cpufreq: intel_pstate: Fix fast-switch fallback path
[linux-2.6-microblaze.git] / drivers / firmware / qcom_scm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19
20 #include "qcom_scm.h"
21
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24
25 #define SCM_HAS_CORE_CLK        BIT(0)
26 #define SCM_HAS_IFACE_CLK       BIT(1)
27 #define SCM_HAS_BUS_CLK         BIT(2)
28
29 struct qcom_scm {
30         struct device *dev;
31         struct clk *core_clk;
32         struct clk *iface_clk;
33         struct clk *bus_clk;
34         struct reset_controller_dev reset;
35
36         u64 dload_mode_addr;
37 };
38
39 struct qcom_scm_current_perm_info {
40         __le32 vmid;
41         __le32 perm;
42         __le64 ctx;
43         __le32 ctx_size;
44         __le32 unused;
45 };
46
47 struct qcom_scm_mem_map_info {
48         __le64 mem_addr;
49         __le64 mem_size;
50 };
51
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0     0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1     0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2     0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3     0x20
56
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0     0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1     0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2     0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3     0x40
61
62 struct qcom_scm_wb_entry {
63         int flag;
64         void *entry;
65 };
66
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71         { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73
74 static const char *qcom_scm_convention_names[] = {
75         [SMC_CONVENTION_UNKNOWN] = "unknown",
76         [SMC_CONVENTION_ARM_32] = "smc arm 32",
77         [SMC_CONVENTION_ARM_64] = "smc arm 64",
78         [SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80
81 static struct qcom_scm *__scm;
82
83 static int qcom_scm_clk_enable(void)
84 {
85         int ret;
86
87         ret = clk_prepare_enable(__scm->core_clk);
88         if (ret)
89                 goto bail;
90
91         ret = clk_prepare_enable(__scm->iface_clk);
92         if (ret)
93                 goto disable_core;
94
95         ret = clk_prepare_enable(__scm->bus_clk);
96         if (ret)
97                 goto disable_iface;
98
99         return 0;
100
101 disable_iface:
102         clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104         clk_disable_unprepare(__scm->core_clk);
105 bail:
106         return ret;
107 }
108
109 static void qcom_scm_clk_disable(void)
110 {
111         clk_disable_unprepare(__scm->core_clk);
112         clk_disable_unprepare(__scm->iface_clk);
113         clk_disable_unprepare(__scm->bus_clk);
114 }
115
116 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
117                                         u32 cmd_id);
118
119 enum qcom_scm_convention qcom_scm_convention;
120 static bool has_queried __read_mostly;
121 static DEFINE_SPINLOCK(query_lock);
122
123 static void __query_convention(void)
124 {
125         unsigned long flags;
126         struct qcom_scm_desc desc = {
127                 .svc = QCOM_SCM_SVC_INFO,
128                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
129                 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
130                                            QCOM_SCM_INFO_IS_CALL_AVAIL) |
131                            (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
132                 .arginfo = QCOM_SCM_ARGS(1),
133                 .owner = ARM_SMCCC_OWNER_SIP,
134         };
135         struct qcom_scm_res res;
136         int ret;
137
138         spin_lock_irqsave(&query_lock, flags);
139         if (has_queried)
140                 goto out;
141
142         qcom_scm_convention = SMC_CONVENTION_ARM_64;
143         // Device isn't required as there is only one argument - no device
144         // needed to dma_map_single to secure world
145         ret = scm_smc_call(NULL, &desc, &res, true);
146         if (!ret && res.result[0] == 1)
147                 goto out;
148
149         qcom_scm_convention = SMC_CONVENTION_ARM_32;
150         ret = scm_smc_call(NULL, &desc, &res, true);
151         if (!ret && res.result[0] == 1)
152                 goto out;
153
154         qcom_scm_convention = SMC_CONVENTION_LEGACY;
155 out:
156         has_queried = true;
157         spin_unlock_irqrestore(&query_lock, flags);
158         pr_info("qcom_scm: convention: %s\n",
159                 qcom_scm_convention_names[qcom_scm_convention]);
160 }
161
162 static inline enum qcom_scm_convention __get_convention(void)
163 {
164         if (unlikely(!has_queried))
165                 __query_convention();
166         return qcom_scm_convention;
167 }
168
169 /**
170  * qcom_scm_call() - Invoke a syscall in the secure world
171  * @dev:        device
172  * @svc_id:     service identifier
173  * @cmd_id:     command identifier
174  * @desc:       Descriptor structure containing arguments and return values
175  *
176  * Sends a command to the SCM and waits for the command to finish processing.
177  * This should *only* be called in pre-emptible context.
178  */
179 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
180                          struct qcom_scm_res *res)
181 {
182         might_sleep();
183         switch (__get_convention()) {
184         case SMC_CONVENTION_ARM_32:
185         case SMC_CONVENTION_ARM_64:
186                 return scm_smc_call(dev, desc, res, false);
187         case SMC_CONVENTION_LEGACY:
188                 return scm_legacy_call(dev, desc, res);
189         default:
190                 pr_err("Unknown current SCM calling convention.\n");
191                 return -EINVAL;
192         }
193 }
194
195 /**
196  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
197  * @dev:        device
198  * @svc_id:     service identifier
199  * @cmd_id:     command identifier
200  * @desc:       Descriptor structure containing arguments and return values
201  * @res:        Structure containing results from SMC/HVC call
202  *
203  * Sends a command to the SCM and waits for the command to finish processing.
204  * This can be called in atomic context.
205  */
206 static int qcom_scm_call_atomic(struct device *dev,
207                                 const struct qcom_scm_desc *desc,
208                                 struct qcom_scm_res *res)
209 {
210         switch (__get_convention()) {
211         case SMC_CONVENTION_ARM_32:
212         case SMC_CONVENTION_ARM_64:
213                 return scm_smc_call(dev, desc, res, true);
214         case SMC_CONVENTION_LEGACY:
215                 return scm_legacy_call_atomic(dev, desc, res);
216         default:
217                 pr_err("Unknown current SCM calling convention.\n");
218                 return -EINVAL;
219         }
220 }
221
222 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
223                                         u32 cmd_id)
224 {
225         int ret;
226         struct qcom_scm_desc desc = {
227                 .svc = QCOM_SCM_SVC_INFO,
228                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229                 .owner = ARM_SMCCC_OWNER_SIP,
230         };
231         struct qcom_scm_res res;
232
233         desc.arginfo = QCOM_SCM_ARGS(1);
234         switch (__get_convention()) {
235         case SMC_CONVENTION_ARM_32:
236         case SMC_CONVENTION_ARM_64:
237                 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
238                                 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
239                 break;
240         case SMC_CONVENTION_LEGACY:
241                 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
242                 break;
243         default:
244                 pr_err("Unknown SMC convention being used\n");
245                 return -EINVAL;
246         }
247
248         ret = qcom_scm_call(dev, &desc, &res);
249
250         return ret ? : res.result[0];
251 }
252
253 /**
254  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
255  * @entry: Entry point function for the cpus
256  * @cpus: The cpumask of cpus that will use the entry point
257  *
258  * Set the Linux entry point for the SCM to transfer control to when coming
259  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
260  */
261 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
262 {
263         int ret;
264         int flags = 0;
265         int cpu;
266         struct qcom_scm_desc desc = {
267                 .svc = QCOM_SCM_SVC_BOOT,
268                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
269                 .arginfo = QCOM_SCM_ARGS(2),
270         };
271
272         /*
273          * Reassign only if we are switching from hotplug entry point
274          * to cpuidle entry point or vice versa.
275          */
276         for_each_cpu(cpu, cpus) {
277                 if (entry == qcom_scm_wb[cpu].entry)
278                         continue;
279                 flags |= qcom_scm_wb[cpu].flag;
280         }
281
282         /* No change in entry function */
283         if (!flags)
284                 return 0;
285
286         desc.args[0] = flags;
287         desc.args[1] = virt_to_phys(entry);
288
289         ret = qcom_scm_call(__scm->dev, &desc, NULL);
290         if (!ret) {
291                 for_each_cpu(cpu, cpus)
292                         qcom_scm_wb[cpu].entry = entry;
293         }
294
295         return ret;
296 }
297 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
298
299 /**
300  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
301  * @entry: Entry point function for the cpus
302  * @cpus: The cpumask of cpus that will use the entry point
303  *
304  * Set the cold boot address of the cpus. Any cpu outside the supported
305  * range would be removed from the cpu present mask.
306  */
307 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
308 {
309         int flags = 0;
310         int cpu;
311         int scm_cb_flags[] = {
312                 QCOM_SCM_FLAG_COLDBOOT_CPU0,
313                 QCOM_SCM_FLAG_COLDBOOT_CPU1,
314                 QCOM_SCM_FLAG_COLDBOOT_CPU2,
315                 QCOM_SCM_FLAG_COLDBOOT_CPU3,
316         };
317         struct qcom_scm_desc desc = {
318                 .svc = QCOM_SCM_SVC_BOOT,
319                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
320                 .arginfo = QCOM_SCM_ARGS(2),
321                 .owner = ARM_SMCCC_OWNER_SIP,
322         };
323
324         if (!cpus || (cpus && cpumask_empty(cpus)))
325                 return -EINVAL;
326
327         for_each_cpu(cpu, cpus) {
328                 if (cpu < ARRAY_SIZE(scm_cb_flags))
329                         flags |= scm_cb_flags[cpu];
330                 else
331                         set_cpu_present(cpu, false);
332         }
333
334         desc.args[0] = flags;
335         desc.args[1] = virt_to_phys(entry);
336
337         return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
338 }
339 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
340
341 /**
342  * qcom_scm_cpu_power_down() - Power down the cpu
343  * @flags - Flags to flush cache
344  *
345  * This is an end point to power down cpu. If there was a pending interrupt,
346  * the control would return from this function, otherwise, the cpu jumps to the
347  * warm boot entry point set for this cpu upon reset.
348  */
349 void qcom_scm_cpu_power_down(u32 flags)
350 {
351         struct qcom_scm_desc desc = {
352                 .svc = QCOM_SCM_SVC_BOOT,
353                 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
354                 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
355                 .arginfo = QCOM_SCM_ARGS(1),
356                 .owner = ARM_SMCCC_OWNER_SIP,
357         };
358
359         qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
360 }
361 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
362
363 int qcom_scm_set_remote_state(u32 state, u32 id)
364 {
365         struct qcom_scm_desc desc = {
366                 .svc = QCOM_SCM_SVC_BOOT,
367                 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
368                 .arginfo = QCOM_SCM_ARGS(2),
369                 .args[0] = state,
370                 .args[1] = id,
371                 .owner = ARM_SMCCC_OWNER_SIP,
372         };
373         struct qcom_scm_res res;
374         int ret;
375
376         ret = qcom_scm_call(__scm->dev, &desc, &res);
377
378         return ret ? : res.result[0];
379 }
380 EXPORT_SYMBOL(qcom_scm_set_remote_state);
381
382 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
383 {
384         struct qcom_scm_desc desc = {
385                 .svc = QCOM_SCM_SVC_BOOT,
386                 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
387                 .arginfo = QCOM_SCM_ARGS(2),
388                 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
389                 .owner = ARM_SMCCC_OWNER_SIP,
390         };
391
392         desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
393
394         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
395 }
396
397 static void qcom_scm_set_download_mode(bool enable)
398 {
399         bool avail;
400         int ret = 0;
401
402         avail = __qcom_scm_is_call_available(__scm->dev,
403                                              QCOM_SCM_SVC_BOOT,
404                                              QCOM_SCM_BOOT_SET_DLOAD_MODE);
405         if (avail) {
406                 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
407         } else if (__scm->dload_mode_addr) {
408                 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
409                                 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
410         } else {
411                 dev_err(__scm->dev,
412                         "No available mechanism for setting download mode\n");
413         }
414
415         if (ret)
416                 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
417 }
418
419 /**
420  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
421  *                             state machine for a given peripheral, using the
422  *                             metadata
423  * @peripheral: peripheral id
424  * @metadata:   pointer to memory containing ELF header, program header table
425  *              and optional blob of data used for authenticating the metadata
426  *              and the rest of the firmware
427  * @size:       size of the metadata
428  *
429  * Returns 0 on success.
430  */
431 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
432 {
433         dma_addr_t mdata_phys;
434         void *mdata_buf;
435         int ret;
436         struct qcom_scm_desc desc = {
437                 .svc = QCOM_SCM_SVC_PIL,
438                 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
439                 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
440                 .args[0] = peripheral,
441                 .owner = ARM_SMCCC_OWNER_SIP,
442         };
443         struct qcom_scm_res res;
444
445         /*
446          * During the scm call memory protection will be enabled for the meta
447          * data blob, so make sure it's physically contiguous, 4K aligned and
448          * non-cachable to avoid XPU violations.
449          */
450         mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
451                                        GFP_KERNEL);
452         if (!mdata_buf) {
453                 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
454                 return -ENOMEM;
455         }
456         memcpy(mdata_buf, metadata, size);
457
458         ret = qcom_scm_clk_enable();
459         if (ret)
460                 goto free_metadata;
461
462         desc.args[1] = mdata_phys;
463
464         ret = qcom_scm_call(__scm->dev, &desc, &res);
465
466         qcom_scm_clk_disable();
467
468 free_metadata:
469         dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
470
471         return ret ? : res.result[0];
472 }
473 EXPORT_SYMBOL(qcom_scm_pas_init_image);
474
475 /**
476  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
477  *                            for firmware loading
478  * @peripheral: peripheral id
479  * @addr:       start address of memory area to prepare
480  * @size:       size of the memory area to prepare
481  *
482  * Returns 0 on success.
483  */
484 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
485 {
486         int ret;
487         struct qcom_scm_desc desc = {
488                 .svc = QCOM_SCM_SVC_PIL,
489                 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
490                 .arginfo = QCOM_SCM_ARGS(3),
491                 .args[0] = peripheral,
492                 .args[1] = addr,
493                 .args[2] = size,
494                 .owner = ARM_SMCCC_OWNER_SIP,
495         };
496         struct qcom_scm_res res;
497
498         ret = qcom_scm_clk_enable();
499         if (ret)
500                 return ret;
501
502         ret = qcom_scm_call(__scm->dev, &desc, &res);
503         qcom_scm_clk_disable();
504
505         return ret ? : res.result[0];
506 }
507 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
508
509 /**
510  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
511  *                                 and reset the remote processor
512  * @peripheral: peripheral id
513  *
514  * Return 0 on success.
515  */
516 int qcom_scm_pas_auth_and_reset(u32 peripheral)
517 {
518         int ret;
519         struct qcom_scm_desc desc = {
520                 .svc = QCOM_SCM_SVC_PIL,
521                 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
522                 .arginfo = QCOM_SCM_ARGS(1),
523                 .args[0] = peripheral,
524                 .owner = ARM_SMCCC_OWNER_SIP,
525         };
526         struct qcom_scm_res res;
527
528         ret = qcom_scm_clk_enable();
529         if (ret)
530                 return ret;
531
532         ret = qcom_scm_call(__scm->dev, &desc, &res);
533         qcom_scm_clk_disable();
534
535         return ret ? : res.result[0];
536 }
537 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
538
539 /**
540  * qcom_scm_pas_shutdown() - Shut down the remote processor
541  * @peripheral: peripheral id
542  *
543  * Returns 0 on success.
544  */
545 int qcom_scm_pas_shutdown(u32 peripheral)
546 {
547         int ret;
548         struct qcom_scm_desc desc = {
549                 .svc = QCOM_SCM_SVC_PIL,
550                 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
551                 .arginfo = QCOM_SCM_ARGS(1),
552                 .args[0] = peripheral,
553                 .owner = ARM_SMCCC_OWNER_SIP,
554         };
555         struct qcom_scm_res res;
556
557         ret = qcom_scm_clk_enable();
558         if (ret)
559                 return ret;
560
561         ret = qcom_scm_call(__scm->dev, &desc, &res);
562
563         qcom_scm_clk_disable();
564
565         return ret ? : res.result[0];
566 }
567 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
568
569 /**
570  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
571  *                            available for the given peripherial
572  * @peripheral: peripheral id
573  *
574  * Returns true if PAS is supported for this peripheral, otherwise false.
575  */
576 bool qcom_scm_pas_supported(u32 peripheral)
577 {
578         int ret;
579         struct qcom_scm_desc desc = {
580                 .svc = QCOM_SCM_SVC_PIL,
581                 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
582                 .arginfo = QCOM_SCM_ARGS(1),
583                 .args[0] = peripheral,
584                 .owner = ARM_SMCCC_OWNER_SIP,
585         };
586         struct qcom_scm_res res;
587
588         ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
589                                            QCOM_SCM_PIL_PAS_IS_SUPPORTED);
590         if (ret <= 0)
591                 return false;
592
593         ret = qcom_scm_call(__scm->dev, &desc, &res);
594
595         return ret ? false : !!res.result[0];
596 }
597 EXPORT_SYMBOL(qcom_scm_pas_supported);
598
599 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
600 {
601         struct qcom_scm_desc desc = {
602                 .svc = QCOM_SCM_SVC_PIL,
603                 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
604                 .arginfo = QCOM_SCM_ARGS(2),
605                 .args[0] = reset,
606                 .args[1] = 0,
607                 .owner = ARM_SMCCC_OWNER_SIP,
608         };
609         struct qcom_scm_res res;
610         int ret;
611
612         ret = qcom_scm_call(__scm->dev, &desc, &res);
613
614         return ret ? : res.result[0];
615 }
616
617 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
618                                      unsigned long idx)
619 {
620         if (idx != 0)
621                 return -EINVAL;
622
623         return __qcom_scm_pas_mss_reset(__scm->dev, 1);
624 }
625
626 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
627                                        unsigned long idx)
628 {
629         if (idx != 0)
630                 return -EINVAL;
631
632         return __qcom_scm_pas_mss_reset(__scm->dev, 0);
633 }
634
635 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
636         .assert = qcom_scm_pas_reset_assert,
637         .deassert = qcom_scm_pas_reset_deassert,
638 };
639
640 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
641 {
642         struct qcom_scm_desc desc = {
643                 .svc = QCOM_SCM_SVC_IO,
644                 .cmd = QCOM_SCM_IO_READ,
645                 .arginfo = QCOM_SCM_ARGS(1),
646                 .args[0] = addr,
647                 .owner = ARM_SMCCC_OWNER_SIP,
648         };
649         struct qcom_scm_res res;
650         int ret;
651
652
653         ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
654         if (ret >= 0)
655                 *val = res.result[0];
656
657         return ret < 0 ? ret : 0;
658 }
659 EXPORT_SYMBOL(qcom_scm_io_readl);
660
661 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
662 {
663         struct qcom_scm_desc desc = {
664                 .svc = QCOM_SCM_SVC_IO,
665                 .cmd = QCOM_SCM_IO_WRITE,
666                 .arginfo = QCOM_SCM_ARGS(2),
667                 .args[0] = addr,
668                 .args[1] = val,
669                 .owner = ARM_SMCCC_OWNER_SIP,
670         };
671
672         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
673 }
674 EXPORT_SYMBOL(qcom_scm_io_writel);
675
676 /**
677  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
678  * supports restore security config interface.
679  *
680  * Return true if restore-cfg interface is supported, false if not.
681  */
682 bool qcom_scm_restore_sec_cfg_available(void)
683 {
684         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
685                                             QCOM_SCM_MP_RESTORE_SEC_CFG);
686 }
687 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
688
689 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
690 {
691         struct qcom_scm_desc desc = {
692                 .svc = QCOM_SCM_SVC_MP,
693                 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
694                 .arginfo = QCOM_SCM_ARGS(2),
695                 .args[0] = device_id,
696                 .args[1] = spare,
697                 .owner = ARM_SMCCC_OWNER_SIP,
698         };
699         struct qcom_scm_res res;
700         int ret;
701
702         ret = qcom_scm_call(__scm->dev, &desc, &res);
703
704         return ret ? : res.result[0];
705 }
706 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
707
708 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
709 {
710         struct qcom_scm_desc desc = {
711                 .svc = QCOM_SCM_SVC_MP,
712                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
713                 .arginfo = QCOM_SCM_ARGS(1),
714                 .args[0] = spare,
715                 .owner = ARM_SMCCC_OWNER_SIP,
716         };
717         struct qcom_scm_res res;
718         int ret;
719
720         ret = qcom_scm_call(__scm->dev, &desc, &res);
721
722         if (size)
723                 *size = res.result[0];
724
725         return ret ? : res.result[1];
726 }
727 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
728
729 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
730 {
731         struct qcom_scm_desc desc = {
732                 .svc = QCOM_SCM_SVC_MP,
733                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
734                 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
735                                          QCOM_SCM_VAL),
736                 .args[0] = addr,
737                 .args[1] = size,
738                 .args[2] = spare,
739                 .owner = ARM_SMCCC_OWNER_SIP,
740         };
741         int ret;
742
743         desc.args[0] = addr;
744         desc.args[1] = size;
745         desc.args[2] = spare;
746         desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
747                                      QCOM_SCM_VAL);
748
749         ret = qcom_scm_call(__scm->dev, &desc, NULL);
750
751         /* the pg table has been initialized already, ignore the error */
752         if (ret == -EPERM)
753                 ret = 0;
754
755         return ret;
756 }
757 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
758
759 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
760                                    u32 cp_nonpixel_start,
761                                    u32 cp_nonpixel_size)
762 {
763         int ret;
764         struct qcom_scm_desc desc = {
765                 .svc = QCOM_SCM_SVC_MP,
766                 .cmd = QCOM_SCM_MP_VIDEO_VAR,
767                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
768                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
769                 .args[0] = cp_start,
770                 .args[1] = cp_size,
771                 .args[2] = cp_nonpixel_start,
772                 .args[3] = cp_nonpixel_size,
773                 .owner = ARM_SMCCC_OWNER_SIP,
774         };
775         struct qcom_scm_res res;
776
777         ret = qcom_scm_call(__scm->dev, &desc, &res);
778
779         return ret ? : res.result[0];
780 }
781 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
782
783 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
784                                  size_t mem_sz, phys_addr_t src, size_t src_sz,
785                                  phys_addr_t dest, size_t dest_sz)
786 {
787         int ret;
788         struct qcom_scm_desc desc = {
789                 .svc = QCOM_SCM_SVC_MP,
790                 .cmd = QCOM_SCM_MP_ASSIGN,
791                 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
792                                          QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
793                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
794                 .args[0] = mem_region,
795                 .args[1] = mem_sz,
796                 .args[2] = src,
797                 .args[3] = src_sz,
798                 .args[4] = dest,
799                 .args[5] = dest_sz,
800                 .args[6] = 0,
801                 .owner = ARM_SMCCC_OWNER_SIP,
802         };
803         struct qcom_scm_res res;
804
805         ret = qcom_scm_call(dev, &desc, &res);
806
807         return ret ? : res.result[0];
808 }
809
810 /**
811  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
812  * @mem_addr: mem region whose ownership need to be reassigned
813  * @mem_sz:   size of the region.
814  * @srcvm:    vmid for current set of owners, each set bit in
815  *            flag indicate a unique owner
816  * @newvm:    array having new owners and corresponding permission
817  *            flags
818  * @dest_cnt: number of owners in next set.
819  *
820  * Return negative errno on failure or 0 on success with @srcvm updated.
821  */
822 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
823                         unsigned int *srcvm,
824                         const struct qcom_scm_vmperm *newvm,
825                         unsigned int dest_cnt)
826 {
827         struct qcom_scm_current_perm_info *destvm;
828         struct qcom_scm_mem_map_info *mem_to_map;
829         phys_addr_t mem_to_map_phys;
830         phys_addr_t dest_phys;
831         dma_addr_t ptr_phys;
832         size_t mem_to_map_sz;
833         size_t dest_sz;
834         size_t src_sz;
835         size_t ptr_sz;
836         int next_vm;
837         __le32 *src;
838         void *ptr;
839         int ret, i, b;
840         unsigned long srcvm_bits = *srcvm;
841
842         src_sz = hweight_long(srcvm_bits) * sizeof(*src);
843         mem_to_map_sz = sizeof(*mem_to_map);
844         dest_sz = dest_cnt * sizeof(*destvm);
845         ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
846                         ALIGN(dest_sz, SZ_64);
847
848         ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
849         if (!ptr)
850                 return -ENOMEM;
851
852         /* Fill source vmid detail */
853         src = ptr;
854         i = 0;
855         for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
856                 src[i++] = cpu_to_le32(b);
857
858         /* Fill details of mem buff to map */
859         mem_to_map = ptr + ALIGN(src_sz, SZ_64);
860         mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
861         mem_to_map->mem_addr = cpu_to_le64(mem_addr);
862         mem_to_map->mem_size = cpu_to_le64(mem_sz);
863
864         next_vm = 0;
865         /* Fill details of next vmid detail */
866         destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
867         dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
868         for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
869                 destvm->vmid = cpu_to_le32(newvm->vmid);
870                 destvm->perm = cpu_to_le32(newvm->perm);
871                 destvm->ctx = 0;
872                 destvm->ctx_size = 0;
873                 next_vm |= BIT(newvm->vmid);
874         }
875
876         ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
877                                     ptr_phys, src_sz, dest_phys, dest_sz);
878         dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
879         if (ret) {
880                 dev_err(__scm->dev,
881                         "Assign memory protection call failed %d\n", ret);
882                 return -EINVAL;
883         }
884
885         *srcvm = next_vm;
886         return 0;
887 }
888 EXPORT_SYMBOL(qcom_scm_assign_mem);
889
890 /**
891  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
892  */
893 bool qcom_scm_ocmem_lock_available(void)
894 {
895         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
896                                             QCOM_SCM_OCMEM_LOCK_CMD);
897 }
898 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
899
900 /**
901  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
902  * region to the specified initiator
903  *
904  * @id:     tz initiator id
905  * @offset: OCMEM offset
906  * @size:   OCMEM size
907  * @mode:   access mode (WIDE/NARROW)
908  */
909 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
910                         u32 mode)
911 {
912         struct qcom_scm_desc desc = {
913                 .svc = QCOM_SCM_SVC_OCMEM,
914                 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
915                 .args[0] = id,
916                 .args[1] = offset,
917                 .args[2] = size,
918                 .args[3] = mode,
919                 .arginfo = QCOM_SCM_ARGS(4),
920         };
921
922         return qcom_scm_call(__scm->dev, &desc, NULL);
923 }
924 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
925
926 /**
927  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
928  * region from the specified initiator
929  *
930  * @id:     tz initiator id
931  * @offset: OCMEM offset
932  * @size:   OCMEM size
933  */
934 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
935 {
936         struct qcom_scm_desc desc = {
937                 .svc = QCOM_SCM_SVC_OCMEM,
938                 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
939                 .args[0] = id,
940                 .args[1] = offset,
941                 .args[2] = size,
942                 .arginfo = QCOM_SCM_ARGS(3),
943         };
944
945         return qcom_scm_call(__scm->dev, &desc, NULL);
946 }
947 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
948
949 /**
950  * qcom_scm_ice_available() - Is the ICE key programming interface available?
951  *
952  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
953  *         qcom_scm_ice_set_key() are available.
954  */
955 bool qcom_scm_ice_available(void)
956 {
957         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
958                                             QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
959                 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
960                                              QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
961 }
962 EXPORT_SYMBOL(qcom_scm_ice_available);
963
964 /**
965  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
966  * @index: the keyslot to invalidate
967  *
968  * The UFSHCI standard defines a standard way to do this, but it doesn't work on
969  * these SoCs; only this SCM call does.
970  *
971  * Return: 0 on success; -errno on failure.
972  */
973 int qcom_scm_ice_invalidate_key(u32 index)
974 {
975         struct qcom_scm_desc desc = {
976                 .svc = QCOM_SCM_SVC_ES,
977                 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
978                 .arginfo = QCOM_SCM_ARGS(1),
979                 .args[0] = index,
980                 .owner = ARM_SMCCC_OWNER_SIP,
981         };
982
983         return qcom_scm_call(__scm->dev, &desc, NULL);
984 }
985 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
986
987 /**
988  * qcom_scm_ice_set_key() - Set an inline encryption key
989  * @index: the keyslot into which to set the key
990  * @key: the key to program
991  * @key_size: the size of the key in bytes
992  * @cipher: the encryption algorithm the key is for
993  * @data_unit_size: the encryption data unit size, i.e. the size of each
994  *                  individual plaintext and ciphertext.  Given in 512-byte
995  *                  units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
996  *
997  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
998  * can then be used to encrypt/decrypt UFS I/O requests inline.
999  *
1000  * The UFSHCI standard defines a standard way to do this, but it doesn't work on
1001  * these SoCs; only this SCM call does.
1002  *
1003  * Return: 0 on success; -errno on failure.
1004  */
1005 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1006                          enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1007 {
1008         struct qcom_scm_desc desc = {
1009                 .svc = QCOM_SCM_SVC_ES,
1010                 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1011                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1012                                          QCOM_SCM_VAL, QCOM_SCM_VAL,
1013                                          QCOM_SCM_VAL),
1014                 .args[0] = index,
1015                 .args[2] = key_size,
1016                 .args[3] = cipher,
1017                 .args[4] = data_unit_size,
1018                 .owner = ARM_SMCCC_OWNER_SIP,
1019         };
1020         void *keybuf;
1021         dma_addr_t key_phys;
1022         int ret;
1023
1024         /*
1025          * 'key' may point to vmalloc()'ed memory, but we need to pass a
1026          * physical address that's been properly flushed.  The sanctioned way to
1027          * do this is by using the DMA API.  But as is best practice for crypto
1028          * keys, we also must wipe the key after use.  This makes kmemdup() +
1029          * dma_map_single() not clearly correct, since the DMA API can use
1030          * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1031          * keys is normally rare and thus not performance-critical.
1032          */
1033
1034         keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1035                                     GFP_KERNEL);
1036         if (!keybuf)
1037                 return -ENOMEM;
1038         memcpy(keybuf, key, key_size);
1039         desc.args[1] = key_phys;
1040
1041         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1042
1043         memzero_explicit(keybuf, key_size);
1044
1045         dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1046         return ret;
1047 }
1048 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1049
1050 /**
1051  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1052  *
1053  * Return true if HDCP is supported, false if not.
1054  */
1055 bool qcom_scm_hdcp_available(void)
1056 {
1057         int ret = qcom_scm_clk_enable();
1058
1059         if (ret)
1060                 return ret;
1061
1062         ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1063                                                 QCOM_SCM_HDCP_INVOKE);
1064
1065         qcom_scm_clk_disable();
1066
1067         return ret > 0;
1068 }
1069 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1070
1071 /**
1072  * qcom_scm_hdcp_req() - Send HDCP request.
1073  * @req: HDCP request array
1074  * @req_cnt: HDCP request array count
1075  * @resp: response buffer passed to SCM
1076  *
1077  * Write HDCP register(s) through SCM.
1078  */
1079 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1080 {
1081         int ret;
1082         struct qcom_scm_desc desc = {
1083                 .svc = QCOM_SCM_SVC_HDCP,
1084                 .cmd = QCOM_SCM_HDCP_INVOKE,
1085                 .arginfo = QCOM_SCM_ARGS(10),
1086                 .args = {
1087                         req[0].addr,
1088                         req[0].val,
1089                         req[1].addr,
1090                         req[1].val,
1091                         req[2].addr,
1092                         req[2].val,
1093                         req[3].addr,
1094                         req[3].val,
1095                         req[4].addr,
1096                         req[4].val
1097                 },
1098                 .owner = ARM_SMCCC_OWNER_SIP,
1099         };
1100         struct qcom_scm_res res;
1101
1102         if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1103                 return -ERANGE;
1104
1105         ret = qcom_scm_clk_enable();
1106         if (ret)
1107                 return ret;
1108
1109         ret = qcom_scm_call(__scm->dev, &desc, &res);
1110         *resp = res.result[0];
1111
1112         qcom_scm_clk_disable();
1113
1114         return ret;
1115 }
1116 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1117
1118 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1119 {
1120         struct qcom_scm_desc desc = {
1121                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1122                 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1123                 .arginfo = QCOM_SCM_ARGS(2),
1124                 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1125                 .args[1] = en,
1126                 .owner = ARM_SMCCC_OWNER_SIP,
1127         };
1128
1129
1130         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1131 }
1132 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1133
1134 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1135 {
1136         struct device_node *tcsr;
1137         struct device_node *np = dev->of_node;
1138         struct resource res;
1139         u32 offset;
1140         int ret;
1141
1142         tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1143         if (!tcsr)
1144                 return 0;
1145
1146         ret = of_address_to_resource(tcsr, 0, &res);
1147         of_node_put(tcsr);
1148         if (ret)
1149                 return ret;
1150
1151         ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1152         if (ret < 0)
1153                 return ret;
1154
1155         *addr = res.start + offset;
1156
1157         return 0;
1158 }
1159
1160 /**
1161  * qcom_scm_is_available() - Checks if SCM is available
1162  */
1163 bool qcom_scm_is_available(void)
1164 {
1165         return !!__scm;
1166 }
1167 EXPORT_SYMBOL(qcom_scm_is_available);
1168
1169 static int qcom_scm_probe(struct platform_device *pdev)
1170 {
1171         struct qcom_scm *scm;
1172         unsigned long clks;
1173         int ret;
1174
1175         scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1176         if (!scm)
1177                 return -ENOMEM;
1178
1179         ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1180         if (ret < 0)
1181                 return ret;
1182
1183         clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1184
1185         scm->core_clk = devm_clk_get(&pdev->dev, "core");
1186         if (IS_ERR(scm->core_clk)) {
1187                 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1188                         return PTR_ERR(scm->core_clk);
1189
1190                 if (clks & SCM_HAS_CORE_CLK) {
1191                         dev_err(&pdev->dev, "failed to acquire core clk\n");
1192                         return PTR_ERR(scm->core_clk);
1193                 }
1194
1195                 scm->core_clk = NULL;
1196         }
1197
1198         scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1199         if (IS_ERR(scm->iface_clk)) {
1200                 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1201                         return PTR_ERR(scm->iface_clk);
1202
1203                 if (clks & SCM_HAS_IFACE_CLK) {
1204                         dev_err(&pdev->dev, "failed to acquire iface clk\n");
1205                         return PTR_ERR(scm->iface_clk);
1206                 }
1207
1208                 scm->iface_clk = NULL;
1209         }
1210
1211         scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1212         if (IS_ERR(scm->bus_clk)) {
1213                 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1214                         return PTR_ERR(scm->bus_clk);
1215
1216                 if (clks & SCM_HAS_BUS_CLK) {
1217                         dev_err(&pdev->dev, "failed to acquire bus clk\n");
1218                         return PTR_ERR(scm->bus_clk);
1219                 }
1220
1221                 scm->bus_clk = NULL;
1222         }
1223
1224         scm->reset.ops = &qcom_scm_pas_reset_ops;
1225         scm->reset.nr_resets = 1;
1226         scm->reset.of_node = pdev->dev.of_node;
1227         ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1228         if (ret)
1229                 return ret;
1230
1231         /* vote for max clk rate for highest performance */
1232         ret = clk_set_rate(scm->core_clk, INT_MAX);
1233         if (ret)
1234                 return ret;
1235
1236         __scm = scm;
1237         __scm->dev = &pdev->dev;
1238
1239         __query_convention();
1240
1241         /*
1242          * If requested enable "download mode", from this point on warmboot
1243          * will cause the the boot stages to enter download mode, unless
1244          * disabled below by a clean shutdown/reboot.
1245          */
1246         if (download_mode)
1247                 qcom_scm_set_download_mode(true);
1248
1249         return 0;
1250 }
1251
1252 static void qcom_scm_shutdown(struct platform_device *pdev)
1253 {
1254         /* Clean shutdown, disable download mode to allow normal restart */
1255         if (download_mode)
1256                 qcom_scm_set_download_mode(false);
1257 }
1258
1259 static const struct of_device_id qcom_scm_dt_match[] = {
1260         { .compatible = "qcom,scm-apq8064",
1261           /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1262         },
1263         { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1264                                                              SCM_HAS_IFACE_CLK |
1265                                                              SCM_HAS_BUS_CLK)
1266         },
1267         { .compatible = "qcom,scm-ipq4019" },
1268         { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1269         { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1270         { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1271                                                              SCM_HAS_IFACE_CLK |
1272                                                              SCM_HAS_BUS_CLK)
1273         },
1274         { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1275                                                              SCM_HAS_IFACE_CLK |
1276                                                              SCM_HAS_BUS_CLK)
1277         },
1278         { .compatible = "qcom,scm-msm8994" },
1279         { .compatible = "qcom,scm-msm8996" },
1280         { .compatible = "qcom,scm" },
1281         {}
1282 };
1283
1284 static struct platform_driver qcom_scm_driver = {
1285         .driver = {
1286                 .name   = "qcom_scm",
1287                 .of_match_table = qcom_scm_dt_match,
1288         },
1289         .probe = qcom_scm_probe,
1290         .shutdown = qcom_scm_shutdown,
1291 };
1292
1293 static int __init qcom_scm_init(void)
1294 {
1295         return platform_driver_register(&qcom_scm_driver);
1296 }
1297 subsys_initcall(qcom_scm_init);