the new location */
422         if (bo->type == ttm_bo_type_kernel)
423                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
424         else
425                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
426         dma_fence_put(fence);
427         return r;
428
429 error:
430         if (fence)
431                 dma_fence_wait(fence, false);
432         dma_fence_put(fence);
433         return r;
434 }
435
436 /*
437  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
438  *
439  * Called by amdgpu_bo_move()
440  */
441 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
442                                struct ttm_resource *mem)
443 {
444         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
445         struct amdgpu_res_cursor cursor;
446
447         if (mem->mem_type == TTM_PL_SYSTEM ||
448             mem->mem_type == TTM_PL_TT)
449                 return true;
450         if (mem->mem_type != TTM_PL_VRAM)
451                 return false;
452
453         amdgpu_res_first(mem, 0, mem_size, &cursor);
454
455         /* ttm_resource_ioremap only supports contiguous memory */
456         if (cursor.size != mem_size)
457                 return false;
458
459         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
460 }
461
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468                           struct ttm_operation_ctx *ctx,
469                           struct ttm_resource *new_mem,
470                           struct ttm_place *hop)
471 {
472         struct amdgpu_device *adev;
473         struct amdgpu_bo *abo;
474         struct ttm_resource *old_mem = &bo->mem;
475         int r;
476
477         if (new_mem->mem_type == TTM_PL_TT) {
478                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
479                 if (r)
480                         return r;
481         }
482
483         /* Can't move a pinned BO */
484         abo = ttm_to_amdgpu_bo(bo);
485         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
486                 return -EINVAL;
487
488         adev = amdgpu_ttm_adev(bo->bdev);
489
490         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
491                 ttm_bo_move_null(bo, new_mem);
492                 goto out;
493         }
494         if (old_mem->mem_type == TTM_PL_SYSTEM &&
495             new_mem->mem_type == TTM_PL_TT) {
496                 ttm_bo_move_null(bo, new_mem);
497                 goto out;
498         }
499         if (old_mem->mem_type == TTM_PL_TT &&
500             new_mem->mem_type == TTM_PL_SYSTEM) {
501                 r = ttm_bo_wait_ctx(bo, ctx);
502                 if (r)
503                         return r;
504
505                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
506                 ttm_resource_free(bo, &bo->mem);
507                 ttm_bo_assign_mem(bo, new_mem);
508                 goto out;
509         }
510
511         if (old_mem->mem_type == AMDGPU_PL_GDS ||
512             old_mem->mem_type == AMDGPU_PL_GWS ||
513             old_mem->mem_type == AMDGPU_PL_OA ||
514             new_mem->mem_type == AMDGPU_PL_GDS ||
515             new_mem->mem_type == AMDGPU_PL_GWS ||
516             new_mem->mem_type == AMDGPU_PL_OA) {
517                 /* Nothing to save here */
518                 ttm_bo_move_null(bo, new_mem);
519                 goto out;
520         }
521
522         if (adev->mman.buffer_funcs_enabled) {
523                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
524                       new_mem->mem_type == TTM_PL_VRAM) ||
525                      (old_mem->mem_type == TTM_PL_VRAM &&
526                       new_mem->mem_type == TTM_PL_SYSTEM))) {
527                         hop->fpfn = 0;
528                         hop->lpfn = 0;
529                         hop->mem_type = TTM_PL_TT;
530                         hop->flags = 0;
531                         return -EMULTIHOP;
532                 }
533
534                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
535         } else {
536                 r = -ENODEV;
537         }
538
539         if (r) {
540                 /* Check that all memory is CPU accessible */
541                 if (!amdgpu_mem_visible(adev, old_mem) ||
542                     !amdgpu_mem_visible(adev, new_mem)) {
543                         pr_err("Move buffer fallback to memcpy unavailable\n");
544                         return r;
545                 }
546
547                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
548                 if (r)
549                         return r;
550         }
551
552         if (bo->type == ttm_bo_type_device &&
553             new_mem->mem_type == TTM_PL_VRAM &&
554             old_mem->mem_type != TTM_PL_VRAM) {
555                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
556                  * accesses the BO after it's moved.
557                  */
558                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
559         }
560
561 out:
562         /* update statistics */
563         atomic64_add(bo->base.size, &adev->num_bytes_moved);
564         amdgpu_bo_move_notify(bo, evict, new_mem);
565         return 0;
566 }
567
568 /*
569  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
570  *
571  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
572  */
573 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
574 {
575         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576         struct drm_mm_node *mm_node = mem->mm_node;
577         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
578
579         switch (mem->mem_type) {
580         case TTM_PL_SYSTEM:
581                 /* system memory */
582                 return 0;
583         case TTM_PL_TT:
584                 break;
585         case TTM_PL_VRAM:
586                 mem->bus.offset = mem->start << PAGE_SHIFT;
587                 /* check if it's visible */
588                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
589                         return -EINVAL;
590                 /* Only physically contiguous buffers apply. In a contiguous
591                  * buffer, size of the first mm_node would match the number of
592                  * pages in ttm_resource.
593                  */
594                 if (adev->mman.aper_base_kaddr &&
595                     (mm_node->size == mem->num_pages))
596                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
597                                         mem->bus.offset;
598
599                 mem->bus.offset += adev->gmc.aper_base;
600                 mem->bus.is_iomem = true;
601                 if (adev->gmc.xgmi.connected_to_cpu)
602                         mem->bus.caching = ttm_cached;
603                 else
604                         mem->bus.caching = ttm_write_combined;
605                 break;
606         default:
607                 return -EINVAL;
608         }
609         return 0;
610 }
611
612 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
613                                            unsigned long page_offset)
614 {
615         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
616         struct amdgpu_res_cursor cursor;
617
618         amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
619         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
620 }
621
622 /**
623  * amdgpu_ttm_domain_start - Returns GPU start address
624  * @adev: amdgpu device object
625  * @type: type of the memory
626  *
627  * Returns:
628  * GPU start address of a memory domain
629  */
630
631 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
632 {
633         switch (type) {
634         case TTM_PL_TT:
635                 return adev->gmc.gart_start;
636         case TTM_PL_VRAM:
637                 return adev->gmc.vram_start;
638         }
639
640         return 0;
641 }
642
643 /*
644  * TTM backend functions.
645  */
646 struct amdgpu_ttm_tt {
647         struct ttm_tt   ttm;
648         struct drm_gem_object   *gobj;
649         u64                     offset;
650         uint64_t                userptr;
651         struct task_struct      *usertask;
652         uint32_t                userflags;
653         bool                    bound;
654 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
655         struct hmm_range        *range;
656 #endif
657 };
658
659 #ifdef CONFIG_DRM_AMDGPU_USERPTR
660 /*
661  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
662  * memory and start HMM tracking CPU page table update
663  *
664  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
665  * once afterwards to stop HMM tracking
666  */
667 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
668 {
669         struct ttm_tt *ttm = bo->tbo.ttm;
670         struct amdgpu_ttm_tt *gtt = (void *)ttm;
671         unsigned long start = gtt->userptr;
672         struct vm_area_struct *vma;
673         struct hmm_range *range;
674         unsigned long timeout;
675         struct mm_struct *mm;
676         unsigned long i;
677         int r = 0;
678
679         mm = bo->notifier.mm;
680         if (unlikely(!mm)) {
681                 DRM_DEBUG_DRIVER("BO is not registered?\n");
682                 return -EFAULT;
683         }
684
685         /* Another get_user_pages is running at the same time?? */
686         if (WARN_ON(gtt->range))
687                 return -EFAULT;
688
689         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
690                 return -ESRCH;
691
692         range = kzalloc(sizeof(*range), GFP_KERNEL);
693         if (unlikely(!range)) {
694                 r = -ENOMEM;
695                 goto out;
696         }
697         range->notifier = &bo->notifier;
698         range->start = bo->notifier.interval_tree.start;
699         range->end = bo->notifier.interval_tree.last + 1;
700         range->default_flags = HMM_PFN_REQ_FAULT;
701         if (!amdgpu_ttm_tt_is_readonly(ttm))
702                 range->default_flags |= HMM_PFN_REQ_WRITE;
703
704         range->hmm_pfns = kvmalloc_array(ttm->num_pages,
705                                          sizeof(*range->hmm_pfns), GFP_KERNEL);
706         if (unlikely(!range->hmm_pfns)) {
707                 r = -ENOMEM;
708                 goto out_free_ranges;
709         }
710
711         mmap_read_lock(mm);
712         vma = find_vma(mm, start);
713         if (unlikely(!vma || start < vma->vm_start)) {
714                 r = -EFAULT;
715                 goto out_unlock;
716         }
717         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
718                 vma->vm_file)) {
719                 r = -EPERM;
720                 goto out_unlock;
721         }
722         mmap_read_unlock(mm);
723         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
724
725 retry:
726         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
727
728         mmap_read_lock(mm);
729         r = hmm_range_fault(range);
730         mmap_read_unlock(mm);
731         if (unlikely(r)) {
732                 /*
733                  * FIXME: This timeout should encompass the retry from
734                  * mmu_interval_read_retry() as well.
735                  */
736                 if (r == -EBUSY && !time_after(jiffies, timeout))
737                         goto retry;
738                 goto out_free_pfns;
739         }
740
741         /*
742          * Due to default_flags, all pages are HMM_PFN_VALID or
743          * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
744          * the notifier_lock, and mmu_interval_read_retry() must be done first.
745          */
746         for (i = 0; i < ttm->num_pages; i++)
747                 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
748
749         gtt->range = range;
750         mmput(mm);
751
752         return 0;
753
754 out_unlock:
755         mmap_read_unlock(mm);
756 out_free_pfns:
757         kvfree(range->hmm_pfns);
758 out_free_ranges:
759         kfree(range);
760 out:
761         mmput(mm);
762         return r;
763 }
764
765 /*
766  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
767  * Check if the pages backing this ttm range have been invalidated
768  *
769  * Returns: true if pages are still valid
770  */
771 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
772 {
773         struct amdgpu_ttm_tt *gtt = (void *)ttm;
774         bool r = false;
775
776         if (!gtt || !gtt->userptr)
777                 return false;
778
779         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
780                 gtt->userptr, ttm->num_pages);
781
782         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
783                 "No user pages to check\n");
784
785         if (gtt->range) {
786                 /*
787                  * FIXME: Must always hold notifier_lock for this, and must
788                  * not ignore the return code.
789                  */
790                 r = mmu_interval_read_retry(gtt->range->notifier,
791                                          gtt->range->notifier_seq);
792                 kvfree(gtt->range->hmm_pfns);
793                 kfree(gtt->range);
794                 gtt->range = NULL;
795         }
796
797         return !r;
798 }
799 #endif
800
801 /*
802  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
803  *
804  * Called by amdgpu_cs_list_validate(). This creates the page list
805  * that backs user memory and will ultimately be mapped into the device
806  * address space.
807  */
808 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
809 {
810         unsigned long i;
811
812         for (i = 0; i < ttm->num_pages; ++i)
813                 ttm->pages[i] = pages ? pages[i] : NULL;
814 }
815
816 /*
817  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
818  *
819  * Called by amdgpu_ttm_backend_bind()
820  **/
821 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
822                                      struct ttm_tt *ttm)
823 {
824         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
825         struct amdgpu_ttm_tt *gtt = (void *)ttm;
826         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
827         enum dma_data_direction direction = write ?
828                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
829         int r;
830
831         /* Allocate an SG array and squash pages into it */
832         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
833                                       (u64)ttm->num_pages << PAGE_SHIFT,
834                                       GFP_KERNEL);
835         if (r)
836                 goto release_sg;
837
838         /* Map SG to device */
839         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
840         if (r)
841                 goto release_sg;
842
843         /* convert SG to linear array of pages and dma addresses */
844         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
845                                        ttm->num_pages);
846
847         return 0;
848
849 release_sg:
850         kfree(ttm->sg);
851         ttm->sg = NULL;
852         return r;
853 }
854
855 /*
856  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
857  */
858 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
859                                         struct ttm_tt *ttm)
860 {
861         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
862         struct amdgpu_ttm_tt *gtt = (void *)ttm;
863         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
864         enum dma_data_direction direction = write ?
865                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
866
867         /* double check that we don't free the table twice */
868         if (!ttm->sg || !ttm->sg->sgl)
869                 return;
870
871         /* unmap the pages mapped to the device */
872         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
873         sg_free_table(ttm->sg);
874
875 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
876         if (gtt->range) {
877                 unsigned long i;
878
879                 for (i = 0; i < ttm->num_pages; i++) {
880                         if (ttm->pages[i] !=
881                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
882                                 break;
883                 }
884
885                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
886         }
887 #endif
888 }
889
890 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
891                                 struct ttm_buffer_object *tbo,
892                                 uint64_t flags)
893 {
894         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
895         struct ttm_tt *ttm = tbo->ttm;
896         struct amdgpu_ttm_tt *gtt = (void *)ttm;
897         int r;
898
899         if (amdgpu_bo_encrypted(abo))
900                 flags |= AMDGPU_PTE_TMZ;
901
902         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
903                 uint64_t page_idx = 1;
904
905                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
906                                 ttm->pages, gtt->ttm.dma_address, flags);
907                 if (r)
908                         goto gart_bind_fail;
909
910                 /* The memory type of the first page defaults to UC. Now
911                  * modify the memory type to NC from the second page of
912                  * the BO onward.
913                  */
914                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
915                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
916
917                 r = amdgpu_gart_bind(adev,
918                                 gtt->offset + (page_idx << PAGE_SHIFT),
919                                 ttm->num_pages - page_idx,
920                                 &ttm->pages[page_idx],
921                                 &(gtt->ttm.dma_address[page_idx]), flags);
922         } else {
923                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
924                                      ttm->pages, gtt->ttm.dma_address, flags);
925         }
926
927 gart_bind_fail:
928         if (r)
929                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
930                           ttm->num_pages, gtt->offset);
931
932         return r;
933 }
934
935 /*
936  * amdgpu_ttm_backend_bind - Bind GTT memory
937  *
938  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
939  * This handles binding GTT memory to the device address space.
940  */
941 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
942                                    struct ttm_tt *ttm,
943                                    struct ttm_resource *bo_mem)
944 {
945         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
946         struct amdgpu_ttm_tt *gtt = (void*)ttm;
947         uint64_t flags;
948         int r = 0;
949
950         if (!bo_mem)
951                 return -EINVAL;
952
953         if (gtt->bound)
954                 return 0;
955
956         if (gtt->userptr) {
957                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
958                 if (r) {
959                         DRM_ERROR("failed to pin userptr\n");
960                         return r;
961                 }
962         }
963         if (!ttm->num_pages) {
964                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
965                      ttm->num_pages, bo_mem, ttm);
966         }
967
968         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
969             bo_mem->mem_type == AMDGPU_PL_GWS ||
970             bo_mem->mem_type == AMDGPU_PL_OA)
971                 return -EINVAL;
972
973         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
974                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
975                 return 0;
976         }
977
978         /* compute PTE flags relevant to this BO memory */
979         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
980
981         /* bind pages into GART page tables */
982         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
983         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
984                 ttm->pages, gtt->ttm.dma_address, flags);
985
986         if (r)
987                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
988                           ttm->num_pages, gtt->offset);
989         gtt->bound = true;
990         return r;
991 }
992
993 /*
994  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
995  * through AGP or GART aperture.
996  *
997  * If bo is accessible through AGP aperture, then use AGP aperture
998  * to access bo; otherwise allocate logical space in GART aperture
999  * and map bo to GART aperture.
1000  */
1001 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1002 {
1003         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1004         struct ttm_operation_ctx ctx = { false, false };
1005         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1006         struct ttm_resource tmp;
1007         struct ttm_placement placement;
1008         struct ttm_place placements;
1009         uint64_t addr, flags;
1010         int r;
1011
1012         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1013                 return 0;
1014
1015         addr = amdgpu_gmc_agp_addr(bo);
1016         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1017                 bo->mem.start = addr >> PAGE_SHIFT;
1018         } else {
1019
1020                 /* allocate GART space */
1021                 tmp = bo->mem;
1022                 tmp.mm_node = NULL;
1023                 placement.num_placement = 1;
1024                 placement.placement = &placements;
1025                 placement.num_busy_placement = 1;
1026                 placement.busy_placement = &placements;
1027                 placements.fpfn = 0;
1028                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1029                 placements.mem_type = TTM_PL_TT;
1030                 placements.flags = bo->mem.placement;
1031
1032                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1033                 if (unlikely(r))
1034                         return r;
1035
1036                 /* compute PTE flags for this buffer object */
1037                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1038
1039                 /* Bind pages */
1040                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1041                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1042                 if (unlikely(r)) {
1043                         ttm_resource_free(bo, &tmp);
1044                         return r;
1045                 }
1046
1047                 ttm_resource_free(bo, &bo->mem);
1048                 bo->mem = tmp;
1049         }
1050
1051         return 0;
1052 }
1053
1054 /*
1055  * amdgpu_ttm_recover_gart - Rebind GTT pages
1056  *
1057  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1058  * rebind GTT pages during a GPU reset.
1059  */
1060 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1061 {
1062         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1063         uint64_t flags;
1064         int r;
1065
1066         if (!tbo->ttm)
1067                 return 0;
1068
1069         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1070         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1071
1072         return r;
1073 }
1074
1075 /*
1076  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1077  *
1078  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1079  * ttm_tt_destroy().
1080  */
1081 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1082                                       struct ttm_tt *ttm)
1083 {
1084         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1085         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1086         int r;
1087
1088         /* if the pages have userptr pinning then clear that first */
1089         if (gtt->userptr)
1090                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1091
1092         if (!gtt->bound)
1093                 return;
1094
1095         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1096                 return;
1097
1098         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1099         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1100         if (r)
1101                 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1102                           gtt->ttm.num_pages, gtt->offset);
1103         gtt->bound = false;
1104 }
1105
1106 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1107                                        struct ttm_tt *ttm)
1108 {
1109         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1110
1111         amdgpu_ttm_backend_unbind(bdev, ttm);
1112         ttm_tt_destroy_common(bdev, ttm);
1113         if (gtt->usertask)
1114                 put_task_struct(gtt->usertask);
1115
1116         ttm_tt_fini(&gtt->ttm);
1117         kfree(gtt);
1118 }
1119
1120 /**
1121  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1122  *
1123  * @bo: The buffer object to create a GTT ttm_tt object around
1124  * @page_flags: Page flags to be added to the ttm_tt object
1125  *
1126  * Called by ttm_tt_create().
1127  */
1128 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1129                                            uint32_t page_flags)
1130 {
1131         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1132         struct amdgpu_ttm_tt *gtt;
1133         enum ttm_caching caching;
1134
1135         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1136         if (gtt == NULL) {
1137                 return NULL;
1138         }
1139         gtt->gobj = &bo->base;
1140
1141         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1142                 caching = ttm_write_combined;
1143         else
1144                 caching = ttm_cached;
1145
1146         /* allocate space for the uninitialized page entries */
1147         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1148                 kfree(gtt);
1149                 return NULL;
1150         }
1151         return &gtt->ttm;
1152 }
1153
1154 /*
1155  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1156  *
1157  * Map the pages of a ttm_tt object to an address space visible
1158  * to the underlying device.
1159  */
1160 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1161                                   struct ttm_tt *ttm,
1162                                   struct ttm_operation_ctx *ctx)
1163 {
1164         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1165         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1166
1167         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1168         if (gtt && gtt->userptr) {
1169                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1170                 if (!ttm->sg)
1171                         return -ENOMEM;
1172
1173                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1174                 return 0;
1175         }
1176
1177         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1178                 if (!ttm->sg) {
1179                         struct dma_buf_attachment *attach;
1180                         struct sg_table *sgt;
1181
1182                         attach = gtt->gobj->import_attach;
1183                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1184                         if (IS_ERR(sgt))
1185                                 return PTR_ERR(sgt);
1186
1187                         ttm->sg = sgt;
1188                 }
1189
1190                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
1191                                                ttm->num_pages);
1192                 return 0;
1193         }
1194
1195         return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1196 }
1197
1198 /*
1199  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1200  *
1201  * Unmaps pages of a ttm_tt object from the device address space and
1202  * unpopulates the page array backing it.
1203  */
1204 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1205                                      struct ttm_tt *ttm)
1206 {
1207         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1208         struct amdgpu_device *adev;
1209
1210         if (gtt && gtt->userptr) {
1211                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1212                 kfree(ttm->sg);
1213                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1214                 return;
1215         }
1216
1217         if (ttm->sg && gtt->gobj->import_attach) {
1218                 struct dma_buf_attachment *attach;
1219
1220                 attach = gtt->gobj->import_attach;
1221                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1222                 ttm->sg = NULL;
1223                 return;
1224         }
1225
1226         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1227                 return;
1228
1229         adev = amdgpu_ttm_adev(bdev);
1230         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1231 }
1232
1233 /**
1234  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235  * task
1236  *
1237  * @bo: The ttm_buffer_object to bind this userptr to
1238  * @addr:  The address in the current tasks VM space to use
1239  * @flags: Requirements of userptr object.
1240  *
1241  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1242  * to current task
1243  */
1244 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1245                               uint64_t addr, uint32_t flags)
1246 {
1247         struct amdgpu_ttm_tt *gtt;
1248
1249         if (!bo->ttm) {
1250                 /* TODO: We want a separate TTM object type for userptrs */
1251                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1252                 if (bo->ttm == NULL)
1253                         return -ENOMEM;
1254         }
1255
1256         gtt = (void *)bo->ttm;
1257         gtt->userptr = addr;
1258         gtt->userflags = flags;
1259
1260         if (gtt->usertask)
1261                 put_task_struct(gtt->usertask);
1262         gtt->usertask = current->group_leader;
1263         get_task_struct(gtt->usertask);
1264
1265         return 0;
1266 }
1267
1268 /*
1269  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1270  */
1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1272 {
1273         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1274
1275         if (gtt == NULL)
1276                 return NULL;
1277
1278         if (gtt->usertask == NULL)
1279                 return NULL;
1280
1281         return gtt->usertask->mm;
1282 }
1283
1284 /*
1285  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1286  * address range for the current task.
1287  *
1288  */
1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1290                                   unsigned long end)
1291 {
1292         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1293         unsigned long size;
1294
1295         if (gtt == NULL || !gtt->userptr)
1296                 return false;
1297
1298         /* Return false if no part of the ttm_tt object lies within
1299          * the range
1300          */
1301         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1302         if (gtt->userptr > end || gtt->userptr + size <= start)
1303                 return false;
1304
1305         return true;
1306 }
1307
1308 /*
1309  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1310  */
1311 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1312 {
1313         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1314
1315         if (gtt == NULL || !gtt->userptr)
1316                 return false;
1317
1318         return true;
1319 }
1320
1321 /*
1322  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1323  */
1324 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1325 {
1326         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327
1328         if (gtt == NULL)
1329                 return false;
1330
1331         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1332 }
1333
1334 /**
1335  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1336  *
1337  * @ttm: The ttm_tt object to compute the flags for
1338  * @mem: The memory registry backing this ttm_tt object
1339  *
1340  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1341  */
1342 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1343 {
1344         uint64_t flags = 0;
1345
1346         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1347                 flags |= AMDGPU_PTE_VALID;
1348
1349         if (mem && mem->mem_type == TTM_PL_TT) {
1350                 flags |= AMDGPU_PTE_SYSTEM;
1351
1352                 if (ttm->caching == ttm_cached)
1353                         flags |= AMDGPU_PTE_SNOOPED;
1354         }
1355
1356         if (mem && mem->mem_type == TTM_PL_VRAM &&
1357                         mem->bus.caching == ttm_cached)
1358                 flags |= AMDGPU_PTE_SNOOPED;
1359
1360         return flags;
1361 }
1362
1363 /**
1364  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1365  *
1366  * @adev: amdgpu_device pointer
1367  * @ttm: The ttm_tt object to compute the flags for
1368  * @mem: The memory registry backing this ttm_tt object
1369  *
1370  * Figure out the flags to use for a VM PTE (Page Table Entry).
1371  */
1372 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1373                                  struct ttm_resource *mem)
1374 {
1375         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1376
1377         flags |= adev->gart.gart_pte_flags;
1378         flags |= AMDGPU_PTE_READABLE;
1379
1380         if (!amdgpu_ttm_tt_is_readonly(ttm))
1381                 flags |= AMDGPU_PTE_WRITEABLE;
1382
1383         return flags;
1384 }
1385
1386 /*
1387  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1388  * object.
1389  *
1390  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1391  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1392  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1393  * used to clean out a memory space.
1394  */
1395 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1396                                             const struct ttm_place *place)
1397 {
1398         unsigned long num_pages = bo->mem.num_pages;
1399         struct amdgpu_res_cursor cursor;
1400         struct dma_resv_list *flist;
1401         struct dma_fence *f;
1402         int i;
1403
1404         if (bo->type == ttm_bo_type_kernel &&
1405             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1406                 return false;
1407
1408         /* If bo is a KFD BO, check if the bo belongs to the current process.
1409          * If true, then return false as any KFD process needs all its BOs to
1410          * be resident to run successfully
1411          */
1412         flist = dma_resv_get_list(bo->base.resv);
1413         if (flist) {
1414                 for (i = 0; i < flist->shared_count; ++i) {
1415                         f = rcu_dereference_protected(flist->shared[i],
1416                                 dma_resv_held(bo->base.resv));
1417                         if (amdkfd_fence_check_mm(f, current->mm))
1418                                 return false;
1419                 }
1420         }
1421
1422         switch (bo->mem.mem_type) {
1423         case TTM_PL_TT:
1424                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1425                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1426                         return false;
1427                 return true;
1428
1429         case TTM_PL_VRAM:
1430                 /* Check each drm MM node individually */
1431                 amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT,
1432                                  &cursor);
1433                 while (cursor.remaining) {
1434                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1435                             && !(place->lpfn &&
1436                                  place->lpfn <= PFN_DOWN(cursor.start)))
1437                                 return true;
1438
1439                         amdgpu_res_next(&cursor, cursor.size);
1440                 }
1441                 return false;
1442
1443         default:
1444                 break;
1445         }
1446
1447         return ttm_bo_eviction_valuable(bo, place);
1448 }
1449
1450 /**
1451  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1452  *
1453  * @bo:  The buffer object to read/write
1454  * @offset:  Offset into buffer object
1455  * @buf:  Secondary buffer to write/read from
1456  * @len: Length in bytes of access
1457  * @write:  true if writing
1458  *
1459  * This is used to access VRAM that backs a buffer object via MMIO
1460  * access for debugging purposes.
1461  */
1462 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1463                                     unsigned long offset, void *buf, int len,
1464                                     int write)
1465 {
1466         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1467         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1468         struct amdgpu_res_cursor cursor;
1469         unsigned long flags;
1470         uint32_t value = 0;
1471         int ret = 0;
1472
1473         if (bo->mem.mem_type != TTM_PL_VRAM)
1474                 return -EIO;
1475
1476         amdgpu_res_first(&bo->mem, offset, len, &cursor);
1477         while (cursor.remaining) {
1478                 uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1479                 uint64_t bytes = 4 - (cursor.start & 3);
1480                 uint32_t shift = (cursor.start & 3) * 8;
1481                 uint32_t mask = 0xffffffff << shift;
1482
1483                 if (cursor.size < bytes) {
1484                         mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1485                         bytes = cursor.size;
1486                 }
1487
1488                 if (mask != 0xffffffff) {
1489                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1490                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1491                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1492                         value = RREG32_NO_KIQ(mmMM_DATA);
1493                         if (write) {
1494                                 value &= ~mask;
1495                                 value |= (*(uint32_t *)buf << shift) & mask;
1496                                 WREG32_NO_KIQ(mmMM_DATA, value);
1497                         }
1498                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1499                         if (!write) {
1500                                 value = (value & mask) >> shift;
1501                                 memcpy(buf, &value, bytes);
1502                         }
1503                 } else {
1504                         bytes = cursor.size & ~0x3ULL;
1505                         amdgpu_device_vram_access(adev, cursor.start,
1506                                                   (uint32_t *)buf, bytes,
1507                                                   write);
1508                 }
1509
1510                 ret += bytes;
1511                 buf = (uint8_t *)buf + bytes;
1512                 amdgpu_res_next(&cursor, bytes);
1513         }
1514
1515         return ret;
1516 }
1517
1518 static void
1519 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1520 {
1521         amdgpu_bo_move_notify(bo, false, NULL);
1522 }
1523
1524 static struct ttm_device_funcs amdgpu_bo_driver = {
1525         .ttm_tt_create = &amdgpu_ttm_tt_create,
1526         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1527         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1528         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1529         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1530         .evict_flags = &amdgpu_evict_flags,
1531         .move = &amdgpu_bo_move,
1532         .verify_access = &amdgpu_verify_access,
1533         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1534         .release_notify = &amdgpu_bo_release_notify,
1535         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1536         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1537         .access_memory = &amdgpu_ttm_access_memory,
1538         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1539 };
1540
1541 /*
1542  * Firmware Reservation functions
1543  */
1544 /**
1545  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1546  *
1547  * @adev: amdgpu_device pointer
1548  *
1549  * free fw reserved vram if it has been reserved.
1550  */
1551 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1552 {
1553         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1554                 NULL, &adev->mman.fw_vram_usage_va);
1555 }
1556
1557 /**
1558  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1559  *
1560  * @adev: amdgpu_device pointer
1561  *
1562  * create bo vram reservation from fw.
1563  */
1564 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1565 {
1566         uint64_t vram_size = adev->gmc.visible_vram_size;
1567
1568         adev->mman.fw_vram_usage_va = NULL;
1569         adev->mman.fw_vram_usage_reserved_bo = NULL;
1570
1571         if (adev->mman.fw_vram_usage_size == 0 ||
1572             adev->mman.fw_vram_usage_size > vram_size)
1573                 return 0;
1574
1575         return amdgpu_bo_create_kernel_at(adev,
1576                                           adev->mman.fw_vram_usage_start_offset,
1577                                           adev->mman.fw_vram_usage_size,
1578                                           AMDGPU_GEM_DOMAIN_VRAM,
1579                                           &adev->mman.fw_vram_usage_reserved_bo,
1580                                           &adev->mman.fw_vram_usage_va);
1581 }
1582
1583 /*
1584  * Memoy training reservation functions
1585  */
1586
1587 /**
1588  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1589  *
1590  * @adev: amdgpu_device pointer
1591  *
1592  * free memory training reserved vram if it has been reserved.
1593  */
1594 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1595 {
1596         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1597
1598         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1599         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1600         ctx->c2p_bo = NULL;
1601
1602         return 0;
1603 }
1604
1605 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1606 {
1607         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1608
1609         memset(ctx, 0, sizeof(*ctx));
1610
1611         ctx->c2p_train_data_offset =
1612                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1613         ctx->p2c_train_data_offset =
1614                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1615         ctx->train_data_size =
1616                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1617
1618         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1619                         ctx->train_data_size,
1620                         ctx->p2c_train_data_offset,
1621                         ctx->c2p_train_data_offset);
1622 }
1623
1624 /*
1625  * reserve TMR memory at the top of VRAM which holds
1626  * IP Discovery data and is protected by PSP.
1627  */
1628 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1629 {
1630         int ret;
1631         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1632         bool mem_train_support = false;
1633
1634         if (!amdgpu_sriov_vf(adev)) {
1635                 ret = amdgpu_mem_train_support(adev);
1636                 if (ret == 1)
1637                         mem_train_support = true;
1638                 else if (ret == -1)
1639                         return -EINVAL;
1640                 else
1641                         DRM_DEBUG("memory training does not support!\n");
1642         }
1643
1644         /*
1645          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1646          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1647          *
1648          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1649          * discovery data and G6 memory training data respectively
1650          */
1651         adev->mman.discovery_tmr_size =
1652                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1653         if (!adev->mman.discovery_tmr_size)
1654                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1655
1656         if (mem_train_support) {
1657                 /* reserve vram for mem train according to TMR location */
1658                 amdgpu_ttm_training_data_block_init(adev);
1659                 ret = amdgpu_bo_create_kernel_at(adev,
1660                                          ctx->c2p_train_data_offset,
1661                                          ctx->train_data_size,
1662                                          AMDGPU_GEM_DOMAIN_VRAM,
1663                                          &ctx->c2p_bo,
1664                                          NULL);
1665                 if (ret) {
1666                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1667                         amdgpu_ttm_training_reserve_vram_fini(adev);
1668                         return ret;
1669                 }
1670                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1671         }
1672
1673         ret = amdgpu_bo_create_kernel_at(adev,
1674                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1675                                 adev->mman.discovery_tmr_size,
1676                                 AMDGPU_GEM_DOMAIN_VRAM,
1677                                 &adev->mman.discovery_memory,
1678                                 NULL);
1679         if (ret) {
1680                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1681                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1682                 return ret;
1683         }
1684
1685         return 0;
1686 }
1687
1688 /*
1689  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1690  * gtt/vram related fields.
1691  *
1692  * This initializes all of the memory space pools that the TTM layer
1693  * will need such as the GTT space (system memory mapped to the device),
1694  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1695  * can be mapped per VMID.
1696  */
1697 int amdgpu_ttm_init(struct amdgpu_device *adev)
1698 {
1699         uint64_t gtt_size;
1700         int r;
1701         u64 vis_vram_limit;
1702
1703         mutex_init(&adev->mman.gtt_window_lock);
1704
1705         /* No others user of address space so set it to 0 */
1706         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1707                                adev_to_drm(adev)->anon_inode->i_mapping,
1708                                adev_to_drm(adev)->vma_offset_manager,
1709                                adev->need_swiotlb,
1710                                dma_addressing_limited(adev->dev));
1711         if (r) {
1712                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1713                 return r;
1714         }
1715         adev->mman.initialized = true;
1716
1717         /* Initialize VRAM pool with all of VRAM divided into pages */
1718         r = amdgpu_vram_mgr_init(adev);
1719         if (r) {
1720                 DRM_ERROR("Failed initializing VRAM heap.\n");
1721                 return r;
1722         }
1723
1724         /* Reduce size of CPU-visible VRAM if requested */
1725         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1726         if (amdgpu_vis_vram_limit > 0 &&
1727             vis_vram_limit <= adev->gmc.visible_vram_size)
1728                 adev->gmc.visible_vram_size = vis_vram_limit;
1729
1730         /* Change the size here instead of the init above so only lpfn is affected */
1731         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1732 #ifdef CONFIG_64BIT
1733 #ifdef CONFIG_X86
1734         if (adev->gmc.xgmi.connected_to_cpu)
1735                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1736                                 adev->gmc.visible_vram_size);
1737
1738         else
1739 #endif
1740                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1741                                 adev->gmc.visible_vram_size);
1742 #endif
1743
1744         /*
1745          *The reserved vram for firmware must be pinned to the specified
1746          *place on the VRAM, so reserve it early.
1747          */
1748         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1749         if (r) {
1750                 return r;
1751         }
1752
1753         /*
1754          * only NAVI10 and onwards ASIC support for IP discovery.
1755          * If IP discovery enabled, a block of memory should be
1756          * reserved for IP discovey.
1757          */
1758         if (adev->mman.discovery_bin) {
1759                 r = amdgpu_ttm_reserve_tmr(adev);
1760                 if (r)
1761                         return r;
1762         }
1763
1764         /* allocate memory as required for VGA
1765          * This is used for VGA emulation and pre-OS scanout buffers to
1766          * avoid display artifacts while transitioning between pre-OS
1767          * and driver.  */
1768         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1769                                        AMDGPU_GEM_DOMAIN_VRAM,
1770                                        &adev->mman.stolen_vga_memory,
1771                                        NULL);
1772         if (r)
1773                 return r;
1774         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1775                                        adev->mman.stolen_extended_size,
1776                                        AMDGPU_GEM_DOMAIN_VRAM,
1777                                        &adev->mman.stolen_extended_memory,
1778                                        NULL);
1779         if (r)
1780                 return r;
1781
1782         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1783                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1784
1785         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1786          * or whatever the user passed on module init */
1787         if (amdgpu_gtt_size == -1) {
1788                 struct sysinfo si;
1789
1790                 si_meminfo(&si);
1791                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1792                                adev->gmc.mc_vram_size),
1793                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1794         }
1795         else
1796                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1797
1798         /* Initialize GTT memory pool */
1799         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1800         if (r) {
1801                 DRM_ERROR("Failed initializing GTT heap.\n");
1802                 return r;
1803         }
1804         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1805                  (unsigned)(gtt_size / (1024 * 1024)));
1806
1807         /* Initialize various on-chip memory pools */
1808         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1809         if (r) {
1810                 DRM_ERROR("Failed initializing GDS heap.\n");
1811                 return r;
1812         }
1813
1814         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1815         if (r) {
1816                 DRM_ERROR("Failed initializing gws heap.\n");
1817                 return r;
1818         }
1819
1820         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1821         if (r) {
1822                 DRM_ERROR("Failed initializing oa heap.\n");
1823                 return r;
1824         }
1825
1826         return 0;
1827 }
1828
1829 /*
1830  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1831  */
1832 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1833 {
1834         if (!adev->mman.initialized)
1835                 return;
1836
1837         amdgpu_ttm_training_reserve_vram_fini(adev);
1838         /* return the stolen vga memory back to VRAM */
1839         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1840         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1841         /* return the IP Discovery TMR memory back to VRAM */
1842         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1843         amdgpu_ttm_fw_reserve_vram_fini(adev);
1844
1845         if (adev->mman.aper_base_kaddr)
1846                 iounmap(adev->mman.aper_base_kaddr);
1847         adev->mman.aper_base_kaddr = NULL;
1848
1849         amdgpu_vram_mgr_fini(adev);
1850         amdgpu_gtt_mgr_fini(adev);
1851         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1852         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1853         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1854         ttm_device_fini(&adev->mman.bdev);
1855         adev->mman.initialized = false;
1856         DRM_INFO("amdgpu: ttm finalized\n");
1857 }
1858
1859 /**
1860  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1861  *
1862  * @adev: amdgpu_device pointer
1863  * @enable: true when we can use buffer functions.
1864  *
1865  * Enable/disable use of buffer functions during suspend/resume. This should
1866  * only be called at bootup or when userspace isn't running.
1867  */
1868 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1869 {
1870         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1871         uint64_t size;
1872         int r;
1873
1874         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1875             adev->mman.buffer_funcs_enabled == enable)
1876                 return;
1877
1878         if (enable) {
1879                 struct amdgpu_ring *ring;
1880                 struct drm_gpu_scheduler *sched;
1881
1882                 ring = adev->mman.buffer_funcs_ring;
1883                 sched = &ring->sched;
1884                 r = drm_sched_entity_init(&adev->mman.entity,
1885                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1886                                           1, NULL);
1887                 if (r) {
1888                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1889                                   r);
1890                         return;
1891                 }
1892         } else {
1893                 drm_sched_entity_destroy(&adev->mman.entity);
1894                 dma_fence_put(man->move);
1895                 man->move = NULL;
1896         }
1897
1898         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1899         if (enable)
1900                 size = adev->gmc.real_vram_size;
1901         else
1902                 size = adev->gmc.visible_vram_size;
1903         man->size = size >> PAGE_SHIFT;
1904         adev->mman.buffer_funcs_enabled = enable;
1905 }
1906
1907 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
1908 {
1909         struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
1910         vm_fault_t ret;
1911
1912         ret = ttm_bo_vm_reserve(bo, vmf);
1913         if (ret)
1914                 return ret;
1915
1916         ret = amdgpu_bo_fault_reserve_notify(bo);
1917         if (ret)
1918                 goto unlock;
1919
1920         ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1921                                        TTM_BO_VM_NUM_PREFAULT, 1);
1922         if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1923                 return ret;
1924
1925 unlock:
1926         dma_resv_unlock(bo->base.resv);
1927         return ret;
1928 }
1929
1930 static const struct vm_operations_struct amdgpu_ttm_vm_ops = {
1931         .fault = amdgpu_ttm_fault,
1932         .open = ttm_bo_vm_open,
1933         .close = ttm_bo_vm_close,
1934         .access = ttm_bo_vm_access
1935 };
1936
1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1938 {
1939         struct drm_file *file_priv = filp->private_data;
1940         struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
1941         int r;
1942
1943         r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1944         if (unlikely(r != 0))
1945                 return r;
1946
1947         vma->vm_ops = &amdgpu_ttm_vm_ops;
1948         return 0;
1949 }
1950
1951 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1952                        uint64_t dst_offset, uint32_t byte_count,
1953                        struct dma_resv *resv,
1954                        struct dma_fence **fence, bool direct_submit,
1955                        bool vm_needs_flush, bool tmz)
1956 {
1957         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1958                 AMDGPU_IB_POOL_DELAYED;
1959         struct amdgpu_device *adev = ring->adev;
1960         struct amdgpu_job *job;
1961
1962         uint32_t max_bytes;
1963         unsigned num_loops, num_dw;
1964         unsigned i;
1965         int r;
1966
1967         if (direct_submit && !ring->sched.ready) {
1968                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1969                 return -EINVAL;
1970         }
1971
1972         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1973         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1974         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1975
1976         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1977         if (r)
1978                 return r;
1979
1980         if (vm_needs_flush) {
1981                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1982                                         adev->gmc.pdb0_bo : adev->gart.bo);
1983                 job->vm_needs_flush = true;
1984         }
1985         if (resv) {
1986                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1987                                      AMDGPU_SYNC_ALWAYS,
1988                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1989                 if (r) {
1990                         DRM_ERROR("sync failed (%d).\n", r);
1991                         goto error_free;
1992                 }
1993         }
1994
1995         for (i = 0; i < num_loops; i++) {
1996                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1997
1998                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1999                                         dst_offset, cur_size_in_bytes, tmz);
2000
2001                 src_offset += cur_size_in_bytes;
2002                 dst_offset += cur_size_in_bytes;
2003                 byte_count -= cur_size_in_bytes;
2004         }
2005
2006         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2007         WARN_ON(job->ibs[0].length_dw > num_dw);
2008         if (direct_submit)
2009                 r = amdgpu_job_submit_direct(job, ring, fence);
2010         else
2011                 r = amdgpu_job_submit(job, &adev->mman.entity,
2012                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2013         if (r)
2014                 goto error_free;
2015
2016         return r;
2017
2018 error_free:
2019         amdgpu_job_free(job);
2020         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2021         return r;
2022 }
2023
2024 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2025                        uint32_t src_data,
2026                        struct dma_resv *resv,
2027                        struct dma_fence **fence)
2028 {
2029         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2030         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2031         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2032
2033         struct amdgpu_res_cursor cursor;
2034         unsigned int num_loops, num_dw;
2035         uint64_t num_bytes;
2036
2037         struct amdgpu_job *job;
2038         int r;
2039
2040         if (!adev->mman.buffer_funcs_enabled) {
2041                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2042                 return -EINVAL;
2043         }
2044
2045         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2046                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2047                 if (r)
2048                         return r;
2049         }
2050
2051         num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT;
2052         num_loops = 0;
2053
2054         amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2055         while (cursor.remaining) {
2056                 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2057                 amdgpu_res_next(&cursor, cursor.size);
2058         }
2059         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2060
2061         /* for IB padding */
2062         num_dw += 64;
2063
2064         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2065                                      &job);
2066         if (r)
2067                 return r;
2068
2069         if (resv) {
2070                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2071                                      AMDGPU_SYNC_ALWAYS,
2072                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2073                 if (r) {
2074                         DRM_ERROR("sync failed (%d).\n", r);
2075                         goto error_free;
2076                 }
2077         }
2078
2079         amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2080         while (cursor.remaining) {
2081                 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2082                 uint64_t dst_addr = cursor.start;
2083
2084                 dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type);
2085                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2086                                         cur_size);
2087
2088                 amdgpu_res_next(&cursor, cur_size);
2089         }
2090
2091         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2092         WARN_ON(job->ibs[0].length_dw > num_dw);
2093         r = amdgpu_job_submit(job, &adev->mman.entity,
2094                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2095         if (r)
2096                 goto error_free;
2097
2098         return 0;
2099
2100 error_free:
2101         amdgpu_job_free(job);
2102         return r;
2103 }
2104
2105 #if defined(CONFIG_DEBUG_FS)
2106
2107 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2108 {
2109         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2110         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2111                                                             TTM_PL_VRAM);
2112         struct drm_printer p = drm_seq_file_printer(m);
2113
2114         man->func->debug(man, &p);
2115         return 0;
2116 }
2117
2118 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2119 {
2120         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2121
2122         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2123 }
2124
2125 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2126 {
2127         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2128         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2129                                                             TTM_PL_TT);
2130         struct drm_printer p = drm_seq_file_printer(m);
2131
2132         man->func->debug(man, &p);
2133         return 0;
2134 }
2135
2136 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2137 {
2138         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2139         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2140                                                             AMDGPU_PL_GDS);
2141         struct drm_printer p = drm_seq_file_printer(m);
2142
2143         man->func->debug(man, &p);
2144         return 0;
2145 }
2146
2147 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2148 {
2149         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2150         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2151                                                             AMDGPU_PL_GWS);
2152         struct drm_printer p = drm_seq_file_printer(m);
2153
2154         man->func->debug(man, &p);
2155         return 0;
2156 }
2157
2158 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2159 {
2160         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2161         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2162                                                             AMDGPU_PL_OA);
2163         struct drm_printer p = drm_seq_file_printer(m);
2164
2165         man->func->debug(man, &p);
2166         return 0;
2167 }
2168
2169 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2170 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2171 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2172 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2173 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2174 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2175
2176 /*
2177  * amdgpu_ttm_vram_read - Linear read access to VRAM
2178  *
2179  * Accesses VRAM via MMIO for debugging purposes.
2180  */
2181 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2182                                     size_t size, loff_t *pos)
2183 {
2184         struct amdgpu_device *adev = file_inode(f)->i_private;
2185         ssize_t result = 0;
2186
2187         if (size & 0x3 || *pos & 0x3)
2188                 return -EINVAL;
2189
2190         if (*pos >= adev->gmc.mc_vram_size)
2191                 return -ENXIO;
2192
2193         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2194         while (size) {
2195                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2196                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2197
2198                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2199                 if (copy_to_user(buf, value, bytes))
2200                         return -EFAULT;
2201
2202                 result += bytes;
2203                 buf += bytes;
2204                 *pos += bytes;
2205                 size -= bytes;
2206         }
2207
2208         return result;
2209 }
2210
2211 /*
2212  * amdgpu_ttm_vram_write - Linear write access to VRAM
2213  *
2214  * Accesses VRAM via MMIO for debugging purposes.
2215  */
2216 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2217                                     size_t size, loff_t *pos)
2218 {
2219         struct amdgpu_device *adev = file_inode(f)->i_private;
2220         ssize_t result = 0;
2221         int r;
2222
2223         if (size & 0x3 || *pos & 0x3)
2224                 return -EINVAL;
2225
2226         if (*pos >= adev->gmc.mc_vram_size)
2227                 return -ENXIO;
2228
2229         while (size) {
2230                 unsigned long flags;
2231                 uint32_t value;
2232
2233                 if (*pos >= adev->gmc.mc_vram_size)
2234                         return result;
2235
2236                 r = get_user(value, (uint32_t *)buf);
2237                 if (r)
2238                         return r;
2239
2240                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2241                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2242                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2243                 WREG32_NO_KIQ(mmMM_DATA, value);
2244                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2245
2246                 result += 4;
2247                 buf += 4;
2248                 *pos += 4;
2249                 size -= 4;
2250         }
2251
2252         return result;
2253 }
2254
2255 static const struct file_operations amdgpu_ttm_vram_fops = {
2256         .owner = THIS_MODULE,
2257         .read = amdgpu_ttm_vram_read,
2258         .write = amdgpu_ttm_vram_write,
2259         .llseek = default_llseek,
2260 };
2261
2262 /*
2263  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2264  *
2265  * This function is used to read memory that has been mapped to the
2266  * GPU and the known addresses are not physical addresses but instead
2267  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2268  */
2269 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2270                                  size_t size, loff_t *pos)
2271 {
2272         struct amdgpu_device *adev = file_inode(f)->i_private;
2273         struct iommu_domain *dom;
2274         ssize_t result = 0;
2275         int r;
2276
2277         /* retrieve the IOMMU domain if any for this device */
2278         dom = iommu_get_domain_for_dev(adev->dev);
2279
2280         while (size) {
2281                 phys_addr_t addr = *pos & PAGE_MASK;
2282                 loff_t off = *pos & ~PAGE_MASK;
2283                 size_t bytes = PAGE_SIZE - off;
2284                 unsigned long pfn;
2285                 struct page *p;
2286                 void *ptr;
2287
2288                 bytes = bytes < size ? bytes : size;
2289
2290                 /* Translate the bus address to a physical address.  If
2291                  * the domain is NULL it means there is no IOMMU active
2292                  * and the address translation is the identity
2293                  */
2294                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2295
2296                 pfn = addr >> PAGE_SHIFT;
2297                 if (!pfn_valid(pfn))
2298                         return -EPERM;
2299
2300                 p = pfn_to_page(pfn);
2301                 if (p->mapping != adev->mman.bdev.dev_mapping)
2302                         return -EPERM;
2303
2304                 ptr = kmap(p);
2305                 r = copy_to_user(buf, ptr + off, bytes);
2306                 kunmap(p);
2307                 if (r)
2308                         return -EFAULT;
2309
2310                 size -= bytes;
2311                 *pos += bytes;
2312                 result += bytes;
2313         }
2314
2315         return result;
2316 }
2317
2318 /*
2319  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2320  *
2321  * This function is used to write memory that has been mapped to the
2322  * GPU and the known addresses are not physical addresses but instead
2323  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2324  */
2325 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2326                                  size_t size, loff_t *pos)
2327 {
2328         struct amdgpu_device *adev = file_inode(f)->i_private;
2329         struct iommu_domain *dom;
2330         ssize_t result = 0;
2331         int r;
2332
2333         dom = iommu_get_domain_for_dev(adev->dev);
2334
2335         while (size) {
2336                 phys_addr_t addr = *pos & PAGE_MASK;
2337                 loff_t off = *pos & ~PAGE_MASK;
2338                 size_t bytes = PAGE_SIZE - off;
2339                 unsigned long pfn;
2340                 struct page *p;
2341                 void *ptr;
2342
2343                 bytes = bytes < size ? bytes : size;
2344
2345                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2346
2347                 pfn = addr >> PAGE_SHIFT;
2348                 if (!pfn_valid(pfn))
2349                         return -EPERM;
2350
2351                 p = pfn_to_page(pfn);
2352                 if (p->mapping != adev->mman.bdev.dev_mapping)
2353                         return -EPERM;
2354
2355                 ptr = kmap(p);
2356                 r = copy_from_user(ptr + off, buf, bytes);
2357                 kunmap(p);
2358                 if (r)
2359                         return -EFAULT;
2360
2361                 size -= bytes;
2362                 *pos += bytes;
2363                 result += bytes;
2364         }
2365
2366         return result;
2367 }
2368
2369 static const struct file_operations amdgpu_ttm_iomem_fops = {
2370         .owner = THIS_MODULE,
2371         .read = amdgpu_iomem_read,
2372         .write = amdgpu_iomem_write,
2373         .llseek = default_llseek
2374 };
2375
2376 #endif
2377
2378 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2379 {
2380 #if defined(CONFIG_DEBUG_FS)
2381         struct drm_minor *minor = adev_to_drm(adev)->primary;
2382         struct dentry *root = minor->debugfs_root;
2383
2384         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2385                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2386         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2387                             &amdgpu_ttm_iomem_fops);
2388         debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2389                             &amdgpu_mm_vram_table_fops);
2390         debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2391                             &amdgpu_mm_tt_table_fops);
2392         debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2393                             &amdgpu_mm_gds_table_fops);
2394         debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2395                             &amdgpu_mm_gws_table_fops);
2396         debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2397                             &amdgpu_mm_oa_table_fops);
2398         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2399                             &amdgpu_ttm_page_pool_fops);
2400 #endif
2401 }