drm/etnaviv: Implement mmap as GEM object function
[linux-2.6-microblaze.git] / drivers / firewire / core-iso.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20
21 #include <asm/byteorder.h>
22
23 #include "core.h"
24
25 /*
26  * Isochronous DMA context management
27  */
28
29 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
30 {
31         int i;
32
33         buffer->page_count = 0;
34         buffer->page_count_mapped = 0;
35         buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
36                                       GFP_KERNEL);
37         if (buffer->pages == NULL)
38                 return -ENOMEM;
39
40         for (i = 0; i < page_count; i++) {
41                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
42                 if (buffer->pages[i] == NULL)
43                         break;
44         }
45         buffer->page_count = i;
46         if (i < page_count) {
47                 fw_iso_buffer_destroy(buffer, NULL);
48                 return -ENOMEM;
49         }
50
51         return 0;
52 }
53
54 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
55                           enum dma_data_direction direction)
56 {
57         dma_addr_t address;
58         int i;
59
60         buffer->direction = direction;
61
62         for (i = 0; i < buffer->page_count; i++) {
63                 address = dma_map_page(card->device, buffer->pages[i],
64                                        0, PAGE_SIZE, direction);
65                 if (dma_mapping_error(card->device, address))
66                         break;
67
68                 set_page_private(buffer->pages[i], address);
69         }
70         buffer->page_count_mapped = i;
71         if (i < buffer->page_count)
72                 return -ENOMEM;
73
74         return 0;
75 }
76
77 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
78                        int page_count, enum dma_data_direction direction)
79 {
80         int ret;
81
82         ret = fw_iso_buffer_alloc(buffer, page_count);
83         if (ret < 0)
84                 return ret;
85
86         ret = fw_iso_buffer_map_dma(buffer, card, direction);
87         if (ret < 0)
88                 fw_iso_buffer_destroy(buffer, card);
89
90         return ret;
91 }
92 EXPORT_SYMBOL(fw_iso_buffer_init);
93
94 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
95                            struct fw_card *card)
96 {
97         int i;
98         dma_addr_t address;
99
100         for (i = 0; i < buffer->page_count_mapped; i++) {
101                 address = page_private(buffer->pages[i]);
102                 dma_unmap_page(card->device, address,
103                                PAGE_SIZE, buffer->direction);
104         }
105         for (i = 0; i < buffer->page_count; i++)
106                 __free_page(buffer->pages[i]);
107
108         kfree(buffer->pages);
109         buffer->pages = NULL;
110         buffer->page_count = 0;
111         buffer->page_count_mapped = 0;
112 }
113 EXPORT_SYMBOL(fw_iso_buffer_destroy);
114
115 /* Convert DMA address to offset into virtually contiguous buffer. */
116 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
117 {
118         size_t i;
119         dma_addr_t address;
120         ssize_t offset;
121
122         for (i = 0; i < buffer->page_count; i++) {
123                 address = page_private(buffer->pages[i]);
124                 offset = (ssize_t)completed - (ssize_t)address;
125                 if (offset > 0 && offset <= PAGE_SIZE)
126                         return (i << PAGE_SHIFT) + offset;
127         }
128
129         return 0;
130 }
131
132 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
133                 int type, int channel, int speed, size_t header_size,
134                 fw_iso_callback_t callback, void *callback_data)
135 {
136         struct fw_iso_context *ctx;
137
138         ctx = card->driver->allocate_iso_context(card,
139                                                  type, channel, header_size);
140         if (IS_ERR(ctx))
141                 return ctx;
142
143         ctx->card = card;
144         ctx->type = type;
145         ctx->channel = channel;
146         ctx->speed = speed;
147         ctx->header_size = header_size;
148         ctx->callback.sc = callback;
149         ctx->callback_data = callback_data;
150
151         return ctx;
152 }
153 EXPORT_SYMBOL(fw_iso_context_create);
154
155 void fw_iso_context_destroy(struct fw_iso_context *ctx)
156 {
157         ctx->card->driver->free_iso_context(ctx);
158 }
159 EXPORT_SYMBOL(fw_iso_context_destroy);
160
161 int fw_iso_context_start(struct fw_iso_context *ctx,
162                          int cycle, int sync, int tags)
163 {
164         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
165 }
166 EXPORT_SYMBOL(fw_iso_context_start);
167
168 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
169 {
170         return ctx->card->driver->set_iso_channels(ctx, channels);
171 }
172
173 int fw_iso_context_queue(struct fw_iso_context *ctx,
174                          struct fw_iso_packet *packet,
175                          struct fw_iso_buffer *buffer,
176                          unsigned long payload)
177 {
178         return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
179 }
180 EXPORT_SYMBOL(fw_iso_context_queue);
181
182 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
183 {
184         ctx->card->driver->flush_queue_iso(ctx);
185 }
186 EXPORT_SYMBOL(fw_iso_context_queue_flush);
187
188 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
189 {
190         return ctx->card->driver->flush_iso_completions(ctx);
191 }
192 EXPORT_SYMBOL(fw_iso_context_flush_completions);
193
194 int fw_iso_context_stop(struct fw_iso_context *ctx)
195 {
196         return ctx->card->driver->stop_iso(ctx);
197 }
198 EXPORT_SYMBOL(fw_iso_context_stop);
199
200 /*
201  * Isochronous bus resource management (channels, bandwidth), client side
202  */
203
204 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
205                             int bandwidth, bool allocate)
206 {
207         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
208         __be32 data[2];
209
210         /*
211          * On a 1394a IRM with low contention, try < 1 is enough.
212          * On a 1394-1995 IRM, we need at least try < 2.
213          * Let's just do try < 5.
214          */
215         for (try = 0; try < 5; try++) {
216                 new = allocate ? old - bandwidth : old + bandwidth;
217                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
218                         return -EBUSY;
219
220                 data[0] = cpu_to_be32(old);
221                 data[1] = cpu_to_be32(new);
222                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
223                                 irm_id, generation, SCODE_100,
224                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
225                                 data, 8)) {
226                 case RCODE_GENERATION:
227                         /* A generation change frees all bandwidth. */
228                         return allocate ? -EAGAIN : bandwidth;
229
230                 case RCODE_COMPLETE:
231                         if (be32_to_cpup(data) == old)
232                                 return bandwidth;
233
234                         old = be32_to_cpup(data);
235                         /* Fall through. */
236                 }
237         }
238
239         return -EIO;
240 }
241
242 static int manage_channel(struct fw_card *card, int irm_id, int generation,
243                 u32 channels_mask, u64 offset, bool allocate)
244 {
245         __be32 bit, all, old;
246         __be32 data[2];
247         int channel, ret = -EIO, retry = 5;
248
249         old = all = allocate ? cpu_to_be32(~0) : 0;
250
251         for (channel = 0; channel < 32; channel++) {
252                 if (!(channels_mask & 1 << channel))
253                         continue;
254
255                 ret = -EBUSY;
256
257                 bit = cpu_to_be32(1 << (31 - channel));
258                 if ((old & bit) != (all & bit))
259                         continue;
260
261                 data[0] = old;
262                 data[1] = old ^ bit;
263                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
264                                            irm_id, generation, SCODE_100,
265                                            offset, data, 8)) {
266                 case RCODE_GENERATION:
267                         /* A generation change frees all channels. */
268                         return allocate ? -EAGAIN : channel;
269
270                 case RCODE_COMPLETE:
271                         if (data[0] == old)
272                                 return channel;
273
274                         old = data[0];
275
276                         /* Is the IRM 1394a-2000 compliant? */
277                         if ((data[0] & bit) == (data[1] & bit))
278                                 continue;
279
280                         fallthrough;    /* It's a 1394-1995 IRM, retry */
281                 default:
282                         if (retry) {
283                                 retry--;
284                                 channel--;
285                         } else {
286                                 ret = -EIO;
287                         }
288                 }
289         }
290
291         return ret;
292 }
293
294 static void deallocate_channel(struct fw_card *card, int irm_id,
295                                int generation, int channel)
296 {
297         u32 mask;
298         u64 offset;
299
300         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
301         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
302                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
303
304         manage_channel(card, irm_id, generation, mask, offset, false);
305 }
306
307 /**
308  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
309  * @card: card interface for this action
310  * @generation: bus generation
311  * @channels_mask: bitmask for channel allocation
312  * @channel: pointer for returning channel allocation result
313  * @bandwidth: pointer for returning bandwidth allocation result
314  * @allocate: whether to allocate (true) or deallocate (false)
315  *
316  * In parameters: card, generation, channels_mask, bandwidth, allocate
317  * Out parameters: channel, bandwidth
318  *
319  * This function blocks (sleeps) during communication with the IRM.
320  *
321  * Allocates or deallocates at most one channel out of channels_mask.
322  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
323  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
324  * channel 0 and LSB for channel 63.)
325  * Allocates or deallocates as many bandwidth allocation units as specified.
326  *
327  * Returns channel < 0 if no channel was allocated or deallocated.
328  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
329  *
330  * If generation is stale, deallocations succeed but allocations fail with
331  * channel = -EAGAIN.
332  *
333  * If channel allocation fails, no bandwidth will be allocated either.
334  * If bandwidth allocation fails, no channel will be allocated either.
335  * But deallocations of channel and bandwidth are tried independently
336  * of each other's success.
337  */
338 void fw_iso_resource_manage(struct fw_card *card, int generation,
339                             u64 channels_mask, int *channel, int *bandwidth,
340                             bool allocate)
341 {
342         u32 channels_hi = channels_mask;        /* channels 31...0 */
343         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
344         int irm_id, ret, c = -EINVAL;
345
346         spin_lock_irq(&card->lock);
347         irm_id = card->irm_node->node_id;
348         spin_unlock_irq(&card->lock);
349
350         if (channels_hi)
351                 c = manage_channel(card, irm_id, generation, channels_hi,
352                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
353                                 allocate);
354         if (channels_lo && c < 0) {
355                 c = manage_channel(card, irm_id, generation, channels_lo,
356                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
357                                 allocate);
358                 if (c >= 0)
359                         c += 32;
360         }
361         *channel = c;
362
363         if (allocate && channels_mask != 0 && c < 0)
364                 *bandwidth = 0;
365
366         if (*bandwidth == 0)
367                 return;
368
369         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
370         if (ret < 0)
371                 *bandwidth = 0;
372
373         if (allocate && ret < 0) {
374                 if (c >= 0)
375                         deallocate_channel(card, irm_id, generation, c);
376                 *channel = ret;
377         }
378 }
379 EXPORT_SYMBOL(fw_iso_resource_manage);