Merge tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / firmware / psci / psci_checker.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2016 ARM Limited
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/cpu.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/kernel.h>
15 #include <linux/kthread.h>
16 #include <uapi/linux/sched/types.h>
17 #include <linux/module.h>
18 #include <linux/preempt.h>
19 #include <linux/psci.h>
20 #include <linux/slab.h>
21 #include <linux/tick.h>
22 #include <linux/topology.h>
23
24 #include <asm/cpuidle.h>
25
26 #include <uapi/linux/psci.h>
27
28 #define NUM_SUSPEND_CYCLE (10)
29
30 static unsigned int nb_available_cpus;
31 static int tos_resident_cpu = -1;
32
33 static atomic_t nb_active_threads;
34 static struct completion suspend_threads_started =
35         COMPLETION_INITIALIZER(suspend_threads_started);
36 static struct completion suspend_threads_done =
37         COMPLETION_INITIALIZER(suspend_threads_done);
38
39 /*
40  * We assume that PSCI operations are used if they are available. This is not
41  * necessarily true on arm64, since the decision is based on the
42  * "enable-method" property of each CPU in the DT, but given that there is no
43  * arch-specific way to check this, we assume that the DT is sensible.
44  */
45 static int psci_ops_check(void)
46 {
47         int migrate_type = -1;
48         int cpu;
49
50         if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
51                 pr_warn("Missing PSCI operations, aborting tests\n");
52                 return -EOPNOTSUPP;
53         }
54
55         if (psci_ops.migrate_info_type)
56                 migrate_type = psci_ops.migrate_info_type();
57
58         if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
59             migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
60                 /* There is a UP Trusted OS, find on which core it resides. */
61                 for_each_online_cpu(cpu)
62                         if (psci_tos_resident_on(cpu)) {
63                                 tos_resident_cpu = cpu;
64                                 break;
65                         }
66                 if (tos_resident_cpu == -1)
67                         pr_warn("UP Trusted OS resides on no online CPU\n");
68         }
69
70         return 0;
71 }
72
73 /*
74  * offlined_cpus is a temporary array but passing it as an argument avoids
75  * multiple allocations.
76  */
77 static unsigned int down_and_up_cpus(const struct cpumask *cpus,
78                                      struct cpumask *offlined_cpus)
79 {
80         int cpu;
81         int err = 0;
82
83         cpumask_clear(offlined_cpus);
84
85         /* Try to power down all CPUs in the mask. */
86         for_each_cpu(cpu, cpus) {
87                 int ret = remove_cpu(cpu);
88
89                 /*
90                  * cpu_down() checks the number of online CPUs before the TOS
91                  * resident CPU.
92                  */
93                 if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
94                         if (ret != -EBUSY) {
95                                 pr_err("Unexpected return code %d while trying "
96                                        "to power down last online CPU %d\n",
97                                        ret, cpu);
98                                 ++err;
99                         }
100                 } else if (cpu == tos_resident_cpu) {
101                         if (ret != -EPERM) {
102                                 pr_err("Unexpected return code %d while trying "
103                                        "to power down TOS resident CPU %d\n",
104                                        ret, cpu);
105                                 ++err;
106                         }
107                 } else if (ret != 0) {
108                         pr_err("Error occurred (%d) while trying "
109                                "to power down CPU %d\n", ret, cpu);
110                         ++err;
111                 }
112
113                 if (ret == 0)
114                         cpumask_set_cpu(cpu, offlined_cpus);
115         }
116
117         /* Try to power up all the CPUs that have been offlined. */
118         for_each_cpu(cpu, offlined_cpus) {
119                 int ret = add_cpu(cpu);
120
121                 if (ret != 0) {
122                         pr_err("Error occurred (%d) while trying "
123                                "to power up CPU %d\n", ret, cpu);
124                         ++err;
125                 } else {
126                         cpumask_clear_cpu(cpu, offlined_cpus);
127                 }
128         }
129
130         /*
131          * Something went bad at some point and some CPUs could not be turned
132          * back on.
133          */
134         WARN_ON(!cpumask_empty(offlined_cpus) ||
135                 num_online_cpus() != nb_available_cpus);
136
137         return err;
138 }
139
140 static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
141 {
142         int i;
143         cpumask_var_t *cpu_groups = *pcpu_groups;
144
145         for (i = 0; i < num; ++i)
146                 free_cpumask_var(cpu_groups[i]);
147         kfree(cpu_groups);
148 }
149
150 static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
151 {
152         int num_groups = 0;
153         cpumask_var_t tmp, *cpu_groups;
154
155         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
156                 return -ENOMEM;
157
158         cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups),
159                              GFP_KERNEL);
160         if (!cpu_groups) {
161                 free_cpumask_var(tmp);
162                 return -ENOMEM;
163         }
164
165         cpumask_copy(tmp, cpu_online_mask);
166
167         while (!cpumask_empty(tmp)) {
168                 const struct cpumask *cpu_group =
169                         topology_core_cpumask(cpumask_any(tmp));
170
171                 if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
172                         free_cpumask_var(tmp);
173                         free_cpu_groups(num_groups, &cpu_groups);
174                         return -ENOMEM;
175                 }
176                 cpumask_copy(cpu_groups[num_groups++], cpu_group);
177                 cpumask_andnot(tmp, tmp, cpu_group);
178         }
179
180         free_cpumask_var(tmp);
181         *pcpu_groups = cpu_groups;
182
183         return num_groups;
184 }
185
186 static int hotplug_tests(void)
187 {
188         int i, nb_cpu_group, err = -ENOMEM;
189         cpumask_var_t offlined_cpus, *cpu_groups;
190         char *page_buf;
191
192         if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
193                 return err;
194
195         nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
196         if (nb_cpu_group < 0)
197                 goto out_free_cpus;
198         page_buf = (char *)__get_free_page(GFP_KERNEL);
199         if (!page_buf)
200                 goto out_free_cpu_groups;
201
202         /*
203          * Of course the last CPU cannot be powered down and cpu_down() should
204          * refuse doing that.
205          */
206         pr_info("Trying to turn off and on again all CPUs\n");
207         err = down_and_up_cpus(cpu_online_mask, offlined_cpus);
208
209         /*
210          * Take down CPUs by cpu group this time. When the last CPU is turned
211          * off, the cpu group itself should shut down.
212          */
213         for (i = 0; i < nb_cpu_group; ++i) {
214                 ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
215                                                       cpu_groups[i]);
216                 /* Remove trailing newline. */
217                 page_buf[len - 1] = '\0';
218                 pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
219                         i, page_buf);
220                 err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
221         }
222
223         free_page((unsigned long)page_buf);
224 out_free_cpu_groups:
225         free_cpu_groups(nb_cpu_group, &cpu_groups);
226 out_free_cpus:
227         free_cpumask_var(offlined_cpus);
228         return err;
229 }
230
231 static void dummy_callback(struct timer_list *unused) {}
232
233 static int suspend_cpu(struct cpuidle_device *dev,
234                        struct cpuidle_driver *drv, int index)
235 {
236         struct cpuidle_state *state = &drv->states[index];
237         bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
238         int ret;
239
240         arch_cpu_idle_enter();
241
242         if (broadcast) {
243                 /*
244                  * The local timer will be shut down, we need to enter tick
245                  * broadcast.
246                  */
247                 ret = tick_broadcast_enter();
248                 if (ret) {
249                         /*
250                          * In the absence of hardware broadcast mechanism,
251                          * this CPU might be used to broadcast wakeups, which
252                          * may be why entering tick broadcast has failed.
253                          * There is little the kernel can do to work around
254                          * that, so enter WFI instead (idle state 0).
255                          */
256                         cpu_do_idle();
257                         ret = 0;
258                         goto out_arch_exit;
259                 }
260         }
261
262         ret = state->enter(dev, drv, index);
263
264         if (broadcast)
265                 tick_broadcast_exit();
266
267 out_arch_exit:
268         arch_cpu_idle_exit();
269
270         return ret;
271 }
272
273 static int suspend_test_thread(void *arg)
274 {
275         int cpu = (long)arg;
276         int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
277         struct cpuidle_device *dev;
278         struct cpuidle_driver *drv;
279         /* No need for an actual callback, we just want to wake up the CPU. */
280         struct timer_list wakeup_timer;
281
282         /* Wait for the main thread to give the start signal. */
283         wait_for_completion(&suspend_threads_started);
284
285         /* Set maximum priority to preempt all other threads on this CPU. */
286         sched_set_fifo(current);
287
288         dev = this_cpu_read(cpuidle_devices);
289         drv = cpuidle_get_cpu_driver(dev);
290
291         pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
292                 cpu, drv->state_count - 1);
293
294         timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
295         for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
296                 int index;
297                 /*
298                  * Test all possible states, except 0 (which is usually WFI and
299                  * doesn't use PSCI).
300                  */
301                 for (index = 1; index < drv->state_count; ++index) {
302                         int ret;
303                         struct cpuidle_state *state = &drv->states[index];
304
305                         /*
306                          * Set the timer to wake this CPU up in some time (which
307                          * should be largely sufficient for entering suspend).
308                          * If the local tick is disabled when entering suspend,
309                          * suspend_cpu() takes care of switching to a broadcast
310                          * tick, so the timer will still wake us up.
311                          */
312                         mod_timer(&wakeup_timer, jiffies +
313                                   usecs_to_jiffies(state->target_residency));
314
315                         /* IRQs must be disabled during suspend operations. */
316                         local_irq_disable();
317
318                         ret = suspend_cpu(dev, drv, index);
319
320                         /*
321                          * We have woken up. Re-enable IRQs to handle any
322                          * pending interrupt, do not wait until the end of the
323                          * loop.
324                          */
325                         local_irq_enable();
326
327                         if (ret == index) {
328                                 ++nb_suspend;
329                         } else if (ret >= 0) {
330                                 /* We did not enter the expected state. */
331                                 ++nb_shallow_sleep;
332                         } else {
333                                 pr_err("Failed to suspend CPU %d: error %d "
334                                        "(requested state %d, cycle %d)\n",
335                                        cpu, ret, index, i);
336                                 ++nb_err;
337                         }
338                 }
339         }
340
341         /*
342          * Disable the timer to make sure that the timer will not trigger
343          * later.
344          */
345         del_timer(&wakeup_timer);
346         destroy_timer_on_stack(&wakeup_timer);
347
348         if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
349                 complete(&suspend_threads_done);
350
351         for (;;) {
352                 /* Needs to be set first to avoid missing a wakeup. */
353                 set_current_state(TASK_INTERRUPTIBLE);
354                 if (kthread_should_park())
355                         break;
356                 schedule();
357         }
358
359         pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
360                 cpu, nb_suspend, nb_shallow_sleep, nb_err);
361
362         kthread_parkme();
363
364         return nb_err;
365 }
366
367 static int suspend_tests(void)
368 {
369         int i, cpu, err = 0;
370         struct task_struct **threads;
371         int nb_threads = 0;
372
373         threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
374                                 GFP_KERNEL);
375         if (!threads)
376                 return -ENOMEM;
377
378         /*
379          * Stop cpuidle to prevent the idle tasks from entering a deep sleep
380          * mode, as it might interfere with the suspend threads on other CPUs.
381          * This does not prevent the suspend threads from using cpuidle (only
382          * the idle tasks check this status). Take the idle lock so that
383          * the cpuidle driver and device look-up can be carried out safely.
384          */
385         cpuidle_pause_and_lock();
386
387         for_each_online_cpu(cpu) {
388                 struct task_struct *thread;
389                 /* Check that cpuidle is available on that CPU. */
390                 struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
391                 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
392
393                 if (!dev || !drv) {
394                         pr_warn("cpuidle not available on CPU %d, ignoring\n",
395                                 cpu);
396                         continue;
397                 }
398
399                 thread = kthread_create_on_cpu(suspend_test_thread,
400                                                (void *)(long)cpu, cpu,
401                                                "psci_suspend_test");
402                 if (IS_ERR(thread))
403                         pr_err("Failed to create kthread on CPU %d\n", cpu);
404                 else
405                         threads[nb_threads++] = thread;
406         }
407
408         if (nb_threads < 1) {
409                 err = -ENODEV;
410                 goto out;
411         }
412
413         atomic_set(&nb_active_threads, nb_threads);
414
415         /*
416          * Wake up the suspend threads. To avoid the main thread being preempted
417          * before all the threads have been unparked, the suspend threads will
418          * wait for the completion of suspend_threads_started.
419          */
420         for (i = 0; i < nb_threads; ++i)
421                 wake_up_process(threads[i]);
422         complete_all(&suspend_threads_started);
423
424         wait_for_completion(&suspend_threads_done);
425
426
427         /* Stop and destroy all threads, get return status. */
428         for (i = 0; i < nb_threads; ++i) {
429                 err += kthread_park(threads[i]);
430                 err += kthread_stop(threads[i]);
431         }
432  out:
433         cpuidle_resume_and_unlock();
434         kfree(threads);
435         return err;
436 }
437
438 static int __init psci_checker(void)
439 {
440         int ret;
441
442         /*
443          * Since we're in an initcall, we assume that all the CPUs that all
444          * CPUs that can be onlined have been onlined.
445          *
446          * The tests assume that hotplug is enabled but nobody else is using it,
447          * otherwise the results will be unpredictable. However, since there
448          * is no userspace yet in initcalls, that should be fine, as long as
449          * no torture test is running at the same time (see Kconfig).
450          */
451         nb_available_cpus = num_online_cpus();
452
453         /* Check PSCI operations are set up and working. */
454         ret = psci_ops_check();
455         if (ret)
456                 return ret;
457
458         pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
459
460         pr_info("Starting hotplug tests\n");
461         ret = hotplug_tests();
462         if (ret == 0)
463                 pr_info("Hotplug tests passed OK\n");
464         else if (ret > 0)
465                 pr_err("%d error(s) encountered in hotplug tests\n", ret);
466         else {
467                 pr_err("Out of memory\n");
468                 return ret;
469         }
470
471         pr_info("Starting suspend tests (%d cycles per state)\n",
472                 NUM_SUSPEND_CYCLE);
473         ret = suspend_tests();
474         if (ret == 0)
475                 pr_info("Suspend tests passed OK\n");
476         else if (ret > 0)
477                 pr_err("%d error(s) encountered in suspend tests\n", ret);
478         else {
479                 switch (ret) {
480                 case -ENOMEM:
481                         pr_err("Out of memory\n");
482                         break;
483                 case -ENODEV:
484                         pr_warn("Could not start suspend tests on any CPU\n");
485                         break;
486                 }
487         }
488
489         pr_info("PSCI checker completed\n");
490         return ret < 0 ? ret : 0;
491 }
492 late_initcall(psci_checker);