fbmem: don't allow too huge resolutions
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v10.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_10_1_0_offset.h"
25 #include "gc/gc_10_1_0_sh_mask.h"
26 #include "athub/athub_2_0_0_offset.h"
27 #include "athub/athub_2_0_0_sh_mask.h"
28 #include "oss/osssys_5_0_0_offset.h"
29 #include "oss/osssys_5_0_0_sh_mask.h"
30 #include "soc15_common.h"
31 #include "v10_structs.h"
32 #include "nv.h"
33 #include "nvd.h"
34
35 enum hqd_dequeue_request_type {
36         NO_ACTION = 0,
37         DRAIN_PIPE,
38         RESET_WAVES,
39         SAVE_WAVES
40 };
41
42 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
43 {
44         return (struct amdgpu_device *)kgd;
45 }
46
47 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
48                         uint32_t queue, uint32_t vmid)
49 {
50         struct amdgpu_device *adev = get_amdgpu_device(kgd);
51
52         mutex_lock(&adev->srbm_mutex);
53         nv_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55
56 static void unlock_srbm(struct kgd_dev *kgd)
57 {
58         struct amdgpu_device *adev = get_amdgpu_device(kgd);
59
60         nv_grbm_select(adev, 0, 0, 0, 0);
61         mutex_unlock(&adev->srbm_mutex);
62 }
63
64 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
65                                 uint32_t queue_id)
66 {
67         struct amdgpu_device *adev = get_amdgpu_device(kgd);
68
69         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
70         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
71
72         lock_srbm(kgd, mec, pipe, queue_id, 0);
73 }
74
75 static uint64_t get_queue_mask(struct amdgpu_device *adev,
76                                uint32_t pipe_id, uint32_t queue_id)
77 {
78         unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
79                         queue_id;
80
81         return 1ull << bit;
82 }
83
84 static void release_queue(struct kgd_dev *kgd)
85 {
86         unlock_srbm(kgd);
87 }
88
89 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
90                                         uint32_t sh_mem_config,
91                                         uint32_t sh_mem_ape1_base,
92                                         uint32_t sh_mem_ape1_limit,
93                                         uint32_t sh_mem_bases)
94 {
95         struct amdgpu_device *adev = get_amdgpu_device(kgd);
96
97         lock_srbm(kgd, 0, 0, 0, vmid);
98
99         WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
100         WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
101         /* APE1 no longer exists on GFX9 */
102
103         unlock_srbm(kgd);
104 }
105
106 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
107                                         unsigned int vmid)
108 {
109         struct amdgpu_device *adev = get_amdgpu_device(kgd);
110
111         /*
112          * We have to assume that there is no outstanding mapping.
113          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
114          * a mapping is in progress or because a mapping finished
115          * and the SW cleared it.
116          * So the protocol is to always wait & clear.
117          */
118         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
119                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
120
121         pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
122
123         pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
124         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
125                pasid_mapping);
126
127 #if 0
128         /* TODO: uncomment this code when the hardware support is ready. */
129         while (!(RREG32(SOC15_REG_OFFSET(
130                                 ATHUB, 0,
131                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
132                  (1U << vmid)))
133                 cpu_relax();
134
135         pr_debug("ATHUB mapping update finished\n");
136         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
137                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
138                1U << vmid);
139 #endif
140
141         /* Mapping vmid to pasid also for IH block */
142         pr_debug("update mapping for IH block and mmhub");
143         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
144                pasid_mapping);
145
146         return 0;
147 }
148
149 /* TODO - RING0 form of field is obsolete, seems to date back to SI
150  * but still works
151  */
152
153 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
154 {
155         struct amdgpu_device *adev = get_amdgpu_device(kgd);
156         uint32_t mec;
157         uint32_t pipe;
158
159         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
160         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
161
162         lock_srbm(kgd, mec, pipe, 0, 0);
163
164         WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
165                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
166                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
167
168         unlock_srbm(kgd);
169
170         return 0;
171 }
172
173 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
174                                 unsigned int engine_id,
175                                 unsigned int queue_id)
176 {
177         uint32_t sdma_engine_reg_base[2] = {
178                 SOC15_REG_OFFSET(SDMA0, 0,
179                                  mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
180                 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
181                  * on SDMA1 base address (dw 0x1860) but based on SDMA0
182                  * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
183                  * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
184                  * below
185                  */
186                 SOC15_REG_OFFSET(SDMA1, 0,
187                                  mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
188         };
189
190         uint32_t retval = sdma_engine_reg_base[engine_id]
191                 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
192
193         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
194                         queue_id, retval);
195
196         return retval;
197 }
198
199 #if 0
200 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
201 {
202         uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
203                         mmTCP_WATCH0_ADDR_H;
204
205         pr_debug("kfd: reg watch base address: 0x%x\n", retval);
206
207         return retval;
208 }
209 #endif
210
211 static inline struct v10_compute_mqd *get_mqd(void *mqd)
212 {
213         return (struct v10_compute_mqd *)mqd;
214 }
215
216 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
217 {
218         return (struct v10_sdma_mqd *)mqd;
219 }
220
221 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
222                         uint32_t queue_id, uint32_t __user *wptr,
223                         uint32_t wptr_shift, uint32_t wptr_mask,
224                         struct mm_struct *mm)
225 {
226         struct amdgpu_device *adev = get_amdgpu_device(kgd);
227         struct v10_compute_mqd *m;
228         uint32_t *mqd_hqd;
229         uint32_t reg, hqd_base, data;
230
231         m = get_mqd(mqd);
232
233         pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
234         acquire_queue(kgd, pipe_id, queue_id);
235
236         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237         mqd_hqd = &m->cp_mqd_base_addr_lo;
238         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
239
240         for (reg = hqd_base;
241              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
242                 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
243
244
245         /* Activate doorbell logic before triggering WPTR poll. */
246         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248         WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
249
250         if (wptr) {
251                 /* Don't read wptr with get_user because the user
252                  * context may not be accessible (if this function
253                  * runs in a work queue). Instead trigger a one-shot
254                  * polling read from memory in the CP. This assumes
255                  * that wptr is GPU-accessible in the queue's VMID via
256                  * ATC or SVM. WPTR==RPTR before starting the poll so
257                  * the CP starts fetching new commands from the right
258                  * place.
259                  *
260                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
261                  * tricky. Assume that the queue didn't overflow. The
262                  * number of valid bits in the 32-bit RPTR depends on
263                  * the queue size. The remaining bits are taken from
264                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
265                  * queue size.
266                  */
267                 uint32_t queue_size =
268                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
269                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
270                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
271
272                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
273                         guessed_wptr += queue_size;
274                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
275                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
276
277                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
278                        lower_32_bits(guessed_wptr));
279                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
280                        upper_32_bits(guessed_wptr));
281                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
282                        lower_32_bits((uint64_t)wptr));
283                 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
284                        upper_32_bits((uint64_t)wptr));
285                 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
286                          (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
287                 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
288                        (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
289         }
290
291         /* Start the EOP fetcher */
292         WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR,
293                REG_SET_FIELD(m->cp_hqd_eop_rptr,
294                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
295
296         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
297         WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
298
299         release_queue(kgd);
300
301         return 0;
302 }
303
304 static int kgd_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
305                             uint32_t pipe_id, uint32_t queue_id,
306                             uint32_t doorbell_off)
307 {
308         struct amdgpu_device *adev = get_amdgpu_device(kgd);
309         struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
310         struct v10_compute_mqd *m;
311         uint32_t mec, pipe;
312         int r;
313
314         m = get_mqd(mqd);
315
316         acquire_queue(kgd, pipe_id, queue_id);
317
318         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
319         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
320
321         pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
322                  mec, pipe, queue_id);
323
324         spin_lock(&adev->gfx.kiq.ring_lock);
325         r = amdgpu_ring_alloc(kiq_ring, 7);
326         if (r) {
327                 pr_err("Failed to alloc KIQ (%d).\n", r);
328                 goto out_unlock;
329         }
330
331         amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
332         amdgpu_ring_write(kiq_ring,
333                           PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
334                           PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
335                           PACKET3_MAP_QUEUES_QUEUE(queue_id) |
336                           PACKET3_MAP_QUEUES_PIPE(pipe) |
337                           PACKET3_MAP_QUEUES_ME((mec - 1)) |
338                           PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
339                           PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
340                           PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
341                           PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
342         amdgpu_ring_write(kiq_ring,
343                           PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
344         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
345         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
346         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
347         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
348         amdgpu_ring_commit(kiq_ring);
349
350 out_unlock:
351         spin_unlock(&adev->gfx.kiq.ring_lock);
352         release_queue(kgd);
353
354         return r;
355 }
356
357 static int kgd_hqd_dump(struct kgd_dev *kgd,
358                         uint32_t pipe_id, uint32_t queue_id,
359                         uint32_t (**dump)[2], uint32_t *n_regs)
360 {
361         struct amdgpu_device *adev = get_amdgpu_device(kgd);
362         uint32_t i = 0, reg;
363 #define HQD_N_REGS 56
364 #define DUMP_REG(addr) do {                             \
365                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
366                         break;                          \
367                 (*dump)[i][0] = (addr) << 2;            \
368                 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr);            \
369         } while (0)
370
371         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
372         if (*dump == NULL)
373                 return -ENOMEM;
374
375         acquire_queue(kgd, pipe_id, queue_id);
376
377         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
378              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
379                 DUMP_REG(reg);
380
381         release_queue(kgd);
382
383         WARN_ON_ONCE(i != HQD_N_REGS);
384         *n_regs = i;
385
386         return 0;
387 }
388
389 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
390                              uint32_t __user *wptr, struct mm_struct *mm)
391 {
392         struct amdgpu_device *adev = get_amdgpu_device(kgd);
393         struct v10_sdma_mqd *m;
394         uint32_t sdma_rlc_reg_offset;
395         unsigned long end_jiffies;
396         uint32_t data;
397         uint64_t data64;
398         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
399
400         m = get_sdma_mqd(mqd);
401         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
402                                             m->sdma_queue_id);
403
404         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
405                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
406
407         end_jiffies = msecs_to_jiffies(2000) + jiffies;
408         while (true) {
409                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
410                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
411                         break;
412                 if (time_after(jiffies, end_jiffies)) {
413                         pr_err("SDMA RLC not idle in %s\n", __func__);
414                         return -ETIME;
415                 }
416                 usleep_range(500, 1000);
417         }
418
419         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
420                m->sdmax_rlcx_doorbell_offset);
421
422         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
423                              ENABLE, 1);
424         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
425         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
426                                 m->sdmax_rlcx_rb_rptr);
427         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
428                                 m->sdmax_rlcx_rb_rptr_hi);
429
430         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
431         if (read_user_wptr(mm, wptr64, data64)) {
432                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
433                        lower_32_bits(data64));
434                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
435                        upper_32_bits(data64));
436         } else {
437                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
438                        m->sdmax_rlcx_rb_rptr);
439                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
440                        m->sdmax_rlcx_rb_rptr_hi);
441         }
442         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
443
444         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
445         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
446                         m->sdmax_rlcx_rb_base_hi);
447         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
448                         m->sdmax_rlcx_rb_rptr_addr_lo);
449         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
450                         m->sdmax_rlcx_rb_rptr_addr_hi);
451
452         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
453                              RB_ENABLE, 1);
454         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
455
456         return 0;
457 }
458
459 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
460                              uint32_t engine_id, uint32_t queue_id,
461                              uint32_t (**dump)[2], uint32_t *n_regs)
462 {
463         struct amdgpu_device *adev = get_amdgpu_device(kgd);
464         uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
465                         engine_id, queue_id);
466         uint32_t i = 0, reg;
467 #undef HQD_N_REGS
468 #define HQD_N_REGS (19+6+7+10)
469
470         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
471         if (*dump == NULL)
472                 return -ENOMEM;
473
474         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
475                 DUMP_REG(sdma_rlc_reg_offset + reg);
476         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
477                 DUMP_REG(sdma_rlc_reg_offset + reg);
478         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
479              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
480                 DUMP_REG(sdma_rlc_reg_offset + reg);
481         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
482              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
483                 DUMP_REG(sdma_rlc_reg_offset + reg);
484
485         WARN_ON_ONCE(i != HQD_N_REGS);
486         *n_regs = i;
487
488         return 0;
489 }
490
491 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
492                                 uint32_t pipe_id, uint32_t queue_id)
493 {
494         struct amdgpu_device *adev = get_amdgpu_device(kgd);
495         uint32_t act;
496         bool retval = false;
497         uint32_t low, high;
498
499         acquire_queue(kgd, pipe_id, queue_id);
500         act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
501         if (act) {
502                 low = lower_32_bits(queue_address >> 8);
503                 high = upper_32_bits(queue_address >> 8);
504
505                 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
506                    high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
507                         retval = true;
508         }
509         release_queue(kgd);
510         return retval;
511 }
512
513 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
514 {
515         struct amdgpu_device *adev = get_amdgpu_device(kgd);
516         struct v10_sdma_mqd *m;
517         uint32_t sdma_rlc_reg_offset;
518         uint32_t sdma_rlc_rb_cntl;
519
520         m = get_sdma_mqd(mqd);
521         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
522                                             m->sdma_queue_id);
523
524         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
525
526         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
527                 return true;
528
529         return false;
530 }
531
532 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
533                                 enum kfd_preempt_type reset_type,
534                                 unsigned int utimeout, uint32_t pipe_id,
535                                 uint32_t queue_id)
536 {
537         struct amdgpu_device *adev = get_amdgpu_device(kgd);
538         enum hqd_dequeue_request_type type;
539         unsigned long end_jiffies;
540         uint32_t temp;
541         struct v10_compute_mqd *m = get_mqd(mqd);
542
543         if (amdgpu_in_reset(adev))
544                 return -EIO;
545
546 #if 0
547         unsigned long flags;
548         int retry;
549 #endif
550
551         acquire_queue(kgd, pipe_id, queue_id);
552
553         if (m->cp_hqd_vmid == 0)
554                 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
555
556         switch (reset_type) {
557         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
558                 type = DRAIN_PIPE;
559                 break;
560         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
561                 type = RESET_WAVES;
562                 break;
563         default:
564                 type = DRAIN_PIPE;
565                 break;
566         }
567
568 #if 0 /* Is this still needed? */
569         /* Workaround: If IQ timer is active and the wait time is close to or
570          * equal to 0, dequeueing is not safe. Wait until either the wait time
571          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
572          * cleared before continuing. Also, ensure wait times are set to at
573          * least 0x3.
574          */
575         local_irq_save(flags);
576         preempt_disable();
577         retry = 5000; /* wait for 500 usecs at maximum */
578         while (true) {
579                 temp = RREG32(mmCP_HQD_IQ_TIMER);
580                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
581                         pr_debug("HW is processing IQ\n");
582                         goto loop;
583                 }
584                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
585                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
586                                         == 3) /* SEM-rearm is safe */
587                                 break;
588                         /* Wait time 3 is safe for CP, but our MMIO read/write
589                          * time is close to 1 microsecond, so check for 10 to
590                          * leave more buffer room
591                          */
592                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
593                                         >= 10)
594                                 break;
595                         pr_debug("IQ timer is active\n");
596                 } else
597                         break;
598 loop:
599                 if (!retry) {
600                         pr_err("CP HQD IQ timer status time out\n");
601                         break;
602                 }
603                 ndelay(100);
604                 --retry;
605         }
606         retry = 1000;
607         while (true) {
608                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
609                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
610                         break;
611                 pr_debug("Dequeue request is pending\n");
612
613                 if (!retry) {
614                         pr_err("CP HQD dequeue request time out\n");
615                         break;
616                 }
617                 ndelay(100);
618                 --retry;
619         }
620         local_irq_restore(flags);
621         preempt_enable();
622 #endif
623
624         WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
625
626         end_jiffies = (utimeout * HZ / 1000) + jiffies;
627         while (true) {
628                 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
629                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
630                         break;
631                 if (time_after(jiffies, end_jiffies)) {
632                         pr_err("cp queue preemption time out.\n");
633                         release_queue(kgd);
634                         return -ETIME;
635                 }
636                 usleep_range(500, 1000);
637         }
638
639         release_queue(kgd);
640         return 0;
641 }
642
643 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
644                                 unsigned int utimeout)
645 {
646         struct amdgpu_device *adev = get_amdgpu_device(kgd);
647         struct v10_sdma_mqd *m;
648         uint32_t sdma_rlc_reg_offset;
649         uint32_t temp;
650         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
651
652         m = get_sdma_mqd(mqd);
653         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
654                                             m->sdma_queue_id);
655
656         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
657         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
658         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
659
660         while (true) {
661                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
662                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
663                         break;
664                 if (time_after(jiffies, end_jiffies)) {
665                         pr_err("SDMA RLC not idle in %s\n", __func__);
666                         return -ETIME;
667                 }
668                 usleep_range(500, 1000);
669         }
670
671         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
672         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
673                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
674                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
675
676         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
677         m->sdmax_rlcx_rb_rptr_hi =
678                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
679
680         return 0;
681 }
682
683 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
684                                         uint8_t vmid, uint16_t *p_pasid)
685 {
686         uint32_t value;
687         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
688
689         value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
690                      + vmid);
691         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
692
693         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
694 }
695
696 static int kgd_address_watch_disable(struct kgd_dev *kgd)
697 {
698         return 0;
699 }
700
701 static int kgd_address_watch_execute(struct kgd_dev *kgd,
702                                         unsigned int watch_point_id,
703                                         uint32_t cntl_val,
704                                         uint32_t addr_hi,
705                                         uint32_t addr_lo)
706 {
707         return 0;
708 }
709
710 static int kgd_wave_control_execute(struct kgd_dev *kgd,
711                                         uint32_t gfx_index_val,
712                                         uint32_t sq_cmd)
713 {
714         struct amdgpu_device *adev = get_amdgpu_device(kgd);
715         uint32_t data = 0;
716
717         mutex_lock(&adev->grbm_idx_mutex);
718
719         WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
720         WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
721
722         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
723                 INSTANCE_BROADCAST_WRITES, 1);
724         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
725                 SA_BROADCAST_WRITES, 1);
726         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
727                 SE_BROADCAST_WRITES, 1);
728
729         WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
730         mutex_unlock(&adev->grbm_idx_mutex);
731
732         return 0;
733 }
734
735 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
736                                         unsigned int watch_point_id,
737                                         unsigned int reg_offset)
738 {
739         return 0;
740 }
741
742 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
743                 uint64_t page_table_base)
744 {
745         struct amdgpu_device *adev = get_amdgpu_device(kgd);
746
747         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
748                 pr_err("trying to set page table base for wrong VMID %u\n",
749                        vmid);
750                 return;
751         }
752
753         /* SDMA is on gfxhub as well for Navi1* series */
754         adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
755 }
756
757 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
758         .program_sh_mem_settings = kgd_program_sh_mem_settings,
759         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
760         .init_interrupts = kgd_init_interrupts,
761         .hqd_load = kgd_hqd_load,
762         .hiq_mqd_load = kgd_hiq_mqd_load,
763         .hqd_sdma_load = kgd_hqd_sdma_load,
764         .hqd_dump = kgd_hqd_dump,
765         .hqd_sdma_dump = kgd_hqd_sdma_dump,
766         .hqd_is_occupied = kgd_hqd_is_occupied,
767         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
768         .hqd_destroy = kgd_hqd_destroy,
769         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
770         .address_watch_disable = kgd_address_watch_disable,
771         .address_watch_execute = kgd_address_watch_execute,
772         .wave_control_execute = kgd_wave_control_execute,
773         .address_watch_get_offset = kgd_address_watch_get_offset,
774         .get_atc_vmid_pasid_mapping_info =
775                         get_atc_vmid_pasid_mapping_info,
776         .set_vm_context_page_table_base = set_vm_context_page_table_base,
777 };