Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / firewire / core-device.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device probing and sysfs code.
4  *
5  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31
32 #include "core.h"
33
34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35 {
36         ci->p = p + 1;
37         ci->end = ci->p + (p[0] >> 16);
38 }
39 EXPORT_SYMBOL(fw_csr_iterator_init);
40
41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42 {
43         *key = *ci->p >> 24;
44         *value = *ci->p & 0xffffff;
45
46         return ci->p++ < ci->end;
47 }
48 EXPORT_SYMBOL(fw_csr_iterator_next);
49
50 static const u32 *search_leaf(const u32 *directory, int search_key)
51 {
52         struct fw_csr_iterator ci;
53         int last_key = 0, key, value;
54
55         fw_csr_iterator_init(&ci, directory);
56         while (fw_csr_iterator_next(&ci, &key, &value)) {
57                 if (last_key == search_key &&
58                     key == (CSR_DESCRIPTOR | CSR_LEAF))
59                         return ci.p - 1 + value;
60
61                 last_key = key;
62         }
63
64         return NULL;
65 }
66
67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68 {
69         unsigned int quadlets, i;
70         char c;
71
72         if (!size || !buf)
73                 return -EINVAL;
74
75         quadlets = min(block[0] >> 16, 256U);
76         if (quadlets < 2)
77                 return -ENODATA;
78
79         if (block[1] != 0 || block[2] != 0)
80                 /* unknown language/character set */
81                 return -ENODATA;
82
83         block += 3;
84         quadlets -= 2;
85         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86                 c = block[i / 4] >> (24 - 8 * (i % 4));
87                 if (c == '\0')
88                         break;
89                 buf[i] = c;
90         }
91         buf[i] = '\0';
92
93         return i;
94 }
95
96 /**
97  * fw_csr_string() - reads a string from the configuration ROM
98  * @directory:  e.g. root directory or unit directory
99  * @key:        the key of the preceding directory entry
100  * @buf:        where to put the string
101  * @size:       size of @buf, in bytes
102  *
103  * The string is taken from a minimal ASCII text descriptor leaf after
104  * the immediate entry with @key.  The string is zero-terminated.
105  * An overlong string is silently truncated such that it and the
106  * zero byte fit into @size.
107  *
108  * Returns strlen(buf) or a negative error code.
109  */
110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111 {
112         const u32 *leaf = search_leaf(directory, key);
113         if (!leaf)
114                 return -ENOENT;
115
116         return textual_leaf_to_string(leaf, buf, size);
117 }
118 EXPORT_SYMBOL(fw_csr_string);
119
120 static void get_ids(const u32 *directory, int *id)
121 {
122         struct fw_csr_iterator ci;
123         int key, value;
124
125         fw_csr_iterator_init(&ci, directory);
126         while (fw_csr_iterator_next(&ci, &key, &value)) {
127                 switch (key) {
128                 case CSR_VENDOR:        id[0] = value; break;
129                 case CSR_MODEL:         id[1] = value; break;
130                 case CSR_SPECIFIER_ID:  id[2] = value; break;
131                 case CSR_VERSION:       id[3] = value; break;
132                 }
133         }
134 }
135
136 static void get_modalias_ids(struct fw_unit *unit, int *id)
137 {
138         get_ids(&fw_parent_device(unit)->config_rom[5], id);
139         get_ids(unit->directory, id);
140 }
141
142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143 {
144         int match = 0;
145
146         if (id[0] == id_table->vendor_id)
147                 match |= IEEE1394_MATCH_VENDOR_ID;
148         if (id[1] == id_table->model_id)
149                 match |= IEEE1394_MATCH_MODEL_ID;
150         if (id[2] == id_table->specifier_id)
151                 match |= IEEE1394_MATCH_SPECIFIER_ID;
152         if (id[3] == id_table->version)
153                 match |= IEEE1394_MATCH_VERSION;
154
155         return (match & id_table->match_flags) == id_table->match_flags;
156 }
157
158 static const struct ieee1394_device_id *unit_match(struct device *dev,
159                                                    struct device_driver *drv)
160 {
161         const struct ieee1394_device_id *id_table =
162                         container_of(drv, struct fw_driver, driver)->id_table;
163         int id[] = {0, 0, 0, 0};
164
165         get_modalias_ids(fw_unit(dev), id);
166
167         for (; id_table->match_flags != 0; id_table++)
168                 if (match_ids(id_table, id))
169                         return id_table;
170
171         return NULL;
172 }
173
174 static bool is_fw_unit(struct device *dev);
175
176 static int fw_unit_match(struct device *dev, struct device_driver *drv)
177 {
178         /* We only allow binding to fw_units. */
179         return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180 }
181
182 static int fw_unit_probe(struct device *dev)
183 {
184         struct fw_driver *driver =
185                         container_of(dev->driver, struct fw_driver, driver);
186
187         return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188 }
189
190 static void fw_unit_remove(struct device *dev)
191 {
192         struct fw_driver *driver =
193                         container_of(dev->driver, struct fw_driver, driver);
194
195         driver->remove(fw_unit(dev));
196 }
197
198 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
199 {
200         int id[] = {0, 0, 0, 0};
201
202         get_modalias_ids(unit, id);
203
204         return snprintf(buffer, buffer_size,
205                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
206                         id[0], id[1], id[2], id[3]);
207 }
208
209 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
210 {
211         struct fw_unit *unit = fw_unit(dev);
212         char modalias[64];
213
214         get_modalias(unit, modalias, sizeof(modalias));
215
216         if (add_uevent_var(env, "MODALIAS=%s", modalias))
217                 return -ENOMEM;
218
219         return 0;
220 }
221
222 struct bus_type fw_bus_type = {
223         .name = "firewire",
224         .match = fw_unit_match,
225         .probe = fw_unit_probe,
226         .remove = fw_unit_remove,
227 };
228 EXPORT_SYMBOL(fw_bus_type);
229
230 int fw_device_enable_phys_dma(struct fw_device *device)
231 {
232         int generation = device->generation;
233
234         /* device->node_id, accessed below, must not be older than generation */
235         smp_rmb();
236
237         return device->card->driver->enable_phys_dma(device->card,
238                                                      device->node_id,
239                                                      generation);
240 }
241 EXPORT_SYMBOL(fw_device_enable_phys_dma);
242
243 struct config_rom_attribute {
244         struct device_attribute attr;
245         u32 key;
246 };
247
248 static ssize_t show_immediate(struct device *dev,
249                               struct device_attribute *dattr, char *buf)
250 {
251         struct config_rom_attribute *attr =
252                 container_of(dattr, struct config_rom_attribute, attr);
253         struct fw_csr_iterator ci;
254         const u32 *dir;
255         int key, value, ret = -ENOENT;
256
257         down_read(&fw_device_rwsem);
258
259         if (is_fw_unit(dev))
260                 dir = fw_unit(dev)->directory;
261         else
262                 dir = fw_device(dev)->config_rom + 5;
263
264         fw_csr_iterator_init(&ci, dir);
265         while (fw_csr_iterator_next(&ci, &key, &value))
266                 if (attr->key == key) {
267                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
268                                        "0x%06x\n", value);
269                         break;
270                 }
271
272         up_read(&fw_device_rwsem);
273
274         return ret;
275 }
276
277 #define IMMEDIATE_ATTR(name, key)                               \
278         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
279
280 static ssize_t show_text_leaf(struct device *dev,
281                               struct device_attribute *dattr, char *buf)
282 {
283         struct config_rom_attribute *attr =
284                 container_of(dattr, struct config_rom_attribute, attr);
285         const u32 *dir;
286         size_t bufsize;
287         char dummy_buf[2];
288         int ret;
289
290         down_read(&fw_device_rwsem);
291
292         if (is_fw_unit(dev))
293                 dir = fw_unit(dev)->directory;
294         else
295                 dir = fw_device(dev)->config_rom + 5;
296
297         if (buf) {
298                 bufsize = PAGE_SIZE - 1;
299         } else {
300                 buf = dummy_buf;
301                 bufsize = 1;
302         }
303
304         ret = fw_csr_string(dir, attr->key, buf, bufsize);
305
306         if (ret >= 0) {
307                 /* Strip trailing whitespace and add newline. */
308                 while (ret > 0 && isspace(buf[ret - 1]))
309                         ret--;
310                 strcpy(buf + ret, "\n");
311                 ret++;
312         }
313
314         up_read(&fw_device_rwsem);
315
316         return ret;
317 }
318
319 #define TEXT_LEAF_ATTR(name, key)                               \
320         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
321
322 static struct config_rom_attribute config_rom_attributes[] = {
323         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
324         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
325         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
326         IMMEDIATE_ATTR(version, CSR_VERSION),
327         IMMEDIATE_ATTR(model, CSR_MODEL),
328         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
329         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
330         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
331 };
332
333 static void init_fw_attribute_group(struct device *dev,
334                                     struct device_attribute *attrs,
335                                     struct fw_attribute_group *group)
336 {
337         struct device_attribute *attr;
338         int i, j;
339
340         for (j = 0; attrs[j].attr.name != NULL; j++)
341                 group->attrs[j] = &attrs[j].attr;
342
343         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
344                 attr = &config_rom_attributes[i].attr;
345                 if (attr->show(dev, attr, NULL) < 0)
346                         continue;
347                 group->attrs[j++] = &attr->attr;
348         }
349
350         group->attrs[j] = NULL;
351         group->groups[0] = &group->group;
352         group->groups[1] = NULL;
353         group->group.attrs = group->attrs;
354         dev->groups = (const struct attribute_group **) group->groups;
355 }
356
357 static ssize_t modalias_show(struct device *dev,
358                              struct device_attribute *attr, char *buf)
359 {
360         struct fw_unit *unit = fw_unit(dev);
361         int length;
362
363         length = get_modalias(unit, buf, PAGE_SIZE);
364         strcpy(buf + length, "\n");
365
366         return length + 1;
367 }
368
369 static ssize_t rom_index_show(struct device *dev,
370                               struct device_attribute *attr, char *buf)
371 {
372         struct fw_device *device = fw_device(dev->parent);
373         struct fw_unit *unit = fw_unit(dev);
374
375         return snprintf(buf, PAGE_SIZE, "%d\n",
376                         (int)(unit->directory - device->config_rom));
377 }
378
379 static struct device_attribute fw_unit_attributes[] = {
380         __ATTR_RO(modalias),
381         __ATTR_RO(rom_index),
382         __ATTR_NULL,
383 };
384
385 static ssize_t config_rom_show(struct device *dev,
386                                struct device_attribute *attr, char *buf)
387 {
388         struct fw_device *device = fw_device(dev);
389         size_t length;
390
391         down_read(&fw_device_rwsem);
392         length = device->config_rom_length * 4;
393         memcpy(buf, device->config_rom, length);
394         up_read(&fw_device_rwsem);
395
396         return length;
397 }
398
399 static ssize_t guid_show(struct device *dev,
400                          struct device_attribute *attr, char *buf)
401 {
402         struct fw_device *device = fw_device(dev);
403         int ret;
404
405         down_read(&fw_device_rwsem);
406         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
407                        device->config_rom[3], device->config_rom[4]);
408         up_read(&fw_device_rwsem);
409
410         return ret;
411 }
412
413 static ssize_t is_local_show(struct device *dev,
414                              struct device_attribute *attr, char *buf)
415 {
416         struct fw_device *device = fw_device(dev);
417
418         return sprintf(buf, "%u\n", device->is_local);
419 }
420
421 static int units_sprintf(char *buf, const u32 *directory)
422 {
423         struct fw_csr_iterator ci;
424         int key, value;
425         int specifier_id = 0;
426         int version = 0;
427
428         fw_csr_iterator_init(&ci, directory);
429         while (fw_csr_iterator_next(&ci, &key, &value)) {
430                 switch (key) {
431                 case CSR_SPECIFIER_ID:
432                         specifier_id = value;
433                         break;
434                 case CSR_VERSION:
435                         version = value;
436                         break;
437                 }
438         }
439
440         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
441 }
442
443 static ssize_t units_show(struct device *dev,
444                           struct device_attribute *attr, char *buf)
445 {
446         struct fw_device *device = fw_device(dev);
447         struct fw_csr_iterator ci;
448         int key, value, i = 0;
449
450         down_read(&fw_device_rwsem);
451         fw_csr_iterator_init(&ci, &device->config_rom[5]);
452         while (fw_csr_iterator_next(&ci, &key, &value)) {
453                 if (key != (CSR_UNIT | CSR_DIRECTORY))
454                         continue;
455                 i += units_sprintf(&buf[i], ci.p + value - 1);
456                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
457                         break;
458         }
459         up_read(&fw_device_rwsem);
460
461         if (i)
462                 buf[i - 1] = '\n';
463
464         return i;
465 }
466
467 static struct device_attribute fw_device_attributes[] = {
468         __ATTR_RO(config_rom),
469         __ATTR_RO(guid),
470         __ATTR_RO(is_local),
471         __ATTR_RO(units),
472         __ATTR_NULL,
473 };
474
475 static int read_rom(struct fw_device *device,
476                     int generation, int index, u32 *data)
477 {
478         u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
479         int i, rcode;
480
481         /* device->node_id, accessed below, must not be older than generation */
482         smp_rmb();
483
484         for (i = 10; i < 100; i += 10) {
485                 rcode = fw_run_transaction(device->card,
486                                 TCODE_READ_QUADLET_REQUEST, device->node_id,
487                                 generation, device->max_speed, offset, data, 4);
488                 if (rcode != RCODE_BUSY)
489                         break;
490                 msleep(i);
491         }
492         be32_to_cpus(data);
493
494         return rcode;
495 }
496
497 #define MAX_CONFIG_ROM_SIZE 256
498
499 /*
500  * Read the bus info block, perform a speed probe, and read all of the rest of
501  * the config ROM.  We do all this with a cached bus generation.  If the bus
502  * generation changes under us, read_config_rom will fail and get retried.
503  * It's better to start all over in this case because the node from which we
504  * are reading the ROM may have changed the ROM during the reset.
505  * Returns either a result code or a negative error code.
506  */
507 static int read_config_rom(struct fw_device *device, int generation)
508 {
509         struct fw_card *card = device->card;
510         const u32 *old_rom, *new_rom;
511         u32 *rom, *stack;
512         u32 sp, key;
513         int i, end, length, ret;
514
515         rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
516                       sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
517         if (rom == NULL)
518                 return -ENOMEM;
519
520         stack = &rom[MAX_CONFIG_ROM_SIZE];
521         memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
522
523         device->max_speed = SCODE_100;
524
525         /* First read the bus info block. */
526         for (i = 0; i < 5; i++) {
527                 ret = read_rom(device, generation, i, &rom[i]);
528                 if (ret != RCODE_COMPLETE)
529                         goto out;
530                 /*
531                  * As per IEEE1212 7.2, during initialization, devices can
532                  * reply with a 0 for the first quadlet of the config
533                  * rom to indicate that they are booting (for example,
534                  * if the firmware is on the disk of a external
535                  * harddisk).  In that case we just fail, and the
536                  * retry mechanism will try again later.
537                  */
538                 if (i == 0 && rom[i] == 0) {
539                         ret = RCODE_BUSY;
540                         goto out;
541                 }
542         }
543
544         device->max_speed = device->node->max_speed;
545
546         /*
547          * Determine the speed of
548          *   - devices with link speed less than PHY speed,
549          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
550          *   - all devices if there are 1394b repeaters.
551          * Note, we cannot use the bus info block's link_spd as starting point
552          * because some buggy firmwares set it lower than necessary and because
553          * 1394-1995 nodes do not have the field.
554          */
555         if ((rom[2] & 0x7) < device->max_speed ||
556             device->max_speed == SCODE_BETA ||
557             card->beta_repeaters_present) {
558                 u32 dummy;
559
560                 /* for S1600 and S3200 */
561                 if (device->max_speed == SCODE_BETA)
562                         device->max_speed = card->link_speed;
563
564                 while (device->max_speed > SCODE_100) {
565                         if (read_rom(device, generation, 0, &dummy) ==
566                             RCODE_COMPLETE)
567                                 break;
568                         device->max_speed--;
569                 }
570         }
571
572         /*
573          * Now parse the config rom.  The config rom is a recursive
574          * directory structure so we parse it using a stack of
575          * references to the blocks that make up the structure.  We
576          * push a reference to the root directory on the stack to
577          * start things off.
578          */
579         length = i;
580         sp = 0;
581         stack[sp++] = 0xc0000005;
582         while (sp > 0) {
583                 /*
584                  * Pop the next block reference of the stack.  The
585                  * lower 24 bits is the offset into the config rom,
586                  * the upper 8 bits are the type of the reference the
587                  * block.
588                  */
589                 key = stack[--sp];
590                 i = key & 0xffffff;
591                 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
592                         ret = -ENXIO;
593                         goto out;
594                 }
595
596                 /* Read header quadlet for the block to get the length. */
597                 ret = read_rom(device, generation, i, &rom[i]);
598                 if (ret != RCODE_COMPLETE)
599                         goto out;
600                 end = i + (rom[i] >> 16) + 1;
601                 if (end > MAX_CONFIG_ROM_SIZE) {
602                         /*
603                          * This block extends outside the config ROM which is
604                          * a firmware bug.  Ignore this whole block, i.e.
605                          * simply set a fake block length of 0.
606                          */
607                         fw_err(card, "skipped invalid ROM block %x at %llx\n",
608                                rom[i],
609                                i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
610                         rom[i] = 0;
611                         end = i;
612                 }
613                 i++;
614
615                 /*
616                  * Now read in the block.  If this is a directory
617                  * block, check the entries as we read them to see if
618                  * it references another block, and push it in that case.
619                  */
620                 for (; i < end; i++) {
621                         ret = read_rom(device, generation, i, &rom[i]);
622                         if (ret != RCODE_COMPLETE)
623                                 goto out;
624
625                         if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
626                                 continue;
627                         /*
628                          * Offset points outside the ROM.  May be a firmware
629                          * bug or an Extended ROM entry (IEEE 1212-2001 clause
630                          * 7.7.18).  Simply overwrite this pointer here by a
631                          * fake immediate entry so that later iterators over
632                          * the ROM don't have to check offsets all the time.
633                          */
634                         if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
635                                 fw_err(card,
636                                        "skipped unsupported ROM entry %x at %llx\n",
637                                        rom[i],
638                                        i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
639                                 rom[i] = 0;
640                                 continue;
641                         }
642                         stack[sp++] = i + rom[i];
643                 }
644                 if (length < i)
645                         length = i;
646         }
647
648         old_rom = device->config_rom;
649         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
650         if (new_rom == NULL) {
651                 ret = -ENOMEM;
652                 goto out;
653         }
654
655         down_write(&fw_device_rwsem);
656         device->config_rom = new_rom;
657         device->config_rom_length = length;
658         up_write(&fw_device_rwsem);
659
660         kfree(old_rom);
661         ret = RCODE_COMPLETE;
662         device->max_rec = rom[2] >> 12 & 0xf;
663         device->cmc     = rom[2] >> 30 & 1;
664         device->irmc    = rom[2] >> 31 & 1;
665  out:
666         kfree(rom);
667
668         return ret;
669 }
670
671 static void fw_unit_release(struct device *dev)
672 {
673         struct fw_unit *unit = fw_unit(dev);
674
675         fw_device_put(fw_parent_device(unit));
676         kfree(unit);
677 }
678
679 static struct device_type fw_unit_type = {
680         .uevent         = fw_unit_uevent,
681         .release        = fw_unit_release,
682 };
683
684 static bool is_fw_unit(struct device *dev)
685 {
686         return dev->type == &fw_unit_type;
687 }
688
689 static void create_units(struct fw_device *device)
690 {
691         struct fw_csr_iterator ci;
692         struct fw_unit *unit;
693         int key, value, i;
694
695         i = 0;
696         fw_csr_iterator_init(&ci, &device->config_rom[5]);
697         while (fw_csr_iterator_next(&ci, &key, &value)) {
698                 if (key != (CSR_UNIT | CSR_DIRECTORY))
699                         continue;
700
701                 /*
702                  * Get the address of the unit directory and try to
703                  * match the drivers id_tables against it.
704                  */
705                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
706                 if (unit == NULL)
707                         continue;
708
709                 unit->directory = ci.p + value - 1;
710                 unit->device.bus = &fw_bus_type;
711                 unit->device.type = &fw_unit_type;
712                 unit->device.parent = &device->device;
713                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
714
715                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
716                                 ARRAY_SIZE(fw_unit_attributes) +
717                                 ARRAY_SIZE(config_rom_attributes));
718                 init_fw_attribute_group(&unit->device,
719                                         fw_unit_attributes,
720                                         &unit->attribute_group);
721
722                 if (device_register(&unit->device) < 0)
723                         goto skip_unit;
724
725                 fw_device_get(device);
726                 continue;
727
728         skip_unit:
729                 kfree(unit);
730         }
731 }
732
733 static int shutdown_unit(struct device *device, void *data)
734 {
735         device_unregister(device);
736
737         return 0;
738 }
739
740 /*
741  * fw_device_rwsem acts as dual purpose mutex:
742  *   - serializes accesses to fw_device_idr,
743  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
744  *     fw_unit.directory, unless those accesses happen at safe occasions
745  */
746 DECLARE_RWSEM(fw_device_rwsem);
747
748 DEFINE_IDR(fw_device_idr);
749 int fw_cdev_major;
750
751 struct fw_device *fw_device_get_by_devt(dev_t devt)
752 {
753         struct fw_device *device;
754
755         down_read(&fw_device_rwsem);
756         device = idr_find(&fw_device_idr, MINOR(devt));
757         if (device)
758                 fw_device_get(device);
759         up_read(&fw_device_rwsem);
760
761         return device;
762 }
763
764 struct workqueue_struct *fw_workqueue;
765 EXPORT_SYMBOL(fw_workqueue);
766
767 static void fw_schedule_device_work(struct fw_device *device,
768                                     unsigned long delay)
769 {
770         queue_delayed_work(fw_workqueue, &device->work, delay);
771 }
772
773 /*
774  * These defines control the retry behavior for reading the config
775  * rom.  It shouldn't be necessary to tweak these; if the device
776  * doesn't respond to a config rom read within 10 seconds, it's not
777  * going to respond at all.  As for the initial delay, a lot of
778  * devices will be able to respond within half a second after bus
779  * reset.  On the other hand, it's not really worth being more
780  * aggressive than that, since it scales pretty well; if 10 devices
781  * are plugged in, they're all getting read within one second.
782  */
783
784 #define MAX_RETRIES     10
785 #define RETRY_DELAY     (3 * HZ)
786 #define INITIAL_DELAY   (HZ / 2)
787 #define SHUTDOWN_DELAY  (2 * HZ)
788
789 static void fw_device_shutdown(struct work_struct *work)
790 {
791         struct fw_device *device =
792                 container_of(work, struct fw_device, work.work);
793         int minor = MINOR(device->device.devt);
794
795         if (time_before64(get_jiffies_64(),
796                           device->card->reset_jiffies + SHUTDOWN_DELAY)
797             && !list_empty(&device->card->link)) {
798                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
799                 return;
800         }
801
802         if (atomic_cmpxchg(&device->state,
803                            FW_DEVICE_GONE,
804                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
805                 return;
806
807         fw_device_cdev_remove(device);
808         device_for_each_child(&device->device, NULL, shutdown_unit);
809         device_unregister(&device->device);
810
811         down_write(&fw_device_rwsem);
812         idr_remove(&fw_device_idr, minor);
813         up_write(&fw_device_rwsem);
814
815         fw_device_put(device);
816 }
817
818 static void fw_device_release(struct device *dev)
819 {
820         struct fw_device *device = fw_device(dev);
821         struct fw_card *card = device->card;
822         unsigned long flags;
823
824         /*
825          * Take the card lock so we don't set this to NULL while a
826          * FW_NODE_UPDATED callback is being handled or while the
827          * bus manager work looks at this node.
828          */
829         spin_lock_irqsave(&card->lock, flags);
830         device->node->data = NULL;
831         spin_unlock_irqrestore(&card->lock, flags);
832
833         fw_node_put(device->node);
834         kfree(device->config_rom);
835         kfree(device);
836         fw_card_put(card);
837 }
838
839 static struct device_type fw_device_type = {
840         .release = fw_device_release,
841 };
842
843 static bool is_fw_device(struct device *dev)
844 {
845         return dev->type == &fw_device_type;
846 }
847
848 static int update_unit(struct device *dev, void *data)
849 {
850         struct fw_unit *unit = fw_unit(dev);
851         struct fw_driver *driver = (struct fw_driver *)dev->driver;
852
853         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
854                 device_lock(dev);
855                 driver->update(unit);
856                 device_unlock(dev);
857         }
858
859         return 0;
860 }
861
862 static void fw_device_update(struct work_struct *work)
863 {
864         struct fw_device *device =
865                 container_of(work, struct fw_device, work.work);
866
867         fw_device_cdev_update(device);
868         device_for_each_child(&device->device, NULL, update_unit);
869 }
870
871 /*
872  * If a device was pending for deletion because its node went away but its
873  * bus info block and root directory header matches that of a newly discovered
874  * device, revive the existing fw_device.
875  * The newly allocated fw_device becomes obsolete instead.
876  */
877 static int lookup_existing_device(struct device *dev, void *data)
878 {
879         struct fw_device *old = fw_device(dev);
880         struct fw_device *new = data;
881         struct fw_card *card = new->card;
882         int match = 0;
883
884         if (!is_fw_device(dev))
885                 return 0;
886
887         down_read(&fw_device_rwsem); /* serialize config_rom access */
888         spin_lock_irq(&card->lock);  /* serialize node access */
889
890         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
891             atomic_cmpxchg(&old->state,
892                            FW_DEVICE_GONE,
893                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
894                 struct fw_node *current_node = new->node;
895                 struct fw_node *obsolete_node = old->node;
896
897                 new->node = obsolete_node;
898                 new->node->data = new;
899                 old->node = current_node;
900                 old->node->data = old;
901
902                 old->max_speed = new->max_speed;
903                 old->node_id = current_node->node_id;
904                 smp_wmb();  /* update node_id before generation */
905                 old->generation = card->generation;
906                 old->config_rom_retries = 0;
907                 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
908
909                 old->workfn = fw_device_update;
910                 fw_schedule_device_work(old, 0);
911
912                 if (current_node == card->root_node)
913                         fw_schedule_bm_work(card, 0);
914
915                 match = 1;
916         }
917
918         spin_unlock_irq(&card->lock);
919         up_read(&fw_device_rwsem);
920
921         return match;
922 }
923
924 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
925
926 static void set_broadcast_channel(struct fw_device *device, int generation)
927 {
928         struct fw_card *card = device->card;
929         __be32 data;
930         int rcode;
931
932         if (!card->broadcast_channel_allocated)
933                 return;
934
935         /*
936          * The Broadcast_Channel Valid bit is required by nodes which want to
937          * transmit on this channel.  Such transmissions are practically
938          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
939          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
940          * to narrow down to which nodes we send Broadcast_Channel updates.
941          */
942         if (!device->irmc || device->max_rec < 8)
943                 return;
944
945         /*
946          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
947          * Perform a read test first.
948          */
949         if (device->bc_implemented == BC_UNKNOWN) {
950                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
951                                 device->node_id, generation, device->max_speed,
952                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
953                                 &data, 4);
954                 switch (rcode) {
955                 case RCODE_COMPLETE:
956                         if (data & cpu_to_be32(1 << 31)) {
957                                 device->bc_implemented = BC_IMPLEMENTED;
958                                 break;
959                         }
960                         fallthrough;    /* to case address error */
961                 case RCODE_ADDRESS_ERROR:
962                         device->bc_implemented = BC_UNIMPLEMENTED;
963                 }
964         }
965
966         if (device->bc_implemented == BC_IMPLEMENTED) {
967                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
968                                    BROADCAST_CHANNEL_VALID);
969                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
970                                 device->node_id, generation, device->max_speed,
971                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
972                                 &data, 4);
973         }
974 }
975
976 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
977 {
978         if (is_fw_device(dev))
979                 set_broadcast_channel(fw_device(dev), (long)gen);
980
981         return 0;
982 }
983
984 static void fw_device_init(struct work_struct *work)
985 {
986         struct fw_device *device =
987                 container_of(work, struct fw_device, work.work);
988         struct fw_card *card = device->card;
989         struct device *revived_dev;
990         int minor, ret;
991
992         /*
993          * All failure paths here set node->data to NULL, so that we
994          * don't try to do device_for_each_child() on a kfree()'d
995          * device.
996          */
997
998         ret = read_config_rom(device, device->generation);
999         if (ret != RCODE_COMPLETE) {
1000                 if (device->config_rom_retries < MAX_RETRIES &&
1001                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1002                         device->config_rom_retries++;
1003                         fw_schedule_device_work(device, RETRY_DELAY);
1004                 } else {
1005                         if (device->node->link_on)
1006                                 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1007                                           device->node_id,
1008                                           fw_rcode_string(ret));
1009                         if (device->node == card->root_node)
1010                                 fw_schedule_bm_work(card, 0);
1011                         fw_device_release(&device->device);
1012                 }
1013                 return;
1014         }
1015
1016         revived_dev = device_find_child(card->device,
1017                                         device, lookup_existing_device);
1018         if (revived_dev) {
1019                 put_device(revived_dev);
1020                 fw_device_release(&device->device);
1021
1022                 return;
1023         }
1024
1025         device_initialize(&device->device);
1026
1027         fw_device_get(device);
1028         down_write(&fw_device_rwsem);
1029         minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1030                         GFP_KERNEL);
1031         up_write(&fw_device_rwsem);
1032
1033         if (minor < 0)
1034                 goto error;
1035
1036         device->device.bus = &fw_bus_type;
1037         device->device.type = &fw_device_type;
1038         device->device.parent = card->device;
1039         device->device.devt = MKDEV(fw_cdev_major, minor);
1040         dev_set_name(&device->device, "fw%d", minor);
1041
1042         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1043                         ARRAY_SIZE(fw_device_attributes) +
1044                         ARRAY_SIZE(config_rom_attributes));
1045         init_fw_attribute_group(&device->device,
1046                                 fw_device_attributes,
1047                                 &device->attribute_group);
1048
1049         if (device_add(&device->device)) {
1050                 fw_err(card, "failed to add device\n");
1051                 goto error_with_cdev;
1052         }
1053
1054         create_units(device);
1055
1056         /*
1057          * Transition the device to running state.  If it got pulled
1058          * out from under us while we did the initialization work, we
1059          * have to shut down the device again here.  Normally, though,
1060          * fw_node_event will be responsible for shutting it down when
1061          * necessary.  We have to use the atomic cmpxchg here to avoid
1062          * racing with the FW_NODE_DESTROYED case in
1063          * fw_node_event().
1064          */
1065         if (atomic_cmpxchg(&device->state,
1066                            FW_DEVICE_INITIALIZING,
1067                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1068                 device->workfn = fw_device_shutdown;
1069                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1070         } else {
1071                 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1072                           dev_name(&device->device),
1073                           device->config_rom[3], device->config_rom[4],
1074                           1 << device->max_speed);
1075                 device->config_rom_retries = 0;
1076
1077                 set_broadcast_channel(device, device->generation);
1078
1079                 add_device_randomness(&device->config_rom[3], 8);
1080         }
1081
1082         /*
1083          * Reschedule the IRM work if we just finished reading the
1084          * root node config rom.  If this races with a bus reset we
1085          * just end up running the IRM work a couple of extra times -
1086          * pretty harmless.
1087          */
1088         if (device->node == card->root_node)
1089                 fw_schedule_bm_work(card, 0);
1090
1091         return;
1092
1093  error_with_cdev:
1094         down_write(&fw_device_rwsem);
1095         idr_remove(&fw_device_idr, minor);
1096         up_write(&fw_device_rwsem);
1097  error:
1098         fw_device_put(device);          /* fw_device_idr's reference */
1099
1100         put_device(&device->device);    /* our reference */
1101 }
1102
1103 /* Reread and compare bus info block and header of root directory */
1104 static int reread_config_rom(struct fw_device *device, int generation,
1105                              bool *changed)
1106 {
1107         u32 q;
1108         int i, rcode;
1109
1110         for (i = 0; i < 6; i++) {
1111                 rcode = read_rom(device, generation, i, &q);
1112                 if (rcode != RCODE_COMPLETE)
1113                         return rcode;
1114
1115                 if (i == 0 && q == 0)
1116                         /* inaccessible (see read_config_rom); retry later */
1117                         return RCODE_BUSY;
1118
1119                 if (q != device->config_rom[i]) {
1120                         *changed = true;
1121                         return RCODE_COMPLETE;
1122                 }
1123         }
1124
1125         *changed = false;
1126         return RCODE_COMPLETE;
1127 }
1128
1129 static void fw_device_refresh(struct work_struct *work)
1130 {
1131         struct fw_device *device =
1132                 container_of(work, struct fw_device, work.work);
1133         struct fw_card *card = device->card;
1134         int ret, node_id = device->node_id;
1135         bool changed;
1136
1137         ret = reread_config_rom(device, device->generation, &changed);
1138         if (ret != RCODE_COMPLETE)
1139                 goto failed_config_rom;
1140
1141         if (!changed) {
1142                 if (atomic_cmpxchg(&device->state,
1143                                    FW_DEVICE_INITIALIZING,
1144                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1145                         goto gone;
1146
1147                 fw_device_update(work);
1148                 device->config_rom_retries = 0;
1149                 goto out;
1150         }
1151
1152         /*
1153          * Something changed.  We keep things simple and don't investigate
1154          * further.  We just destroy all previous units and create new ones.
1155          */
1156         device_for_each_child(&device->device, NULL, shutdown_unit);
1157
1158         ret = read_config_rom(device, device->generation);
1159         if (ret != RCODE_COMPLETE)
1160                 goto failed_config_rom;
1161
1162         fw_device_cdev_update(device);
1163         create_units(device);
1164
1165         /* Userspace may want to re-read attributes. */
1166         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1167
1168         if (atomic_cmpxchg(&device->state,
1169                            FW_DEVICE_INITIALIZING,
1170                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1171                 goto gone;
1172
1173         fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1174         device->config_rom_retries = 0;
1175         goto out;
1176
1177  failed_config_rom:
1178         if (device->config_rom_retries < MAX_RETRIES &&
1179             atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1180                 device->config_rom_retries++;
1181                 fw_schedule_device_work(device, RETRY_DELAY);
1182                 return;
1183         }
1184
1185         fw_notice(card, "giving up on refresh of device %s: %s\n",
1186                   dev_name(&device->device), fw_rcode_string(ret));
1187  gone:
1188         atomic_set(&device->state, FW_DEVICE_GONE);
1189         device->workfn = fw_device_shutdown;
1190         fw_schedule_device_work(device, SHUTDOWN_DELAY);
1191  out:
1192         if (node_id == card->root_node->node_id)
1193                 fw_schedule_bm_work(card, 0);
1194 }
1195
1196 static void fw_device_workfn(struct work_struct *work)
1197 {
1198         struct fw_device *device = container_of(to_delayed_work(work),
1199                                                 struct fw_device, work);
1200         device->workfn(work);
1201 }
1202
1203 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1204 {
1205         struct fw_device *device;
1206
1207         switch (event) {
1208         case FW_NODE_CREATED:
1209                 /*
1210                  * Attempt to scan the node, regardless whether its self ID has
1211                  * the L (link active) flag set or not.  Some broken devices
1212                  * send L=0 but have an up-and-running link; others send L=1
1213                  * without actually having a link.
1214                  */
1215  create:
1216                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1217                 if (device == NULL)
1218                         break;
1219
1220                 /*
1221                  * Do minimal initialization of the device here, the
1222                  * rest will happen in fw_device_init().
1223                  *
1224                  * Attention:  A lot of things, even fw_device_get(),
1225                  * cannot be done before fw_device_init() finished!
1226                  * You can basically just check device->state and
1227                  * schedule work until then, but only while holding
1228                  * card->lock.
1229                  */
1230                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1231                 device->card = fw_card_get(card);
1232                 device->node = fw_node_get(node);
1233                 device->node_id = node->node_id;
1234                 device->generation = card->generation;
1235                 device->is_local = node == card->local_node;
1236                 mutex_init(&device->client_list_mutex);
1237                 INIT_LIST_HEAD(&device->client_list);
1238
1239                 /*
1240                  * Set the node data to point back to this device so
1241                  * FW_NODE_UPDATED callbacks can update the node_id
1242                  * and generation for the device.
1243                  */
1244                 node->data = device;
1245
1246                 /*
1247                  * Many devices are slow to respond after bus resets,
1248                  * especially if they are bus powered and go through
1249                  * power-up after getting plugged in.  We schedule the
1250                  * first config rom scan half a second after bus reset.
1251                  */
1252                 device->workfn = fw_device_init;
1253                 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1254                 fw_schedule_device_work(device, INITIAL_DELAY);
1255                 break;
1256
1257         case FW_NODE_INITIATED_RESET:
1258         case FW_NODE_LINK_ON:
1259                 device = node->data;
1260                 if (device == NULL)
1261                         goto create;
1262
1263                 device->node_id = node->node_id;
1264                 smp_wmb();  /* update node_id before generation */
1265                 device->generation = card->generation;
1266                 if (atomic_cmpxchg(&device->state,
1267                             FW_DEVICE_RUNNING,
1268                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1269                         device->workfn = fw_device_refresh;
1270                         fw_schedule_device_work(device,
1271                                 device->is_local ? 0 : INITIAL_DELAY);
1272                 }
1273                 break;
1274
1275         case FW_NODE_UPDATED:
1276                 device = node->data;
1277                 if (device == NULL)
1278                         break;
1279
1280                 device->node_id = node->node_id;
1281                 smp_wmb();  /* update node_id before generation */
1282                 device->generation = card->generation;
1283                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1284                         device->workfn = fw_device_update;
1285                         fw_schedule_device_work(device, 0);
1286                 }
1287                 break;
1288
1289         case FW_NODE_DESTROYED:
1290         case FW_NODE_LINK_OFF:
1291                 if (!node->data)
1292                         break;
1293
1294                 /*
1295                  * Destroy the device associated with the node.  There
1296                  * are two cases here: either the device is fully
1297                  * initialized (FW_DEVICE_RUNNING) or we're in the
1298                  * process of reading its config rom
1299                  * (FW_DEVICE_INITIALIZING).  If it is fully
1300                  * initialized we can reuse device->work to schedule a
1301                  * full fw_device_shutdown().  If not, there's work
1302                  * scheduled to read it's config rom, and we just put
1303                  * the device in shutdown state to have that code fail
1304                  * to create the device.
1305                  */
1306                 device = node->data;
1307                 if (atomic_xchg(&device->state,
1308                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1309                         device->workfn = fw_device_shutdown;
1310                         fw_schedule_device_work(device,
1311                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1312                 }
1313                 break;
1314         }
1315 }