Merge remote-tracking branch 'spi/for-5.9' into spi-linus
[linux-2.6-microblaze.git] / drivers / edac / sb_edac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *       Mauro Carvalho Chehab
9  */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27
28 #include "edac_module.h"
29
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR        "sb_edac"
38
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)                      \
43         edac_printk(level, "sbridge", fmt, ##arg)
44
45 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
46         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi) \
52         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
53
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56         0x80, 0x88, 0x90, 0x98, 0xa0,
57         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59
60 static const u32 ibridge_dram_rule[] = {
61         0x60, 0x68, 0x70, 0x78, 0x80,
62         0x88, 0x90, 0x98, 0xa0, 0xa8,
63         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66
67 static const u32 knl_dram_rule[] = {
68         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74
75 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
77
78 static char *show_dram_attr(u32 attr)
79 {
80         switch (attr) {
81                 case 0:
82                         return "DRAM";
83                 case 1:
84                         return "MMCFG";
85                 case 2:
86                         return "NXM";
87                 default:
88                         return "unknown";
89         }
90 }
91
92 static const u32 sbridge_interleave_list[] = {
93         0x84, 0x8c, 0x94, 0x9c, 0xa4,
94         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96
97 static const u32 ibridge_interleave_list[] = {
98         0x64, 0x6c, 0x74, 0x7c, 0x84,
99         0x8c, 0x94, 0x9c, 0xa4, 0xac,
100         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103
104 static const u32 knl_interleave_list[] = {
105         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE                                                  \
112         (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
113                max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
114                      ARRAY_SIZE(knl_interleave_list))))
115
116 struct interleave_pkg {
117         unsigned char start;
118         unsigned char end;
119 };
120
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122         { 0, 2 },
123         { 3, 5 },
124         { 8, 10 },
125         { 11, 13 },
126         { 16, 18 },
127         { 19, 21 },
128         { 24, 26 },
129         { 27, 29 },
130 };
131
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133         { 0, 3 },
134         { 4, 7 },
135         { 8, 11 },
136         { 12, 15 },
137         { 16, 19 },
138         { 20, 23 },
139         { 24, 27 },
140         { 28, 31 },
141 };
142
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144                           int interleave)
145 {
146         return GET_BITFIELD(reg, table[interleave].start,
147                             table[interleave].end);
148 }
149
150 /* Devices 12 Function 7 */
151
152 #define TOLM            0x80
153 #define TOHM            0x84
154 #define HASWELL_TOLM    0xd0
155 #define HASWELL_TOHM_0  0xd4
156 #define HASWELL_TOHM_1  0xd8
157 #define KNL_TOLM        0xd0
158 #define KNL_TOHM_0      0xd4
159 #define KNL_TOHM_1      0xd8
160
161 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163
164 /* Device 13 Function 6 */
165
166 #define SAD_TARGET      0xf0
167
168 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
169
170 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
171
172 #define SAD_CONTROL     0xf4
173
174 /* Device 14 function 0 */
175
176 static const u32 tad_dram_rule[] = {
177         0x40, 0x44, 0x48, 0x4c,
178         0x50, 0x54, 0x58, 0x5c,
179         0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
182
183 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
190
191 /* Device 15, function 0 */
192
193 #define MCMTR                   0x7c
194 #define KNL_MCMTR               0x624
195
196 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
199
200 /* Device 15, function 1 */
201
202 #define RASENABLES              0xac
203 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
204
205 /* Device 15, functions 2-5 */
206
207 static const int mtr_regs[] = {
208         0x80, 0x84, 0x88,
209 };
210
211 static const int knl_mtr_reg = 0xb60;
212
213 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
218
219 static const u32 tad_ch_nilv_offset[] = {
220         0x90, 0x94, 0x98, 0x9c,
221         0xa0, 0xa4, 0xa8, 0xac,
222         0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
226
227 static const u32 rir_way_limit[] = {
228         0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231
232 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
234
235 #define MAX_RIR_WAY     8
236
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250
251 /* Device 16, functions 2-7 */
252
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256
257 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
261
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt[] = {
264         0x104, 0x108, 0x10c, 0x110,
265 };
266
267 static const u32 correrrthrsld[] = {
268         0x11c, 0x120, 0x124, 0x128,
269 };
270 #endif
271
272 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
274
275
276 /* Device 17, function 0 */
277
278 #define SB_RANK_CFG_A           0x0328
279
280 #define IB_RANK_CFG_A           0x0320
281
282 /*
283  * sbridge structs
284  */
285
286 #define NUM_CHANNELS            6       /* Max channels per MC */
287 #define MAX_DIMMS               3       /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
292
293 enum type {
294         SANDY_BRIDGE,
295         IVY_BRIDGE,
296         HASWELL,
297         BROADWELL,
298         KNIGHTS_LANDING,
299 };
300
301 enum domain {
302         IMC0 = 0,
303         IMC1,
304         SOCK,
305 };
306
307 enum mirroring_mode {
308         NON_MIRRORING,
309         ADDR_RANGE_MIRRORING,
310         FULL_MIRRORING,
311 };
312
313 struct sbridge_pvt;
314 struct sbridge_info {
315         enum type       type;
316         u32             mcmtr;
317         u32             rankcfgr;
318         u64             (*get_tolm)(struct sbridge_pvt *pvt);
319         u64             (*get_tohm)(struct sbridge_pvt *pvt);
320         u64             (*rir_limit)(u32 reg);
321         u64             (*sad_limit)(u32 reg);
322         u32             (*interleave_mode)(u32 reg);
323         u32             (*dram_attr)(u32 reg);
324         const u32       *dram_rule;
325         const u32       *interleave_list;
326         const struct interleave_pkg *interleave_pkg;
327         u8              max_sad;
328         u8              (*get_node_id)(struct sbridge_pvt *pvt);
329         u8              (*get_ha)(u8 bank);
330         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
331         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332         struct pci_dev  *pci_vtd;
333 };
334
335 struct sbridge_channel {
336         u32             ranks;
337         u32             dimms;
338 };
339
340 struct pci_id_descr {
341         int                     dev_id;
342         int                     optional;
343         enum domain             dom;
344 };
345
346 struct pci_id_table {
347         const struct pci_id_descr       *descr;
348         int                             n_devs_per_imc;
349         int                             n_devs_per_sock;
350         int                             n_imcs_per_sock;
351         enum type                       type;
352 };
353
354 struct sbridge_dev {
355         struct list_head        list;
356         int                     seg;
357         u8                      bus, mc;
358         u8                      node_id, source_id;
359         struct pci_dev          **pdev;
360         enum domain             dom;
361         int                     n_devs;
362         int                     i_devs;
363         struct mem_ctl_info     *mci;
364 };
365
366 struct knl_pvt {
367         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
368         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
369         struct pci_dev          *pci_mc0;
370         struct pci_dev          *pci_mc1;
371         struct pci_dev          *pci_mc0_misc;
372         struct pci_dev          *pci_mc1_misc;
373         struct pci_dev          *pci_mc_info; /* tolm, tohm */
374 };
375
376 struct sbridge_pvt {
377         /* Devices per socket */
378         struct pci_dev          *pci_ddrio;
379         struct pci_dev          *pci_sad0, *pci_sad1;
380         struct pci_dev          *pci_br0, *pci_br1;
381         /* Devices per memory controller */
382         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
383         struct pci_dev          *pci_tad[NUM_CHANNELS];
384
385         struct sbridge_dev      *sbridge_dev;
386
387         struct sbridge_info     info;
388         struct sbridge_channel  channel[NUM_CHANNELS];
389
390         /* Memory type detection */
391         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
392         bool                    is_chan_hash;
393         enum mirroring_mode     mirror_mode;
394
395         /* Memory description */
396         u64                     tolm, tohm;
397         struct knl_pvt knl;
398 };
399
400 #define PCI_DESCR(device_id, opt, domain)       \
401         .dev_id = (device_id),          \
402         .optional = opt,        \
403         .dom = domain
404
405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
406                 /* Processor Home Agent */
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
408
409                 /* Memory controller */
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
412         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
414         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
415         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
416         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
417
418                 /* System Address Decoder */
419         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
421
422                 /* Broadcast Registers */
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
424 };
425
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
427         .descr = A,                     \
428         .n_devs_per_imc = N,    \
429         .n_devs_per_sock = ARRAY_SIZE(A),       \
430         .n_imcs_per_sock = M,   \
431         .type = T                       \
432 }
433
434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
435         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
436         {0,}                    /* 0 terminated list. */
437 };
438
439 /* This changes depending if 1HA or 2HA:
440  * 1HA:
441  *      0x0eb8 (17.0) is DDRIO0
442  * 2HA:
443  *      0x0ebc (17.4) is DDRIO0
444  */
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
447
448 /* pci ids */
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
466
467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
468                 /* Processor Home Agent */
469         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
471
472                 /* Memory controller */
473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
478         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
479
480                 /* Optional, mode 2HA */
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
485         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
487
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
490
491                 /* System Address Decoder */
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
493
494                 /* Broadcast Registers */
495         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
496         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
497
498 };
499
500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
501         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
502         {0,}                    /* 0 terminated list. */
503 };
504
505 /* Haswell support */
506 /* EN processor:
507  *      - 1 IMC
508  *      - 3 DDR3 channels, 2 DPC per channel
509  * EP processor:
510  *      - 1 or 2 IMC
511  *      - 4 DDR4 channels, 3 DPC per channel
512  * EP 4S processor:
513  *      - 2 IMC
514  *      - 4 DDR4 channels, 3 DPC per channel
515  * EX processor:
516  *      - 2 IMC
517  *      - each IMC interfaces with a SMI 2 channel
518  *      - each SMI channel interfaces with a scalable memory buffer
519  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
520  */
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
545         /* first item must be the HA */
546         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
547         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
548
549         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
550         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
553         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
555
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
560         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
562
563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
567         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
568         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
569 };
570
571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
572         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
573         {0,}                    /* 0 terminated list. */
574 };
575
576 /* Knight's Landing Support */
577 /*
578  * KNL's memory channels are swizzled between memory controllers.
579  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
580  */
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
582
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
597
598 /*
599  * KNL differs from SB, IB, and Haswell in that it has multiple
600  * instances of the same device with the same device ID, so we handle that
601  * by creating as many copies in the table as we expect to find.
602  * (Like device ID must be grouped together.)
603  */
604
605 static const struct pci_id_descr pci_dev_descr_knl[] = {
606         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
607         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
608         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
609         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
610         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
611         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
612         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
613 };
614
615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
616         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
617         {0,}
618 };
619
620 /*
621  * Broadwell support
622  *
623  * DE processor:
624  *      - 1 IMC
625  *      - 2 DDR3 channels, 2 DPC per channel
626  * EP processor:
627  *      - 1 or 2 IMC
628  *      - 4 DDR4 channels, 3 DPC per channel
629  * EP 4S processor:
630  *      - 2 IMC
631  *      - 4 DDR4 channels, 3 DPC per channel
632  * EX processor:
633  *      - 2 IMC
634  *      - each IMC interfaces with a SMI 2 channel
635  *      - each SMI channel interfaces with a scalable memory buffer
636  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
637  */
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
656
657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
658         /* first item must be the HA */
659         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
660         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
661
662         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
663         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
664         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
666         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
667         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
668
669         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
673         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
674         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
675
676         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
677         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
678         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
679 };
680
681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
682         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
683         {0,}                    /* 0 terminated list. */
684 };
685
686
687 /****************************************************************************
688                         Ancillary status routines
689  ****************************************************************************/
690
691 static inline int numrank(enum type type, u32 mtr)
692 {
693         int ranks = (1 << RANK_CNT_BITS(mtr));
694         int max = 4;
695
696         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
697                 max = 8;
698
699         if (ranks > max) {
700                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
702                 return -EINVAL;
703         }
704
705         return ranks;
706 }
707
708 static inline int numrow(u32 mtr)
709 {
710         int rows = (RANK_WIDTH_BITS(mtr) + 12);
711
712         if (rows < 13 || rows > 18) {
713                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
715                 return -EINVAL;
716         }
717
718         return 1 << rows;
719 }
720
721 static inline int numcol(u32 mtr)
722 {
723         int cols = (COL_WIDTH_BITS(mtr) + 10);
724
725         if (cols > 12) {
726                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
728                 return -EINVAL;
729         }
730
731         return 1 << cols;
732 }
733
734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
735                                            int multi_bus,
736                                            struct sbridge_dev *prev)
737 {
738         struct sbridge_dev *sbridge_dev;
739
740         /*
741          * If we have devices scattered across several busses that pertain
742          * to the same memory controller, we'll lump them all together.
743          */
744         if (multi_bus) {
745                 return list_first_entry_or_null(&sbridge_edac_list,
746                                 struct sbridge_dev, list);
747         }
748
749         sbridge_dev = list_entry(prev ? prev->list.next
750                                       : sbridge_edac_list.next, struct sbridge_dev, list);
751
752         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
753                 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
754                                 (dom == SOCK || dom == sbridge_dev->dom))
755                         return sbridge_dev;
756         }
757
758         return NULL;
759 }
760
761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
762                                              const struct pci_id_table *table)
763 {
764         struct sbridge_dev *sbridge_dev;
765
766         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
767         if (!sbridge_dev)
768                 return NULL;
769
770         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
771                                     sizeof(*sbridge_dev->pdev),
772                                     GFP_KERNEL);
773         if (!sbridge_dev->pdev) {
774                 kfree(sbridge_dev);
775                 return NULL;
776         }
777
778         sbridge_dev->seg = seg;
779         sbridge_dev->bus = bus;
780         sbridge_dev->dom = dom;
781         sbridge_dev->n_devs = table->n_devs_per_imc;
782         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
783
784         return sbridge_dev;
785 }
786
787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
788 {
789         list_del(&sbridge_dev->list);
790         kfree(sbridge_dev->pdev);
791         kfree(sbridge_dev);
792 }
793
794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
795 {
796         u32 reg;
797
798         /* Address range is 32:28 */
799         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
800         return GET_TOLM(reg);
801 }
802
803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
804 {
805         u32 reg;
806
807         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
808         return GET_TOHM(reg);
809 }
810
811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
812 {
813         u32 reg;
814
815         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
816
817         return GET_TOLM(reg);
818 }
819
820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
821 {
822         u32 reg;
823
824         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
825
826         return GET_TOHM(reg);
827 }
828
829 static u64 rir_limit(u32 reg)
830 {
831         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
832 }
833
834 static u64 sad_limit(u32 reg)
835 {
836         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
837 }
838
839 static u32 interleave_mode(u32 reg)
840 {
841         return GET_BITFIELD(reg, 1, 1);
842 }
843
844 static u32 dram_attr(u32 reg)
845 {
846         return GET_BITFIELD(reg, 2, 3);
847 }
848
849 static u64 knl_sad_limit(u32 reg)
850 {
851         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
852 }
853
854 static u32 knl_interleave_mode(u32 reg)
855 {
856         return GET_BITFIELD(reg, 1, 2);
857 }
858
859 static const char * const knl_intlv_mode[] = {
860         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
861 };
862
863 static const char *get_intlv_mode_str(u32 reg, enum type t)
864 {
865         if (t == KNIGHTS_LANDING)
866                 return knl_intlv_mode[knl_interleave_mode(reg)];
867         else
868                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
869 }
870
871 static u32 dram_attr_knl(u32 reg)
872 {
873         return GET_BITFIELD(reg, 3, 4);
874 }
875
876
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879         u32 reg;
880         enum mem_type mtype;
881
882         if (pvt->pci_ddrio) {
883                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884                                       &reg);
885                 if (GET_BITFIELD(reg, 11, 11))
886                         /* FIXME: Can also be LRDIMM */
887                         mtype = MEM_RDDR3;
888                 else
889                         mtype = MEM_DDR3;
890         } else
891                 mtype = MEM_UNKNOWN;
892
893         return mtype;
894 }
895
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898         u32 reg;
899         bool registered = false;
900         enum mem_type mtype = MEM_UNKNOWN;
901
902         if (!pvt->pci_ddrio)
903                 goto out;
904
905         pci_read_config_dword(pvt->pci_ddrio,
906                               HASWELL_DDRCRCLKCONTROLS, &reg);
907         /* Is_Rdimm */
908         if (GET_BITFIELD(reg, 16, 16))
909                 registered = true;
910
911         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912         if (GET_BITFIELD(reg, 14, 14)) {
913                 if (registered)
914                         mtype = MEM_RDDR4;
915                 else
916                         mtype = MEM_DDR4;
917         } else {
918                 if (registered)
919                         mtype = MEM_RDDR3;
920                 else
921                         mtype = MEM_DDR3;
922         }
923
924 out:
925         return mtype;
926 }
927
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930         /* for KNL value is fixed */
931         return DEV_X16;
932 }
933
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936         /* there's no way to figure out */
937         return DEV_UNKNOWN;
938 }
939
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942         enum dev_type type;
943
944         switch (mtr) {
945         case 3:
946                 type = DEV_UNKNOWN;
947                 break;
948         case 2:
949                 type = DEV_X16;
950                 break;
951         case 1:
952                 type = DEV_X8;
953                 break;
954         case 0:
955                 type = DEV_X4;
956                 break;
957         }
958
959         return type;
960 }
961
962 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
963 {
964         /*
965          * ddr3_width on the documentation but also valid for DDR4 on
966          * Haswell
967          */
968         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
969 }
970
971 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
972 {
973         /* ddr3_width on the documentation but also valid for DDR4 */
974         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
975 }
976
977 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
978 {
979         /* DDR4 RDIMMS and LRDIMMS are supported */
980         return MEM_RDDR4;
981 }
982
983 static u8 get_node_id(struct sbridge_pvt *pvt)
984 {
985         u32 reg;
986         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
987         return GET_BITFIELD(reg, 0, 2);
988 }
989
990 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
991 {
992         u32 reg;
993
994         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995         return GET_BITFIELD(reg, 0, 3);
996 }
997
998 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
999 {
1000         u32 reg;
1001
1002         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003         return GET_BITFIELD(reg, 0, 2);
1004 }
1005
1006 /*
1007  * Use the reporting bank number to determine which memory
1008  * controller (also known as "ha" for "home agent"). Sandy
1009  * Bridge only has one memory controller per socket, so the
1010  * answer is always zero.
1011  */
1012 static u8 sbridge_get_ha(u8 bank)
1013 {
1014         return 0;
1015 }
1016
1017 /*
1018  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1019  * home agent bank (7, 8), or one of the per-channel memory
1020  * controller banks (9 .. 16).
1021  */
1022 static u8 ibridge_get_ha(u8 bank)
1023 {
1024         switch (bank) {
1025         case 7 ... 8:
1026                 return bank - 7;
1027         case 9 ... 16:
1028                 return (bank - 9) / 4;
1029         default:
1030                 return 0xff;
1031         }
1032 }
1033
1034 /* Not used, but included for safety/symmetry */
1035 static u8 knl_get_ha(u8 bank)
1036 {
1037         return 0xff;
1038 }
1039
1040 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1041 {
1042         u32 reg;
1043
1044         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1045         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1046 }
1047
1048 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1049 {
1050         u64 rc;
1051         u32 reg;
1052
1053         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1054         rc = GET_BITFIELD(reg, 26, 31);
1055         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1056         rc = ((reg << 6) | rc) << 26;
1057
1058         return rc | 0x1ffffff;
1059 }
1060
1061 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1062 {
1063         u32 reg;
1064
1065         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1066         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1067 }
1068
1069 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1070 {
1071         u64 rc;
1072         u32 reg_lo, reg_hi;
1073
1074         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1075         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1076         rc = ((u64)reg_hi << 32) | reg_lo;
1077         return rc | 0x3ffffff;
1078 }
1079
1080
1081 static u64 haswell_rir_limit(u32 reg)
1082 {
1083         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1084 }
1085
1086 static inline u8 sad_pkg_socket(u8 pkg)
1087 {
1088         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1089         return ((pkg >> 3) << 2) | (pkg & 0x3);
1090 }
1091
1092 static inline u8 sad_pkg_ha(u8 pkg)
1093 {
1094         return (pkg >> 2) & 0x1;
1095 }
1096
1097 static int haswell_chan_hash(int idx, u64 addr)
1098 {
1099         int i;
1100
1101         /*
1102          * XOR even bits from 12:26 to bit0 of idx,
1103          *     odd bits from 13:27 to bit1
1104          */
1105         for (i = 12; i < 28; i += 2)
1106                 idx ^= (addr >> i) & 3;
1107
1108         return idx;
1109 }
1110
1111 /* Low bits of TAD limit, and some metadata. */
1112 static const u32 knl_tad_dram_limit_lo[] = {
1113         0x400, 0x500, 0x600, 0x700,
1114         0x800, 0x900, 0xa00, 0xb00,
1115 };
1116
1117 /* Low bits of TAD offset. */
1118 static const u32 knl_tad_dram_offset_lo[] = {
1119         0x404, 0x504, 0x604, 0x704,
1120         0x804, 0x904, 0xa04, 0xb04,
1121 };
1122
1123 /* High 16 bits of TAD limit and offset. */
1124 static const u32 knl_tad_dram_hi[] = {
1125         0x408, 0x508, 0x608, 0x708,
1126         0x808, 0x908, 0xa08, 0xb08,
1127 };
1128
1129 /* Number of ways a tad entry is interleaved. */
1130 static const u32 knl_tad_ways[] = {
1131         8, 6, 4, 3, 2, 1,
1132 };
1133
1134 /*
1135  * Retrieve the n'th Target Address Decode table entry
1136  * from the memory controller's TAD table.
1137  *
1138  * @pvt:        driver private data
1139  * @entry:      which entry you want to retrieve
1140  * @mc:         which memory controller (0 or 1)
1141  * @offset:     output tad range offset
1142  * @limit:      output address of first byte above tad range
1143  * @ways:       output number of interleave ways
1144  *
1145  * The offset value has curious semantics.  It's a sort of running total
1146  * of the sizes of all the memory regions that aren't mapped in this
1147  * tad table.
1148  */
1149 static int knl_get_tad(const struct sbridge_pvt *pvt,
1150                 const int entry,
1151                 const int mc,
1152                 u64 *offset,
1153                 u64 *limit,
1154                 int *ways)
1155 {
1156         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1157         struct pci_dev *pci_mc;
1158         int way_id;
1159
1160         switch (mc) {
1161         case 0:
1162                 pci_mc = pvt->knl.pci_mc0;
1163                 break;
1164         case 1:
1165                 pci_mc = pvt->knl.pci_mc1;
1166                 break;
1167         default:
1168                 WARN_ON(1);
1169                 return -EINVAL;
1170         }
1171
1172         pci_read_config_dword(pci_mc,
1173                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1174         pci_read_config_dword(pci_mc,
1175                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1176         pci_read_config_dword(pci_mc,
1177                         knl_tad_dram_hi[entry], &reg_hi);
1178
1179         /* Is this TAD entry enabled? */
1180         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1181                 return -ENODEV;
1182
1183         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1184
1185         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1186                 *ways = knl_tad_ways[way_id];
1187         } else {
1188                 *ways = 0;
1189                 sbridge_printk(KERN_ERR,
1190                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1191                                 way_id);
1192                 return -ENODEV;
1193         }
1194
1195         /*
1196          * The least significant 6 bits of base and limit are truncated.
1197          * For limit, we fill the missing bits with 1s.
1198          */
1199         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1200                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1201         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1202                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1203
1204         return 0;
1205 }
1206
1207 /* Determine which memory controller is responsible for a given channel. */
1208 static int knl_channel_mc(int channel)
1209 {
1210         WARN_ON(channel < 0 || channel >= 6);
1211
1212         return channel < 3 ? 1 : 0;
1213 }
1214
1215 /*
1216  * Get the Nth entry from EDC_ROUTE_TABLE register.
1217  * (This is the per-tile mapping of logical interleave targets to
1218  *  physical EDC modules.)
1219  *
1220  * entry 0: 0:2
1221  *       1: 3:5
1222  *       2: 6:8
1223  *       3: 9:11
1224  *       4: 12:14
1225  *       5: 15:17
1226  *       6: 18:20
1227  *       7: 21:23
1228  * reserved: 24:31
1229  */
1230 static u32 knl_get_edc_route(int entry, u32 reg)
1231 {
1232         WARN_ON(entry >= KNL_MAX_EDCS);
1233         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1234 }
1235
1236 /*
1237  * Get the Nth entry from MC_ROUTE_TABLE register.
1238  * (This is the per-tile mapping of logical interleave targets to
1239  *  physical DRAM channels modules.)
1240  *
1241  * entry 0: mc 0:2   channel 18:19
1242  *       1: mc 3:5   channel 20:21
1243  *       2: mc 6:8   channel 22:23
1244  *       3: mc 9:11  channel 24:25
1245  *       4: mc 12:14 channel 26:27
1246  *       5: mc 15:17 channel 28:29
1247  * reserved: 30:31
1248  *
1249  * Though we have 3 bits to identify the MC, we should only see
1250  * the values 0 or 1.
1251  */
1252
1253 static u32 knl_get_mc_route(int entry, u32 reg)
1254 {
1255         int mc, chan;
1256
1257         WARN_ON(entry >= KNL_MAX_CHANNELS);
1258
1259         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1260         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1261
1262         return knl_channel_remap(mc, chan);
1263 }
1264
1265 /*
1266  * Render the EDC_ROUTE register in human-readable form.
1267  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1268  */
1269 static void knl_show_edc_route(u32 reg, char *s)
1270 {
1271         int i;
1272
1273         for (i = 0; i < KNL_MAX_EDCS; i++) {
1274                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1275                 s[i*2+1] = '-';
1276         }
1277
1278         s[KNL_MAX_EDCS*2 - 1] = '\0';
1279 }
1280
1281 /*
1282  * Render the MC_ROUTE register in human-readable form.
1283  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1284  */
1285 static void knl_show_mc_route(u32 reg, char *s)
1286 {
1287         int i;
1288
1289         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1290                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1291                 s[i*2+1] = '-';
1292         }
1293
1294         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1295 }
1296
1297 #define KNL_EDC_ROUTE 0xb8
1298 #define KNL_MC_ROUTE 0xb4
1299
1300 /* Is this dram rule backed by regular DRAM in flat mode? */
1301 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1302
1303 /* Is this dram rule cached? */
1304 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1305
1306 /* Is this rule backed by edc ? */
1307 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1308
1309 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1310 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1311
1312 /* Is this rule mod3? */
1313 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1314
1315 /*
1316  * Figure out how big our RAM modules are.
1317  *
1318  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1319  * have to figure this out from the SAD rules, interleave lists, route tables,
1320  * and TAD rules.
1321  *
1322  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1323  * inspect the TAD rules to figure out how large the SAD regions really are.
1324  *
1325  * When we know the real size of a SAD region and how many ways it's
1326  * interleaved, we know the individual contribution of each channel to
1327  * TAD is size/ways.
1328  *
1329  * Finally, we have to check whether each channel participates in each SAD
1330  * region.
1331  *
1332  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1333  * much memory the channel uses, we know the DIMM is at least that large.
1334  * (The BIOS might possibly choose not to map all available memory, in which
1335  * case we will underreport the size of the DIMM.)
1336  *
1337  * In theory, we could try to determine the EDC sizes as well, but that would
1338  * only work in flat mode, not in cache mode.
1339  *
1340  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1341  *            elements)
1342  */
1343 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1344 {
1345         u64 sad_base, sad_limit = 0;
1346         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1347         int sad_rule = 0;
1348         int tad_rule = 0;
1349         int intrlv_ways, tad_ways;
1350         u32 first_pkg, pkg;
1351         int i;
1352         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1353         u32 dram_rule, interleave_reg;
1354         u32 mc_route_reg[KNL_MAX_CHAS];
1355         u32 edc_route_reg[KNL_MAX_CHAS];
1356         int edram_only;
1357         char edc_route_string[KNL_MAX_EDCS*2];
1358         char mc_route_string[KNL_MAX_CHANNELS*2];
1359         int cur_reg_start;
1360         int mc;
1361         int channel;
1362         int participants[KNL_MAX_CHANNELS];
1363
1364         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1365                 mc_sizes[i] = 0;
1366
1367         /* Read the EDC route table in each CHA. */
1368         cur_reg_start = 0;
1369         for (i = 0; i < KNL_MAX_CHAS; i++) {
1370                 pci_read_config_dword(pvt->knl.pci_cha[i],
1371                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1372
1373                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1374                         knl_show_edc_route(edc_route_reg[i-1],
1375                                         edc_route_string);
1376                         if (cur_reg_start == i-1)
1377                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1378                                         cur_reg_start, edc_route_string);
1379                         else
1380                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1381                                         cur_reg_start, i-1, edc_route_string);
1382                         cur_reg_start = i;
1383                 }
1384         }
1385         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1386         if (cur_reg_start == i-1)
1387                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1388                         cur_reg_start, edc_route_string);
1389         else
1390                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1391                         cur_reg_start, i-1, edc_route_string);
1392
1393         /* Read the MC route table in each CHA. */
1394         cur_reg_start = 0;
1395         for (i = 0; i < KNL_MAX_CHAS; i++) {
1396                 pci_read_config_dword(pvt->knl.pci_cha[i],
1397                         KNL_MC_ROUTE, &mc_route_reg[i]);
1398
1399                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1400                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1401                         if (cur_reg_start == i-1)
1402                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1403                                         cur_reg_start, mc_route_string);
1404                         else
1405                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1406                                         cur_reg_start, i-1, mc_route_string);
1407                         cur_reg_start = i;
1408                 }
1409         }
1410         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1411         if (cur_reg_start == i-1)
1412                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1413                         cur_reg_start, mc_route_string);
1414         else
1415                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1416                         cur_reg_start, i-1, mc_route_string);
1417
1418         /* Process DRAM rules */
1419         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1420                 /* previous limit becomes the new base */
1421                 sad_base = sad_limit;
1422
1423                 pci_read_config_dword(pvt->pci_sad0,
1424                         pvt->info.dram_rule[sad_rule], &dram_rule);
1425
1426                 if (!DRAM_RULE_ENABLE(dram_rule))
1427                         break;
1428
1429                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1430
1431                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1432
1433                 pci_read_config_dword(pvt->pci_sad0,
1434                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1435
1436                 /*
1437                  * Find out how many ways this dram rule is interleaved.
1438                  * We stop when we see the first channel again.
1439                  */
1440                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1441                                                 interleave_reg, 0);
1442                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1443                         pkg = sad_pkg(pvt->info.interleave_pkg,
1444                                                 interleave_reg, intrlv_ways);
1445
1446                         if ((pkg & 0x8) == 0) {
1447                                 /*
1448                                  * 0 bit means memory is non-local,
1449                                  * which KNL doesn't support
1450                                  */
1451                                 edac_dbg(0, "Unexpected interleave target %d\n",
1452                                         pkg);
1453                                 return -1;
1454                         }
1455
1456                         if (pkg == first_pkg)
1457                                 break;
1458                 }
1459                 if (KNL_MOD3(dram_rule))
1460                         intrlv_ways *= 3;
1461
1462                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1463                         sad_rule,
1464                         sad_base,
1465                         sad_limit,
1466                         intrlv_ways,
1467                         edram_only ? ", EDRAM" : "");
1468
1469                 /*
1470                  * Find out how big the SAD region really is by iterating
1471                  * over TAD tables (SAD regions may contain holes).
1472                  * Each memory controller might have a different TAD table, so
1473                  * we have to look at both.
1474                  *
1475                  * Livespace is the memory that's mapped in this TAD table,
1476                  * deadspace is the holes (this could be the MMIO hole, or it
1477                  * could be memory that's mapped by the other TAD table but
1478                  * not this one).
1479                  */
1480                 for (mc = 0; mc < 2; mc++) {
1481                         sad_actual_size[mc] = 0;
1482                         tad_livespace = 0;
1483                         for (tad_rule = 0;
1484                                         tad_rule < ARRAY_SIZE(
1485                                                 knl_tad_dram_limit_lo);
1486                                         tad_rule++) {
1487                                 if (knl_get_tad(pvt,
1488                                                 tad_rule,
1489                                                 mc,
1490                                                 &tad_deadspace,
1491                                                 &tad_limit,
1492                                                 &tad_ways))
1493                                         break;
1494
1495                                 tad_size = (tad_limit+1) -
1496                                         (tad_livespace + tad_deadspace);
1497                                 tad_livespace += tad_size;
1498                                 tad_base = (tad_limit+1) - tad_size;
1499
1500                                 if (tad_base < sad_base) {
1501                                         if (tad_limit > sad_base)
1502                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1503                                 } else if (tad_base < sad_limit) {
1504                                         if (tad_limit+1 > sad_limit) {
1505                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1506                                         } else {
1507                                                 /* TAD region is completely inside SAD region */
1508                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1509                                                         tad_rule, tad_base,
1510                                                         tad_limit, tad_size,
1511                                                         mc);
1512                                                 sad_actual_size[mc] += tad_size;
1513                                         }
1514                                 }
1515                         }
1516                 }
1517
1518                 for (mc = 0; mc < 2; mc++) {
1519                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1520                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1521                 }
1522
1523                 /* Ignore EDRAM rule */
1524                 if (edram_only)
1525                         continue;
1526
1527                 /* Figure out which channels participate in interleave. */
1528                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1529                         participants[channel] = 0;
1530
1531                 /* For each channel, does at least one CHA have
1532                  * this channel mapped to the given target?
1533                  */
1534                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1535                         int target;
1536                         int cha;
1537
1538                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1539                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1540                                         if (knl_get_mc_route(target,
1541                                                 mc_route_reg[cha]) == channel
1542                                                 && !participants[channel]) {
1543                                                 participants[channel] = 1;
1544                                                 break;
1545                                         }
1546                                 }
1547                         }
1548                 }
1549
1550                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1551                         mc = knl_channel_mc(channel);
1552                         if (participants[channel]) {
1553                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1554                                         channel,
1555                                         sad_actual_size[mc]/intrlv_ways,
1556                                         sad_rule);
1557                                 mc_sizes[channel] +=
1558                                         sad_actual_size[mc]/intrlv_ways;
1559                         }
1560                 }
1561         }
1562
1563         return 0;
1564 }
1565
1566 static void get_source_id(struct mem_ctl_info *mci)
1567 {
1568         struct sbridge_pvt *pvt = mci->pvt_info;
1569         u32 reg;
1570
1571         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1572             pvt->info.type == KNIGHTS_LANDING)
1573                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1574         else
1575                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1576
1577         if (pvt->info.type == KNIGHTS_LANDING)
1578                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1579         else
1580                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1581 }
1582
1583 static int __populate_dimms(struct mem_ctl_info *mci,
1584                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1585                             enum edac_type mode)
1586 {
1587         struct sbridge_pvt *pvt = mci->pvt_info;
1588         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1589                                                          : NUM_CHANNELS;
1590         unsigned int i, j, banks, ranks, rows, cols, npages;
1591         struct dimm_info *dimm;
1592         enum mem_type mtype;
1593         u64 size;
1594
1595         mtype = pvt->info.get_memory_type(pvt);
1596         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1597                 edac_dbg(0, "Memory is registered\n");
1598         else if (mtype == MEM_UNKNOWN)
1599                 edac_dbg(0, "Cannot determine memory type\n");
1600         else
1601                 edac_dbg(0, "Memory is unregistered\n");
1602
1603         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1604                 banks = 16;
1605         else
1606                 banks = 8;
1607
1608         for (i = 0; i < channels; i++) {
1609                 u32 mtr;
1610
1611                 int max_dimms_per_channel;
1612
1613                 if (pvt->info.type == KNIGHTS_LANDING) {
1614                         max_dimms_per_channel = 1;
1615                         if (!pvt->knl.pci_channel[i])
1616                                 continue;
1617                 } else {
1618                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1619                         if (!pvt->pci_tad[i])
1620                                 continue;
1621                 }
1622
1623                 for (j = 0; j < max_dimms_per_channel; j++) {
1624                         dimm = edac_get_dimm(mci, i, j, 0);
1625                         if (pvt->info.type == KNIGHTS_LANDING) {
1626                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1627                                         knl_mtr_reg, &mtr);
1628                         } else {
1629                                 pci_read_config_dword(pvt->pci_tad[i],
1630                                         mtr_regs[j], &mtr);
1631                         }
1632                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1633                         if (IS_DIMM_PRESENT(mtr)) {
1634                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1635                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1636                                                        pvt->sbridge_dev->source_id,
1637                                                        pvt->sbridge_dev->dom, i);
1638                                         return -ENODEV;
1639                                 }
1640                                 pvt->channel[i].dimms++;
1641
1642                                 ranks = numrank(pvt->info.type, mtr);
1643
1644                                 if (pvt->info.type == KNIGHTS_LANDING) {
1645                                         /* For DDR4, this is fixed. */
1646                                         cols = 1 << 10;
1647                                         rows = knl_mc_sizes[i] /
1648                                                 ((u64) cols * ranks * banks * 8);
1649                                 } else {
1650                                         rows = numrow(mtr);
1651                                         cols = numcol(mtr);
1652                                 }
1653
1654                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1655                                 npages = MiB_TO_PAGES(size);
1656
1657                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1658                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1659                                          size, npages,
1660                                          banks, ranks, rows, cols);
1661
1662                                 dimm->nr_pages = npages;
1663                                 dimm->grain = 32;
1664                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1665                                 dimm->mtype = mtype;
1666                                 dimm->edac_mode = mode;
1667                                 snprintf(dimm->label, sizeof(dimm->label),
1668                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1669                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1670                         }
1671                 }
1672         }
1673
1674         return 0;
1675 }
1676
1677 static int get_dimm_config(struct mem_ctl_info *mci)
1678 {
1679         struct sbridge_pvt *pvt = mci->pvt_info;
1680         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1681         enum edac_type mode;
1682         u32 reg;
1683
1684         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1685         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1686                  pvt->sbridge_dev->mc,
1687                  pvt->sbridge_dev->node_id,
1688                  pvt->sbridge_dev->source_id);
1689
1690         /* KNL doesn't support mirroring or lockstep,
1691          * and is always closed page
1692          */
1693         if (pvt->info.type == KNIGHTS_LANDING) {
1694                 mode = EDAC_S4ECD4ED;
1695                 pvt->mirror_mode = NON_MIRRORING;
1696                 pvt->is_cur_addr_mirrored = false;
1697
1698                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1699                         return -1;
1700                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1701                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1702                         return -ENODEV;
1703                 }
1704         } else {
1705                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1706                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1707                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1708                                 return -ENODEV;
1709                         }
1710                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1711                         if (GET_BITFIELD(reg, 28, 28)) {
1712                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1713                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1714                                 goto next;
1715                         }
1716                 }
1717                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1718                         edac_dbg(0, "Failed to read RASENABLES register\n");
1719                         return -ENODEV;
1720                 }
1721                 if (IS_MIRROR_ENABLED(reg)) {
1722                         pvt->mirror_mode = FULL_MIRRORING;
1723                         edac_dbg(0, "Full memory mirroring is enabled\n");
1724                 } else {
1725                         pvt->mirror_mode = NON_MIRRORING;
1726                         edac_dbg(0, "Memory mirroring is disabled\n");
1727                 }
1728
1729 next:
1730                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1731                         edac_dbg(0, "Failed to read MCMTR register\n");
1732                         return -ENODEV;
1733                 }
1734                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1735                         edac_dbg(0, "Lockstep is enabled\n");
1736                         mode = EDAC_S8ECD8ED;
1737                         pvt->is_lockstep = true;
1738                 } else {
1739                         edac_dbg(0, "Lockstep is disabled\n");
1740                         mode = EDAC_S4ECD4ED;
1741                         pvt->is_lockstep = false;
1742                 }
1743                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1744                         edac_dbg(0, "address map is on closed page mode\n");
1745                         pvt->is_close_pg = true;
1746                 } else {
1747                         edac_dbg(0, "address map is on open page mode\n");
1748                         pvt->is_close_pg = false;
1749                 }
1750         }
1751
1752         return __populate_dimms(mci, knl_mc_sizes, mode);
1753 }
1754
1755 static void get_memory_layout(const struct mem_ctl_info *mci)
1756 {
1757         struct sbridge_pvt *pvt = mci->pvt_info;
1758         int i, j, k, n_sads, n_tads, sad_interl;
1759         u32 reg;
1760         u64 limit, prv = 0;
1761         u64 tmp_mb;
1762         u32 gb, mb;
1763         u32 rir_way;
1764
1765         /*
1766          * Step 1) Get TOLM/TOHM ranges
1767          */
1768
1769         pvt->tolm = pvt->info.get_tolm(pvt);
1770         tmp_mb = (1 + pvt->tolm) >> 20;
1771
1772         gb = div_u64_rem(tmp_mb, 1024, &mb);
1773         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1774                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1775
1776         /* Address range is already 45:25 */
1777         pvt->tohm = pvt->info.get_tohm(pvt);
1778         tmp_mb = (1 + pvt->tohm) >> 20;
1779
1780         gb = div_u64_rem(tmp_mb, 1024, &mb);
1781         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1782                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1783
1784         /*
1785          * Step 2) Get SAD range and SAD Interleave list
1786          * TAD registers contain the interleave wayness. However, it
1787          * seems simpler to just discover it indirectly, with the
1788          * algorithm bellow.
1789          */
1790         prv = 0;
1791         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1792                 /* SAD_LIMIT Address range is 45:26 */
1793                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1794                                       &reg);
1795                 limit = pvt->info.sad_limit(reg);
1796
1797                 if (!DRAM_RULE_ENABLE(reg))
1798                         continue;
1799
1800                 if (limit <= prv)
1801                         break;
1802
1803                 tmp_mb = (limit + 1) >> 20;
1804                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1805                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1806                          n_sads,
1807                          show_dram_attr(pvt->info.dram_attr(reg)),
1808                          gb, (mb*1000)/1024,
1809                          ((u64)tmp_mb) << 20L,
1810                          get_intlv_mode_str(reg, pvt->info.type),
1811                          reg);
1812                 prv = limit;
1813
1814                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1815                                       &reg);
1816                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1817                 for (j = 0; j < 8; j++) {
1818                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1819                         if (j > 0 && sad_interl == pkg)
1820                                 break;
1821
1822                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1823                                  n_sads, j, pkg);
1824                 }
1825         }
1826
1827         if (pvt->info.type == KNIGHTS_LANDING)
1828                 return;
1829
1830         /*
1831          * Step 3) Get TAD range
1832          */
1833         prv = 0;
1834         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1835                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1836                 limit = TAD_LIMIT(reg);
1837                 if (limit <= prv)
1838                         break;
1839                 tmp_mb = (limit + 1) >> 20;
1840
1841                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1842                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1843                          n_tads, gb, (mb*1000)/1024,
1844                          ((u64)tmp_mb) << 20L,
1845                          (u32)(1 << TAD_SOCK(reg)),
1846                          (u32)TAD_CH(reg) + 1,
1847                          (u32)TAD_TGT0(reg),
1848                          (u32)TAD_TGT1(reg),
1849                          (u32)TAD_TGT2(reg),
1850                          (u32)TAD_TGT3(reg),
1851                          reg);
1852                 prv = limit;
1853         }
1854
1855         /*
1856          * Step 4) Get TAD offsets, per each channel
1857          */
1858         for (i = 0; i < NUM_CHANNELS; i++) {
1859                 if (!pvt->channel[i].dimms)
1860                         continue;
1861                 for (j = 0; j < n_tads; j++) {
1862                         pci_read_config_dword(pvt->pci_tad[i],
1863                                               tad_ch_nilv_offset[j],
1864                                               &reg);
1865                         tmp_mb = TAD_OFFSET(reg) >> 20;
1866                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1867                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1868                                  i, j,
1869                                  gb, (mb*1000)/1024,
1870                                  ((u64)tmp_mb) << 20L,
1871                                  reg);
1872                 }
1873         }
1874
1875         /*
1876          * Step 6) Get RIR Wayness/Limit, per each channel
1877          */
1878         for (i = 0; i < NUM_CHANNELS; i++) {
1879                 if (!pvt->channel[i].dimms)
1880                         continue;
1881                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1882                         pci_read_config_dword(pvt->pci_tad[i],
1883                                               rir_way_limit[j],
1884                                               &reg);
1885
1886                         if (!IS_RIR_VALID(reg))
1887                                 continue;
1888
1889                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1890                         rir_way = 1 << RIR_WAY(reg);
1891                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1892                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1893                                  i, j,
1894                                  gb, (mb*1000)/1024,
1895                                  ((u64)tmp_mb) << 20L,
1896                                  rir_way,
1897                                  reg);
1898
1899                         for (k = 0; k < rir_way; k++) {
1900                                 pci_read_config_dword(pvt->pci_tad[i],
1901                                                       rir_offset[j][k],
1902                                                       &reg);
1903                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1904
1905                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1906                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1907                                          i, j, k,
1908                                          gb, (mb*1000)/1024,
1909                                          ((u64)tmp_mb) << 20L,
1910                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1911                                          reg);
1912                         }
1913                 }
1914         }
1915 }
1916
1917 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1918 {
1919         struct sbridge_dev *sbridge_dev;
1920
1921         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1922                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1923                         return sbridge_dev->mci;
1924         }
1925         return NULL;
1926 }
1927
1928 static int get_memory_error_data(struct mem_ctl_info *mci,
1929                                  u64 addr,
1930                                  u8 *socket, u8 *ha,
1931                                  long *channel_mask,
1932                                  u8 *rank,
1933                                  char **area_type, char *msg)
1934 {
1935         struct mem_ctl_info     *new_mci;
1936         struct sbridge_pvt *pvt = mci->pvt_info;
1937         struct pci_dev          *pci_ha;
1938         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1939         int                     sad_interl, idx, base_ch;
1940         int                     interleave_mode, shiftup = 0;
1941         unsigned int            sad_interleave[MAX_INTERLEAVE];
1942         u32                     reg, dram_rule;
1943         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1944         u32                     tad_offset;
1945         u32                     rir_way;
1946         u32                     mb, gb;
1947         u64                     ch_addr, offset, limit = 0, prv = 0;
1948
1949
1950         /*
1951          * Step 0) Check if the address is at special memory ranges
1952          * The check bellow is probably enough to fill all cases where
1953          * the error is not inside a memory, except for the legacy
1954          * range (e. g. VGA addresses). It is unlikely, however, that the
1955          * memory controller would generate an error on that range.
1956          */
1957         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1958                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1959                 return -EINVAL;
1960         }
1961         if (addr >= (u64)pvt->tohm) {
1962                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1963                 return -EINVAL;
1964         }
1965
1966         /*
1967          * Step 1) Get socket
1968          */
1969         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1970                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1971                                       &reg);
1972
1973                 if (!DRAM_RULE_ENABLE(reg))
1974                         continue;
1975
1976                 limit = pvt->info.sad_limit(reg);
1977                 if (limit <= prv) {
1978                         sprintf(msg, "Can't discover the memory socket");
1979                         return -EINVAL;
1980                 }
1981                 if  (addr <= limit)
1982                         break;
1983                 prv = limit;
1984         }
1985         if (n_sads == pvt->info.max_sad) {
1986                 sprintf(msg, "Can't discover the memory socket");
1987                 return -EINVAL;
1988         }
1989         dram_rule = reg;
1990         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1991         interleave_mode = pvt->info.interleave_mode(dram_rule);
1992
1993         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1994                               &reg);
1995
1996         if (pvt->info.type == SANDY_BRIDGE) {
1997                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1998                 for (sad_way = 0; sad_way < 8; sad_way++) {
1999                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2000                         if (sad_way > 0 && sad_interl == pkg)
2001                                 break;
2002                         sad_interleave[sad_way] = pkg;
2003                         edac_dbg(0, "SAD interleave #%d: %d\n",
2004                                  sad_way, sad_interleave[sad_way]);
2005                 }
2006                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2007                          pvt->sbridge_dev->mc,
2008                          n_sads,
2009                          addr,
2010                          limit,
2011                          sad_way + 7,
2012                          !interleave_mode ? "" : "XOR[18:16]");
2013                 if (interleave_mode)
2014                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2015                 else
2016                         idx = (addr >> 6) & 7;
2017                 switch (sad_way) {
2018                 case 1:
2019                         idx = 0;
2020                         break;
2021                 case 2:
2022                         idx = idx & 1;
2023                         break;
2024                 case 4:
2025                         idx = idx & 3;
2026                         break;
2027                 case 8:
2028                         break;
2029                 default:
2030                         sprintf(msg, "Can't discover socket interleave");
2031                         return -EINVAL;
2032                 }
2033                 *socket = sad_interleave[idx];
2034                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2035                          idx, sad_way, *socket);
2036         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2037                 int bits, a7mode = A7MODE(dram_rule);
2038
2039                 if (a7mode) {
2040                         /* A7 mode swaps P9 with P6 */
2041                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2042                         bits |= GET_BITFIELD(addr, 9, 9);
2043                 } else
2044                         bits = GET_BITFIELD(addr, 6, 8);
2045
2046                 if (interleave_mode == 0) {
2047                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2048                         idx = GET_BITFIELD(addr, 16, 18);
2049                         idx ^= bits;
2050                 } else
2051                         idx = bits;
2052
2053                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2054                 *socket = sad_pkg_socket(pkg);
2055                 sad_ha = sad_pkg_ha(pkg);
2056
2057                 if (a7mode) {
2058                         /* MCChanShiftUpEnable */
2059                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2060                         shiftup = GET_BITFIELD(reg, 22, 22);
2061                 }
2062
2063                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2064                          idx, *socket, sad_ha, shiftup);
2065         } else {
2066                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2067                 idx = (addr >> 6) & 7;
2068                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2069                 *socket = sad_pkg_socket(pkg);
2070                 sad_ha = sad_pkg_ha(pkg);
2071                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2072                          idx, *socket, sad_ha);
2073         }
2074
2075         *ha = sad_ha;
2076
2077         /*
2078          * Move to the proper node structure, in order to access the
2079          * right PCI registers
2080          */
2081         new_mci = get_mci_for_node_id(*socket, sad_ha);
2082         if (!new_mci) {
2083                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2084                         *socket);
2085                 return -EINVAL;
2086         }
2087         mci = new_mci;
2088         pvt = mci->pvt_info;
2089
2090         /*
2091          * Step 2) Get memory channel
2092          */
2093         prv = 0;
2094         pci_ha = pvt->pci_ha;
2095         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2096                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2097                 limit = TAD_LIMIT(reg);
2098                 if (limit <= prv) {
2099                         sprintf(msg, "Can't discover the memory channel");
2100                         return -EINVAL;
2101                 }
2102                 if  (addr <= limit)
2103                         break;
2104                 prv = limit;
2105         }
2106         if (n_tads == MAX_TAD) {
2107                 sprintf(msg, "Can't discover the memory channel");
2108                 return -EINVAL;
2109         }
2110
2111         ch_way = TAD_CH(reg) + 1;
2112         sck_way = TAD_SOCK(reg);
2113
2114         if (ch_way == 3)
2115                 idx = addr >> 6;
2116         else {
2117                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2118                 if (pvt->is_chan_hash)
2119                         idx = haswell_chan_hash(idx, addr);
2120         }
2121         idx = idx % ch_way;
2122
2123         /*
2124          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2125          */
2126         switch (idx) {
2127         case 0:
2128                 base_ch = TAD_TGT0(reg);
2129                 break;
2130         case 1:
2131                 base_ch = TAD_TGT1(reg);
2132                 break;
2133         case 2:
2134                 base_ch = TAD_TGT2(reg);
2135                 break;
2136         case 3:
2137                 base_ch = TAD_TGT3(reg);
2138                 break;
2139         default:
2140                 sprintf(msg, "Can't discover the TAD target");
2141                 return -EINVAL;
2142         }
2143         *channel_mask = 1 << base_ch;
2144
2145         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2146
2147         if (pvt->mirror_mode == FULL_MIRRORING ||
2148             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2149                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2150                 switch(ch_way) {
2151                 case 2:
2152                 case 4:
2153                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2154                         break;
2155                 default:
2156                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2157                         return -EINVAL;
2158                 }
2159
2160                 pvt->is_cur_addr_mirrored = true;
2161         } else {
2162                 sck_xch = (1 << sck_way) * ch_way;
2163                 pvt->is_cur_addr_mirrored = false;
2164         }
2165
2166         if (pvt->is_lockstep)
2167                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2168
2169         offset = TAD_OFFSET(tad_offset);
2170
2171         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2172                  n_tads,
2173                  addr,
2174                  limit,
2175                  sck_way,
2176                  ch_way,
2177                  offset,
2178                  idx,
2179                  base_ch,
2180                  *channel_mask);
2181
2182         /* Calculate channel address */
2183         /* Remove the TAD offset */
2184
2185         if (offset > addr) {
2186                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2187                         offset, addr);
2188                 return -EINVAL;
2189         }
2190
2191         ch_addr = addr - offset;
2192         ch_addr >>= (6 + shiftup);
2193         ch_addr /= sck_xch;
2194         ch_addr <<= (6 + shiftup);
2195         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2196
2197         /*
2198          * Step 3) Decode rank
2199          */
2200         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2201                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2202
2203                 if (!IS_RIR_VALID(reg))
2204                         continue;
2205
2206                 limit = pvt->info.rir_limit(reg);
2207                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2208                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2209                          n_rir,
2210                          gb, (mb*1000)/1024,
2211                          limit,
2212                          1 << RIR_WAY(reg));
2213                 if  (ch_addr <= limit)
2214                         break;
2215         }
2216         if (n_rir == MAX_RIR_RANGES) {
2217                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2218                         ch_addr);
2219                 return -EINVAL;
2220         }
2221         rir_way = RIR_WAY(reg);
2222
2223         if (pvt->is_close_pg)
2224                 idx = (ch_addr >> 6);
2225         else
2226                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2227         idx %= 1 << rir_way;
2228
2229         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2230         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2231
2232         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2233                  n_rir,
2234                  ch_addr,
2235                  limit,
2236                  rir_way,
2237                  idx);
2238
2239         return 0;
2240 }
2241
2242 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2243                                           const struct mce *m, u8 *socket,
2244                                           u8 *ha, long *channel_mask,
2245                                           char *msg)
2246 {
2247         u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2248         struct mem_ctl_info *new_mci;
2249         struct sbridge_pvt *pvt;
2250         struct pci_dev *pci_ha;
2251         bool tad0;
2252
2253         if (channel >= NUM_CHANNELS) {
2254                 sprintf(msg, "Invalid channel 0x%x", channel);
2255                 return -EINVAL;
2256         }
2257
2258         pvt = mci->pvt_info;
2259         if (!pvt->info.get_ha) {
2260                 sprintf(msg, "No get_ha()");
2261                 return -EINVAL;
2262         }
2263         *ha = pvt->info.get_ha(m->bank);
2264         if (*ha != 0 && *ha != 1) {
2265                 sprintf(msg, "Impossible bank %d", m->bank);
2266                 return -EINVAL;
2267         }
2268
2269         *socket = m->socketid;
2270         new_mci = get_mci_for_node_id(*socket, *ha);
2271         if (!new_mci) {
2272                 strcpy(msg, "mci socket got corrupted!");
2273                 return -EINVAL;
2274         }
2275
2276         pvt = new_mci->pvt_info;
2277         pci_ha = pvt->pci_ha;
2278         pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2279         tad0 = m->addr <= TAD_LIMIT(reg);
2280
2281         *channel_mask = 1 << channel;
2282         if (pvt->mirror_mode == FULL_MIRRORING ||
2283             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2284                 *channel_mask |= 1 << ((channel + 2) % 4);
2285                 pvt->is_cur_addr_mirrored = true;
2286         } else {
2287                 pvt->is_cur_addr_mirrored = false;
2288         }
2289
2290         if (pvt->is_lockstep)
2291                 *channel_mask |= 1 << ((channel + 1) % 4);
2292
2293         return 0;
2294 }
2295
2296 /****************************************************************************
2297         Device initialization routines: put/get, init/exit
2298  ****************************************************************************/
2299
2300 /*
2301  *      sbridge_put_all_devices 'put' all the devices that we have
2302  *                              reserved via 'get'
2303  */
2304 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2305 {
2306         int i;
2307
2308         edac_dbg(0, "\n");
2309         for (i = 0; i < sbridge_dev->n_devs; i++) {
2310                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2311                 if (!pdev)
2312                         continue;
2313                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2314                          pdev->bus->number,
2315                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2316                 pci_dev_put(pdev);
2317         }
2318 }
2319
2320 static void sbridge_put_all_devices(void)
2321 {
2322         struct sbridge_dev *sbridge_dev, *tmp;
2323
2324         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2325                 sbridge_put_devices(sbridge_dev);
2326                 free_sbridge_dev(sbridge_dev);
2327         }
2328 }
2329
2330 static int sbridge_get_onedevice(struct pci_dev **prev,
2331                                  u8 *num_mc,
2332                                  const struct pci_id_table *table,
2333                                  const unsigned devno,
2334                                  const int multi_bus)
2335 {
2336         struct sbridge_dev *sbridge_dev = NULL;
2337         const struct pci_id_descr *dev_descr = &table->descr[devno];
2338         struct pci_dev *pdev = NULL;
2339         int seg = 0;
2340         u8 bus = 0;
2341         int i = 0;
2342
2343         sbridge_printk(KERN_DEBUG,
2344                 "Seeking for: PCI ID %04x:%04x\n",
2345                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2346
2347         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2348                               dev_descr->dev_id, *prev);
2349
2350         if (!pdev) {
2351                 if (*prev) {
2352                         *prev = pdev;
2353                         return 0;
2354                 }
2355
2356                 if (dev_descr->optional)
2357                         return 0;
2358
2359                 /* if the HA wasn't found */
2360                 if (devno == 0)
2361                         return -ENODEV;
2362
2363                 sbridge_printk(KERN_INFO,
2364                         "Device not found: %04x:%04x\n",
2365                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2366
2367                 /* End of list, leave */
2368                 return -ENODEV;
2369         }
2370         seg = pci_domain_nr(pdev->bus);
2371         bus = pdev->bus->number;
2372
2373 next_imc:
2374         sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2375                                       multi_bus, sbridge_dev);
2376         if (!sbridge_dev) {
2377                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2378                 if (dev_descr->dom == IMC1 && devno != 1) {
2379                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2380                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2381                         pci_dev_put(pdev);
2382                         return 0;
2383                 }
2384
2385                 if (dev_descr->dom == SOCK)
2386                         goto out_imc;
2387
2388                 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2389                 if (!sbridge_dev) {
2390                         pci_dev_put(pdev);
2391                         return -ENOMEM;
2392                 }
2393                 (*num_mc)++;
2394         }
2395
2396         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2397                 sbridge_printk(KERN_ERR,
2398                         "Duplicated device for %04x:%04x\n",
2399                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2400                 pci_dev_put(pdev);
2401                 return -ENODEV;
2402         }
2403
2404         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2405
2406         /* pdev belongs to more than one IMC, do extra gets */
2407         if (++i > 1)
2408                 pci_dev_get(pdev);
2409
2410         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2411                 goto next_imc;
2412
2413 out_imc:
2414         /* Be sure that the device is enabled */
2415         if (unlikely(pci_enable_device(pdev) < 0)) {
2416                 sbridge_printk(KERN_ERR,
2417                         "Couldn't enable %04x:%04x\n",
2418                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2419                 return -ENODEV;
2420         }
2421
2422         edac_dbg(0, "Detected %04x:%04x\n",
2423                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2424
2425         /*
2426          * As stated on drivers/pci/search.c, the reference count for
2427          * @from is always decremented if it is not %NULL. So, as we need
2428          * to get all devices up to null, we need to do a get for the device
2429          */
2430         pci_dev_get(pdev);
2431
2432         *prev = pdev;
2433
2434         return 0;
2435 }
2436
2437 /*
2438  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2439  *                           devices we want to reference for this driver.
2440  * @num_mc: pointer to the memory controllers count, to be incremented in case
2441  *          of success.
2442  * @table: model specific table
2443  *
2444  * returns 0 in case of success or error code
2445  */
2446 static int sbridge_get_all_devices(u8 *num_mc,
2447                                         const struct pci_id_table *table)
2448 {
2449         int i, rc;
2450         struct pci_dev *pdev = NULL;
2451         int allow_dups = 0;
2452         int multi_bus = 0;
2453
2454         if (table->type == KNIGHTS_LANDING)
2455                 allow_dups = multi_bus = 1;
2456         while (table && table->descr) {
2457                 for (i = 0; i < table->n_devs_per_sock; i++) {
2458                         if (!allow_dups || i == 0 ||
2459                                         table->descr[i].dev_id !=
2460                                                 table->descr[i-1].dev_id) {
2461                                 pdev = NULL;
2462                         }
2463                         do {
2464                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2465                                                            table, i, multi_bus);
2466                                 if (rc < 0) {
2467                                         if (i == 0) {
2468                                                 i = table->n_devs_per_sock;
2469                                                 break;
2470                                         }
2471                                         sbridge_put_all_devices();
2472                                         return -ENODEV;
2473                                 }
2474                         } while (pdev && !allow_dups);
2475                 }
2476                 table++;
2477         }
2478
2479         return 0;
2480 }
2481
2482 /*
2483  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2484  * the format: XXXa. So we can convert from a device to the corresponding
2485  * channel like this
2486  */
2487 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2488
2489 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2490                                  struct sbridge_dev *sbridge_dev)
2491 {
2492         struct sbridge_pvt *pvt = mci->pvt_info;
2493         struct pci_dev *pdev;
2494         u8 saw_chan_mask = 0;
2495         int i;
2496
2497         for (i = 0; i < sbridge_dev->n_devs; i++) {
2498                 pdev = sbridge_dev->pdev[i];
2499                 if (!pdev)
2500                         continue;
2501
2502                 switch (pdev->device) {
2503                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2504                         pvt->pci_sad0 = pdev;
2505                         break;
2506                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2507                         pvt->pci_sad1 = pdev;
2508                         break;
2509                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2510                         pvt->pci_br0 = pdev;
2511                         break;
2512                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2513                         pvt->pci_ha = pdev;
2514                         break;
2515                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2516                         pvt->pci_ta = pdev;
2517                         break;
2518                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2519                         pvt->pci_ras = pdev;
2520                         break;
2521                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2522                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2523                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2524                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2525                 {
2526                         int id = TAD_DEV_TO_CHAN(pdev->device);
2527                         pvt->pci_tad[id] = pdev;
2528                         saw_chan_mask |= 1 << id;
2529                 }
2530                         break;
2531                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2532                         pvt->pci_ddrio = pdev;
2533                         break;
2534                 default:
2535                         goto error;
2536                 }
2537
2538                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2539                          pdev->vendor, pdev->device,
2540                          sbridge_dev->bus,
2541                          pdev);
2542         }
2543
2544         /* Check if everything were registered */
2545         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2546             !pvt->pci_ras || !pvt->pci_ta)
2547                 goto enodev;
2548
2549         if (saw_chan_mask != 0x0f)
2550                 goto enodev;
2551         return 0;
2552
2553 enodev:
2554         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2555         return -ENODEV;
2556
2557 error:
2558         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2559                        PCI_VENDOR_ID_INTEL, pdev->device);
2560         return -EINVAL;
2561 }
2562
2563 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2564                                  struct sbridge_dev *sbridge_dev)
2565 {
2566         struct sbridge_pvt *pvt = mci->pvt_info;
2567         struct pci_dev *pdev;
2568         u8 saw_chan_mask = 0;
2569         int i;
2570
2571         for (i = 0; i < sbridge_dev->n_devs; i++) {
2572                 pdev = sbridge_dev->pdev[i];
2573                 if (!pdev)
2574                         continue;
2575
2576                 switch (pdev->device) {
2577                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2578                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2579                         pvt->pci_ha = pdev;
2580                         break;
2581                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2582                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2583                         pvt->pci_ta = pdev;
2584                         break;
2585                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2586                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2587                         pvt->pci_ras = pdev;
2588                         break;
2589                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2590                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2591                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2592                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2593                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2594                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2595                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2596                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2597                 {
2598                         int id = TAD_DEV_TO_CHAN(pdev->device);
2599                         pvt->pci_tad[id] = pdev;
2600                         saw_chan_mask |= 1 << id;
2601                 }
2602                         break;
2603                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2604                         pvt->pci_ddrio = pdev;
2605                         break;
2606                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2607                         pvt->pci_ddrio = pdev;
2608                         break;
2609                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2610                         pvt->pci_sad0 = pdev;
2611                         break;
2612                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2613                         pvt->pci_br0 = pdev;
2614                         break;
2615                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2616                         pvt->pci_br1 = pdev;
2617                         break;
2618                 default:
2619                         goto error;
2620                 }
2621
2622                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2623                          sbridge_dev->bus,
2624                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2625                          pdev);
2626         }
2627
2628         /* Check if everything were registered */
2629         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2630             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2631                 goto enodev;
2632
2633         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2634             saw_chan_mask != 0x03)   /* -EP */
2635                 goto enodev;
2636         return 0;
2637
2638 enodev:
2639         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2640         return -ENODEV;
2641
2642 error:
2643         sbridge_printk(KERN_ERR,
2644                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2645                         pdev->device);
2646         return -EINVAL;
2647 }
2648
2649 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2650                                  struct sbridge_dev *sbridge_dev)
2651 {
2652         struct sbridge_pvt *pvt = mci->pvt_info;
2653         struct pci_dev *pdev;
2654         u8 saw_chan_mask = 0;
2655         int i;
2656
2657         /* there's only one device per system; not tied to any bus */
2658         if (pvt->info.pci_vtd == NULL)
2659                 /* result will be checked later */
2660                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2661                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2662                                                    NULL);
2663
2664         for (i = 0; i < sbridge_dev->n_devs; i++) {
2665                 pdev = sbridge_dev->pdev[i];
2666                 if (!pdev)
2667                         continue;
2668
2669                 switch (pdev->device) {
2670                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2671                         pvt->pci_sad0 = pdev;
2672                         break;
2673                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2674                         pvt->pci_sad1 = pdev;
2675                         break;
2676                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2677                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2678                         pvt->pci_ha = pdev;
2679                         break;
2680                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2681                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2682                         pvt->pci_ta = pdev;
2683                         break;
2684                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2685                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2686                         pvt->pci_ras = pdev;
2687                         break;
2688                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2689                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2690                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2691                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2692                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2693                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2694                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2695                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2696                 {
2697                         int id = TAD_DEV_TO_CHAN(pdev->device);
2698                         pvt->pci_tad[id] = pdev;
2699                         saw_chan_mask |= 1 << id;
2700                 }
2701                         break;
2702                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2703                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2704                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2705                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2706                         if (!pvt->pci_ddrio)
2707                                 pvt->pci_ddrio = pdev;
2708                         break;
2709                 default:
2710                         break;
2711                 }
2712
2713                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2714                          sbridge_dev->bus,
2715                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2716                          pdev);
2717         }
2718
2719         /* Check if everything were registered */
2720         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2721             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2722                 goto enodev;
2723
2724         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2725             saw_chan_mask != 0x03)   /* -EP */
2726                 goto enodev;
2727         return 0;
2728
2729 enodev:
2730         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2731         return -ENODEV;
2732 }
2733
2734 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2735                                  struct sbridge_dev *sbridge_dev)
2736 {
2737         struct sbridge_pvt *pvt = mci->pvt_info;
2738         struct pci_dev *pdev;
2739         u8 saw_chan_mask = 0;
2740         int i;
2741
2742         /* there's only one device per system; not tied to any bus */
2743         if (pvt->info.pci_vtd == NULL)
2744                 /* result will be checked later */
2745                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2746                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2747                                                    NULL);
2748
2749         for (i = 0; i < sbridge_dev->n_devs; i++) {
2750                 pdev = sbridge_dev->pdev[i];
2751                 if (!pdev)
2752                         continue;
2753
2754                 switch (pdev->device) {
2755                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2756                         pvt->pci_sad0 = pdev;
2757                         break;
2758                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2759                         pvt->pci_sad1 = pdev;
2760                         break;
2761                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2762                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2763                         pvt->pci_ha = pdev;
2764                         break;
2765                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2766                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2767                         pvt->pci_ta = pdev;
2768                         break;
2769                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2770                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2771                         pvt->pci_ras = pdev;
2772                         break;
2773                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2774                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2775                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2776                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2777                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2778                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2779                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2780                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2781                 {
2782                         int id = TAD_DEV_TO_CHAN(pdev->device);
2783                         pvt->pci_tad[id] = pdev;
2784                         saw_chan_mask |= 1 << id;
2785                 }
2786                         break;
2787                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2788                         pvt->pci_ddrio = pdev;
2789                         break;
2790                 default:
2791                         break;
2792                 }
2793
2794                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2795                          sbridge_dev->bus,
2796                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2797                          pdev);
2798         }
2799
2800         /* Check if everything were registered */
2801         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2802             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2803                 goto enodev;
2804
2805         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2806             saw_chan_mask != 0x03)   /* -EP */
2807                 goto enodev;
2808         return 0;
2809
2810 enodev:
2811         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2812         return -ENODEV;
2813 }
2814
2815 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2816                         struct sbridge_dev *sbridge_dev)
2817 {
2818         struct sbridge_pvt *pvt = mci->pvt_info;
2819         struct pci_dev *pdev;
2820         int dev, func;
2821
2822         int i;
2823         int devidx;
2824
2825         for (i = 0; i < sbridge_dev->n_devs; i++) {
2826                 pdev = sbridge_dev->pdev[i];
2827                 if (!pdev)
2828                         continue;
2829
2830                 /* Extract PCI device and function. */
2831                 dev = (pdev->devfn >> 3) & 0x1f;
2832                 func = pdev->devfn & 0x7;
2833
2834                 switch (pdev->device) {
2835                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2836                         if (dev == 8)
2837                                 pvt->knl.pci_mc0 = pdev;
2838                         else if (dev == 9)
2839                                 pvt->knl.pci_mc1 = pdev;
2840                         else {
2841                                 sbridge_printk(KERN_ERR,
2842                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2843                                         dev, func);
2844                                 continue;
2845                         }
2846                         break;
2847
2848                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2849                         pvt->pci_sad0 = pdev;
2850                         break;
2851
2852                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2853                         pvt->pci_sad1 = pdev;
2854                         break;
2855
2856                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2857                         /* There are one of these per tile, and range from
2858                          * 1.14.0 to 1.18.5.
2859                          */
2860                         devidx = ((dev-14)*8)+func;
2861
2862                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2863                                 sbridge_printk(KERN_ERR,
2864                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2865                                         dev, func);
2866                                 continue;
2867                         }
2868
2869                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2870
2871                         pvt->knl.pci_cha[devidx] = pdev;
2872                         break;
2873
2874                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2875                         devidx = -1;
2876
2877                         /*
2878                          *  MC0 channels 0-2 are device 9 function 2-4,
2879                          *  MC1 channels 3-5 are device 8 function 2-4.
2880                          */
2881
2882                         if (dev == 9)
2883                                 devidx = func-2;
2884                         else if (dev == 8)
2885                                 devidx = 3 + (func-2);
2886
2887                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2888                                 sbridge_printk(KERN_ERR,
2889                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2890                                         dev, func);
2891                                 continue;
2892                         }
2893
2894                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2895                         pvt->knl.pci_channel[devidx] = pdev;
2896                         break;
2897
2898                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2899                         pvt->knl.pci_mc_info = pdev;
2900                         break;
2901
2902                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2903                         pvt->pci_ta = pdev;
2904                         break;
2905
2906                 default:
2907                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2908                                 pdev->device);
2909                         break;
2910                 }
2911         }
2912
2913         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2914             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2915             !pvt->pci_ta) {
2916                 goto enodev;
2917         }
2918
2919         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2920                 if (!pvt->knl.pci_channel[i]) {
2921                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2922                         goto enodev;
2923                 }
2924         }
2925
2926         for (i = 0; i < KNL_MAX_CHAS; i++) {
2927                 if (!pvt->knl.pci_cha[i]) {
2928                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2929                         goto enodev;
2930                 }
2931         }
2932
2933         return 0;
2934
2935 enodev:
2936         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2937         return -ENODEV;
2938 }
2939
2940 /****************************************************************************
2941                         Error check routines
2942  ****************************************************************************/
2943
2944 /*
2945  * While Sandy Bridge has error count registers, SMI BIOS read values from
2946  * and resets the counters. So, they are not reliable for the OS to read
2947  * from them. So, we have no option but to just trust on whatever MCE is
2948  * telling us about the errors.
2949  */
2950 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2951                                     const struct mce *m)
2952 {
2953         struct mem_ctl_info *new_mci;
2954         struct sbridge_pvt *pvt = mci->pvt_info;
2955         enum hw_event_mc_err_type tp_event;
2956         char *optype, msg[256];
2957         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2958         bool overflow = GET_BITFIELD(m->status, 62, 62);
2959         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2960         bool recoverable;
2961         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2962         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2963         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2964         u32 channel = GET_BITFIELD(m->status, 0, 3);
2965         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2966         /*
2967          * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2968          * A value 6 is for cache line aligned address, a value 12 is for page
2969          * aligned address reported by patrol scrubber.
2970          */
2971         u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2972         long channel_mask, first_channel;
2973         u8  rank = 0xff, socket, ha;
2974         int rc, dimm;
2975         char *area_type = "DRAM";
2976
2977         if (pvt->info.type != SANDY_BRIDGE)
2978                 recoverable = true;
2979         else
2980                 recoverable = GET_BITFIELD(m->status, 56, 56);
2981
2982         if (uncorrected_error) {
2983                 core_err_cnt = 1;
2984                 if (ripv) {
2985                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2986                 } else {
2987                         tp_event = HW_EVENT_ERR_FATAL;
2988                 }
2989         } else {
2990                 tp_event = HW_EVENT_ERR_CORRECTED;
2991         }
2992
2993         /*
2994          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2995          * memory errors should fit in this mask:
2996          *      000f 0000 1mmm cccc (binary)
2997          * where:
2998          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2999          *          won't be shown
3000          *      mmm = error type
3001          *      cccc = channel
3002          * If the mask doesn't match, report an error to the parsing logic
3003          */
3004         switch (optypenum) {
3005         case 0:
3006                 optype = "generic undef request error";
3007                 break;
3008         case 1:
3009                 optype = "memory read error";
3010                 break;
3011         case 2:
3012                 optype = "memory write error";
3013                 break;
3014         case 3:
3015                 optype = "addr/cmd error";
3016                 break;
3017         case 4:
3018                 optype = "memory scrubbing error";
3019                 break;
3020         default:
3021                 optype = "reserved";
3022                 break;
3023         }
3024
3025         if (pvt->info.type == KNIGHTS_LANDING) {
3026                 if (channel == 14) {
3027                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3028                                 overflow ? " OVERFLOW" : "",
3029                                 (uncorrected_error && recoverable)
3030                                 ? " recoverable" : "",
3031                                 mscod, errcode,
3032                                 m->bank);
3033                 } else {
3034                         char A = *("A");
3035
3036                         /*
3037                          * Reported channel is in range 0-2, so we can't map it
3038                          * back to mc. To figure out mc we check machine check
3039                          * bank register that reported this error.
3040                          * bank15 means mc0 and bank16 means mc1.
3041                          */
3042                         channel = knl_channel_remap(m->bank == 16, channel);
3043                         channel_mask = 1 << channel;
3044
3045                         snprintf(msg, sizeof(msg),
3046                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3047                                 overflow ? " OVERFLOW" : "",
3048                                 (uncorrected_error && recoverable)
3049                                 ? " recoverable" : " ",
3050                                 mscod, errcode, channel, A + channel);
3051                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3052                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3053                                 channel, 0, -1,
3054                                 optype, msg);
3055                 }
3056                 return;
3057         } else if (lsb < 12) {
3058                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3059                                            &channel_mask, &rank,
3060                                            &area_type, msg);
3061         } else {
3062                 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3063                                                     &channel_mask, msg);
3064         }
3065
3066         if (rc < 0)
3067                 goto err_parsing;
3068         new_mci = get_mci_for_node_id(socket, ha);
3069         if (!new_mci) {
3070                 strcpy(msg, "Error: socket got corrupted!");
3071                 goto err_parsing;
3072         }
3073         mci = new_mci;
3074         pvt = mci->pvt_info;
3075
3076         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3077
3078         if (rank == 0xff)
3079                 dimm = -1;
3080         else if (rank < 4)
3081                 dimm = 0;
3082         else if (rank < 8)
3083                 dimm = 1;
3084         else
3085                 dimm = 2;
3086
3087         /*
3088          * FIXME: On some memory configurations (mirror, lockstep), the
3089          * Memory Controller can't point the error to a single DIMM. The
3090          * EDAC core should be handling the channel mask, in order to point
3091          * to the group of dimm's where the error may be happening.
3092          */
3093         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3094                 channel = first_channel;
3095
3096         snprintf(msg, sizeof(msg),
3097                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3098                  overflow ? " OVERFLOW" : "",
3099                  (uncorrected_error && recoverable) ? " recoverable" : "",
3100                  area_type,
3101                  mscod, errcode,
3102                  socket, ha,
3103                  channel_mask,
3104                  rank);
3105
3106         edac_dbg(0, "%s\n", msg);
3107
3108         /* FIXME: need support for channel mask */
3109
3110         if (channel == CHANNEL_UNSPECIFIED)
3111                 channel = -1;
3112
3113         /* Call the helper to output message */
3114         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3115                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3116                              channel, dimm, -1,
3117                              optype, msg);
3118         return;
3119 err_parsing:
3120         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3121                              -1, -1, -1,
3122                              msg, "");
3123
3124 }
3125
3126 /*
3127  * Check that logging is enabled and that this is the right type
3128  * of error for us to handle.
3129  */
3130 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3131                                    void *data)
3132 {
3133         struct mce *mce = (struct mce *)data;
3134         struct mem_ctl_info *mci;
3135         char *type;
3136
3137         if (mce->kflags & MCE_HANDLED_CEC)
3138                 return NOTIFY_DONE;
3139
3140         /*
3141          * Just let mcelog handle it if the error is
3142          * outside the memory controller. A memory error
3143          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3144          * bit 12 has an special meaning.
3145          */
3146         if ((mce->status & 0xefff) >> 7 != 1)
3147                 return NOTIFY_DONE;
3148
3149         /* Check ADDRV bit in STATUS */
3150         if (!GET_BITFIELD(mce->status, 58, 58))
3151                 return NOTIFY_DONE;
3152
3153         /* Check MISCV bit in STATUS */
3154         if (!GET_BITFIELD(mce->status, 59, 59))
3155                 return NOTIFY_DONE;
3156
3157         /* Check address type in MISC (physical address only) */
3158         if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3159                 return NOTIFY_DONE;
3160
3161         mci = get_mci_for_node_id(mce->socketid, IMC0);
3162         if (!mci)
3163                 return NOTIFY_DONE;
3164
3165         if (mce->mcgstatus & MCG_STATUS_MCIP)
3166                 type = "Exception";
3167         else
3168                 type = "Event";
3169
3170         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3171
3172         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3173                           "Bank %d: %016Lx\n", mce->extcpu, type,
3174                           mce->mcgstatus, mce->bank, mce->status);
3175         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3176         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3177         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3178
3179         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3180                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3181                           mce->time, mce->socketid, mce->apicid);
3182
3183         sbridge_mce_output_error(mci, mce);
3184
3185         /* Advice mcelog that the error were handled */
3186         mce->kflags |= MCE_HANDLED_EDAC;
3187         return NOTIFY_OK;
3188 }
3189
3190 static struct notifier_block sbridge_mce_dec = {
3191         .notifier_call  = sbridge_mce_check_error,
3192         .priority       = MCE_PRIO_EDAC,
3193 };
3194
3195 /****************************************************************************
3196                         EDAC register/unregister logic
3197  ****************************************************************************/
3198
3199 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3200 {
3201         struct mem_ctl_info *mci = sbridge_dev->mci;
3202
3203         if (unlikely(!mci || !mci->pvt_info)) {
3204                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3205
3206                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3207                 return;
3208         }
3209
3210         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3211                  mci, &sbridge_dev->pdev[0]->dev);
3212
3213         /* Remove MC sysfs nodes */
3214         edac_mc_del_mc(mci->pdev);
3215
3216         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3217         kfree(mci->ctl_name);
3218         edac_mc_free(mci);
3219         sbridge_dev->mci = NULL;
3220 }
3221
3222 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3223 {
3224         struct mem_ctl_info *mci;
3225         struct edac_mc_layer layers[2];
3226         struct sbridge_pvt *pvt;
3227         struct pci_dev *pdev = sbridge_dev->pdev[0];
3228         int rc;
3229
3230         /* allocate a new MC control structure */
3231         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3232         layers[0].size = type == KNIGHTS_LANDING ?
3233                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3234         layers[0].is_virt_csrow = false;
3235         layers[1].type = EDAC_MC_LAYER_SLOT;
3236         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3237         layers[1].is_virt_csrow = true;
3238         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3239                             sizeof(*pvt));
3240
3241         if (unlikely(!mci))
3242                 return -ENOMEM;
3243
3244         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3245                  mci, &pdev->dev);
3246
3247         pvt = mci->pvt_info;
3248         memset(pvt, 0, sizeof(*pvt));
3249
3250         /* Associate sbridge_dev and mci for future usage */
3251         pvt->sbridge_dev = sbridge_dev;
3252         sbridge_dev->mci = mci;
3253
3254         mci->mtype_cap = type == KNIGHTS_LANDING ?
3255                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3256         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3257         mci->edac_cap = EDAC_FLAG_NONE;
3258         mci->mod_name = EDAC_MOD_STR;
3259         mci->dev_name = pci_name(pdev);
3260         mci->ctl_page_to_phys = NULL;
3261
3262         pvt->info.type = type;
3263         switch (type) {
3264         case IVY_BRIDGE:
3265                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3266                 pvt->info.get_tolm = ibridge_get_tolm;
3267                 pvt->info.get_tohm = ibridge_get_tohm;
3268                 pvt->info.dram_rule = ibridge_dram_rule;
3269                 pvt->info.get_memory_type = get_memory_type;
3270                 pvt->info.get_node_id = get_node_id;
3271                 pvt->info.get_ha = ibridge_get_ha;
3272                 pvt->info.rir_limit = rir_limit;
3273                 pvt->info.sad_limit = sad_limit;
3274                 pvt->info.interleave_mode = interleave_mode;
3275                 pvt->info.dram_attr = dram_attr;
3276                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3277                 pvt->info.interleave_list = ibridge_interleave_list;
3278                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3279                 pvt->info.get_width = ibridge_get_width;
3280
3281                 /* Store pci devices at mci for faster access */
3282                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3283                 if (unlikely(rc < 0))
3284                         goto fail0;
3285                 get_source_id(mci);
3286                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3287                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3288                 break;
3289         case SANDY_BRIDGE:
3290                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3291                 pvt->info.get_tolm = sbridge_get_tolm;
3292                 pvt->info.get_tohm = sbridge_get_tohm;
3293                 pvt->info.dram_rule = sbridge_dram_rule;
3294                 pvt->info.get_memory_type = get_memory_type;
3295                 pvt->info.get_node_id = get_node_id;
3296                 pvt->info.get_ha = sbridge_get_ha;
3297                 pvt->info.rir_limit = rir_limit;
3298                 pvt->info.sad_limit = sad_limit;
3299                 pvt->info.interleave_mode = interleave_mode;
3300                 pvt->info.dram_attr = dram_attr;
3301                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3302                 pvt->info.interleave_list = sbridge_interleave_list;
3303                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3304                 pvt->info.get_width = sbridge_get_width;
3305
3306                 /* Store pci devices at mci for faster access */
3307                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3308                 if (unlikely(rc < 0))
3309                         goto fail0;
3310                 get_source_id(mci);
3311                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3312                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3313                 break;
3314         case HASWELL:
3315                 /* rankcfgr isn't used */
3316                 pvt->info.get_tolm = haswell_get_tolm;
3317                 pvt->info.get_tohm = haswell_get_tohm;
3318                 pvt->info.dram_rule = ibridge_dram_rule;
3319                 pvt->info.get_memory_type = haswell_get_memory_type;
3320                 pvt->info.get_node_id = haswell_get_node_id;
3321                 pvt->info.get_ha = ibridge_get_ha;
3322                 pvt->info.rir_limit = haswell_rir_limit;
3323                 pvt->info.sad_limit = sad_limit;
3324                 pvt->info.interleave_mode = interleave_mode;
3325                 pvt->info.dram_attr = dram_attr;
3326                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3327                 pvt->info.interleave_list = ibridge_interleave_list;
3328                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3329                 pvt->info.get_width = ibridge_get_width;
3330
3331                 /* Store pci devices at mci for faster access */
3332                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3333                 if (unlikely(rc < 0))
3334                         goto fail0;
3335                 get_source_id(mci);
3336                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3337                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3338                 break;
3339         case BROADWELL:
3340                 /* rankcfgr isn't used */
3341                 pvt->info.get_tolm = haswell_get_tolm;
3342                 pvt->info.get_tohm = haswell_get_tohm;
3343                 pvt->info.dram_rule = ibridge_dram_rule;
3344                 pvt->info.get_memory_type = haswell_get_memory_type;
3345                 pvt->info.get_node_id = haswell_get_node_id;
3346                 pvt->info.get_ha = ibridge_get_ha;
3347                 pvt->info.rir_limit = haswell_rir_limit;
3348                 pvt->info.sad_limit = sad_limit;
3349                 pvt->info.interleave_mode = interleave_mode;
3350                 pvt->info.dram_attr = dram_attr;
3351                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3352                 pvt->info.interleave_list = ibridge_interleave_list;
3353                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3354                 pvt->info.get_width = broadwell_get_width;
3355
3356                 /* Store pci devices at mci for faster access */
3357                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3358                 if (unlikely(rc < 0))
3359                         goto fail0;
3360                 get_source_id(mci);
3361                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3362                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3363                 break;
3364         case KNIGHTS_LANDING:
3365                 /* pvt->info.rankcfgr == ??? */
3366                 pvt->info.get_tolm = knl_get_tolm;
3367                 pvt->info.get_tohm = knl_get_tohm;
3368                 pvt->info.dram_rule = knl_dram_rule;
3369                 pvt->info.get_memory_type = knl_get_memory_type;
3370                 pvt->info.get_node_id = knl_get_node_id;
3371                 pvt->info.get_ha = knl_get_ha;
3372                 pvt->info.rir_limit = NULL;
3373                 pvt->info.sad_limit = knl_sad_limit;
3374                 pvt->info.interleave_mode = knl_interleave_mode;
3375                 pvt->info.dram_attr = dram_attr_knl;
3376                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3377                 pvt->info.interleave_list = knl_interleave_list;
3378                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3379                 pvt->info.get_width = knl_get_width;
3380
3381                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3382                 if (unlikely(rc < 0))
3383                         goto fail0;
3384                 get_source_id(mci);
3385                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3386                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3387                 break;
3388         }
3389
3390         if (!mci->ctl_name) {
3391                 rc = -ENOMEM;
3392                 goto fail0;
3393         }
3394
3395         /* Get dimm basic config and the memory layout */
3396         rc = get_dimm_config(mci);
3397         if (rc < 0) {
3398                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3399                 goto fail;
3400         }
3401         get_memory_layout(mci);
3402
3403         /* record ptr to the generic device */
3404         mci->pdev = &pdev->dev;
3405
3406         /* add this new MC control structure to EDAC's list of MCs */
3407         if (unlikely(edac_mc_add_mc(mci))) {
3408                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3409                 rc = -EINVAL;
3410                 goto fail;
3411         }
3412
3413         return 0;
3414
3415 fail:
3416         kfree(mci->ctl_name);
3417 fail0:
3418         edac_mc_free(mci);
3419         sbridge_dev->mci = NULL;
3420         return rc;
3421 }
3422
3423 static const struct x86_cpu_id sbridge_cpuids[] = {
3424         X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3425         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,   &pci_dev_descr_ibridge_table),
3426         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,     &pci_dev_descr_haswell_table),
3427         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,   &pci_dev_descr_broadwell_table),
3428         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,   &pci_dev_descr_broadwell_table),
3429         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3430         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3431         { }
3432 };
3433 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3434
3435 /*
3436  *      sbridge_probe   Get all devices and register memory controllers
3437  *                      present.
3438  *      return:
3439  *              0 for FOUND a device
3440  *              < 0 for error code
3441  */
3442
3443 static int sbridge_probe(const struct x86_cpu_id *id)
3444 {
3445         int rc = -ENODEV;
3446         u8 mc, num_mc = 0;
3447         struct sbridge_dev *sbridge_dev;
3448         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3449
3450         /* get the pci devices we want to reserve for our use */
3451         rc = sbridge_get_all_devices(&num_mc, ptable);
3452
3453         if (unlikely(rc < 0)) {
3454                 edac_dbg(0, "couldn't get all devices\n");
3455                 goto fail0;
3456         }
3457
3458         mc = 0;
3459
3460         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3461                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3462                          mc, mc + 1, num_mc);
3463
3464                 sbridge_dev->mc = mc++;
3465                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3466                 if (unlikely(rc < 0))
3467                         goto fail1;
3468         }
3469
3470         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3471
3472         return 0;
3473
3474 fail1:
3475         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3476                 sbridge_unregister_mci(sbridge_dev);
3477
3478         sbridge_put_all_devices();
3479 fail0:
3480         return rc;
3481 }
3482
3483 /*
3484  *      sbridge_remove  cleanup
3485  *
3486  */
3487 static void sbridge_remove(void)
3488 {
3489         struct sbridge_dev *sbridge_dev;
3490
3491         edac_dbg(0, "\n");
3492
3493         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3494                 sbridge_unregister_mci(sbridge_dev);
3495
3496         /* Release PCI resources */
3497         sbridge_put_all_devices();
3498 }
3499
3500 /*
3501  *      sbridge_init            Module entry function
3502  *                      Try to initialize this module for its devices
3503  */
3504 static int __init sbridge_init(void)
3505 {
3506         const struct x86_cpu_id *id;
3507         const char *owner;
3508         int rc;
3509
3510         edac_dbg(2, "\n");
3511
3512         owner = edac_get_owner();
3513         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3514                 return -EBUSY;
3515
3516         id = x86_match_cpu(sbridge_cpuids);
3517         if (!id)
3518                 return -ENODEV;
3519
3520         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3521         opstate_init();
3522
3523         rc = sbridge_probe(id);
3524
3525         if (rc >= 0) {
3526                 mce_register_decode_chain(&sbridge_mce_dec);
3527                 return 0;
3528         }
3529
3530         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3531                       rc);
3532
3533         return rc;
3534 }
3535
3536 /*
3537  *      sbridge_exit()  Module exit function
3538  *                      Unregister the driver
3539  */
3540 static void __exit sbridge_exit(void)
3541 {
3542         edac_dbg(2, "\n");
3543         sbridge_remove();
3544         mce_unregister_decode_chain(&sbridge_mce_dec);
3545 }
3546
3547 module_init(sbridge_init);
3548 module_exit(sbridge_exit);
3549
3550 module_param(edac_op_state, int, 0444);
3551 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3552
3553 MODULE_LICENSE("GPL");
3554 MODULE_AUTHOR("Mauro Carvalho Chehab");
3555 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3556 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3557                    SBRIDGE_REVISION);