Merge tag 'dlm-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[linux-2.6-microblaze.git] / drivers / firewire / core-transaction.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define HEADER_PRI(pri)                 ((pri) << 0)
34 #define HEADER_TCODE(tcode)             ((tcode) << 4)
35 #define HEADER_RETRY(retry)             ((retry) << 8)
36 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
37 #define HEADER_DESTINATION(destination) ((destination) << 16)
38 #define HEADER_SOURCE(source)           ((source) << 16)
39 #define HEADER_RCODE(rcode)             ((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
43
44 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
52
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56 #define PHY_PACKET_CONFIG       0x0
57 #define PHY_PACKET_LINK_ON      0x1
58 #define PHY_PACKET_SELF_ID      0x2
59
60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id)              ((id) << 30)
63
64 /* returns 0 if the split timeout handler is already running */
65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67         if (t->is_split_transaction)
68                 return del_timer(&t->split_timeout_timer);
69         else
70                 return 1;
71 }
72
73 static int close_transaction(struct fw_transaction *transaction,
74                              struct fw_card *card, int rcode)
75 {
76         struct fw_transaction *t;
77         unsigned long flags;
78
79         spin_lock_irqsave(&card->lock, flags);
80         list_for_each_entry(t, &card->transaction_list, link) {
81                 if (t == transaction) {
82                         if (!try_cancel_split_timeout(t)) {
83                                 spin_unlock_irqrestore(&card->lock, flags);
84                                 goto timed_out;
85                         }
86                         list_del_init(&t->link);
87                         card->tlabel_mask &= ~(1ULL << t->tlabel);
88                         break;
89                 }
90         }
91         spin_unlock_irqrestore(&card->lock, flags);
92
93         if (&t->link != &card->transaction_list) {
94                 t->callback(card, rcode, NULL, 0, t->callback_data);
95                 return 0;
96         }
97
98  timed_out:
99         return -ENOENT;
100 }
101
102 /*
103  * Only valid for transactions that are potentially pending (ie have
104  * been sent).
105  */
106 int fw_cancel_transaction(struct fw_card *card,
107                           struct fw_transaction *transaction)
108 {
109         /*
110          * Cancel the packet transmission if it's still queued.  That
111          * will call the packet transmission callback which cancels
112          * the transaction.
113          */
114
115         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
116                 return 0;
117
118         /*
119          * If the request packet has already been sent, we need to see
120          * if the transaction is still pending and remove it in that case.
121          */
122
123         return close_transaction(transaction, card, RCODE_CANCELLED);
124 }
125 EXPORT_SYMBOL(fw_cancel_transaction);
126
127 static void split_transaction_timeout_callback(struct timer_list *timer)
128 {
129         struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
130         struct fw_card *card = t->card;
131         unsigned long flags;
132
133         spin_lock_irqsave(&card->lock, flags);
134         if (list_empty(&t->link)) {
135                 spin_unlock_irqrestore(&card->lock, flags);
136                 return;
137         }
138         list_del(&t->link);
139         card->tlabel_mask &= ~(1ULL << t->tlabel);
140         spin_unlock_irqrestore(&card->lock, flags);
141
142         t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
143 }
144
145 static void start_split_transaction_timeout(struct fw_transaction *t,
146                                             struct fw_card *card)
147 {
148         unsigned long flags;
149
150         spin_lock_irqsave(&card->lock, flags);
151
152         if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
153                 spin_unlock_irqrestore(&card->lock, flags);
154                 return;
155         }
156
157         t->is_split_transaction = true;
158         mod_timer(&t->split_timeout_timer,
159                   jiffies + card->split_timeout_jiffies);
160
161         spin_unlock_irqrestore(&card->lock, flags);
162 }
163
164 static void transmit_complete_callback(struct fw_packet *packet,
165                                        struct fw_card *card, int status)
166 {
167         struct fw_transaction *t =
168             container_of(packet, struct fw_transaction, packet);
169
170         switch (status) {
171         case ACK_COMPLETE:
172                 close_transaction(t, card, RCODE_COMPLETE);
173                 break;
174         case ACK_PENDING:
175                 start_split_transaction_timeout(t, card);
176                 break;
177         case ACK_BUSY_X:
178         case ACK_BUSY_A:
179         case ACK_BUSY_B:
180                 close_transaction(t, card, RCODE_BUSY);
181                 break;
182         case ACK_DATA_ERROR:
183                 close_transaction(t, card, RCODE_DATA_ERROR);
184                 break;
185         case ACK_TYPE_ERROR:
186                 close_transaction(t, card, RCODE_TYPE_ERROR);
187                 break;
188         default:
189                 /*
190                  * In this case the ack is really a juju specific
191                  * rcode, so just forward that to the callback.
192                  */
193                 close_transaction(t, card, status);
194                 break;
195         }
196 }
197
198 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
199                 int destination_id, int source_id, int generation, int speed,
200                 unsigned long long offset, void *payload, size_t length)
201 {
202         int ext_tcode;
203
204         if (tcode == TCODE_STREAM_DATA) {
205                 packet->header[0] =
206                         HEADER_DATA_LENGTH(length) |
207                         destination_id |
208                         HEADER_TCODE(TCODE_STREAM_DATA);
209                 packet->header_length = 4;
210                 packet->payload = payload;
211                 packet->payload_length = length;
212
213                 goto common;
214         }
215
216         if (tcode > 0x10) {
217                 ext_tcode = tcode & ~0x10;
218                 tcode = TCODE_LOCK_REQUEST;
219         } else
220                 ext_tcode = 0;
221
222         packet->header[0] =
223                 HEADER_RETRY(RETRY_X) |
224                 HEADER_TLABEL(tlabel) |
225                 HEADER_TCODE(tcode) |
226                 HEADER_DESTINATION(destination_id);
227         packet->header[1] =
228                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
229         packet->header[2] =
230                 offset;
231
232         switch (tcode) {
233         case TCODE_WRITE_QUADLET_REQUEST:
234                 packet->header[3] = *(u32 *)payload;
235                 packet->header_length = 16;
236                 packet->payload_length = 0;
237                 break;
238
239         case TCODE_LOCK_REQUEST:
240         case TCODE_WRITE_BLOCK_REQUEST:
241                 packet->header[3] =
242                         HEADER_DATA_LENGTH(length) |
243                         HEADER_EXTENDED_TCODE(ext_tcode);
244                 packet->header_length = 16;
245                 packet->payload = payload;
246                 packet->payload_length = length;
247                 break;
248
249         case TCODE_READ_QUADLET_REQUEST:
250                 packet->header_length = 12;
251                 packet->payload_length = 0;
252                 break;
253
254         case TCODE_READ_BLOCK_REQUEST:
255                 packet->header[3] =
256                         HEADER_DATA_LENGTH(length) |
257                         HEADER_EXTENDED_TCODE(ext_tcode);
258                 packet->header_length = 16;
259                 packet->payload_length = 0;
260                 break;
261
262         default:
263                 WARN(1, "wrong tcode %d\n", tcode);
264         }
265  common:
266         packet->speed = speed;
267         packet->generation = generation;
268         packet->ack = 0;
269         packet->payload_mapped = false;
270 }
271
272 static int allocate_tlabel(struct fw_card *card)
273 {
274         int tlabel;
275
276         tlabel = card->current_tlabel;
277         while (card->tlabel_mask & (1ULL << tlabel)) {
278                 tlabel = (tlabel + 1) & 0x3f;
279                 if (tlabel == card->current_tlabel)
280                         return -EBUSY;
281         }
282
283         card->current_tlabel = (tlabel + 1) & 0x3f;
284         card->tlabel_mask |= 1ULL << tlabel;
285
286         return tlabel;
287 }
288
289 /**
290  * fw_send_request() - submit a request packet for transmission
291  * @card:               interface to send the request at
292  * @t:                  transaction instance to which the request belongs
293  * @tcode:              transaction code
294  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
295  * @generation:         bus generation in which request and response are valid
296  * @speed:              transmission speed
297  * @offset:             48bit wide offset into destination's address space
298  * @payload:            data payload for the request subaction
299  * @length:             length of the payload, in bytes
300  * @callback:           function to be called when the transaction is completed
301  * @callback_data:      data to be passed to the transaction completion callback
302  *
303  * Submit a request packet into the asynchronous request transmission queue.
304  * Can be called from atomic context.  If you prefer a blocking API, use
305  * fw_run_transaction() in a context that can sleep.
306  *
307  * In case of lock requests, specify one of the firewire-core specific %TCODE_
308  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
309  *
310  * Make sure that the value in @destination_id is not older than the one in
311  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
312  *
313  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
314  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
315  * It will contain tag, channel, and sy data instead of a node ID then.
316  *
317  * The payload buffer at @data is going to be DMA-mapped except in case of
318  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
319  * buffer complies with the restrictions of the streaming DMA mapping API.
320  * @payload must not be freed before the @callback is called.
321  *
322  * In case of request types without payload, @data is NULL and @length is 0.
323  *
324  * After the transaction is completed successfully or unsuccessfully, the
325  * @callback will be called.  Among its parameters is the response code which
326  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
327  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
328  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
329  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
330  * generation, or missing ACK respectively.
331  *
332  * Note some timing corner cases:  fw_send_request() may complete much earlier
333  * than when the request packet actually hits the wire.  On the other hand,
334  * transaction completion and hence execution of @callback may happen even
335  * before fw_send_request() returns.
336  */
337 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
338                      int destination_id, int generation, int speed,
339                      unsigned long long offset, void *payload, size_t length,
340                      fw_transaction_callback_t callback, void *callback_data)
341 {
342         unsigned long flags;
343         int tlabel;
344
345         /*
346          * Allocate tlabel from the bitmap and put the transaction on
347          * the list while holding the card spinlock.
348          */
349
350         spin_lock_irqsave(&card->lock, flags);
351
352         tlabel = allocate_tlabel(card);
353         if (tlabel < 0) {
354                 spin_unlock_irqrestore(&card->lock, flags);
355                 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
356                 return;
357         }
358
359         t->node_id = destination_id;
360         t->tlabel = tlabel;
361         t->card = card;
362         t->is_split_transaction = false;
363         timer_setup(&t->split_timeout_timer,
364                     split_transaction_timeout_callback, 0);
365         t->callback = callback;
366         t->callback_data = callback_data;
367
368         fw_fill_request(&t->packet, tcode, t->tlabel,
369                         destination_id, card->node_id, generation,
370                         speed, offset, payload, length);
371         t->packet.callback = transmit_complete_callback;
372
373         list_add_tail(&t->link, &card->transaction_list);
374
375         spin_unlock_irqrestore(&card->lock, flags);
376
377         card->driver->send_request(card, &t->packet);
378 }
379 EXPORT_SYMBOL(fw_send_request);
380
381 struct transaction_callback_data {
382         struct completion done;
383         void *payload;
384         int rcode;
385 };
386
387 static void transaction_callback(struct fw_card *card, int rcode,
388                                  void *payload, size_t length, void *data)
389 {
390         struct transaction_callback_data *d = data;
391
392         if (rcode == RCODE_COMPLETE)
393                 memcpy(d->payload, payload, length);
394         d->rcode = rcode;
395         complete(&d->done);
396 }
397
398 /**
399  * fw_run_transaction() - send request and sleep until transaction is completed
400  * @card:               card interface for this request
401  * @tcode:              transaction code
402  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
403  * @generation:         bus generation in which request and response are valid
404  * @speed:              transmission speed
405  * @offset:             48bit wide offset into destination's address space
406  * @payload:            data payload for the request subaction
407  * @length:             length of the payload, in bytes
408  *
409  * Returns the RCODE.  See fw_send_request() for parameter documentation.
410  * Unlike fw_send_request(), @data points to the payload of the request or/and
411  * to the payload of the response.  DMA mapping restrictions apply to outbound
412  * request payloads of >= 8 bytes but not to inbound response payloads.
413  */
414 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
415                        int generation, int speed, unsigned long long offset,
416                        void *payload, size_t length)
417 {
418         struct transaction_callback_data d;
419         struct fw_transaction t;
420
421         timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
422         init_completion(&d.done);
423         d.payload = payload;
424         fw_send_request(card, &t, tcode, destination_id, generation, speed,
425                         offset, payload, length, transaction_callback, &d);
426         wait_for_completion(&d.done);
427         destroy_timer_on_stack(&t.split_timeout_timer);
428
429         return d.rcode;
430 }
431 EXPORT_SYMBOL(fw_run_transaction);
432
433 static DEFINE_MUTEX(phy_config_mutex);
434 static DECLARE_COMPLETION(phy_config_done);
435
436 static void transmit_phy_packet_callback(struct fw_packet *packet,
437                                          struct fw_card *card, int status)
438 {
439         complete(&phy_config_done);
440 }
441
442 static struct fw_packet phy_config_packet = {
443         .header_length  = 12,
444         .header[0]      = TCODE_LINK_INTERNAL << 4,
445         .payload_length = 0,
446         .speed          = SCODE_100,
447         .callback       = transmit_phy_packet_callback,
448 };
449
450 void fw_send_phy_config(struct fw_card *card,
451                         int node_id, int generation, int gap_count)
452 {
453         long timeout = DIV_ROUND_UP(HZ, 10);
454         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
455
456         if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
457                 data |= PHY_CONFIG_ROOT_ID(node_id);
458
459         if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
460                 gap_count = card->driver->read_phy_reg(card, 1);
461                 if (gap_count < 0)
462                         return;
463
464                 gap_count &= 63;
465                 if (gap_count == 63)
466                         return;
467         }
468         data |= PHY_CONFIG_GAP_COUNT(gap_count);
469
470         mutex_lock(&phy_config_mutex);
471
472         phy_config_packet.header[1] = data;
473         phy_config_packet.header[2] = ~data;
474         phy_config_packet.generation = generation;
475         reinit_completion(&phy_config_done);
476
477         card->driver->send_request(card, &phy_config_packet);
478         wait_for_completion_timeout(&phy_config_done, timeout);
479
480         mutex_unlock(&phy_config_mutex);
481 }
482
483 static struct fw_address_handler *lookup_overlapping_address_handler(
484         struct list_head *list, unsigned long long offset, size_t length)
485 {
486         struct fw_address_handler *handler;
487
488         list_for_each_entry_rcu(handler, list, link) {
489                 if (handler->offset < offset + length &&
490                     offset < handler->offset + handler->length)
491                         return handler;
492         }
493
494         return NULL;
495 }
496
497 static bool is_enclosing_handler(struct fw_address_handler *handler,
498                                  unsigned long long offset, size_t length)
499 {
500         return handler->offset <= offset &&
501                 offset + length <= handler->offset + handler->length;
502 }
503
504 static struct fw_address_handler *lookup_enclosing_address_handler(
505         struct list_head *list, unsigned long long offset, size_t length)
506 {
507         struct fw_address_handler *handler;
508
509         list_for_each_entry_rcu(handler, list, link) {
510                 if (is_enclosing_handler(handler, offset, length))
511                         return handler;
512         }
513
514         return NULL;
515 }
516
517 static DEFINE_SPINLOCK(address_handler_list_lock);
518 static LIST_HEAD(address_handler_list);
519
520 const struct fw_address_region fw_high_memory_region =
521         { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
522 EXPORT_SYMBOL(fw_high_memory_region);
523
524 static const struct fw_address_region low_memory_region =
525         { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
526
527 #if 0
528 const struct fw_address_region fw_private_region =
529         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
530 const struct fw_address_region fw_csr_region =
531         { .start = CSR_REGISTER_BASE,
532           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
533 const struct fw_address_region fw_unit_space_region =
534         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
535 #endif  /*  0  */
536
537 static bool is_in_fcp_region(u64 offset, size_t length)
538 {
539         return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
540                 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
541 }
542
543 /**
544  * fw_core_add_address_handler() - register for incoming requests
545  * @handler:    callback
546  * @region:     region in the IEEE 1212 node space address range
547  *
548  * region->start, ->end, and handler->length have to be quadlet-aligned.
549  *
550  * When a request is received that falls within the specified address range,
551  * the specified callback is invoked.  The parameters passed to the callback
552  * give the details of the particular request.
553  *
554  * To be called in process context.
555  * Return value:  0 on success, non-zero otherwise.
556  *
557  * The start offset of the handler's address region is determined by
558  * fw_core_add_address_handler() and is returned in handler->offset.
559  *
560  * Address allocations are exclusive, except for the FCP registers.
561  */
562 int fw_core_add_address_handler(struct fw_address_handler *handler,
563                                 const struct fw_address_region *region)
564 {
565         struct fw_address_handler *other;
566         int ret = -EBUSY;
567
568         if (region->start & 0xffff000000000003ULL ||
569             region->start >= region->end ||
570             region->end   > 0x0001000000000000ULL ||
571             handler->length & 3 ||
572             handler->length == 0)
573                 return -EINVAL;
574
575         spin_lock(&address_handler_list_lock);
576
577         handler->offset = region->start;
578         while (handler->offset + handler->length <= region->end) {
579                 if (is_in_fcp_region(handler->offset, handler->length))
580                         other = NULL;
581                 else
582                         other = lookup_overlapping_address_handler
583                                         (&address_handler_list,
584                                          handler->offset, handler->length);
585                 if (other != NULL) {
586                         handler->offset += other->length;
587                 } else {
588                         list_add_tail_rcu(&handler->link, &address_handler_list);
589                         ret = 0;
590                         break;
591                 }
592         }
593
594         spin_unlock(&address_handler_list_lock);
595
596         return ret;
597 }
598 EXPORT_SYMBOL(fw_core_add_address_handler);
599
600 /**
601  * fw_core_remove_address_handler() - unregister an address handler
602  * @handler: callback
603  *
604  * To be called in process context.
605  *
606  * When fw_core_remove_address_handler() returns, @handler->callback() is
607  * guaranteed to not run on any CPU anymore.
608  */
609 void fw_core_remove_address_handler(struct fw_address_handler *handler)
610 {
611         spin_lock(&address_handler_list_lock);
612         list_del_rcu(&handler->link);
613         spin_unlock(&address_handler_list_lock);
614         synchronize_rcu();
615 }
616 EXPORT_SYMBOL(fw_core_remove_address_handler);
617
618 struct fw_request {
619         struct fw_packet response;
620         u32 request_header[4];
621         int ack;
622         u32 length;
623         u32 data[];
624 };
625
626 static void free_response_callback(struct fw_packet *packet,
627                                    struct fw_card *card, int status)
628 {
629         struct fw_request *request;
630
631         request = container_of(packet, struct fw_request, response);
632         kfree(request);
633 }
634
635 int fw_get_response_length(struct fw_request *r)
636 {
637         int tcode, ext_tcode, data_length;
638
639         tcode = HEADER_GET_TCODE(r->request_header[0]);
640
641         switch (tcode) {
642         case TCODE_WRITE_QUADLET_REQUEST:
643         case TCODE_WRITE_BLOCK_REQUEST:
644                 return 0;
645
646         case TCODE_READ_QUADLET_REQUEST:
647                 return 4;
648
649         case TCODE_READ_BLOCK_REQUEST:
650                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
651                 return data_length;
652
653         case TCODE_LOCK_REQUEST:
654                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
655                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
656                 switch (ext_tcode) {
657                 case EXTCODE_FETCH_ADD:
658                 case EXTCODE_LITTLE_ADD:
659                         return data_length;
660                 default:
661                         return data_length / 2;
662                 }
663
664         default:
665                 WARN(1, "wrong tcode %d\n", tcode);
666                 return 0;
667         }
668 }
669
670 void fw_fill_response(struct fw_packet *response, u32 *request_header,
671                       int rcode, void *payload, size_t length)
672 {
673         int tcode, tlabel, extended_tcode, source, destination;
674
675         tcode          = HEADER_GET_TCODE(request_header[0]);
676         tlabel         = HEADER_GET_TLABEL(request_header[0]);
677         source         = HEADER_GET_DESTINATION(request_header[0]);
678         destination    = HEADER_GET_SOURCE(request_header[1]);
679         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
680
681         response->header[0] =
682                 HEADER_RETRY(RETRY_1) |
683                 HEADER_TLABEL(tlabel) |
684                 HEADER_DESTINATION(destination);
685         response->header[1] =
686                 HEADER_SOURCE(source) |
687                 HEADER_RCODE(rcode);
688         response->header[2] = 0;
689
690         switch (tcode) {
691         case TCODE_WRITE_QUADLET_REQUEST:
692         case TCODE_WRITE_BLOCK_REQUEST:
693                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
694                 response->header_length = 12;
695                 response->payload_length = 0;
696                 break;
697
698         case TCODE_READ_QUADLET_REQUEST:
699                 response->header[0] |=
700                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
701                 if (payload != NULL)
702                         response->header[3] = *(u32 *)payload;
703                 else
704                         response->header[3] = 0;
705                 response->header_length = 16;
706                 response->payload_length = 0;
707                 break;
708
709         case TCODE_READ_BLOCK_REQUEST:
710         case TCODE_LOCK_REQUEST:
711                 response->header[0] |= HEADER_TCODE(tcode + 2);
712                 response->header[3] =
713                         HEADER_DATA_LENGTH(length) |
714                         HEADER_EXTENDED_TCODE(extended_tcode);
715                 response->header_length = 16;
716                 response->payload = payload;
717                 response->payload_length = length;
718                 break;
719
720         default:
721                 WARN(1, "wrong tcode %d\n", tcode);
722         }
723
724         response->payload_mapped = false;
725 }
726 EXPORT_SYMBOL(fw_fill_response);
727
728 static u32 compute_split_timeout_timestamp(struct fw_card *card,
729                                            u32 request_timestamp)
730 {
731         unsigned int cycles;
732         u32 timestamp;
733
734         cycles = card->split_timeout_cycles;
735         cycles += request_timestamp & 0x1fff;
736
737         timestamp = request_timestamp & ~0x1fff;
738         timestamp += (cycles / 8000) << 13;
739         timestamp |= cycles % 8000;
740
741         return timestamp;
742 }
743
744 static struct fw_request *allocate_request(struct fw_card *card,
745                                            struct fw_packet *p)
746 {
747         struct fw_request *request;
748         u32 *data, length;
749         int request_tcode;
750
751         request_tcode = HEADER_GET_TCODE(p->header[0]);
752         switch (request_tcode) {
753         case TCODE_WRITE_QUADLET_REQUEST:
754                 data = &p->header[3];
755                 length = 4;
756                 break;
757
758         case TCODE_WRITE_BLOCK_REQUEST:
759         case TCODE_LOCK_REQUEST:
760                 data = p->payload;
761                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
762                 break;
763
764         case TCODE_READ_QUADLET_REQUEST:
765                 data = NULL;
766                 length = 4;
767                 break;
768
769         case TCODE_READ_BLOCK_REQUEST:
770                 data = NULL;
771                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
772                 break;
773
774         default:
775                 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
776                          p->header[0], p->header[1], p->header[2]);
777                 return NULL;
778         }
779
780         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
781         if (request == NULL)
782                 return NULL;
783
784         request->response.speed = p->speed;
785         request->response.timestamp =
786                         compute_split_timeout_timestamp(card, p->timestamp);
787         request->response.generation = p->generation;
788         request->response.ack = 0;
789         request->response.callback = free_response_callback;
790         request->ack = p->ack;
791         request->length = length;
792         if (data)
793                 memcpy(request->data, data, length);
794
795         memcpy(request->request_header, p->header, sizeof(p->header));
796
797         return request;
798 }
799
800 void fw_send_response(struct fw_card *card,
801                       struct fw_request *request, int rcode)
802 {
803         if (WARN_ONCE(!request, "invalid for FCP address handlers"))
804                 return;
805
806         /* unified transaction or broadcast transaction: don't respond */
807         if (request->ack != ACK_PENDING ||
808             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
809                 kfree(request);
810                 return;
811         }
812
813         if (rcode == RCODE_COMPLETE)
814                 fw_fill_response(&request->response, request->request_header,
815                                  rcode, request->data,
816                                  fw_get_response_length(request));
817         else
818                 fw_fill_response(&request->response, request->request_header,
819                                  rcode, NULL, 0);
820
821         card->driver->send_response(card, &request->response);
822 }
823 EXPORT_SYMBOL(fw_send_response);
824
825 /**
826  * fw_get_request_speed() - returns speed at which the @request was received
827  * @request: firewire request data
828  */
829 int fw_get_request_speed(struct fw_request *request)
830 {
831         return request->response.speed;
832 }
833 EXPORT_SYMBOL(fw_get_request_speed);
834
835 static void handle_exclusive_region_request(struct fw_card *card,
836                                             struct fw_packet *p,
837                                             struct fw_request *request,
838                                             unsigned long long offset)
839 {
840         struct fw_address_handler *handler;
841         int tcode, destination, source;
842
843         destination = HEADER_GET_DESTINATION(p->header[0]);
844         source      = HEADER_GET_SOURCE(p->header[1]);
845         tcode       = HEADER_GET_TCODE(p->header[0]);
846         if (tcode == TCODE_LOCK_REQUEST)
847                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
848
849         rcu_read_lock();
850         handler = lookup_enclosing_address_handler(&address_handler_list,
851                                                    offset, request->length);
852         if (handler)
853                 handler->address_callback(card, request,
854                                           tcode, destination, source,
855                                           p->generation, offset,
856                                           request->data, request->length,
857                                           handler->callback_data);
858         rcu_read_unlock();
859
860         if (!handler)
861                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
862 }
863
864 static void handle_fcp_region_request(struct fw_card *card,
865                                       struct fw_packet *p,
866                                       struct fw_request *request,
867                                       unsigned long long offset)
868 {
869         struct fw_address_handler *handler;
870         int tcode, destination, source;
871
872         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
873              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
874             request->length > 0x200) {
875                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
876
877                 return;
878         }
879
880         tcode       = HEADER_GET_TCODE(p->header[0]);
881         destination = HEADER_GET_DESTINATION(p->header[0]);
882         source      = HEADER_GET_SOURCE(p->header[1]);
883
884         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
885             tcode != TCODE_WRITE_BLOCK_REQUEST) {
886                 fw_send_response(card, request, RCODE_TYPE_ERROR);
887
888                 return;
889         }
890
891         rcu_read_lock();
892         list_for_each_entry_rcu(handler, &address_handler_list, link) {
893                 if (is_enclosing_handler(handler, offset, request->length))
894                         handler->address_callback(card, NULL, tcode,
895                                                   destination, source,
896                                                   p->generation, offset,
897                                                   request->data,
898                                                   request->length,
899                                                   handler->callback_data);
900         }
901         rcu_read_unlock();
902
903         fw_send_response(card, request, RCODE_COMPLETE);
904 }
905
906 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
907 {
908         struct fw_request *request;
909         unsigned long long offset;
910
911         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
912                 return;
913
914         if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
915                 fw_cdev_handle_phy_packet(card, p);
916                 return;
917         }
918
919         request = allocate_request(card, p);
920         if (request == NULL) {
921                 /* FIXME: send statically allocated busy packet. */
922                 return;
923         }
924
925         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
926                 p->header[2];
927
928         if (!is_in_fcp_region(offset, request->length))
929                 handle_exclusive_region_request(card, p, request, offset);
930         else
931                 handle_fcp_region_request(card, p, request, offset);
932
933 }
934 EXPORT_SYMBOL(fw_core_handle_request);
935
936 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
937 {
938         struct fw_transaction *t;
939         unsigned long flags;
940         u32 *data;
941         size_t data_length;
942         int tcode, tlabel, source, rcode;
943
944         tcode   = HEADER_GET_TCODE(p->header[0]);
945         tlabel  = HEADER_GET_TLABEL(p->header[0]);
946         source  = HEADER_GET_SOURCE(p->header[1]);
947         rcode   = HEADER_GET_RCODE(p->header[1]);
948
949         spin_lock_irqsave(&card->lock, flags);
950         list_for_each_entry(t, &card->transaction_list, link) {
951                 if (t->node_id == source && t->tlabel == tlabel) {
952                         if (!try_cancel_split_timeout(t)) {
953                                 spin_unlock_irqrestore(&card->lock, flags);
954                                 goto timed_out;
955                         }
956                         list_del_init(&t->link);
957                         card->tlabel_mask &= ~(1ULL << t->tlabel);
958                         break;
959                 }
960         }
961         spin_unlock_irqrestore(&card->lock, flags);
962
963         if (&t->link == &card->transaction_list) {
964  timed_out:
965                 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
966                           source, tlabel);
967                 return;
968         }
969
970         /*
971          * FIXME: sanity check packet, is length correct, does tcodes
972          * and addresses match.
973          */
974
975         switch (tcode) {
976         case TCODE_READ_QUADLET_RESPONSE:
977                 data = (u32 *) &p->header[3];
978                 data_length = 4;
979                 break;
980
981         case TCODE_WRITE_RESPONSE:
982                 data = NULL;
983                 data_length = 0;
984                 break;
985
986         case TCODE_READ_BLOCK_RESPONSE:
987         case TCODE_LOCK_RESPONSE:
988                 data = p->payload;
989                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
990                 break;
991
992         default:
993                 /* Should never happen, this is just to shut up gcc. */
994                 data = NULL;
995                 data_length = 0;
996                 break;
997         }
998
999         /*
1000          * The response handler may be executed while the request handler
1001          * is still pending.  Cancel the request handler.
1002          */
1003         card->driver->cancel_packet(card, &t->packet);
1004
1005         t->callback(card, rcode, data, data_length, t->callback_data);
1006 }
1007 EXPORT_SYMBOL(fw_core_handle_response);
1008
1009 /**
1010  * fw_rcode_string - convert a firewire result code to an error description
1011  * @rcode: the result code
1012  */
1013 const char *fw_rcode_string(int rcode)
1014 {
1015         static const char *const names[] = {
1016                 [RCODE_COMPLETE]       = "no error",
1017                 [RCODE_CONFLICT_ERROR] = "conflict error",
1018                 [RCODE_DATA_ERROR]     = "data error",
1019                 [RCODE_TYPE_ERROR]     = "type error",
1020                 [RCODE_ADDRESS_ERROR]  = "address error",
1021                 [RCODE_SEND_ERROR]     = "send error",
1022                 [RCODE_CANCELLED]      = "timeout",
1023                 [RCODE_BUSY]           = "busy",
1024                 [RCODE_GENERATION]     = "bus reset",
1025                 [RCODE_NO_ACK]         = "no ack",
1026         };
1027
1028         if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1029                 return names[rcode];
1030         else
1031                 return "unknown";
1032 }
1033 EXPORT_SYMBOL(fw_rcode_string);
1034
1035 static const struct fw_address_region topology_map_region =
1036         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1037           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1038
1039 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1040                 int tcode, int destination, int source, int generation,
1041                 unsigned long long offset, void *payload, size_t length,
1042                 void *callback_data)
1043 {
1044         int start;
1045
1046         if (!TCODE_IS_READ_REQUEST(tcode)) {
1047                 fw_send_response(card, request, RCODE_TYPE_ERROR);
1048                 return;
1049         }
1050
1051         if ((offset & 3) > 0 || (length & 3) > 0) {
1052                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1053                 return;
1054         }
1055
1056         start = (offset - topology_map_region.start) / 4;
1057         memcpy(payload, &card->topology_map[start], length);
1058
1059         fw_send_response(card, request, RCODE_COMPLETE);
1060 }
1061
1062 static struct fw_address_handler topology_map = {
1063         .length                 = 0x400,
1064         .address_callback       = handle_topology_map,
1065 };
1066
1067 static const struct fw_address_region registers_region =
1068         { .start = CSR_REGISTER_BASE,
1069           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1070
1071 static void update_split_timeout(struct fw_card *card)
1072 {
1073         unsigned int cycles;
1074
1075         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1076
1077         /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1078         cycles = clamp(cycles, 800u, 3u * 8000u);
1079
1080         card->split_timeout_cycles = cycles;
1081         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1082 }
1083
1084 static void handle_registers(struct fw_card *card, struct fw_request *request,
1085                 int tcode, int destination, int source, int generation,
1086                 unsigned long long offset, void *payload, size_t length,
1087                 void *callback_data)
1088 {
1089         int reg = offset & ~CSR_REGISTER_BASE;
1090         __be32 *data = payload;
1091         int rcode = RCODE_COMPLETE;
1092         unsigned long flags;
1093
1094         switch (reg) {
1095         case CSR_PRIORITY_BUDGET:
1096                 if (!card->priority_budget_implemented) {
1097                         rcode = RCODE_ADDRESS_ERROR;
1098                         break;
1099                 }
1100                 fallthrough;
1101
1102         case CSR_NODE_IDS:
1103                 /*
1104                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1105                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1106                  */
1107                 fallthrough;
1108
1109         case CSR_STATE_CLEAR:
1110         case CSR_STATE_SET:
1111         case CSR_CYCLE_TIME:
1112         case CSR_BUS_TIME:
1113         case CSR_BUSY_TIMEOUT:
1114                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1115                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1116                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1117                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1118                 else
1119                         rcode = RCODE_TYPE_ERROR;
1120                 break;
1121
1122         case CSR_RESET_START:
1123                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1124                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1125                                                 CSR_STATE_BIT_ABDICATE);
1126                 else
1127                         rcode = RCODE_TYPE_ERROR;
1128                 break;
1129
1130         case CSR_SPLIT_TIMEOUT_HI:
1131                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1132                         *data = cpu_to_be32(card->split_timeout_hi);
1133                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1134                         spin_lock_irqsave(&card->lock, flags);
1135                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1136                         update_split_timeout(card);
1137                         spin_unlock_irqrestore(&card->lock, flags);
1138                 } else {
1139                         rcode = RCODE_TYPE_ERROR;
1140                 }
1141                 break;
1142
1143         case CSR_SPLIT_TIMEOUT_LO:
1144                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145                         *data = cpu_to_be32(card->split_timeout_lo);
1146                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147                         spin_lock_irqsave(&card->lock, flags);
1148                         card->split_timeout_lo =
1149                                         be32_to_cpu(*data) & 0xfff80000;
1150                         update_split_timeout(card);
1151                         spin_unlock_irqrestore(&card->lock, flags);
1152                 } else {
1153                         rcode = RCODE_TYPE_ERROR;
1154                 }
1155                 break;
1156
1157         case CSR_MAINT_UTILITY:
1158                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1159                         *data = card->maint_utility_register;
1160                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1161                         card->maint_utility_register = *data;
1162                 else
1163                         rcode = RCODE_TYPE_ERROR;
1164                 break;
1165
1166         case CSR_BROADCAST_CHANNEL:
1167                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1168                         *data = cpu_to_be32(card->broadcast_channel);
1169                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1170                         card->broadcast_channel =
1171                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1172                             BROADCAST_CHANNEL_INITIAL;
1173                 else
1174                         rcode = RCODE_TYPE_ERROR;
1175                 break;
1176
1177         case CSR_BUS_MANAGER_ID:
1178         case CSR_BANDWIDTH_AVAILABLE:
1179         case CSR_CHANNELS_AVAILABLE_HI:
1180         case CSR_CHANNELS_AVAILABLE_LO:
1181                 /*
1182                  * FIXME: these are handled by the OHCI hardware and
1183                  * the stack never sees these request. If we add
1184                  * support for a new type of controller that doesn't
1185                  * handle this in hardware we need to deal with these
1186                  * transactions.
1187                  */
1188                 BUG();
1189                 break;
1190
1191         default:
1192                 rcode = RCODE_ADDRESS_ERROR;
1193                 break;
1194         }
1195
1196         fw_send_response(card, request, rcode);
1197 }
1198
1199 static struct fw_address_handler registers = {
1200         .length                 = 0x400,
1201         .address_callback       = handle_registers,
1202 };
1203
1204 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1205                 int tcode, int destination, int source, int generation,
1206                 unsigned long long offset, void *payload, size_t length,
1207                 void *callback_data)
1208 {
1209         /*
1210          * This catches requests not handled by the physical DMA unit,
1211          * i.e., wrong transaction types or unauthorized source nodes.
1212          */
1213         fw_send_response(card, request, RCODE_TYPE_ERROR);
1214 }
1215
1216 static struct fw_address_handler low_memory = {
1217         .length                 = FW_MAX_PHYSICAL_RANGE,
1218         .address_callback       = handle_low_memory,
1219 };
1220
1221 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1222 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1223 MODULE_LICENSE("GPL");
1224
1225 static const u32 vendor_textual_descriptor[] = {
1226         /* textual descriptor leaf () */
1227         0x00060000,
1228         0x00000000,
1229         0x00000000,
1230         0x4c696e75,             /* L i n u */
1231         0x78204669,             /* x   F i */
1232         0x72657769,             /* r e w i */
1233         0x72650000,             /* r e     */
1234 };
1235
1236 static const u32 model_textual_descriptor[] = {
1237         /* model descriptor leaf () */
1238         0x00030000,
1239         0x00000000,
1240         0x00000000,
1241         0x4a756a75,             /* J u j u */
1242 };
1243
1244 static struct fw_descriptor vendor_id_descriptor = {
1245         .length = ARRAY_SIZE(vendor_textual_descriptor),
1246         .immediate = 0x03001f11,
1247         .key = 0x81000000,
1248         .data = vendor_textual_descriptor,
1249 };
1250
1251 static struct fw_descriptor model_id_descriptor = {
1252         .length = ARRAY_SIZE(model_textual_descriptor),
1253         .immediate = 0x17023901,
1254         .key = 0x81000000,
1255         .data = model_textual_descriptor,
1256 };
1257
1258 static int __init fw_core_init(void)
1259 {
1260         int ret;
1261
1262         fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1263         if (!fw_workqueue)
1264                 return -ENOMEM;
1265
1266         ret = bus_register(&fw_bus_type);
1267         if (ret < 0) {
1268                 destroy_workqueue(fw_workqueue);
1269                 return ret;
1270         }
1271
1272         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1273         if (fw_cdev_major < 0) {
1274                 bus_unregister(&fw_bus_type);
1275                 destroy_workqueue(fw_workqueue);
1276                 return fw_cdev_major;
1277         }
1278
1279         fw_core_add_address_handler(&topology_map, &topology_map_region);
1280         fw_core_add_address_handler(&registers, &registers_region);
1281         fw_core_add_address_handler(&low_memory, &low_memory_region);
1282         fw_core_add_descriptor(&vendor_id_descriptor);
1283         fw_core_add_descriptor(&model_id_descriptor);
1284
1285         return 0;
1286 }
1287
1288 static void __exit fw_core_cleanup(void)
1289 {
1290         unregister_chrdev(fw_cdev_major, "firewire");
1291         bus_unregister(&fw_bus_type);
1292         destroy_workqueue(fw_workqueue);
1293         idr_destroy(&fw_device_idr);
1294 }
1295
1296 module_init(fw_core_init);
1297 module_exit(fw_core_cleanup);