Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / edac / sb_edac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *       Mauro Carvalho Chehab
9  */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27
28 #include "edac_module.h"
29
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR        "sb_edac"
38
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)                      \
43         edac_printk(level, "sbridge", fmt, ##arg)
44
45 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
46         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi) \
52         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
53
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56         0x80, 0x88, 0x90, 0x98, 0xa0,
57         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59
60 static const u32 ibridge_dram_rule[] = {
61         0x60, 0x68, 0x70, 0x78, 0x80,
62         0x88, 0x90, 0x98, 0xa0, 0xa8,
63         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66
67 static const u32 knl_dram_rule[] = {
68         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74
75 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
77
78 static char *show_dram_attr(u32 attr)
79 {
80         switch (attr) {
81                 case 0:
82                         return "DRAM";
83                 case 1:
84                         return "MMCFG";
85                 case 2:
86                         return "NXM";
87                 default:
88                         return "unknown";
89         }
90 }
91
92 static const u32 sbridge_interleave_list[] = {
93         0x84, 0x8c, 0x94, 0x9c, 0xa4,
94         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96
97 static const u32 ibridge_interleave_list[] = {
98         0x64, 0x6c, 0x74, 0x7c, 0x84,
99         0x8c, 0x94, 0x9c, 0xa4, 0xac,
100         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103
104 static const u32 knl_interleave_list[] = {
105         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE                                                  \
112         (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
113                max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
114                      ARRAY_SIZE(knl_interleave_list))))
115
116 struct interleave_pkg {
117         unsigned char start;
118         unsigned char end;
119 };
120
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122         { 0, 2 },
123         { 3, 5 },
124         { 8, 10 },
125         { 11, 13 },
126         { 16, 18 },
127         { 19, 21 },
128         { 24, 26 },
129         { 27, 29 },
130 };
131
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133         { 0, 3 },
134         { 4, 7 },
135         { 8, 11 },
136         { 12, 15 },
137         { 16, 19 },
138         { 20, 23 },
139         { 24, 27 },
140         { 28, 31 },
141 };
142
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144                           int interleave)
145 {
146         return GET_BITFIELD(reg, table[interleave].start,
147                             table[interleave].end);
148 }
149
150 /* Devices 12 Function 7 */
151
152 #define TOLM            0x80
153 #define TOHM            0x84
154 #define HASWELL_TOLM    0xd0
155 #define HASWELL_TOHM_0  0xd4
156 #define HASWELL_TOHM_1  0xd8
157 #define KNL_TOLM        0xd0
158 #define KNL_TOHM_0      0xd4
159 #define KNL_TOHM_1      0xd8
160
161 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163
164 /* Device 13 Function 6 */
165
166 #define SAD_TARGET      0xf0
167
168 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
169
170 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
171
172 #define SAD_CONTROL     0xf4
173
174 /* Device 14 function 0 */
175
176 static const u32 tad_dram_rule[] = {
177         0x40, 0x44, 0x48, 0x4c,
178         0x50, 0x54, 0x58, 0x5c,
179         0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
182
183 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
190
191 /* Device 15, function 0 */
192
193 #define MCMTR                   0x7c
194 #define KNL_MCMTR               0x624
195
196 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
199
200 /* Device 15, function 1 */
201
202 #define RASENABLES              0xac
203 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
204
205 /* Device 15, functions 2-5 */
206
207 static const int mtr_regs[] = {
208         0x80, 0x84, 0x88,
209 };
210
211 static const int knl_mtr_reg = 0xb60;
212
213 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
218
219 static const u32 tad_ch_nilv_offset[] = {
220         0x90, 0x94, 0x98, 0x9c,
221         0xa0, 0xa4, 0xa8, 0xac,
222         0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
226
227 static const u32 rir_way_limit[] = {
228         0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231
232 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
234
235 #define MAX_RIR_WAY     8
236
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250
251 /* Device 16, functions 2-7 */
252
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256
257 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
261
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt[] = {
264         0x104, 0x108, 0x10c, 0x110,
265 };
266
267 static const u32 correrrthrsld[] = {
268         0x11c, 0x120, 0x124, 0x128,
269 };
270 #endif
271
272 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
274
275
276 /* Device 17, function 0 */
277
278 #define SB_RANK_CFG_A           0x0328
279
280 #define IB_RANK_CFG_A           0x0320
281
282 /*
283  * sbridge structs
284  */
285
286 #define NUM_CHANNELS            6       /* Max channels per MC */
287 #define MAX_DIMMS               3       /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
292
293 enum type {
294         SANDY_BRIDGE,
295         IVY_BRIDGE,
296         HASWELL,
297         BROADWELL,
298         KNIGHTS_LANDING,
299 };
300
301 enum domain {
302         IMC0 = 0,
303         IMC1,
304         SOCK,
305 };
306
307 enum mirroring_mode {
308         NON_MIRRORING,
309         ADDR_RANGE_MIRRORING,
310         FULL_MIRRORING,
311 };
312
313 struct sbridge_pvt;
314 struct sbridge_info {
315         enum type       type;
316         u32             mcmtr;
317         u32             rankcfgr;
318         u64             (*get_tolm)(struct sbridge_pvt *pvt);
319         u64             (*get_tohm)(struct sbridge_pvt *pvt);
320         u64             (*rir_limit)(u32 reg);
321         u64             (*sad_limit)(u32 reg);
322         u32             (*interleave_mode)(u32 reg);
323         u32             (*dram_attr)(u32 reg);
324         const u32       *dram_rule;
325         const u32       *interleave_list;
326         const struct interleave_pkg *interleave_pkg;
327         u8              max_sad;
328         u8              (*get_node_id)(struct sbridge_pvt *pvt);
329         u8              (*get_ha)(u8 bank);
330         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
331         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332         struct pci_dev  *pci_vtd;
333 };
334
335 struct sbridge_channel {
336         u32             ranks;
337         u32             dimms;
338 };
339
340 struct pci_id_descr {
341         int                     dev_id;
342         int                     optional;
343         enum domain             dom;
344 };
345
346 struct pci_id_table {
347         const struct pci_id_descr       *descr;
348         int                             n_devs_per_imc;
349         int                             n_devs_per_sock;
350         int                             n_imcs_per_sock;
351         enum type                       type;
352 };
353
354 struct sbridge_dev {
355         struct list_head        list;
356         int                     seg;
357         u8                      bus, mc;
358         u8                      node_id, source_id;
359         struct pci_dev          **pdev;
360         enum domain             dom;
361         int                     n_devs;
362         int                     i_devs;
363         struct mem_ctl_info     *mci;
364 };
365
366 struct knl_pvt {
367         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
368         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
369         struct pci_dev          *pci_mc0;
370         struct pci_dev          *pci_mc1;
371         struct pci_dev          *pci_mc0_misc;
372         struct pci_dev          *pci_mc1_misc;
373         struct pci_dev          *pci_mc_info; /* tolm, tohm */
374 };
375
376 struct sbridge_pvt {
377         /* Devices per socket */
378         struct pci_dev          *pci_ddrio;
379         struct pci_dev          *pci_sad0, *pci_sad1;
380         struct pci_dev          *pci_br0, *pci_br1;
381         /* Devices per memory controller */
382         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
383         struct pci_dev          *pci_tad[NUM_CHANNELS];
384
385         struct sbridge_dev      *sbridge_dev;
386
387         struct sbridge_info     info;
388         struct sbridge_channel  channel[NUM_CHANNELS];
389
390         /* Memory type detection */
391         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
392         bool                    is_chan_hash;
393         enum mirroring_mode     mirror_mode;
394
395         /* Memory description */
396         u64                     tolm, tohm;
397         struct knl_pvt knl;
398 };
399
400 #define PCI_DESCR(device_id, opt, domain)       \
401         .dev_id = (device_id),          \
402         .optional = opt,        \
403         .dom = domain
404
405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
406                 /* Processor Home Agent */
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
408
409                 /* Memory controller */
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
412         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
414         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
415         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
416         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
417
418                 /* System Address Decoder */
419         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
421
422                 /* Broadcast Registers */
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
424 };
425
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
427         .descr = A,                     \
428         .n_devs_per_imc = N,    \
429         .n_devs_per_sock = ARRAY_SIZE(A),       \
430         .n_imcs_per_sock = M,   \
431         .type = T                       \
432 }
433
434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
435         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
436         {0,}                    /* 0 terminated list. */
437 };
438
439 /* This changes depending if 1HA or 2HA:
440  * 1HA:
441  *      0x0eb8 (17.0) is DDRIO0
442  * 2HA:
443  *      0x0ebc (17.4) is DDRIO0
444  */
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
447
448 /* pci ids */
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
466
467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
468                 /* Processor Home Agent */
469         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
471
472                 /* Memory controller */
473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
478         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
479
480                 /* Optional, mode 2HA */
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
485         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
487
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
490
491                 /* System Address Decoder */
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
493
494                 /* Broadcast Registers */
495         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
496         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
497
498 };
499
500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
501         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
502         {0,}                    /* 0 terminated list. */
503 };
504
505 /* Haswell support */
506 /* EN processor:
507  *      - 1 IMC
508  *      - 3 DDR3 channels, 2 DPC per channel
509  * EP processor:
510  *      - 1 or 2 IMC
511  *      - 4 DDR4 channels, 3 DPC per channel
512  * EP 4S processor:
513  *      - 2 IMC
514  *      - 4 DDR4 channels, 3 DPC per channel
515  * EX processor:
516  *      - 2 IMC
517  *      - each IMC interfaces with a SMI 2 channel
518  *      - each SMI channel interfaces with a scalable memory buffer
519  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
520  */
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
545         /* first item must be the HA */
546         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
547         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
548
549         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
550         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
553         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
555
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
560         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
562
563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
567         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
568         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
569 };
570
571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
572         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
573         {0,}                    /* 0 terminated list. */
574 };
575
576 /* Knight's Landing Support */
577 /*
578  * KNL's memory channels are swizzled between memory controllers.
579  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
580  */
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
582
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
597
598 /*
599  * KNL differs from SB, IB, and Haswell in that it has multiple
600  * instances of the same device with the same device ID, so we handle that
601  * by creating as many copies in the table as we expect to find.
602  * (Like device ID must be grouped together.)
603  */
604
605 static const struct pci_id_descr pci_dev_descr_knl[] = {
606         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
607         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
608         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
609         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
610         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
611         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
612         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
613 };
614
615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
616         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
617         {0,}
618 };
619
620 /*
621  * Broadwell support
622  *
623  * DE processor:
624  *      - 1 IMC
625  *      - 2 DDR3 channels, 2 DPC per channel
626  * EP processor:
627  *      - 1 or 2 IMC
628  *      - 4 DDR4 channels, 3 DPC per channel
629  * EP 4S processor:
630  *      - 2 IMC
631  *      - 4 DDR4 channels, 3 DPC per channel
632  * EX processor:
633  *      - 2 IMC
634  *      - each IMC interfaces with a SMI 2 channel
635  *      - each SMI channel interfaces with a scalable memory buffer
636  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
637  */
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
656
657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
658         /* first item must be the HA */
659         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
660         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
661
662         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
663         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
664         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
666         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
667         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
668
669         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
673         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
674         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
675
676         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
677         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
678         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
679 };
680
681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
682         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
683         {0,}                    /* 0 terminated list. */
684 };
685
686
687 /****************************************************************************
688                         Ancillary status routines
689  ****************************************************************************/
690
691 static inline int numrank(enum type type, u32 mtr)
692 {
693         int ranks = (1 << RANK_CNT_BITS(mtr));
694         int max = 4;
695
696         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
697                 max = 8;
698
699         if (ranks > max) {
700                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
702                 return -EINVAL;
703         }
704
705         return ranks;
706 }
707
708 static inline int numrow(u32 mtr)
709 {
710         int rows = (RANK_WIDTH_BITS(mtr) + 12);
711
712         if (rows < 13 || rows > 18) {
713                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
715                 return -EINVAL;
716         }
717
718         return 1 << rows;
719 }
720
721 static inline int numcol(u32 mtr)
722 {
723         int cols = (COL_WIDTH_BITS(mtr) + 10);
724
725         if (cols > 12) {
726                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
728                 return -EINVAL;
729         }
730
731         return 1 << cols;
732 }
733
734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
735                                            int multi_bus,
736                                            struct sbridge_dev *prev)
737 {
738         struct sbridge_dev *sbridge_dev;
739
740         /*
741          * If we have devices scattered across several busses that pertain
742          * to the same memory controller, we'll lump them all together.
743          */
744         if (multi_bus) {
745                 return list_first_entry_or_null(&sbridge_edac_list,
746                                 struct sbridge_dev, list);
747         }
748
749         sbridge_dev = list_entry(prev ? prev->list.next
750                                       : sbridge_edac_list.next, struct sbridge_dev, list);
751
752         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
753                 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
754                                 (dom == SOCK || dom == sbridge_dev->dom))
755                         return sbridge_dev;
756         }
757
758         return NULL;
759 }
760
761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
762                                              const struct pci_id_table *table)
763 {
764         struct sbridge_dev *sbridge_dev;
765
766         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
767         if (!sbridge_dev)
768                 return NULL;
769
770         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
771                                     sizeof(*sbridge_dev->pdev),
772                                     GFP_KERNEL);
773         if (!sbridge_dev->pdev) {
774                 kfree(sbridge_dev);
775                 return NULL;
776         }
777
778         sbridge_dev->seg = seg;
779         sbridge_dev->bus = bus;
780         sbridge_dev->dom = dom;
781         sbridge_dev->n_devs = table->n_devs_per_imc;
782         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
783
784         return sbridge_dev;
785 }
786
787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
788 {
789         list_del(&sbridge_dev->list);
790         kfree(sbridge_dev->pdev);
791         kfree(sbridge_dev);
792 }
793
794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
795 {
796         u32 reg;
797
798         /* Address range is 32:28 */
799         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
800         return GET_TOLM(reg);
801 }
802
803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
804 {
805         u32 reg;
806
807         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
808         return GET_TOHM(reg);
809 }
810
811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
812 {
813         u32 reg;
814
815         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
816
817         return GET_TOLM(reg);
818 }
819
820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
821 {
822         u32 reg;
823
824         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
825
826         return GET_TOHM(reg);
827 }
828
829 static u64 rir_limit(u32 reg)
830 {
831         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
832 }
833
834 static u64 sad_limit(u32 reg)
835 {
836         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
837 }
838
839 static u32 interleave_mode(u32 reg)
840 {
841         return GET_BITFIELD(reg, 1, 1);
842 }
843
844 static u32 dram_attr(u32 reg)
845 {
846         return GET_BITFIELD(reg, 2, 3);
847 }
848
849 static u64 knl_sad_limit(u32 reg)
850 {
851         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
852 }
853
854 static u32 knl_interleave_mode(u32 reg)
855 {
856         return GET_BITFIELD(reg, 1, 2);
857 }
858
859 static const char * const knl_intlv_mode[] = {
860         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
861 };
862
863 static const char *get_intlv_mode_str(u32 reg, enum type t)
864 {
865         if (t == KNIGHTS_LANDING)
866                 return knl_intlv_mode[knl_interleave_mode(reg)];
867         else
868                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
869 }
870
871 static u32 dram_attr_knl(u32 reg)
872 {
873         return GET_BITFIELD(reg, 3, 4);
874 }
875
876
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879         u32 reg;
880         enum mem_type mtype;
881
882         if (pvt->pci_ddrio) {
883                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884                                       &reg);
885                 if (GET_BITFIELD(reg, 11, 11))
886                         /* FIXME: Can also be LRDIMM */
887                         mtype = MEM_RDDR3;
888                 else
889                         mtype = MEM_DDR3;
890         } else
891                 mtype = MEM_UNKNOWN;
892
893         return mtype;
894 }
895
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898         u32 reg;
899         bool registered = false;
900         enum mem_type mtype = MEM_UNKNOWN;
901
902         if (!pvt->pci_ddrio)
903                 goto out;
904
905         pci_read_config_dword(pvt->pci_ddrio,
906                               HASWELL_DDRCRCLKCONTROLS, &reg);
907         /* Is_Rdimm */
908         if (GET_BITFIELD(reg, 16, 16))
909                 registered = true;
910
911         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912         if (GET_BITFIELD(reg, 14, 14)) {
913                 if (registered)
914                         mtype = MEM_RDDR4;
915                 else
916                         mtype = MEM_DDR4;
917         } else {
918                 if (registered)
919                         mtype = MEM_RDDR3;
920                 else
921                         mtype = MEM_DDR3;
922         }
923
924 out:
925         return mtype;
926 }
927
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930         /* for KNL value is fixed */
931         return DEV_X16;
932 }
933
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936         /* there's no way to figure out */
937         return DEV_UNKNOWN;
938 }
939
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942         enum dev_type type = DEV_UNKNOWN;
943
944         switch (mtr) {
945         case 2:
946                 type = DEV_X16;
947                 break;
948         case 1:
949                 type = DEV_X8;
950                 break;
951         case 0:
952                 type = DEV_X4;
953                 break;
954         }
955
956         return type;
957 }
958
959 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
960 {
961         /*
962          * ddr3_width on the documentation but also valid for DDR4 on
963          * Haswell
964          */
965         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
966 }
967
968 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
969 {
970         /* ddr3_width on the documentation but also valid for DDR4 */
971         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
972 }
973
974 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
975 {
976         /* DDR4 RDIMMS and LRDIMMS are supported */
977         return MEM_RDDR4;
978 }
979
980 static u8 get_node_id(struct sbridge_pvt *pvt)
981 {
982         u32 reg;
983         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
984         return GET_BITFIELD(reg, 0, 2);
985 }
986
987 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
988 {
989         u32 reg;
990
991         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
992         return GET_BITFIELD(reg, 0, 3);
993 }
994
995 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
996 {
997         u32 reg;
998
999         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000         return GET_BITFIELD(reg, 0, 2);
1001 }
1002
1003 /*
1004  * Use the reporting bank number to determine which memory
1005  * controller (also known as "ha" for "home agent"). Sandy
1006  * Bridge only has one memory controller per socket, so the
1007  * answer is always zero.
1008  */
1009 static u8 sbridge_get_ha(u8 bank)
1010 {
1011         return 0;
1012 }
1013
1014 /*
1015  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1016  * home agent bank (7, 8), or one of the per-channel memory
1017  * controller banks (9 .. 16).
1018  */
1019 static u8 ibridge_get_ha(u8 bank)
1020 {
1021         switch (bank) {
1022         case 7 ... 8:
1023                 return bank - 7;
1024         case 9 ... 16:
1025                 return (bank - 9) / 4;
1026         default:
1027                 return 0xff;
1028         }
1029 }
1030
1031 /* Not used, but included for safety/symmetry */
1032 static u8 knl_get_ha(u8 bank)
1033 {
1034         return 0xff;
1035 }
1036
1037 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1038 {
1039         u32 reg;
1040
1041         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1042         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1043 }
1044
1045 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1046 {
1047         u64 rc;
1048         u32 reg;
1049
1050         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1051         rc = GET_BITFIELD(reg, 26, 31);
1052         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1053         rc = ((reg << 6) | rc) << 26;
1054
1055         return rc | 0x1ffffff;
1056 }
1057
1058 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1059 {
1060         u32 reg;
1061
1062         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1063         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1064 }
1065
1066 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1067 {
1068         u64 rc;
1069         u32 reg_lo, reg_hi;
1070
1071         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1072         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1073         rc = ((u64)reg_hi << 32) | reg_lo;
1074         return rc | 0x3ffffff;
1075 }
1076
1077
1078 static u64 haswell_rir_limit(u32 reg)
1079 {
1080         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1081 }
1082
1083 static inline u8 sad_pkg_socket(u8 pkg)
1084 {
1085         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1086         return ((pkg >> 3) << 2) | (pkg & 0x3);
1087 }
1088
1089 static inline u8 sad_pkg_ha(u8 pkg)
1090 {
1091         return (pkg >> 2) & 0x1;
1092 }
1093
1094 static int haswell_chan_hash(int idx, u64 addr)
1095 {
1096         int i;
1097
1098         /*
1099          * XOR even bits from 12:26 to bit0 of idx,
1100          *     odd bits from 13:27 to bit1
1101          */
1102         for (i = 12; i < 28; i += 2)
1103                 idx ^= (addr >> i) & 3;
1104
1105         return idx;
1106 }
1107
1108 /* Low bits of TAD limit, and some metadata. */
1109 static const u32 knl_tad_dram_limit_lo[] = {
1110         0x400, 0x500, 0x600, 0x700,
1111         0x800, 0x900, 0xa00, 0xb00,
1112 };
1113
1114 /* Low bits of TAD offset. */
1115 static const u32 knl_tad_dram_offset_lo[] = {
1116         0x404, 0x504, 0x604, 0x704,
1117         0x804, 0x904, 0xa04, 0xb04,
1118 };
1119
1120 /* High 16 bits of TAD limit and offset. */
1121 static const u32 knl_tad_dram_hi[] = {
1122         0x408, 0x508, 0x608, 0x708,
1123         0x808, 0x908, 0xa08, 0xb08,
1124 };
1125
1126 /* Number of ways a tad entry is interleaved. */
1127 static const u32 knl_tad_ways[] = {
1128         8, 6, 4, 3, 2, 1,
1129 };
1130
1131 /*
1132  * Retrieve the n'th Target Address Decode table entry
1133  * from the memory controller's TAD table.
1134  *
1135  * @pvt:        driver private data
1136  * @entry:      which entry you want to retrieve
1137  * @mc:         which memory controller (0 or 1)
1138  * @offset:     output tad range offset
1139  * @limit:      output address of first byte above tad range
1140  * @ways:       output number of interleave ways
1141  *
1142  * The offset value has curious semantics.  It's a sort of running total
1143  * of the sizes of all the memory regions that aren't mapped in this
1144  * tad table.
1145  */
1146 static int knl_get_tad(const struct sbridge_pvt *pvt,
1147                 const int entry,
1148                 const int mc,
1149                 u64 *offset,
1150                 u64 *limit,
1151                 int *ways)
1152 {
1153         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1154         struct pci_dev *pci_mc;
1155         int way_id;
1156
1157         switch (mc) {
1158         case 0:
1159                 pci_mc = pvt->knl.pci_mc0;
1160                 break;
1161         case 1:
1162                 pci_mc = pvt->knl.pci_mc1;
1163                 break;
1164         default:
1165                 WARN_ON(1);
1166                 return -EINVAL;
1167         }
1168
1169         pci_read_config_dword(pci_mc,
1170                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1171         pci_read_config_dword(pci_mc,
1172                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1173         pci_read_config_dword(pci_mc,
1174                         knl_tad_dram_hi[entry], &reg_hi);
1175
1176         /* Is this TAD entry enabled? */
1177         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1178                 return -ENODEV;
1179
1180         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1181
1182         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1183                 *ways = knl_tad_ways[way_id];
1184         } else {
1185                 *ways = 0;
1186                 sbridge_printk(KERN_ERR,
1187                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1188                                 way_id);
1189                 return -ENODEV;
1190         }
1191
1192         /*
1193          * The least significant 6 bits of base and limit are truncated.
1194          * For limit, we fill the missing bits with 1s.
1195          */
1196         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1197                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1198         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1199                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1200
1201         return 0;
1202 }
1203
1204 /* Determine which memory controller is responsible for a given channel. */
1205 static int knl_channel_mc(int channel)
1206 {
1207         WARN_ON(channel < 0 || channel >= 6);
1208
1209         return channel < 3 ? 1 : 0;
1210 }
1211
1212 /*
1213  * Get the Nth entry from EDC_ROUTE_TABLE register.
1214  * (This is the per-tile mapping of logical interleave targets to
1215  *  physical EDC modules.)
1216  *
1217  * entry 0: 0:2
1218  *       1: 3:5
1219  *       2: 6:8
1220  *       3: 9:11
1221  *       4: 12:14
1222  *       5: 15:17
1223  *       6: 18:20
1224  *       7: 21:23
1225  * reserved: 24:31
1226  */
1227 static u32 knl_get_edc_route(int entry, u32 reg)
1228 {
1229         WARN_ON(entry >= KNL_MAX_EDCS);
1230         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1231 }
1232
1233 /*
1234  * Get the Nth entry from MC_ROUTE_TABLE register.
1235  * (This is the per-tile mapping of logical interleave targets to
1236  *  physical DRAM channels modules.)
1237  *
1238  * entry 0: mc 0:2   channel 18:19
1239  *       1: mc 3:5   channel 20:21
1240  *       2: mc 6:8   channel 22:23
1241  *       3: mc 9:11  channel 24:25
1242  *       4: mc 12:14 channel 26:27
1243  *       5: mc 15:17 channel 28:29
1244  * reserved: 30:31
1245  *
1246  * Though we have 3 bits to identify the MC, we should only see
1247  * the values 0 or 1.
1248  */
1249
1250 static u32 knl_get_mc_route(int entry, u32 reg)
1251 {
1252         int mc, chan;
1253
1254         WARN_ON(entry >= KNL_MAX_CHANNELS);
1255
1256         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1257         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1258
1259         return knl_channel_remap(mc, chan);
1260 }
1261
1262 /*
1263  * Render the EDC_ROUTE register in human-readable form.
1264  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1265  */
1266 static void knl_show_edc_route(u32 reg, char *s)
1267 {
1268         int i;
1269
1270         for (i = 0; i < KNL_MAX_EDCS; i++) {
1271                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1272                 s[i*2+1] = '-';
1273         }
1274
1275         s[KNL_MAX_EDCS*2 - 1] = '\0';
1276 }
1277
1278 /*
1279  * Render the MC_ROUTE register in human-readable form.
1280  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1281  */
1282 static void knl_show_mc_route(u32 reg, char *s)
1283 {
1284         int i;
1285
1286         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1287                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1288                 s[i*2+1] = '-';
1289         }
1290
1291         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1292 }
1293
1294 #define KNL_EDC_ROUTE 0xb8
1295 #define KNL_MC_ROUTE 0xb4
1296
1297 /* Is this dram rule backed by regular DRAM in flat mode? */
1298 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1299
1300 /* Is this dram rule cached? */
1301 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1302
1303 /* Is this rule backed by edc ? */
1304 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1305
1306 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308
1309 /* Is this rule mod3? */
1310 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1311
1312 /*
1313  * Figure out how big our RAM modules are.
1314  *
1315  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1316  * have to figure this out from the SAD rules, interleave lists, route tables,
1317  * and TAD rules.
1318  *
1319  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1320  * inspect the TAD rules to figure out how large the SAD regions really are.
1321  *
1322  * When we know the real size of a SAD region and how many ways it's
1323  * interleaved, we know the individual contribution of each channel to
1324  * TAD is size/ways.
1325  *
1326  * Finally, we have to check whether each channel participates in each SAD
1327  * region.
1328  *
1329  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1330  * much memory the channel uses, we know the DIMM is at least that large.
1331  * (The BIOS might possibly choose not to map all available memory, in which
1332  * case we will underreport the size of the DIMM.)
1333  *
1334  * In theory, we could try to determine the EDC sizes as well, but that would
1335  * only work in flat mode, not in cache mode.
1336  *
1337  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1338  *            elements)
1339  */
1340 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1341 {
1342         u64 sad_base, sad_limit = 0;
1343         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1344         int sad_rule = 0;
1345         int tad_rule = 0;
1346         int intrlv_ways, tad_ways;
1347         u32 first_pkg, pkg;
1348         int i;
1349         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1350         u32 dram_rule, interleave_reg;
1351         u32 mc_route_reg[KNL_MAX_CHAS];
1352         u32 edc_route_reg[KNL_MAX_CHAS];
1353         int edram_only;
1354         char edc_route_string[KNL_MAX_EDCS*2];
1355         char mc_route_string[KNL_MAX_CHANNELS*2];
1356         int cur_reg_start;
1357         int mc;
1358         int channel;
1359         int participants[KNL_MAX_CHANNELS];
1360
1361         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1362                 mc_sizes[i] = 0;
1363
1364         /* Read the EDC route table in each CHA. */
1365         cur_reg_start = 0;
1366         for (i = 0; i < KNL_MAX_CHAS; i++) {
1367                 pci_read_config_dword(pvt->knl.pci_cha[i],
1368                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1369
1370                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1371                         knl_show_edc_route(edc_route_reg[i-1],
1372                                         edc_route_string);
1373                         if (cur_reg_start == i-1)
1374                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1375                                         cur_reg_start, edc_route_string);
1376                         else
1377                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1378                                         cur_reg_start, i-1, edc_route_string);
1379                         cur_reg_start = i;
1380                 }
1381         }
1382         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1383         if (cur_reg_start == i-1)
1384                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1385                         cur_reg_start, edc_route_string);
1386         else
1387                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1388                         cur_reg_start, i-1, edc_route_string);
1389
1390         /* Read the MC route table in each CHA. */
1391         cur_reg_start = 0;
1392         for (i = 0; i < KNL_MAX_CHAS; i++) {
1393                 pci_read_config_dword(pvt->knl.pci_cha[i],
1394                         KNL_MC_ROUTE, &mc_route_reg[i]);
1395
1396                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1397                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1398                         if (cur_reg_start == i-1)
1399                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1400                                         cur_reg_start, mc_route_string);
1401                         else
1402                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1403                                         cur_reg_start, i-1, mc_route_string);
1404                         cur_reg_start = i;
1405                 }
1406         }
1407         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1408         if (cur_reg_start == i-1)
1409                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1410                         cur_reg_start, mc_route_string);
1411         else
1412                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1413                         cur_reg_start, i-1, mc_route_string);
1414
1415         /* Process DRAM rules */
1416         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1417                 /* previous limit becomes the new base */
1418                 sad_base = sad_limit;
1419
1420                 pci_read_config_dword(pvt->pci_sad0,
1421                         pvt->info.dram_rule[sad_rule], &dram_rule);
1422
1423                 if (!DRAM_RULE_ENABLE(dram_rule))
1424                         break;
1425
1426                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1427
1428                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1429
1430                 pci_read_config_dword(pvt->pci_sad0,
1431                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1432
1433                 /*
1434                  * Find out how many ways this dram rule is interleaved.
1435                  * We stop when we see the first channel again.
1436                  */
1437                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1438                                                 interleave_reg, 0);
1439                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1440                         pkg = sad_pkg(pvt->info.interleave_pkg,
1441                                                 interleave_reg, intrlv_ways);
1442
1443                         if ((pkg & 0x8) == 0) {
1444                                 /*
1445                                  * 0 bit means memory is non-local,
1446                                  * which KNL doesn't support
1447                                  */
1448                                 edac_dbg(0, "Unexpected interleave target %d\n",
1449                                         pkg);
1450                                 return -1;
1451                         }
1452
1453                         if (pkg == first_pkg)
1454                                 break;
1455                 }
1456                 if (KNL_MOD3(dram_rule))
1457                         intrlv_ways *= 3;
1458
1459                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1460                         sad_rule,
1461                         sad_base,
1462                         sad_limit,
1463                         intrlv_ways,
1464                         edram_only ? ", EDRAM" : "");
1465
1466                 /*
1467                  * Find out how big the SAD region really is by iterating
1468                  * over TAD tables (SAD regions may contain holes).
1469                  * Each memory controller might have a different TAD table, so
1470                  * we have to look at both.
1471                  *
1472                  * Livespace is the memory that's mapped in this TAD table,
1473                  * deadspace is the holes (this could be the MMIO hole, or it
1474                  * could be memory that's mapped by the other TAD table but
1475                  * not this one).
1476                  */
1477                 for (mc = 0; mc < 2; mc++) {
1478                         sad_actual_size[mc] = 0;
1479                         tad_livespace = 0;
1480                         for (tad_rule = 0;
1481                                         tad_rule < ARRAY_SIZE(
1482                                                 knl_tad_dram_limit_lo);
1483                                         tad_rule++) {
1484                                 if (knl_get_tad(pvt,
1485                                                 tad_rule,
1486                                                 mc,
1487                                                 &tad_deadspace,
1488                                                 &tad_limit,
1489                                                 &tad_ways))
1490                                         break;
1491
1492                                 tad_size = (tad_limit+1) -
1493                                         (tad_livespace + tad_deadspace);
1494                                 tad_livespace += tad_size;
1495                                 tad_base = (tad_limit+1) - tad_size;
1496
1497                                 if (tad_base < sad_base) {
1498                                         if (tad_limit > sad_base)
1499                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1500                                 } else if (tad_base < sad_limit) {
1501                                         if (tad_limit+1 > sad_limit) {
1502                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1503                                         } else {
1504                                                 /* TAD region is completely inside SAD region */
1505                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1506                                                         tad_rule, tad_base,
1507                                                         tad_limit, tad_size,
1508                                                         mc);
1509                                                 sad_actual_size[mc] += tad_size;
1510                                         }
1511                                 }
1512                         }
1513                 }
1514
1515                 for (mc = 0; mc < 2; mc++) {
1516                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1517                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1518                 }
1519
1520                 /* Ignore EDRAM rule */
1521                 if (edram_only)
1522                         continue;
1523
1524                 /* Figure out which channels participate in interleave. */
1525                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1526                         participants[channel] = 0;
1527
1528                 /* For each channel, does at least one CHA have
1529                  * this channel mapped to the given target?
1530                  */
1531                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1532                         int target;
1533                         int cha;
1534
1535                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1536                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1537                                         if (knl_get_mc_route(target,
1538                                                 mc_route_reg[cha]) == channel
1539                                                 && !participants[channel]) {
1540                                                 participants[channel] = 1;
1541                                                 break;
1542                                         }
1543                                 }
1544                         }
1545                 }
1546
1547                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1548                         mc = knl_channel_mc(channel);
1549                         if (participants[channel]) {
1550                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1551                                         channel,
1552                                         sad_actual_size[mc]/intrlv_ways,
1553                                         sad_rule);
1554                                 mc_sizes[channel] +=
1555                                         sad_actual_size[mc]/intrlv_ways;
1556                         }
1557                 }
1558         }
1559
1560         return 0;
1561 }
1562
1563 static void get_source_id(struct mem_ctl_info *mci)
1564 {
1565         struct sbridge_pvt *pvt = mci->pvt_info;
1566         u32 reg;
1567
1568         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1569             pvt->info.type == KNIGHTS_LANDING)
1570                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1571         else
1572                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1573
1574         if (pvt->info.type == KNIGHTS_LANDING)
1575                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1576         else
1577                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1578 }
1579
1580 static int __populate_dimms(struct mem_ctl_info *mci,
1581                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1582                             enum edac_type mode)
1583 {
1584         struct sbridge_pvt *pvt = mci->pvt_info;
1585         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1586                                                          : NUM_CHANNELS;
1587         unsigned int i, j, banks, ranks, rows, cols, npages;
1588         struct dimm_info *dimm;
1589         enum mem_type mtype;
1590         u64 size;
1591
1592         mtype = pvt->info.get_memory_type(pvt);
1593         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1594                 edac_dbg(0, "Memory is registered\n");
1595         else if (mtype == MEM_UNKNOWN)
1596                 edac_dbg(0, "Cannot determine memory type\n");
1597         else
1598                 edac_dbg(0, "Memory is unregistered\n");
1599
1600         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1601                 banks = 16;
1602         else
1603                 banks = 8;
1604
1605         for (i = 0; i < channels; i++) {
1606                 u32 mtr;
1607
1608                 int max_dimms_per_channel;
1609
1610                 if (pvt->info.type == KNIGHTS_LANDING) {
1611                         max_dimms_per_channel = 1;
1612                         if (!pvt->knl.pci_channel[i])
1613                                 continue;
1614                 } else {
1615                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1616                         if (!pvt->pci_tad[i])
1617                                 continue;
1618                 }
1619
1620                 for (j = 0; j < max_dimms_per_channel; j++) {
1621                         dimm = edac_get_dimm(mci, i, j, 0);
1622                         if (pvt->info.type == KNIGHTS_LANDING) {
1623                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1624                                         knl_mtr_reg, &mtr);
1625                         } else {
1626                                 pci_read_config_dword(pvt->pci_tad[i],
1627                                         mtr_regs[j], &mtr);
1628                         }
1629                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1630                         if (IS_DIMM_PRESENT(mtr)) {
1631                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1632                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1633                                                        pvt->sbridge_dev->source_id,
1634                                                        pvt->sbridge_dev->dom, i);
1635                                         return -ENODEV;
1636                                 }
1637                                 pvt->channel[i].dimms++;
1638
1639                                 ranks = numrank(pvt->info.type, mtr);
1640
1641                                 if (pvt->info.type == KNIGHTS_LANDING) {
1642                                         /* For DDR4, this is fixed. */
1643                                         cols = 1 << 10;
1644                                         rows = knl_mc_sizes[i] /
1645                                                 ((u64) cols * ranks * banks * 8);
1646                                 } else {
1647                                         rows = numrow(mtr);
1648                                         cols = numcol(mtr);
1649                                 }
1650
1651                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1652                                 npages = MiB_TO_PAGES(size);
1653
1654                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1655                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1656                                          size, npages,
1657                                          banks, ranks, rows, cols);
1658
1659                                 dimm->nr_pages = npages;
1660                                 dimm->grain = 32;
1661                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1662                                 dimm->mtype = mtype;
1663                                 dimm->edac_mode = mode;
1664                                 snprintf(dimm->label, sizeof(dimm->label),
1665                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1666                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1667                         }
1668                 }
1669         }
1670
1671         return 0;
1672 }
1673
1674 static int get_dimm_config(struct mem_ctl_info *mci)
1675 {
1676         struct sbridge_pvt *pvt = mci->pvt_info;
1677         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1678         enum edac_type mode;
1679         u32 reg;
1680
1681         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1682         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1683                  pvt->sbridge_dev->mc,
1684                  pvt->sbridge_dev->node_id,
1685                  pvt->sbridge_dev->source_id);
1686
1687         /* KNL doesn't support mirroring or lockstep,
1688          * and is always closed page
1689          */
1690         if (pvt->info.type == KNIGHTS_LANDING) {
1691                 mode = EDAC_S4ECD4ED;
1692                 pvt->mirror_mode = NON_MIRRORING;
1693                 pvt->is_cur_addr_mirrored = false;
1694
1695                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1696                         return -1;
1697                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1698                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1699                         return -ENODEV;
1700                 }
1701         } else {
1702                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1703                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1704                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1705                                 return -ENODEV;
1706                         }
1707                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1708                         if (GET_BITFIELD(reg, 28, 28)) {
1709                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1710                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1711                                 goto next;
1712                         }
1713                 }
1714                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1715                         edac_dbg(0, "Failed to read RASENABLES register\n");
1716                         return -ENODEV;
1717                 }
1718                 if (IS_MIRROR_ENABLED(reg)) {
1719                         pvt->mirror_mode = FULL_MIRRORING;
1720                         edac_dbg(0, "Full memory mirroring is enabled\n");
1721                 } else {
1722                         pvt->mirror_mode = NON_MIRRORING;
1723                         edac_dbg(0, "Memory mirroring is disabled\n");
1724                 }
1725
1726 next:
1727                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1728                         edac_dbg(0, "Failed to read MCMTR register\n");
1729                         return -ENODEV;
1730                 }
1731                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1732                         edac_dbg(0, "Lockstep is enabled\n");
1733                         mode = EDAC_S8ECD8ED;
1734                         pvt->is_lockstep = true;
1735                 } else {
1736                         edac_dbg(0, "Lockstep is disabled\n");
1737                         mode = EDAC_S4ECD4ED;
1738                         pvt->is_lockstep = false;
1739                 }
1740                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1741                         edac_dbg(0, "address map is on closed page mode\n");
1742                         pvt->is_close_pg = true;
1743                 } else {
1744                         edac_dbg(0, "address map is on open page mode\n");
1745                         pvt->is_close_pg = false;
1746                 }
1747         }
1748
1749         return __populate_dimms(mci, knl_mc_sizes, mode);
1750 }
1751
1752 static void get_memory_layout(const struct mem_ctl_info *mci)
1753 {
1754         struct sbridge_pvt *pvt = mci->pvt_info;
1755         int i, j, k, n_sads, n_tads, sad_interl;
1756         u32 reg;
1757         u64 limit, prv = 0;
1758         u64 tmp_mb;
1759         u32 gb, mb;
1760         u32 rir_way;
1761
1762         /*
1763          * Step 1) Get TOLM/TOHM ranges
1764          */
1765
1766         pvt->tolm = pvt->info.get_tolm(pvt);
1767         tmp_mb = (1 + pvt->tolm) >> 20;
1768
1769         gb = div_u64_rem(tmp_mb, 1024, &mb);
1770         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1771                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1772
1773         /* Address range is already 45:25 */
1774         pvt->tohm = pvt->info.get_tohm(pvt);
1775         tmp_mb = (1 + pvt->tohm) >> 20;
1776
1777         gb = div_u64_rem(tmp_mb, 1024, &mb);
1778         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1779                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1780
1781         /*
1782          * Step 2) Get SAD range and SAD Interleave list
1783          * TAD registers contain the interleave wayness. However, it
1784          * seems simpler to just discover it indirectly, with the
1785          * algorithm bellow.
1786          */
1787         prv = 0;
1788         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1789                 /* SAD_LIMIT Address range is 45:26 */
1790                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1791                                       &reg);
1792                 limit = pvt->info.sad_limit(reg);
1793
1794                 if (!DRAM_RULE_ENABLE(reg))
1795                         continue;
1796
1797                 if (limit <= prv)
1798                         break;
1799
1800                 tmp_mb = (limit + 1) >> 20;
1801                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1802                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1803                          n_sads,
1804                          show_dram_attr(pvt->info.dram_attr(reg)),
1805                          gb, (mb*1000)/1024,
1806                          ((u64)tmp_mb) << 20L,
1807                          get_intlv_mode_str(reg, pvt->info.type),
1808                          reg);
1809                 prv = limit;
1810
1811                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1812                                       &reg);
1813                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1814                 for (j = 0; j < 8; j++) {
1815                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1816                         if (j > 0 && sad_interl == pkg)
1817                                 break;
1818
1819                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1820                                  n_sads, j, pkg);
1821                 }
1822         }
1823
1824         if (pvt->info.type == KNIGHTS_LANDING)
1825                 return;
1826
1827         /*
1828          * Step 3) Get TAD range
1829          */
1830         prv = 0;
1831         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1832                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1833                 limit = TAD_LIMIT(reg);
1834                 if (limit <= prv)
1835                         break;
1836                 tmp_mb = (limit + 1) >> 20;
1837
1838                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1839                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840                          n_tads, gb, (mb*1000)/1024,
1841                          ((u64)tmp_mb) << 20L,
1842                          (u32)(1 << TAD_SOCK(reg)),
1843                          (u32)TAD_CH(reg) + 1,
1844                          (u32)TAD_TGT0(reg),
1845                          (u32)TAD_TGT1(reg),
1846                          (u32)TAD_TGT2(reg),
1847                          (u32)TAD_TGT3(reg),
1848                          reg);
1849                 prv = limit;
1850         }
1851
1852         /*
1853          * Step 4) Get TAD offsets, per each channel
1854          */
1855         for (i = 0; i < NUM_CHANNELS; i++) {
1856                 if (!pvt->channel[i].dimms)
1857                         continue;
1858                 for (j = 0; j < n_tads; j++) {
1859                         pci_read_config_dword(pvt->pci_tad[i],
1860                                               tad_ch_nilv_offset[j],
1861                                               &reg);
1862                         tmp_mb = TAD_OFFSET(reg) >> 20;
1863                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1864                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1865                                  i, j,
1866                                  gb, (mb*1000)/1024,
1867                                  ((u64)tmp_mb) << 20L,
1868                                  reg);
1869                 }
1870         }
1871
1872         /*
1873          * Step 6) Get RIR Wayness/Limit, per each channel
1874          */
1875         for (i = 0; i < NUM_CHANNELS; i++) {
1876                 if (!pvt->channel[i].dimms)
1877                         continue;
1878                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1879                         pci_read_config_dword(pvt->pci_tad[i],
1880                                               rir_way_limit[j],
1881                                               &reg);
1882
1883                         if (!IS_RIR_VALID(reg))
1884                                 continue;
1885
1886                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1887                         rir_way = 1 << RIR_WAY(reg);
1888                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1889                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1890                                  i, j,
1891                                  gb, (mb*1000)/1024,
1892                                  ((u64)tmp_mb) << 20L,
1893                                  rir_way,
1894                                  reg);
1895
1896                         for (k = 0; k < rir_way; k++) {
1897                                 pci_read_config_dword(pvt->pci_tad[i],
1898                                                       rir_offset[j][k],
1899                                                       &reg);
1900                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1901
1902                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1903                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1904                                          i, j, k,
1905                                          gb, (mb*1000)/1024,
1906                                          ((u64)tmp_mb) << 20L,
1907                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1908                                          reg);
1909                         }
1910                 }
1911         }
1912 }
1913
1914 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1915 {
1916         struct sbridge_dev *sbridge_dev;
1917
1918         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1919                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1920                         return sbridge_dev->mci;
1921         }
1922         return NULL;
1923 }
1924
1925 static int get_memory_error_data(struct mem_ctl_info *mci,
1926                                  u64 addr,
1927                                  u8 *socket, u8 *ha,
1928                                  long *channel_mask,
1929                                  u8 *rank,
1930                                  char **area_type, char *msg)
1931 {
1932         struct mem_ctl_info     *new_mci;
1933         struct sbridge_pvt *pvt = mci->pvt_info;
1934         struct pci_dev          *pci_ha;
1935         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1936         int                     sad_interl, idx, base_ch;
1937         int                     interleave_mode, shiftup = 0;
1938         unsigned int            sad_interleave[MAX_INTERLEAVE];
1939         u32                     reg, dram_rule;
1940         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1941         u32                     tad_offset;
1942         u32                     rir_way;
1943         u32                     mb, gb;
1944         u64                     ch_addr, offset, limit = 0, prv = 0;
1945
1946
1947         /*
1948          * Step 0) Check if the address is at special memory ranges
1949          * The check bellow is probably enough to fill all cases where
1950          * the error is not inside a memory, except for the legacy
1951          * range (e. g. VGA addresses). It is unlikely, however, that the
1952          * memory controller would generate an error on that range.
1953          */
1954         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1955                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1956                 return -EINVAL;
1957         }
1958         if (addr >= (u64)pvt->tohm) {
1959                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1960                 return -EINVAL;
1961         }
1962
1963         /*
1964          * Step 1) Get socket
1965          */
1966         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1967                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1968                                       &reg);
1969
1970                 if (!DRAM_RULE_ENABLE(reg))
1971                         continue;
1972
1973                 limit = pvt->info.sad_limit(reg);
1974                 if (limit <= prv) {
1975                         sprintf(msg, "Can't discover the memory socket");
1976                         return -EINVAL;
1977                 }
1978                 if  (addr <= limit)
1979                         break;
1980                 prv = limit;
1981         }
1982         if (n_sads == pvt->info.max_sad) {
1983                 sprintf(msg, "Can't discover the memory socket");
1984                 return -EINVAL;
1985         }
1986         dram_rule = reg;
1987         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1988         interleave_mode = pvt->info.interleave_mode(dram_rule);
1989
1990         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1991                               &reg);
1992
1993         if (pvt->info.type == SANDY_BRIDGE) {
1994                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1995                 for (sad_way = 0; sad_way < 8; sad_way++) {
1996                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1997                         if (sad_way > 0 && sad_interl == pkg)
1998                                 break;
1999                         sad_interleave[sad_way] = pkg;
2000                         edac_dbg(0, "SAD interleave #%d: %d\n",
2001                                  sad_way, sad_interleave[sad_way]);
2002                 }
2003                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004                          pvt->sbridge_dev->mc,
2005                          n_sads,
2006                          addr,
2007                          limit,
2008                          sad_way + 7,
2009                          !interleave_mode ? "" : "XOR[18:16]");
2010                 if (interleave_mode)
2011                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2012                 else
2013                         idx = (addr >> 6) & 7;
2014                 switch (sad_way) {
2015                 case 1:
2016                         idx = 0;
2017                         break;
2018                 case 2:
2019                         idx = idx & 1;
2020                         break;
2021                 case 4:
2022                         idx = idx & 3;
2023                         break;
2024                 case 8:
2025                         break;
2026                 default:
2027                         sprintf(msg, "Can't discover socket interleave");
2028                         return -EINVAL;
2029                 }
2030                 *socket = sad_interleave[idx];
2031                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032                          idx, sad_way, *socket);
2033         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2034                 int bits, a7mode = A7MODE(dram_rule);
2035
2036                 if (a7mode) {
2037                         /* A7 mode swaps P9 with P6 */
2038                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2039                         bits |= GET_BITFIELD(addr, 9, 9);
2040                 } else
2041                         bits = GET_BITFIELD(addr, 6, 8);
2042
2043                 if (interleave_mode == 0) {
2044                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2045                         idx = GET_BITFIELD(addr, 16, 18);
2046                         idx ^= bits;
2047                 } else
2048                         idx = bits;
2049
2050                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2051                 *socket = sad_pkg_socket(pkg);
2052                 sad_ha = sad_pkg_ha(pkg);
2053
2054                 if (a7mode) {
2055                         /* MCChanShiftUpEnable */
2056                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2057                         shiftup = GET_BITFIELD(reg, 22, 22);
2058                 }
2059
2060                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061                          idx, *socket, sad_ha, shiftup);
2062         } else {
2063                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064                 idx = (addr >> 6) & 7;
2065                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2066                 *socket = sad_pkg_socket(pkg);
2067                 sad_ha = sad_pkg_ha(pkg);
2068                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2069                          idx, *socket, sad_ha);
2070         }
2071
2072         *ha = sad_ha;
2073
2074         /*
2075          * Move to the proper node structure, in order to access the
2076          * right PCI registers
2077          */
2078         new_mci = get_mci_for_node_id(*socket, sad_ha);
2079         if (!new_mci) {
2080                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2081                         *socket);
2082                 return -EINVAL;
2083         }
2084         mci = new_mci;
2085         pvt = mci->pvt_info;
2086
2087         /*
2088          * Step 2) Get memory channel
2089          */
2090         prv = 0;
2091         pci_ha = pvt->pci_ha;
2092         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2093                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2094                 limit = TAD_LIMIT(reg);
2095                 if (limit <= prv) {
2096                         sprintf(msg, "Can't discover the memory channel");
2097                         return -EINVAL;
2098                 }
2099                 if  (addr <= limit)
2100                         break;
2101                 prv = limit;
2102         }
2103         if (n_tads == MAX_TAD) {
2104                 sprintf(msg, "Can't discover the memory channel");
2105                 return -EINVAL;
2106         }
2107
2108         ch_way = TAD_CH(reg) + 1;
2109         sck_way = TAD_SOCK(reg);
2110
2111         if (ch_way == 3)
2112                 idx = addr >> 6;
2113         else {
2114                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2115                 if (pvt->is_chan_hash)
2116                         idx = haswell_chan_hash(idx, addr);
2117         }
2118         idx = idx % ch_way;
2119
2120         /*
2121          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2122          */
2123         switch (idx) {
2124         case 0:
2125                 base_ch = TAD_TGT0(reg);
2126                 break;
2127         case 1:
2128                 base_ch = TAD_TGT1(reg);
2129                 break;
2130         case 2:
2131                 base_ch = TAD_TGT2(reg);
2132                 break;
2133         case 3:
2134                 base_ch = TAD_TGT3(reg);
2135                 break;
2136         default:
2137                 sprintf(msg, "Can't discover the TAD target");
2138                 return -EINVAL;
2139         }
2140         *channel_mask = 1 << base_ch;
2141
2142         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2143
2144         if (pvt->mirror_mode == FULL_MIRRORING ||
2145             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2146                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2147                 switch(ch_way) {
2148                 case 2:
2149                 case 4:
2150                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2151                         break;
2152                 default:
2153                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2154                         return -EINVAL;
2155                 }
2156
2157                 pvt->is_cur_addr_mirrored = true;
2158         } else {
2159                 sck_xch = (1 << sck_way) * ch_way;
2160                 pvt->is_cur_addr_mirrored = false;
2161         }
2162
2163         if (pvt->is_lockstep)
2164                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2165
2166         offset = TAD_OFFSET(tad_offset);
2167
2168         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2169                  n_tads,
2170                  addr,
2171                  limit,
2172                  sck_way,
2173                  ch_way,
2174                  offset,
2175                  idx,
2176                  base_ch,
2177                  *channel_mask);
2178
2179         /* Calculate channel address */
2180         /* Remove the TAD offset */
2181
2182         if (offset > addr) {
2183                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2184                         offset, addr);
2185                 return -EINVAL;
2186         }
2187
2188         ch_addr = addr - offset;
2189         ch_addr >>= (6 + shiftup);
2190         ch_addr /= sck_xch;
2191         ch_addr <<= (6 + shiftup);
2192         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2193
2194         /*
2195          * Step 3) Decode rank
2196          */
2197         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2198                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2199
2200                 if (!IS_RIR_VALID(reg))
2201                         continue;
2202
2203                 limit = pvt->info.rir_limit(reg);
2204                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2205                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2206                          n_rir,
2207                          gb, (mb*1000)/1024,
2208                          limit,
2209                          1 << RIR_WAY(reg));
2210                 if  (ch_addr <= limit)
2211                         break;
2212         }
2213         if (n_rir == MAX_RIR_RANGES) {
2214                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2215                         ch_addr);
2216                 return -EINVAL;
2217         }
2218         rir_way = RIR_WAY(reg);
2219
2220         if (pvt->is_close_pg)
2221                 idx = (ch_addr >> 6);
2222         else
2223                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2224         idx %= 1 << rir_way;
2225
2226         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2227         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2228
2229         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2230                  n_rir,
2231                  ch_addr,
2232                  limit,
2233                  rir_way,
2234                  idx);
2235
2236         return 0;
2237 }
2238
2239 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2240                                           const struct mce *m, u8 *socket,
2241                                           u8 *ha, long *channel_mask,
2242                                           char *msg)
2243 {
2244         u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2245         struct mem_ctl_info *new_mci;
2246         struct sbridge_pvt *pvt;
2247         struct pci_dev *pci_ha;
2248         bool tad0;
2249
2250         if (channel >= NUM_CHANNELS) {
2251                 sprintf(msg, "Invalid channel 0x%x", channel);
2252                 return -EINVAL;
2253         }
2254
2255         pvt = mci->pvt_info;
2256         if (!pvt->info.get_ha) {
2257                 sprintf(msg, "No get_ha()");
2258                 return -EINVAL;
2259         }
2260         *ha = pvt->info.get_ha(m->bank);
2261         if (*ha != 0 && *ha != 1) {
2262                 sprintf(msg, "Impossible bank %d", m->bank);
2263                 return -EINVAL;
2264         }
2265
2266         *socket = m->socketid;
2267         new_mci = get_mci_for_node_id(*socket, *ha);
2268         if (!new_mci) {
2269                 strcpy(msg, "mci socket got corrupted!");
2270                 return -EINVAL;
2271         }
2272
2273         pvt = new_mci->pvt_info;
2274         pci_ha = pvt->pci_ha;
2275         pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2276         tad0 = m->addr <= TAD_LIMIT(reg);
2277
2278         *channel_mask = 1 << channel;
2279         if (pvt->mirror_mode == FULL_MIRRORING ||
2280             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2281                 *channel_mask |= 1 << ((channel + 2) % 4);
2282                 pvt->is_cur_addr_mirrored = true;
2283         } else {
2284                 pvt->is_cur_addr_mirrored = false;
2285         }
2286
2287         if (pvt->is_lockstep)
2288                 *channel_mask |= 1 << ((channel + 1) % 4);
2289
2290         return 0;
2291 }
2292
2293 /****************************************************************************
2294         Device initialization routines: put/get, init/exit
2295  ****************************************************************************/
2296
2297 /*
2298  *      sbridge_put_all_devices 'put' all the devices that we have
2299  *                              reserved via 'get'
2300  */
2301 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2302 {
2303         int i;
2304
2305         edac_dbg(0, "\n");
2306         for (i = 0; i < sbridge_dev->n_devs; i++) {
2307                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2308                 if (!pdev)
2309                         continue;
2310                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2311                          pdev->bus->number,
2312                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2313                 pci_dev_put(pdev);
2314         }
2315 }
2316
2317 static void sbridge_put_all_devices(void)
2318 {
2319         struct sbridge_dev *sbridge_dev, *tmp;
2320
2321         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2322                 sbridge_put_devices(sbridge_dev);
2323                 free_sbridge_dev(sbridge_dev);
2324         }
2325 }
2326
2327 static int sbridge_get_onedevice(struct pci_dev **prev,
2328                                  u8 *num_mc,
2329                                  const struct pci_id_table *table,
2330                                  const unsigned devno,
2331                                  const int multi_bus)
2332 {
2333         struct sbridge_dev *sbridge_dev = NULL;
2334         const struct pci_id_descr *dev_descr = &table->descr[devno];
2335         struct pci_dev *pdev = NULL;
2336         int seg = 0;
2337         u8 bus = 0;
2338         int i = 0;
2339
2340         sbridge_printk(KERN_DEBUG,
2341                 "Seeking for: PCI ID %04x:%04x\n",
2342                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2343
2344         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2345                               dev_descr->dev_id, *prev);
2346
2347         if (!pdev) {
2348                 if (*prev) {
2349                         *prev = pdev;
2350                         return 0;
2351                 }
2352
2353                 if (dev_descr->optional)
2354                         return 0;
2355
2356                 /* if the HA wasn't found */
2357                 if (devno == 0)
2358                         return -ENODEV;
2359
2360                 sbridge_printk(KERN_INFO,
2361                         "Device not found: %04x:%04x\n",
2362                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2363
2364                 /* End of list, leave */
2365                 return -ENODEV;
2366         }
2367         seg = pci_domain_nr(pdev->bus);
2368         bus = pdev->bus->number;
2369
2370 next_imc:
2371         sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2372                                       multi_bus, sbridge_dev);
2373         if (!sbridge_dev) {
2374                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2375                 if (dev_descr->dom == IMC1 && devno != 1) {
2376                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2377                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2378                         pci_dev_put(pdev);
2379                         return 0;
2380                 }
2381
2382                 if (dev_descr->dom == SOCK)
2383                         goto out_imc;
2384
2385                 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2386                 if (!sbridge_dev) {
2387                         pci_dev_put(pdev);
2388                         return -ENOMEM;
2389                 }
2390                 (*num_mc)++;
2391         }
2392
2393         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2394                 sbridge_printk(KERN_ERR,
2395                         "Duplicated device for %04x:%04x\n",
2396                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2397                 pci_dev_put(pdev);
2398                 return -ENODEV;
2399         }
2400
2401         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2402
2403         /* pdev belongs to more than one IMC, do extra gets */
2404         if (++i > 1)
2405                 pci_dev_get(pdev);
2406
2407         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2408                 goto next_imc;
2409
2410 out_imc:
2411         /* Be sure that the device is enabled */
2412         if (unlikely(pci_enable_device(pdev) < 0)) {
2413                 sbridge_printk(KERN_ERR,
2414                         "Couldn't enable %04x:%04x\n",
2415                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2416                 return -ENODEV;
2417         }
2418
2419         edac_dbg(0, "Detected %04x:%04x\n",
2420                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421
2422         /*
2423          * As stated on drivers/pci/search.c, the reference count for
2424          * @from is always decremented if it is not %NULL. So, as we need
2425          * to get all devices up to null, we need to do a get for the device
2426          */
2427         pci_dev_get(pdev);
2428
2429         *prev = pdev;
2430
2431         return 0;
2432 }
2433
2434 /*
2435  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2436  *                           devices we want to reference for this driver.
2437  * @num_mc: pointer to the memory controllers count, to be incremented in case
2438  *          of success.
2439  * @table: model specific table
2440  *
2441  * returns 0 in case of success or error code
2442  */
2443 static int sbridge_get_all_devices(u8 *num_mc,
2444                                         const struct pci_id_table *table)
2445 {
2446         int i, rc;
2447         struct pci_dev *pdev = NULL;
2448         int allow_dups = 0;
2449         int multi_bus = 0;
2450
2451         if (table->type == KNIGHTS_LANDING)
2452                 allow_dups = multi_bus = 1;
2453         while (table && table->descr) {
2454                 for (i = 0; i < table->n_devs_per_sock; i++) {
2455                         if (!allow_dups || i == 0 ||
2456                                         table->descr[i].dev_id !=
2457                                                 table->descr[i-1].dev_id) {
2458                                 pdev = NULL;
2459                         }
2460                         do {
2461                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2462                                                            table, i, multi_bus);
2463                                 if (rc < 0) {
2464                                         if (i == 0) {
2465                                                 i = table->n_devs_per_sock;
2466                                                 break;
2467                                         }
2468                                         sbridge_put_all_devices();
2469                                         return -ENODEV;
2470                                 }
2471                         } while (pdev && !allow_dups);
2472                 }
2473                 table++;
2474         }
2475
2476         return 0;
2477 }
2478
2479 /*
2480  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2481  * the format: XXXa. So we can convert from a device to the corresponding
2482  * channel like this
2483  */
2484 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2485
2486 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2487                                  struct sbridge_dev *sbridge_dev)
2488 {
2489         struct sbridge_pvt *pvt = mci->pvt_info;
2490         struct pci_dev *pdev;
2491         u8 saw_chan_mask = 0;
2492         int i;
2493
2494         for (i = 0; i < sbridge_dev->n_devs; i++) {
2495                 pdev = sbridge_dev->pdev[i];
2496                 if (!pdev)
2497                         continue;
2498
2499                 switch (pdev->device) {
2500                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2501                         pvt->pci_sad0 = pdev;
2502                         break;
2503                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2504                         pvt->pci_sad1 = pdev;
2505                         break;
2506                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2507                         pvt->pci_br0 = pdev;
2508                         break;
2509                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2510                         pvt->pci_ha = pdev;
2511                         break;
2512                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2513                         pvt->pci_ta = pdev;
2514                         break;
2515                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2516                         pvt->pci_ras = pdev;
2517                         break;
2518                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2519                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2520                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2521                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2522                 {
2523                         int id = TAD_DEV_TO_CHAN(pdev->device);
2524                         pvt->pci_tad[id] = pdev;
2525                         saw_chan_mask |= 1 << id;
2526                 }
2527                         break;
2528                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2529                         pvt->pci_ddrio = pdev;
2530                         break;
2531                 default:
2532                         goto error;
2533                 }
2534
2535                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2536                          pdev->vendor, pdev->device,
2537                          sbridge_dev->bus,
2538                          pdev);
2539         }
2540
2541         /* Check if everything were registered */
2542         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2543             !pvt->pci_ras || !pvt->pci_ta)
2544                 goto enodev;
2545
2546         if (saw_chan_mask != 0x0f)
2547                 goto enodev;
2548         return 0;
2549
2550 enodev:
2551         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2552         return -ENODEV;
2553
2554 error:
2555         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2556                        PCI_VENDOR_ID_INTEL, pdev->device);
2557         return -EINVAL;
2558 }
2559
2560 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2561                                  struct sbridge_dev *sbridge_dev)
2562 {
2563         struct sbridge_pvt *pvt = mci->pvt_info;
2564         struct pci_dev *pdev;
2565         u8 saw_chan_mask = 0;
2566         int i;
2567
2568         for (i = 0; i < sbridge_dev->n_devs; i++) {
2569                 pdev = sbridge_dev->pdev[i];
2570                 if (!pdev)
2571                         continue;
2572
2573                 switch (pdev->device) {
2574                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2575                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2576                         pvt->pci_ha = pdev;
2577                         break;
2578                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2579                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2580                         pvt->pci_ta = pdev;
2581                         break;
2582                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2583                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2584                         pvt->pci_ras = pdev;
2585                         break;
2586                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2587                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2588                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2589                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2590                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2591                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2592                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2593                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2594                 {
2595                         int id = TAD_DEV_TO_CHAN(pdev->device);
2596                         pvt->pci_tad[id] = pdev;
2597                         saw_chan_mask |= 1 << id;
2598                 }
2599                         break;
2600                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2601                         pvt->pci_ddrio = pdev;
2602                         break;
2603                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2604                         pvt->pci_ddrio = pdev;
2605                         break;
2606                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2607                         pvt->pci_sad0 = pdev;
2608                         break;
2609                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2610                         pvt->pci_br0 = pdev;
2611                         break;
2612                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2613                         pvt->pci_br1 = pdev;
2614                         break;
2615                 default:
2616                         goto error;
2617                 }
2618
2619                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2620                          sbridge_dev->bus,
2621                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2622                          pdev);
2623         }
2624
2625         /* Check if everything were registered */
2626         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2627             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2628                 goto enodev;
2629
2630         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2631             saw_chan_mask != 0x03)   /* -EP */
2632                 goto enodev;
2633         return 0;
2634
2635 enodev:
2636         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2637         return -ENODEV;
2638
2639 error:
2640         sbridge_printk(KERN_ERR,
2641                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2642                         pdev->device);
2643         return -EINVAL;
2644 }
2645
2646 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2647                                  struct sbridge_dev *sbridge_dev)
2648 {
2649         struct sbridge_pvt *pvt = mci->pvt_info;
2650         struct pci_dev *pdev;
2651         u8 saw_chan_mask = 0;
2652         int i;
2653
2654         /* there's only one device per system; not tied to any bus */
2655         if (pvt->info.pci_vtd == NULL)
2656                 /* result will be checked later */
2657                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2658                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2659                                                    NULL);
2660
2661         for (i = 0; i < sbridge_dev->n_devs; i++) {
2662                 pdev = sbridge_dev->pdev[i];
2663                 if (!pdev)
2664                         continue;
2665
2666                 switch (pdev->device) {
2667                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2668                         pvt->pci_sad0 = pdev;
2669                         break;
2670                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2671                         pvt->pci_sad1 = pdev;
2672                         break;
2673                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2674                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2675                         pvt->pci_ha = pdev;
2676                         break;
2677                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2678                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2679                         pvt->pci_ta = pdev;
2680                         break;
2681                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2682                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2683                         pvt->pci_ras = pdev;
2684                         break;
2685                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2686                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2687                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2688                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2689                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2690                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2691                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2692                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2693                 {
2694                         int id = TAD_DEV_TO_CHAN(pdev->device);
2695                         pvt->pci_tad[id] = pdev;
2696                         saw_chan_mask |= 1 << id;
2697                 }
2698                         break;
2699                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2700                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2701                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2702                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2703                         if (!pvt->pci_ddrio)
2704                                 pvt->pci_ddrio = pdev;
2705                         break;
2706                 default:
2707                         break;
2708                 }
2709
2710                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2711                          sbridge_dev->bus,
2712                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2713                          pdev);
2714         }
2715
2716         /* Check if everything were registered */
2717         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2718             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2719                 goto enodev;
2720
2721         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2722             saw_chan_mask != 0x03)   /* -EP */
2723                 goto enodev;
2724         return 0;
2725
2726 enodev:
2727         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2728         return -ENODEV;
2729 }
2730
2731 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2732                                  struct sbridge_dev *sbridge_dev)
2733 {
2734         struct sbridge_pvt *pvt = mci->pvt_info;
2735         struct pci_dev *pdev;
2736         u8 saw_chan_mask = 0;
2737         int i;
2738
2739         /* there's only one device per system; not tied to any bus */
2740         if (pvt->info.pci_vtd == NULL)
2741                 /* result will be checked later */
2742                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2743                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2744                                                    NULL);
2745
2746         for (i = 0; i < sbridge_dev->n_devs; i++) {
2747                 pdev = sbridge_dev->pdev[i];
2748                 if (!pdev)
2749                         continue;
2750
2751                 switch (pdev->device) {
2752                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2753                         pvt->pci_sad0 = pdev;
2754                         break;
2755                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2756                         pvt->pci_sad1 = pdev;
2757                         break;
2758                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2759                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2760                         pvt->pci_ha = pdev;
2761                         break;
2762                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2763                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2764                         pvt->pci_ta = pdev;
2765                         break;
2766                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2767                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2768                         pvt->pci_ras = pdev;
2769                         break;
2770                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2771                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2772                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2773                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2774                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2775                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2776                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2777                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2778                 {
2779                         int id = TAD_DEV_TO_CHAN(pdev->device);
2780                         pvt->pci_tad[id] = pdev;
2781                         saw_chan_mask |= 1 << id;
2782                 }
2783                         break;
2784                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2785                         pvt->pci_ddrio = pdev;
2786                         break;
2787                 default:
2788                         break;
2789                 }
2790
2791                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2792                          sbridge_dev->bus,
2793                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2794                          pdev);
2795         }
2796
2797         /* Check if everything were registered */
2798         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2799             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2800                 goto enodev;
2801
2802         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2803             saw_chan_mask != 0x03)   /* -EP */
2804                 goto enodev;
2805         return 0;
2806
2807 enodev:
2808         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2809         return -ENODEV;
2810 }
2811
2812 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2813                         struct sbridge_dev *sbridge_dev)
2814 {
2815         struct sbridge_pvt *pvt = mci->pvt_info;
2816         struct pci_dev *pdev;
2817         int dev, func;
2818
2819         int i;
2820         int devidx;
2821
2822         for (i = 0; i < sbridge_dev->n_devs; i++) {
2823                 pdev = sbridge_dev->pdev[i];
2824                 if (!pdev)
2825                         continue;
2826
2827                 /* Extract PCI device and function. */
2828                 dev = (pdev->devfn >> 3) & 0x1f;
2829                 func = pdev->devfn & 0x7;
2830
2831                 switch (pdev->device) {
2832                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2833                         if (dev == 8)
2834                                 pvt->knl.pci_mc0 = pdev;
2835                         else if (dev == 9)
2836                                 pvt->knl.pci_mc1 = pdev;
2837                         else {
2838                                 sbridge_printk(KERN_ERR,
2839                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2840                                         dev, func);
2841                                 continue;
2842                         }
2843                         break;
2844
2845                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2846                         pvt->pci_sad0 = pdev;
2847                         break;
2848
2849                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2850                         pvt->pci_sad1 = pdev;
2851                         break;
2852
2853                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2854                         /* There are one of these per tile, and range from
2855                          * 1.14.0 to 1.18.5.
2856                          */
2857                         devidx = ((dev-14)*8)+func;
2858
2859                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2860                                 sbridge_printk(KERN_ERR,
2861                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2862                                         dev, func);
2863                                 continue;
2864                         }
2865
2866                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2867
2868                         pvt->knl.pci_cha[devidx] = pdev;
2869                         break;
2870
2871                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2872                         devidx = -1;
2873
2874                         /*
2875                          *  MC0 channels 0-2 are device 9 function 2-4,
2876                          *  MC1 channels 3-5 are device 8 function 2-4.
2877                          */
2878
2879                         if (dev == 9)
2880                                 devidx = func-2;
2881                         else if (dev == 8)
2882                                 devidx = 3 + (func-2);
2883
2884                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2885                                 sbridge_printk(KERN_ERR,
2886                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2887                                         dev, func);
2888                                 continue;
2889                         }
2890
2891                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2892                         pvt->knl.pci_channel[devidx] = pdev;
2893                         break;
2894
2895                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2896                         pvt->knl.pci_mc_info = pdev;
2897                         break;
2898
2899                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2900                         pvt->pci_ta = pdev;
2901                         break;
2902
2903                 default:
2904                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2905                                 pdev->device);
2906                         break;
2907                 }
2908         }
2909
2910         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2911             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2912             !pvt->pci_ta) {
2913                 goto enodev;
2914         }
2915
2916         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2917                 if (!pvt->knl.pci_channel[i]) {
2918                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2919                         goto enodev;
2920                 }
2921         }
2922
2923         for (i = 0; i < KNL_MAX_CHAS; i++) {
2924                 if (!pvt->knl.pci_cha[i]) {
2925                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2926                         goto enodev;
2927                 }
2928         }
2929
2930         return 0;
2931
2932 enodev:
2933         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2934         return -ENODEV;
2935 }
2936
2937 /****************************************************************************
2938                         Error check routines
2939  ****************************************************************************/
2940
2941 /*
2942  * While Sandy Bridge has error count registers, SMI BIOS read values from
2943  * and resets the counters. So, they are not reliable for the OS to read
2944  * from them. So, we have no option but to just trust on whatever MCE is
2945  * telling us about the errors.
2946  */
2947 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2948                                     const struct mce *m)
2949 {
2950         struct mem_ctl_info *new_mci;
2951         struct sbridge_pvt *pvt = mci->pvt_info;
2952         enum hw_event_mc_err_type tp_event;
2953         char *optype, msg[256];
2954         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2955         bool overflow = GET_BITFIELD(m->status, 62, 62);
2956         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2957         bool recoverable;
2958         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2959         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2960         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2961         u32 channel = GET_BITFIELD(m->status, 0, 3);
2962         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2963         /*
2964          * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2965          * A value 6 is for cache line aligned address, a value 12 is for page
2966          * aligned address reported by patrol scrubber.
2967          */
2968         u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2969         long channel_mask, first_channel;
2970         u8  rank = 0xff, socket, ha;
2971         int rc, dimm;
2972         char *area_type = "DRAM";
2973
2974         if (pvt->info.type != SANDY_BRIDGE)
2975                 recoverable = true;
2976         else
2977                 recoverable = GET_BITFIELD(m->status, 56, 56);
2978
2979         if (uncorrected_error) {
2980                 core_err_cnt = 1;
2981                 if (ripv) {
2982                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2983                 } else {
2984                         tp_event = HW_EVENT_ERR_FATAL;
2985                 }
2986         } else {
2987                 tp_event = HW_EVENT_ERR_CORRECTED;
2988         }
2989
2990         /*
2991          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2992          * memory errors should fit in this mask:
2993          *      000f 0000 1mmm cccc (binary)
2994          * where:
2995          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2996          *          won't be shown
2997          *      mmm = error type
2998          *      cccc = channel
2999          * If the mask doesn't match, report an error to the parsing logic
3000          */
3001         switch (optypenum) {
3002         case 0:
3003                 optype = "generic undef request error";
3004                 break;
3005         case 1:
3006                 optype = "memory read error";
3007                 break;
3008         case 2:
3009                 optype = "memory write error";
3010                 break;
3011         case 3:
3012                 optype = "addr/cmd error";
3013                 break;
3014         case 4:
3015                 optype = "memory scrubbing error";
3016                 break;
3017         default:
3018                 optype = "reserved";
3019                 break;
3020         }
3021
3022         if (pvt->info.type == KNIGHTS_LANDING) {
3023                 if (channel == 14) {
3024                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3025                                 overflow ? " OVERFLOW" : "",
3026                                 (uncorrected_error && recoverable)
3027                                 ? " recoverable" : "",
3028                                 mscod, errcode,
3029                                 m->bank);
3030                 } else {
3031                         char A = *("A");
3032
3033                         /*
3034                          * Reported channel is in range 0-2, so we can't map it
3035                          * back to mc. To figure out mc we check machine check
3036                          * bank register that reported this error.
3037                          * bank15 means mc0 and bank16 means mc1.
3038                          */
3039                         channel = knl_channel_remap(m->bank == 16, channel);
3040                         channel_mask = 1 << channel;
3041
3042                         snprintf(msg, sizeof(msg),
3043                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3044                                 overflow ? " OVERFLOW" : "",
3045                                 (uncorrected_error && recoverable)
3046                                 ? " recoverable" : " ",
3047                                 mscod, errcode, channel, A + channel);
3048                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3049                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3050                                 channel, 0, -1,
3051                                 optype, msg);
3052                 }
3053                 return;
3054         } else if (lsb < 12) {
3055                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3056                                            &channel_mask, &rank,
3057                                            &area_type, msg);
3058         } else {
3059                 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3060                                                     &channel_mask, msg);
3061         }
3062
3063         if (rc < 0)
3064                 goto err_parsing;
3065         new_mci = get_mci_for_node_id(socket, ha);
3066         if (!new_mci) {
3067                 strcpy(msg, "Error: socket got corrupted!");
3068                 goto err_parsing;
3069         }
3070         mci = new_mci;
3071         pvt = mci->pvt_info;
3072
3073         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3074
3075         if (rank == 0xff)
3076                 dimm = -1;
3077         else if (rank < 4)
3078                 dimm = 0;
3079         else if (rank < 8)
3080                 dimm = 1;
3081         else
3082                 dimm = 2;
3083
3084         /*
3085          * FIXME: On some memory configurations (mirror, lockstep), the
3086          * Memory Controller can't point the error to a single DIMM. The
3087          * EDAC core should be handling the channel mask, in order to point
3088          * to the group of dimm's where the error may be happening.
3089          */
3090         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3091                 channel = first_channel;
3092
3093         snprintf(msg, sizeof(msg),
3094                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3095                  overflow ? " OVERFLOW" : "",
3096                  (uncorrected_error && recoverable) ? " recoverable" : "",
3097                  area_type,
3098                  mscod, errcode,
3099                  socket, ha,
3100                  channel_mask,
3101                  rank);
3102
3103         edac_dbg(0, "%s\n", msg);
3104
3105         /* FIXME: need support for channel mask */
3106
3107         if (channel == CHANNEL_UNSPECIFIED)
3108                 channel = -1;
3109
3110         /* Call the helper to output message */
3111         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3112                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3113                              channel, dimm, -1,
3114                              optype, msg);
3115         return;
3116 err_parsing:
3117         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3118                              -1, -1, -1,
3119                              msg, "");
3120
3121 }
3122
3123 /*
3124  * Check that logging is enabled and that this is the right type
3125  * of error for us to handle.
3126  */
3127 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3128                                    void *data)
3129 {
3130         struct mce *mce = (struct mce *)data;
3131         struct mem_ctl_info *mci;
3132         char *type;
3133
3134         if (mce->kflags & MCE_HANDLED_CEC)
3135                 return NOTIFY_DONE;
3136
3137         /*
3138          * Just let mcelog handle it if the error is
3139          * outside the memory controller. A memory error
3140          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3141          * bit 12 has an special meaning.
3142          */
3143         if ((mce->status & 0xefff) >> 7 != 1)
3144                 return NOTIFY_DONE;
3145
3146         /* Check ADDRV bit in STATUS */
3147         if (!GET_BITFIELD(mce->status, 58, 58))
3148                 return NOTIFY_DONE;
3149
3150         /* Check MISCV bit in STATUS */
3151         if (!GET_BITFIELD(mce->status, 59, 59))
3152                 return NOTIFY_DONE;
3153
3154         /* Check address type in MISC (physical address only) */
3155         if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3156                 return NOTIFY_DONE;
3157
3158         mci = get_mci_for_node_id(mce->socketid, IMC0);
3159         if (!mci)
3160                 return NOTIFY_DONE;
3161
3162         if (mce->mcgstatus & MCG_STATUS_MCIP)
3163                 type = "Exception";
3164         else
3165                 type = "Event";
3166
3167         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3168
3169         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3170                           "Bank %d: %016Lx\n", mce->extcpu, type,
3171                           mce->mcgstatus, mce->bank, mce->status);
3172         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3173         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3174         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3175
3176         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3177                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3178                           mce->time, mce->socketid, mce->apicid);
3179
3180         sbridge_mce_output_error(mci, mce);
3181
3182         /* Advice mcelog that the error were handled */
3183         mce->kflags |= MCE_HANDLED_EDAC;
3184         return NOTIFY_OK;
3185 }
3186
3187 static struct notifier_block sbridge_mce_dec = {
3188         .notifier_call  = sbridge_mce_check_error,
3189         .priority       = MCE_PRIO_EDAC,
3190 };
3191
3192 /****************************************************************************
3193                         EDAC register/unregister logic
3194  ****************************************************************************/
3195
3196 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3197 {
3198         struct mem_ctl_info *mci = sbridge_dev->mci;
3199
3200         if (unlikely(!mci || !mci->pvt_info)) {
3201                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3202
3203                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3204                 return;
3205         }
3206
3207         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3208                  mci, &sbridge_dev->pdev[0]->dev);
3209
3210         /* Remove MC sysfs nodes */
3211         edac_mc_del_mc(mci->pdev);
3212
3213         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3214         kfree(mci->ctl_name);
3215         edac_mc_free(mci);
3216         sbridge_dev->mci = NULL;
3217 }
3218
3219 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3220 {
3221         struct mem_ctl_info *mci;
3222         struct edac_mc_layer layers[2];
3223         struct sbridge_pvt *pvt;
3224         struct pci_dev *pdev = sbridge_dev->pdev[0];
3225         int rc;
3226
3227         /* allocate a new MC control structure */
3228         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3229         layers[0].size = type == KNIGHTS_LANDING ?
3230                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3231         layers[0].is_virt_csrow = false;
3232         layers[1].type = EDAC_MC_LAYER_SLOT;
3233         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3234         layers[1].is_virt_csrow = true;
3235         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3236                             sizeof(*pvt));
3237
3238         if (unlikely(!mci))
3239                 return -ENOMEM;
3240
3241         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3242                  mci, &pdev->dev);
3243
3244         pvt = mci->pvt_info;
3245         memset(pvt, 0, sizeof(*pvt));
3246
3247         /* Associate sbridge_dev and mci for future usage */
3248         pvt->sbridge_dev = sbridge_dev;
3249         sbridge_dev->mci = mci;
3250
3251         mci->mtype_cap = type == KNIGHTS_LANDING ?
3252                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3253         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3254         mci->edac_cap = EDAC_FLAG_NONE;
3255         mci->mod_name = EDAC_MOD_STR;
3256         mci->dev_name = pci_name(pdev);
3257         mci->ctl_page_to_phys = NULL;
3258
3259         pvt->info.type = type;
3260         switch (type) {
3261         case IVY_BRIDGE:
3262                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3263                 pvt->info.get_tolm = ibridge_get_tolm;
3264                 pvt->info.get_tohm = ibridge_get_tohm;
3265                 pvt->info.dram_rule = ibridge_dram_rule;
3266                 pvt->info.get_memory_type = get_memory_type;
3267                 pvt->info.get_node_id = get_node_id;
3268                 pvt->info.get_ha = ibridge_get_ha;
3269                 pvt->info.rir_limit = rir_limit;
3270                 pvt->info.sad_limit = sad_limit;
3271                 pvt->info.interleave_mode = interleave_mode;
3272                 pvt->info.dram_attr = dram_attr;
3273                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3274                 pvt->info.interleave_list = ibridge_interleave_list;
3275                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3276                 pvt->info.get_width = ibridge_get_width;
3277
3278                 /* Store pci devices at mci for faster access */
3279                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3280                 if (unlikely(rc < 0))
3281                         goto fail0;
3282                 get_source_id(mci);
3283                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3284                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3285                 break;
3286         case SANDY_BRIDGE:
3287                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3288                 pvt->info.get_tolm = sbridge_get_tolm;
3289                 pvt->info.get_tohm = sbridge_get_tohm;
3290                 pvt->info.dram_rule = sbridge_dram_rule;
3291                 pvt->info.get_memory_type = get_memory_type;
3292                 pvt->info.get_node_id = get_node_id;
3293                 pvt->info.get_ha = sbridge_get_ha;
3294                 pvt->info.rir_limit = rir_limit;
3295                 pvt->info.sad_limit = sad_limit;
3296                 pvt->info.interleave_mode = interleave_mode;
3297                 pvt->info.dram_attr = dram_attr;
3298                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3299                 pvt->info.interleave_list = sbridge_interleave_list;
3300                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3301                 pvt->info.get_width = sbridge_get_width;
3302
3303                 /* Store pci devices at mci for faster access */
3304                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3305                 if (unlikely(rc < 0))
3306                         goto fail0;
3307                 get_source_id(mci);
3308                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3309                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3310                 break;
3311         case HASWELL:
3312                 /* rankcfgr isn't used */
3313                 pvt->info.get_tolm = haswell_get_tolm;
3314                 pvt->info.get_tohm = haswell_get_tohm;
3315                 pvt->info.dram_rule = ibridge_dram_rule;
3316                 pvt->info.get_memory_type = haswell_get_memory_type;
3317                 pvt->info.get_node_id = haswell_get_node_id;
3318                 pvt->info.get_ha = ibridge_get_ha;
3319                 pvt->info.rir_limit = haswell_rir_limit;
3320                 pvt->info.sad_limit = sad_limit;
3321                 pvt->info.interleave_mode = interleave_mode;
3322                 pvt->info.dram_attr = dram_attr;
3323                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3324                 pvt->info.interleave_list = ibridge_interleave_list;
3325                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3326                 pvt->info.get_width = ibridge_get_width;
3327
3328                 /* Store pci devices at mci for faster access */
3329                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3330                 if (unlikely(rc < 0))
3331                         goto fail0;
3332                 get_source_id(mci);
3333                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3334                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3335                 break;
3336         case BROADWELL:
3337                 /* rankcfgr isn't used */
3338                 pvt->info.get_tolm = haswell_get_tolm;
3339                 pvt->info.get_tohm = haswell_get_tohm;
3340                 pvt->info.dram_rule = ibridge_dram_rule;
3341                 pvt->info.get_memory_type = haswell_get_memory_type;
3342                 pvt->info.get_node_id = haswell_get_node_id;
3343                 pvt->info.get_ha = ibridge_get_ha;
3344                 pvt->info.rir_limit = haswell_rir_limit;
3345                 pvt->info.sad_limit = sad_limit;
3346                 pvt->info.interleave_mode = interleave_mode;
3347                 pvt->info.dram_attr = dram_attr;
3348                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3349                 pvt->info.interleave_list = ibridge_interleave_list;
3350                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3351                 pvt->info.get_width = broadwell_get_width;
3352
3353                 /* Store pci devices at mci for faster access */
3354                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3355                 if (unlikely(rc < 0))
3356                         goto fail0;
3357                 get_source_id(mci);
3358                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3359                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3360                 break;
3361         case KNIGHTS_LANDING:
3362                 /* pvt->info.rankcfgr == ??? */
3363                 pvt->info.get_tolm = knl_get_tolm;
3364                 pvt->info.get_tohm = knl_get_tohm;
3365                 pvt->info.dram_rule = knl_dram_rule;
3366                 pvt->info.get_memory_type = knl_get_memory_type;
3367                 pvt->info.get_node_id = knl_get_node_id;
3368                 pvt->info.get_ha = knl_get_ha;
3369                 pvt->info.rir_limit = NULL;
3370                 pvt->info.sad_limit = knl_sad_limit;
3371                 pvt->info.interleave_mode = knl_interleave_mode;
3372                 pvt->info.dram_attr = dram_attr_knl;
3373                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3374                 pvt->info.interleave_list = knl_interleave_list;
3375                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3376                 pvt->info.get_width = knl_get_width;
3377
3378                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3379                 if (unlikely(rc < 0))
3380                         goto fail0;
3381                 get_source_id(mci);
3382                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3383                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3384                 break;
3385         }
3386
3387         if (!mci->ctl_name) {
3388                 rc = -ENOMEM;
3389                 goto fail0;
3390         }
3391
3392         /* Get dimm basic config and the memory layout */
3393         rc = get_dimm_config(mci);
3394         if (rc < 0) {
3395                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3396                 goto fail;
3397         }
3398         get_memory_layout(mci);
3399
3400         /* record ptr to the generic device */
3401         mci->pdev = &pdev->dev;
3402
3403         /* add this new MC control structure to EDAC's list of MCs */
3404         if (unlikely(edac_mc_add_mc(mci))) {
3405                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3406                 rc = -EINVAL;
3407                 goto fail;
3408         }
3409
3410         return 0;
3411
3412 fail:
3413         kfree(mci->ctl_name);
3414 fail0:
3415         edac_mc_free(mci);
3416         sbridge_dev->mci = NULL;
3417         return rc;
3418 }
3419
3420 static const struct x86_cpu_id sbridge_cpuids[] = {
3421         X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3422         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,   &pci_dev_descr_ibridge_table),
3423         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,     &pci_dev_descr_haswell_table),
3424         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,   &pci_dev_descr_broadwell_table),
3425         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,   &pci_dev_descr_broadwell_table),
3426         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3427         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3428         { }
3429 };
3430 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3431
3432 /*
3433  *      sbridge_probe   Get all devices and register memory controllers
3434  *                      present.
3435  *      return:
3436  *              0 for FOUND a device
3437  *              < 0 for error code
3438  */
3439
3440 static int sbridge_probe(const struct x86_cpu_id *id)
3441 {
3442         int rc = -ENODEV;
3443         u8 mc, num_mc = 0;
3444         struct sbridge_dev *sbridge_dev;
3445         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3446
3447         /* get the pci devices we want to reserve for our use */
3448         rc = sbridge_get_all_devices(&num_mc, ptable);
3449
3450         if (unlikely(rc < 0)) {
3451                 edac_dbg(0, "couldn't get all devices\n");
3452                 goto fail0;
3453         }
3454
3455         mc = 0;
3456
3457         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3458                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3459                          mc, mc + 1, num_mc);
3460
3461                 sbridge_dev->mc = mc++;
3462                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3463                 if (unlikely(rc < 0))
3464                         goto fail1;
3465         }
3466
3467         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3468
3469         return 0;
3470
3471 fail1:
3472         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3473                 sbridge_unregister_mci(sbridge_dev);
3474
3475         sbridge_put_all_devices();
3476 fail0:
3477         return rc;
3478 }
3479
3480 /*
3481  *      sbridge_remove  cleanup
3482  *
3483  */
3484 static void sbridge_remove(void)
3485 {
3486         struct sbridge_dev *sbridge_dev;
3487
3488         edac_dbg(0, "\n");
3489
3490         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3491                 sbridge_unregister_mci(sbridge_dev);
3492
3493         /* Release PCI resources */
3494         sbridge_put_all_devices();
3495 }
3496
3497 /*
3498  *      sbridge_init            Module entry function
3499  *                      Try to initialize this module for its devices
3500  */
3501 static int __init sbridge_init(void)
3502 {
3503         const struct x86_cpu_id *id;
3504         const char *owner;
3505         int rc;
3506
3507         edac_dbg(2, "\n");
3508
3509         owner = edac_get_owner();
3510         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3511                 return -EBUSY;
3512
3513         if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3514                 return -ENODEV;
3515
3516         id = x86_match_cpu(sbridge_cpuids);
3517         if (!id)
3518                 return -ENODEV;
3519
3520         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3521         opstate_init();
3522
3523         rc = sbridge_probe(id);
3524
3525         if (rc >= 0) {
3526                 mce_register_decode_chain(&sbridge_mce_dec);
3527                 return 0;
3528         }
3529
3530         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3531                       rc);
3532
3533         return rc;
3534 }
3535
3536 /*
3537  *      sbridge_exit()  Module exit function
3538  *                      Unregister the driver
3539  */
3540 static void __exit sbridge_exit(void)
3541 {
3542         edac_dbg(2, "\n");
3543         sbridge_remove();
3544         mce_unregister_decode_chain(&sbridge_mce_dec);
3545 }
3546
3547 module_init(sbridge_init);
3548 module_exit(sbridge_exit);
3549
3550 module_param(edac_op_state, int, 0444);
3551 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3552
3553 MODULE_LICENSE("GPL");
3554 MODULE_AUTHOR("Mauro Carvalho Chehab");
3555 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3556 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3557                    SBRIDGE_REVISION);