Merge tag 'gvt-fixes-2021-08-10' of https://github.com/intel/gvt-linux into drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v9.c
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41
42 enum hqd_dequeue_request_type {
43         NO_ACTION = 0,
44         DRAIN_PIPE,
45         RESET_WAVES
46 };
47
48 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
49 {
50         return (struct amdgpu_device *)kgd;
51 }
52
53 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
54                         uint32_t queue, uint32_t vmid)
55 {
56         struct amdgpu_device *adev = get_amdgpu_device(kgd);
57
58         mutex_lock(&adev->srbm_mutex);
59         soc15_grbm_select(adev, mec, pipe, queue, vmid);
60 }
61
62 static void unlock_srbm(struct kgd_dev *kgd)
63 {
64         struct amdgpu_device *adev = get_amdgpu_device(kgd);
65
66         soc15_grbm_select(adev, 0, 0, 0, 0);
67         mutex_unlock(&adev->srbm_mutex);
68 }
69
70 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
71                                 uint32_t queue_id)
72 {
73         struct amdgpu_device *adev = get_amdgpu_device(kgd);
74
75         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
76         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
77
78         lock_srbm(kgd, mec, pipe, queue_id, 0);
79 }
80
81 static uint64_t get_queue_mask(struct amdgpu_device *adev,
82                                uint32_t pipe_id, uint32_t queue_id)
83 {
84         unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
85                         queue_id;
86
87         return 1ull << bit;
88 }
89
90 static void release_queue(struct kgd_dev *kgd)
91 {
92         unlock_srbm(kgd);
93 }
94
95 void kgd_gfx_v9_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
96                                         uint32_t sh_mem_config,
97                                         uint32_t sh_mem_ape1_base,
98                                         uint32_t sh_mem_ape1_limit,
99                                         uint32_t sh_mem_bases)
100 {
101         struct amdgpu_device *adev = get_amdgpu_device(kgd);
102
103         lock_srbm(kgd, 0, 0, 0, vmid);
104
105         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
106         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
107         /* APE1 no longer exists on GFX9 */
108
109         unlock_srbm(kgd);
110 }
111
112 int kgd_gfx_v9_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
113                                         unsigned int vmid)
114 {
115         struct amdgpu_device *adev = get_amdgpu_device(kgd);
116
117         /*
118          * We have to assume that there is no outstanding mapping.
119          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
120          * a mapping is in progress or because a mapping finished
121          * and the SW cleared it.
122          * So the protocol is to always wait & clear.
123          */
124         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
125                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
126
127         /*
128          * need to do this twice, once for gfx and once for mmhub
129          * for ATC add 16 to VMID for mmhub, for IH different registers.
130          * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
131          */
132
133         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
134                pasid_mapping);
135
136         while (!(RREG32(SOC15_REG_OFFSET(
137                                 ATHUB, 0,
138                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
139                  (1U << vmid)))
140                 cpu_relax();
141
142         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
143                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
144                1U << vmid);
145
146         /* Mapping vmid to pasid also for IH block */
147         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
148                pasid_mapping);
149
150         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
151                pasid_mapping);
152
153         while (!(RREG32(SOC15_REG_OFFSET(
154                                 ATHUB, 0,
155                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
156                  (1U << (vmid + 16))))
157                 cpu_relax();
158
159         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
160                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
161                1U << (vmid + 16));
162
163         /* Mapping vmid to pasid also for IH block */
164         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
165                pasid_mapping);
166         return 0;
167 }
168
169 /* TODO - RING0 form of field is obsolete, seems to date back to SI
170  * but still works
171  */
172
173 int kgd_gfx_v9_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
174 {
175         struct amdgpu_device *adev = get_amdgpu_device(kgd);
176         uint32_t mec;
177         uint32_t pipe;
178
179         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
180         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
181
182         lock_srbm(kgd, mec, pipe, 0, 0);
183
184         WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
185                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
186                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
187
188         unlock_srbm(kgd);
189
190         return 0;
191 }
192
193 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
194                                 unsigned int engine_id,
195                                 unsigned int queue_id)
196 {
197         uint32_t sdma_engine_reg_base = 0;
198         uint32_t sdma_rlc_reg_offset;
199
200         switch (engine_id) {
201         default:
202                 dev_warn(adev->dev,
203                          "Invalid sdma engine id (%d), using engine id 0\n",
204                          engine_id);
205                 fallthrough;
206         case 0:
207                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
208                                 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
209                 break;
210         case 1:
211                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
212                                 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
213                 break;
214         }
215
216         sdma_rlc_reg_offset = sdma_engine_reg_base
217                 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
218
219         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
220                  queue_id, sdma_rlc_reg_offset);
221
222         return sdma_rlc_reg_offset;
223 }
224
225 static inline struct v9_mqd *get_mqd(void *mqd)
226 {
227         return (struct v9_mqd *)mqd;
228 }
229
230 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
231 {
232         return (struct v9_sdma_mqd *)mqd;
233 }
234
235 int kgd_gfx_v9_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
236                         uint32_t queue_id, uint32_t __user *wptr,
237                         uint32_t wptr_shift, uint32_t wptr_mask,
238                         struct mm_struct *mm)
239 {
240         struct amdgpu_device *adev = get_amdgpu_device(kgd);
241         struct v9_mqd *m;
242         uint32_t *mqd_hqd;
243         uint32_t reg, hqd_base, data;
244
245         m = get_mqd(mqd);
246
247         acquire_queue(kgd, pipe_id, queue_id);
248
249         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
250         mqd_hqd = &m->cp_mqd_base_addr_lo;
251         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
252
253         for (reg = hqd_base;
254              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
255                 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
256
257
258         /* Activate doorbell logic before triggering WPTR poll. */
259         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
260                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
261         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
262
263         if (wptr) {
264                 /* Don't read wptr with get_user because the user
265                  * context may not be accessible (if this function
266                  * runs in a work queue). Instead trigger a one-shot
267                  * polling read from memory in the CP. This assumes
268                  * that wptr is GPU-accessible in the queue's VMID via
269                  * ATC or SVM. WPTR==RPTR before starting the poll so
270                  * the CP starts fetching new commands from the right
271                  * place.
272                  *
273                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
274                  * tricky. Assume that the queue didn't overflow. The
275                  * number of valid bits in the 32-bit RPTR depends on
276                  * the queue size. The remaining bits are taken from
277                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
278                  * queue size.
279                  */
280                 uint32_t queue_size =
281                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
282                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
283                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
284
285                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
286                         guessed_wptr += queue_size;
287                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
288                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
289
290                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
291                        lower_32_bits(guessed_wptr));
292                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
293                        upper_32_bits(guessed_wptr));
294                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
295                        lower_32_bits((uintptr_t)wptr));
296                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
297                        upper_32_bits((uintptr_t)wptr));
298                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
299                        (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
300         }
301
302         /* Start the EOP fetcher */
303         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
304                REG_SET_FIELD(m->cp_hqd_eop_rptr,
305                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
306
307         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
308         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
309
310         release_queue(kgd);
311
312         return 0;
313 }
314
315 int kgd_gfx_v9_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
316                             uint32_t pipe_id, uint32_t queue_id,
317                             uint32_t doorbell_off)
318 {
319         struct amdgpu_device *adev = get_amdgpu_device(kgd);
320         struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
321         struct v9_mqd *m;
322         uint32_t mec, pipe;
323         int r;
324
325         m = get_mqd(mqd);
326
327         acquire_queue(kgd, pipe_id, queue_id);
328
329         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
330         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
331
332         pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
333                  mec, pipe, queue_id);
334
335         spin_lock(&adev->gfx.kiq.ring_lock);
336         r = amdgpu_ring_alloc(kiq_ring, 7);
337         if (r) {
338                 pr_err("Failed to alloc KIQ (%d).\n", r);
339                 goto out_unlock;
340         }
341
342         amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
343         amdgpu_ring_write(kiq_ring,
344                           PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
345                           PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
346                           PACKET3_MAP_QUEUES_QUEUE(queue_id) |
347                           PACKET3_MAP_QUEUES_PIPE(pipe) |
348                           PACKET3_MAP_QUEUES_ME((mec - 1)) |
349                           PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
350                           PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
351                           PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
352                           PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
353         amdgpu_ring_write(kiq_ring,
354                           PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
355         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
356         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
357         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
358         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
359         amdgpu_ring_commit(kiq_ring);
360
361 out_unlock:
362         spin_unlock(&adev->gfx.kiq.ring_lock);
363         release_queue(kgd);
364
365         return r;
366 }
367
368 int kgd_gfx_v9_hqd_dump(struct kgd_dev *kgd,
369                         uint32_t pipe_id, uint32_t queue_id,
370                         uint32_t (**dump)[2], uint32_t *n_regs)
371 {
372         struct amdgpu_device *adev = get_amdgpu_device(kgd);
373         uint32_t i = 0, reg;
374 #define HQD_N_REGS 56
375 #define DUMP_REG(addr) do {                             \
376                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
377                         break;                          \
378                 (*dump)[i][0] = (addr) << 2;            \
379                 (*dump)[i++][1] = RREG32(addr);         \
380         } while (0)
381
382         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
383         if (*dump == NULL)
384                 return -ENOMEM;
385
386         acquire_queue(kgd, pipe_id, queue_id);
387
388         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
389              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
390                 DUMP_REG(reg);
391
392         release_queue(kgd);
393
394         WARN_ON_ONCE(i != HQD_N_REGS);
395         *n_regs = i;
396
397         return 0;
398 }
399
400 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
401                              uint32_t __user *wptr, struct mm_struct *mm)
402 {
403         struct amdgpu_device *adev = get_amdgpu_device(kgd);
404         struct v9_sdma_mqd *m;
405         uint32_t sdma_rlc_reg_offset;
406         unsigned long end_jiffies;
407         uint32_t data;
408         uint64_t data64;
409         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
410
411         m = get_sdma_mqd(mqd);
412         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
413                                             m->sdma_queue_id);
414
415         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
416                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
417
418         end_jiffies = msecs_to_jiffies(2000) + jiffies;
419         while (true) {
420                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
421                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
422                         break;
423                 if (time_after(jiffies, end_jiffies)) {
424                         pr_err("SDMA RLC not idle in %s\n", __func__);
425                         return -ETIME;
426                 }
427                 usleep_range(500, 1000);
428         }
429
430         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
431                m->sdmax_rlcx_doorbell_offset);
432
433         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
434                              ENABLE, 1);
435         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
436         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
437                                 m->sdmax_rlcx_rb_rptr);
438         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
439                                 m->sdmax_rlcx_rb_rptr_hi);
440
441         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
442         if (read_user_wptr(mm, wptr64, data64)) {
443                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
444                        lower_32_bits(data64));
445                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
446                        upper_32_bits(data64));
447         } else {
448                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
449                        m->sdmax_rlcx_rb_rptr);
450                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
451                        m->sdmax_rlcx_rb_rptr_hi);
452         }
453         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
454
455         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
456         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
457                         m->sdmax_rlcx_rb_base_hi);
458         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
459                         m->sdmax_rlcx_rb_rptr_addr_lo);
460         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
461                         m->sdmax_rlcx_rb_rptr_addr_hi);
462
463         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
464                              RB_ENABLE, 1);
465         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
466
467         return 0;
468 }
469
470 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
471                              uint32_t engine_id, uint32_t queue_id,
472                              uint32_t (**dump)[2], uint32_t *n_regs)
473 {
474         struct amdgpu_device *adev = get_amdgpu_device(kgd);
475         uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
476                         engine_id, queue_id);
477         uint32_t i = 0, reg;
478 #undef HQD_N_REGS
479 #define HQD_N_REGS (19+6+7+10)
480
481         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
482         if (*dump == NULL)
483                 return -ENOMEM;
484
485         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
486                 DUMP_REG(sdma_rlc_reg_offset + reg);
487         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
488                 DUMP_REG(sdma_rlc_reg_offset + reg);
489         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
490              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
491                 DUMP_REG(sdma_rlc_reg_offset + reg);
492         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
493              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
494                 DUMP_REG(sdma_rlc_reg_offset + reg);
495
496         WARN_ON_ONCE(i != HQD_N_REGS);
497         *n_regs = i;
498
499         return 0;
500 }
501
502 bool kgd_gfx_v9_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
503                                 uint32_t pipe_id, uint32_t queue_id)
504 {
505         struct amdgpu_device *adev = get_amdgpu_device(kgd);
506         uint32_t act;
507         bool retval = false;
508         uint32_t low, high;
509
510         acquire_queue(kgd, pipe_id, queue_id);
511         act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
512         if (act) {
513                 low = lower_32_bits(queue_address >> 8);
514                 high = upper_32_bits(queue_address >> 8);
515
516                 if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
517                    high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
518                         retval = true;
519         }
520         release_queue(kgd);
521         return retval;
522 }
523
524 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
525 {
526         struct amdgpu_device *adev = get_amdgpu_device(kgd);
527         struct v9_sdma_mqd *m;
528         uint32_t sdma_rlc_reg_offset;
529         uint32_t sdma_rlc_rb_cntl;
530
531         m = get_sdma_mqd(mqd);
532         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
533                                             m->sdma_queue_id);
534
535         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
536
537         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
538                 return true;
539
540         return false;
541 }
542
543 int kgd_gfx_v9_hqd_destroy(struct kgd_dev *kgd, void *mqd,
544                                 enum kfd_preempt_type reset_type,
545                                 unsigned int utimeout, uint32_t pipe_id,
546                                 uint32_t queue_id)
547 {
548         struct amdgpu_device *adev = get_amdgpu_device(kgd);
549         enum hqd_dequeue_request_type type;
550         unsigned long end_jiffies;
551         uint32_t temp;
552         struct v9_mqd *m = get_mqd(mqd);
553
554         if (amdgpu_in_reset(adev))
555                 return -EIO;
556
557         acquire_queue(kgd, pipe_id, queue_id);
558
559         if (m->cp_hqd_vmid == 0)
560                 WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
561
562         switch (reset_type) {
563         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
564                 type = DRAIN_PIPE;
565                 break;
566         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
567                 type = RESET_WAVES;
568                 break;
569         default:
570                 type = DRAIN_PIPE;
571                 break;
572         }
573
574         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
575
576         end_jiffies = (utimeout * HZ / 1000) + jiffies;
577         while (true) {
578                 temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
579                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
580                         break;
581                 if (time_after(jiffies, end_jiffies)) {
582                         pr_err("cp queue preemption time out.\n");
583                         release_queue(kgd);
584                         return -ETIME;
585                 }
586                 usleep_range(500, 1000);
587         }
588
589         release_queue(kgd);
590         return 0;
591 }
592
593 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
594                                 unsigned int utimeout)
595 {
596         struct amdgpu_device *adev = get_amdgpu_device(kgd);
597         struct v9_sdma_mqd *m;
598         uint32_t sdma_rlc_reg_offset;
599         uint32_t temp;
600         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
601
602         m = get_sdma_mqd(mqd);
603         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
604                                             m->sdma_queue_id);
605
606         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
607         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
608         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
609
610         while (true) {
611                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
612                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
613                         break;
614                 if (time_after(jiffies, end_jiffies)) {
615                         pr_err("SDMA RLC not idle in %s\n", __func__);
616                         return -ETIME;
617                 }
618                 usleep_range(500, 1000);
619         }
620
621         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
622         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
623                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
624                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
625
626         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
627         m->sdmax_rlcx_rb_rptr_hi =
628                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
629
630         return 0;
631 }
632
633 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
634                                         uint8_t vmid, uint16_t *p_pasid)
635 {
636         uint32_t value;
637         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
638
639         value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
640                      + vmid);
641         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
642
643         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
644 }
645
646 int kgd_gfx_v9_address_watch_disable(struct kgd_dev *kgd)
647 {
648         return 0;
649 }
650
651 int kgd_gfx_v9_address_watch_execute(struct kgd_dev *kgd,
652                                         unsigned int watch_point_id,
653                                         uint32_t cntl_val,
654                                         uint32_t addr_hi,
655                                         uint32_t addr_lo)
656 {
657         return 0;
658 }
659
660 int kgd_gfx_v9_wave_control_execute(struct kgd_dev *kgd,
661                                         uint32_t gfx_index_val,
662                                         uint32_t sq_cmd)
663 {
664         struct amdgpu_device *adev = get_amdgpu_device(kgd);
665         uint32_t data = 0;
666
667         mutex_lock(&adev->grbm_idx_mutex);
668
669         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
670         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
671
672         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
673                 INSTANCE_BROADCAST_WRITES, 1);
674         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
675                 SH_BROADCAST_WRITES, 1);
676         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
677                 SE_BROADCAST_WRITES, 1);
678
679         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
680         mutex_unlock(&adev->grbm_idx_mutex);
681
682         return 0;
683 }
684
685 uint32_t kgd_gfx_v9_address_watch_get_offset(struct kgd_dev *kgd,
686                                         unsigned int watch_point_id,
687                                         unsigned int reg_offset)
688 {
689         return 0;
690 }
691
692 void kgd_gfx_v9_set_vm_context_page_table_base(struct kgd_dev *kgd,
693                         uint32_t vmid, uint64_t page_table_base)
694 {
695         struct amdgpu_device *adev = get_amdgpu_device(kgd);
696
697         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
698                 pr_err("trying to set page table base for wrong VMID %u\n",
699                        vmid);
700                 return;
701         }
702
703         adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
704
705         adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
706 }
707
708 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
709 {
710         mutex_lock(&adev->srbm_mutex);
711         mutex_lock(&adev->grbm_idx_mutex);
712
713 }
714
715 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
716 {
717         mutex_unlock(&adev->grbm_idx_mutex);
718         mutex_unlock(&adev->srbm_mutex);
719 }
720
721 /**
722  * get_wave_count: Read device registers to get number of waves in flight for
723  * a particular queue. The method also returns the VMID associated with the
724  * queue.
725  *
726  * @adev: Handle of device whose registers are to be read
727  * @queue_idx: Index of queue in the queue-map bit-field
728  * @wave_cnt: Output parameter updated with number of waves in flight
729  * @vmid: Output parameter updated with VMID of queue whose wave count
730  * is being collected
731  */
732 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
733                 int *wave_cnt, int *vmid)
734 {
735         int pipe_idx;
736         int queue_slot;
737         unsigned int reg_val;
738
739         /*
740          * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
741          * parameters to read out waves in flight. Get VMID if there are
742          * non-zero waves in flight.
743          */
744         *vmid = 0xFF;
745         *wave_cnt = 0;
746         pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
747         queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
748         soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
749         reg_val = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
750                          queue_slot);
751         *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
752         if (*wave_cnt != 0)
753                 *vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
754                          CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
755 }
756
757 /**
758  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
759  * shader engine and aggregates the number of waves that are in flight for the
760  * process whose pasid is provided as a parameter. The process could have ZERO
761  * or more queues running and submitting waves to compute units.
762  *
763  * @kgd: Handle of device from which to get number of waves in flight
764  * @pasid: Identifies the process for which this query call is invoked
765  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
766  * belong to process with given pasid
767  * @max_waves_per_cu: Output parameter updated with maximum number of waves
768  * possible per Compute Unit
769  *
770  * Note: It's possible that the device has too many queues (oversubscription)
771  * in which case a VMID could be remapped to a different PASID. This could lead
772  * to an iaccurate wave count. Following is a high-level sequence:
773  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
774  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
775  * In the sequence above wave count obtained from time T1 will be incorrectly
776  * lost or added to total wave count.
777  *
778  * The registers that provide the waves in flight are:
779  *
780  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
781  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
782  *  more queues slotted and submitting waves to be run on compute units. Even
783  *  when there is a queue it is possible there could be zero wave fronts, this
784  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
785  *  command
786  *
787  *  For each bit that is ON from above:
788  *
789  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
790  *    number of waves that are in flight for the queue at specified index. The
791  *    index ranges from 0 to 7.
792  *
793  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
794  *    of the wave(s).
795  *
796  *    Determine if VMID from above step maps to pasid provided as parameter. If
797  *    it matches agrregate the wave count. That the VMID will not match pasid is
798  *    a normal condition i.e. a device is expected to support multiple queues
799  *    from multiple proceses.
800  *
801  *  Reading registers referenced above involves programming GRBM appropriately
802  */
803 void kgd_gfx_v9_get_cu_occupancy(struct kgd_dev *kgd, int pasid,
804                 int *pasid_wave_cnt, int *max_waves_per_cu)
805 {
806         int qidx;
807         int vmid;
808         int se_idx;
809         int sh_idx;
810         int se_cnt;
811         int sh_cnt;
812         int wave_cnt;
813         int queue_map;
814         int pasid_tmp;
815         int max_queue_cnt;
816         int vmid_wave_cnt = 0;
817         struct amdgpu_device *adev;
818         DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
819
820         adev = get_amdgpu_device(kgd);
821         lock_spi_csq_mutexes(adev);
822         soc15_grbm_select(adev, 1, 0, 0, 0);
823
824         /*
825          * Iterate through the shader engines and arrays of the device
826          * to get number of waves in flight
827          */
828         bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
829                           KGD_MAX_QUEUES);
830         max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
831                         adev->gfx.mec.num_queue_per_pipe;
832         sh_cnt = adev->gfx.config.max_sh_per_se;
833         se_cnt = adev->gfx.config.max_shader_engines;
834         for (se_idx = 0; se_idx < se_cnt; se_idx++) {
835                 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
836
837                         gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
838                         queue_map = RREG32(SOC15_REG_OFFSET(GC, 0,
839                                            mmSPI_CSQ_WF_ACTIVE_STATUS));
840
841                         /*
842                          * Assumption: queue map encodes following schema: four
843                          * pipes per each micro-engine, with each pipe mapping
844                          * eight queues. This schema is true for GFX9 devices
845                          * and must be verified for newer device families
846                          */
847                         for (qidx = 0; qidx < max_queue_cnt; qidx++) {
848
849                                 /* Skip qeueus that are not associated with
850                                  * compute functions
851                                  */
852                                 if (!test_bit(qidx, cp_queue_bitmap))
853                                         continue;
854
855                                 if (!(queue_map & (1 << qidx)))
856                                         continue;
857
858                                 /* Get number of waves in flight and aggregate them */
859                                 get_wave_count(adev, qidx, &wave_cnt, &vmid);
860                                 if (wave_cnt != 0) {
861                                         pasid_tmp =
862                                           RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
863                                                  mmIH_VMID_0_LUT) + vmid);
864                                         if (pasid_tmp == pasid)
865                                                 vmid_wave_cnt += wave_cnt;
866                                 }
867                         }
868                 }
869         }
870
871         gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
872         soc15_grbm_select(adev, 0, 0, 0, 0);
873         unlock_spi_csq_mutexes(adev);
874
875         /* Update the output parameters and return */
876         *pasid_wave_cnt = vmid_wave_cnt;
877         *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
878                                 adev->gfx.cu_info.max_waves_per_simd;
879 }
880
881 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
882         .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
883         .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
884         .init_interrupts = kgd_gfx_v9_init_interrupts,
885         .hqd_load = kgd_gfx_v9_hqd_load,
886         .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
887         .hqd_sdma_load = kgd_hqd_sdma_load,
888         .hqd_dump = kgd_gfx_v9_hqd_dump,
889         .hqd_sdma_dump = kgd_hqd_sdma_dump,
890         .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
891         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
892         .hqd_destroy = kgd_gfx_v9_hqd_destroy,
893         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
894         .address_watch_disable = kgd_gfx_v9_address_watch_disable,
895         .address_watch_execute = kgd_gfx_v9_address_watch_execute,
896         .wave_control_execute = kgd_gfx_v9_wave_control_execute,
897         .address_watch_get_offset = kgd_gfx_v9_address_watch_get_offset,
898         .get_atc_vmid_pasid_mapping_info =
899                         kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
900         .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
901         .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
902 };