Merge tag 'pwm/for-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[linux-2.6-microblaze.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *      apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58         return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62                                      unsigned int len)
63 {
64         struct mem_ctl_info *mci = dimm->mci;
65         int i, n, count = 0;
66         char *p = buf;
67
68         for (i = 0; i < mci->n_layers; i++) {
69                 n = snprintf(p, len, "%s %d ",
70                               edac_layer_name[mci->layers[i].type],
71                               dimm->location[i]);
72                 p += n;
73                 len -= n;
74                 count += n;
75                 if (!len)
76                         break;
77         }
78
79         return count;
80 }
81
82 #ifdef CONFIG_EDAC_DEBUG
83
84 static void edac_mc_dump_channel(struct rank_info *chan)
85 {
86         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
87         edac_dbg(4, "    channel = %p\n", chan);
88         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
89         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
90 }
91
92 static void edac_mc_dump_dimm(struct dimm_info *dimm)
93 {
94         char location[80];
95
96         if (!dimm->nr_pages)
97                 return;
98
99         edac_dimm_info_location(dimm, location, sizeof(location));
100
101         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102                  dimm->mci->csbased ? "rank" : "dimm",
103                  dimm->idx, location, dimm->csrow, dimm->cschannel);
104         edac_dbg(4, "  dimm = %p\n", dimm);
105         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
106         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
108         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
109 }
110
111 static void edac_mc_dump_csrow(struct csrow_info *csrow)
112 {
113         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
114         edac_dbg(4, "  csrow = %p\n", csrow);
115         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
116         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
117         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
118         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
119         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
120         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
121 }
122
123 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
124 {
125         edac_dbg(3, "\tmci = %p\n", mci);
126         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
127         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
128         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
129         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
130         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131                  mci->nr_csrows, mci->csrows);
132         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133                  mci->tot_dimms, mci->dimms);
134         edac_dbg(3, "\tdev = %p\n", mci->pdev);
135         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136                  mci->mod_name, mci->ctl_name);
137         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
138 }
139
140 #endif                          /* CONFIG_EDAC_DEBUG */
141
142 const char * const edac_mem_types[] = {
143         [MEM_EMPTY]     = "Empty",
144         [MEM_RESERVED]  = "Reserved",
145         [MEM_UNKNOWN]   = "Unknown",
146         [MEM_FPM]       = "FPM",
147         [MEM_EDO]       = "EDO",
148         [MEM_BEDO]      = "BEDO",
149         [MEM_SDR]       = "Unbuffered-SDR",
150         [MEM_RDR]       = "Registered-SDR",
151         [MEM_DDR]       = "Unbuffered-DDR",
152         [MEM_RDDR]      = "Registered-DDR",
153         [MEM_RMBS]      = "RMBS",
154         [MEM_DDR2]      = "Unbuffered-DDR2",
155         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
156         [MEM_RDDR2]     = "Registered-DDR2",
157         [MEM_XDR]       = "XDR",
158         [MEM_DDR3]      = "Unbuffered-DDR3",
159         [MEM_RDDR3]     = "Registered-DDR3",
160         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
161         [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
162         [MEM_DDR4]      = "Unbuffered-DDR4",
163         [MEM_RDDR4]     = "Registered-DDR4",
164         [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
165         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
166         [MEM_DDR5]      = "Unbuffered-DDR5",
167         [MEM_NVDIMM]    = "Non-volatile-RAM",
168         [MEM_WIO2]      = "Wide-IO-2",
169 };
170 EXPORT_SYMBOL_GPL(edac_mem_types);
171
172 /**
173  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
174  * @p:          pointer to a pointer with the memory offset to be used. At
175  *              return, this will be incremented to point to the next offset
176  * @size:       Size of the data structure to be reserved
177  * @n_elems:    Number of elements that should be reserved
178  *
179  * If 'size' is a constant, the compiler will optimize this whole function
180  * down to either a no-op or the addition of a constant to the value of '*p'.
181  *
182  * The 'p' pointer is absolutely needed to keep the proper advancing
183  * further in memory to the proper offsets when allocating the struct along
184  * with its embedded structs, as edac_device_alloc_ctl_info() does it
185  * above, for example.
186  *
187  * At return, the pointer 'p' will be incremented to be used on a next call
188  * to this function.
189  */
190 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
191 {
192         unsigned int align, r;
193         void *ptr = *p;
194
195         *p += size * n_elems;
196
197         /*
198          * 'p' can possibly be an unaligned item X such that sizeof(X) is
199          * 'size'.  Adjust 'p' so that its alignment is at least as
200          * stringent as what the compiler would provide for X and return
201          * the aligned result.
202          * Here we assume that the alignment of a "long long" is the most
203          * stringent alignment that the compiler will ever provide by default.
204          * As far as I know, this is a reasonable assumption.
205          */
206         if (size > sizeof(long))
207                 align = sizeof(long long);
208         else if (size > sizeof(int))
209                 align = sizeof(long);
210         else if (size > sizeof(short))
211                 align = sizeof(int);
212         else if (size > sizeof(char))
213                 align = sizeof(short);
214         else
215                 return (char *)ptr;
216
217         r = (unsigned long)p % align;
218
219         if (r == 0)
220                 return (char *)ptr;
221
222         *p += align - r;
223
224         return (void *)(((unsigned long)ptr) + align - r);
225 }
226
227 static void _edac_mc_free(struct mem_ctl_info *mci)
228 {
229         put_device(&mci->dev);
230 }
231
232 static void mci_release(struct device *dev)
233 {
234         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
235         struct csrow_info *csr;
236         int i, chn, row;
237
238         if (mci->dimms) {
239                 for (i = 0; i < mci->tot_dimms; i++)
240                         kfree(mci->dimms[i]);
241                 kfree(mci->dimms);
242         }
243
244         if (mci->csrows) {
245                 for (row = 0; row < mci->nr_csrows; row++) {
246                         csr = mci->csrows[row];
247                         if (!csr)
248                                 continue;
249
250                         if (csr->channels) {
251                                 for (chn = 0; chn < mci->num_cschannel; chn++)
252                                         kfree(csr->channels[chn]);
253                                 kfree(csr->channels);
254                         }
255                         kfree(csr);
256                 }
257                 kfree(mci->csrows);
258         }
259         kfree(mci);
260 }
261
262 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
263 {
264         unsigned int tot_channels = mci->num_cschannel;
265         unsigned int tot_csrows = mci->nr_csrows;
266         unsigned int row, chn;
267
268         /*
269          * Alocate and fill the csrow/channels structs
270          */
271         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
272         if (!mci->csrows)
273                 return -ENOMEM;
274
275         for (row = 0; row < tot_csrows; row++) {
276                 struct csrow_info *csr;
277
278                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
279                 if (!csr)
280                         return -ENOMEM;
281
282                 mci->csrows[row] = csr;
283                 csr->csrow_idx = row;
284                 csr->mci = mci;
285                 csr->nr_channels = tot_channels;
286                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
287                                         GFP_KERNEL);
288                 if (!csr->channels)
289                         return -ENOMEM;
290
291                 for (chn = 0; chn < tot_channels; chn++) {
292                         struct rank_info *chan;
293
294                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
295                         if (!chan)
296                                 return -ENOMEM;
297
298                         csr->channels[chn] = chan;
299                         chan->chan_idx = chn;
300                         chan->csrow = csr;
301                 }
302         }
303
304         return 0;
305 }
306
307 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
308 {
309         unsigned int pos[EDAC_MAX_LAYERS];
310         unsigned int row, chn, idx;
311         int layer;
312         void *p;
313
314         /*
315          * Allocate and fill the dimm structs
316          */
317         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
318         if (!mci->dimms)
319                 return -ENOMEM;
320
321         memset(&pos, 0, sizeof(pos));
322         row = 0;
323         chn = 0;
324         for (idx = 0; idx < mci->tot_dimms; idx++) {
325                 struct dimm_info *dimm;
326                 struct rank_info *chan;
327                 int n, len;
328
329                 chan = mci->csrows[row]->channels[chn];
330
331                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
332                 if (!dimm)
333                         return -ENOMEM;
334                 mci->dimms[idx] = dimm;
335                 dimm->mci = mci;
336                 dimm->idx = idx;
337
338                 /*
339                  * Copy DIMM location and initialize it.
340                  */
341                 len = sizeof(dimm->label);
342                 p = dimm->label;
343                 n = snprintf(p, len, "mc#%u", mci->mc_idx);
344                 p += n;
345                 len -= n;
346                 for (layer = 0; layer < mci->n_layers; layer++) {
347                         n = snprintf(p, len, "%s#%u",
348                                      edac_layer_name[mci->layers[layer].type],
349                                      pos[layer]);
350                         p += n;
351                         len -= n;
352                         dimm->location[layer] = pos[layer];
353
354                         if (len <= 0)
355                                 break;
356                 }
357
358                 /* Link it to the csrows old API data */
359                 chan->dimm = dimm;
360                 dimm->csrow = row;
361                 dimm->cschannel = chn;
362
363                 /* Increment csrow location */
364                 if (mci->layers[0].is_virt_csrow) {
365                         chn++;
366                         if (chn == mci->num_cschannel) {
367                                 chn = 0;
368                                 row++;
369                         }
370                 } else {
371                         row++;
372                         if (row == mci->nr_csrows) {
373                                 row = 0;
374                                 chn++;
375                         }
376                 }
377
378                 /* Increment dimm location */
379                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
380                         pos[layer]++;
381                         if (pos[layer] < mci->layers[layer].size)
382                                 break;
383                         pos[layer] = 0;
384                 }
385         }
386
387         return 0;
388 }
389
390 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
391                                    unsigned int n_layers,
392                                    struct edac_mc_layer *layers,
393                                    unsigned int sz_pvt)
394 {
395         struct mem_ctl_info *mci;
396         struct edac_mc_layer *layer;
397         unsigned int idx, size, tot_dimms = 1;
398         unsigned int tot_csrows = 1, tot_channels = 1;
399         void *pvt, *ptr = NULL;
400         bool per_rank = false;
401
402         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
403                 return NULL;
404
405         /*
406          * Calculate the total amount of dimms and csrows/cschannels while
407          * in the old API emulation mode
408          */
409         for (idx = 0; idx < n_layers; idx++) {
410                 tot_dimms *= layers[idx].size;
411
412                 if (layers[idx].is_virt_csrow)
413                         tot_csrows *= layers[idx].size;
414                 else
415                         tot_channels *= layers[idx].size;
416
417                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
418                         per_rank = true;
419         }
420
421         /* Figure out the offsets of the various items from the start of an mc
422          * structure.  We want the alignment of each item to be at least as
423          * stringent as what the compiler would provide if we could simply
424          * hardcode everything into a single struct.
425          */
426         mci     = edac_align_ptr(&ptr, sizeof(*mci), 1);
427         layer   = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
428         pvt     = edac_align_ptr(&ptr, sz_pvt, 1);
429         size    = ((unsigned long)pvt) + sz_pvt;
430
431         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
432                  size,
433                  tot_dimms,
434                  per_rank ? "ranks" : "dimms",
435                  tot_csrows * tot_channels);
436
437         mci = kzalloc(size, GFP_KERNEL);
438         if (mci == NULL)
439                 return NULL;
440
441         mci->dev.release = mci_release;
442         device_initialize(&mci->dev);
443
444         /* Adjust pointers so they point within the memory we just allocated
445          * rather than an imaginary chunk of memory located at address 0.
446          */
447         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
448         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
449
450         /* setup index and various internal pointers */
451         mci->mc_idx = mc_num;
452         mci->tot_dimms = tot_dimms;
453         mci->pvt_info = pvt;
454         mci->n_layers = n_layers;
455         mci->layers = layer;
456         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
457         mci->nr_csrows = tot_csrows;
458         mci->num_cschannel = tot_channels;
459         mci->csbased = per_rank;
460
461         if (edac_mc_alloc_csrows(mci))
462                 goto error;
463
464         if (edac_mc_alloc_dimms(mci))
465                 goto error;
466
467         mci->op_state = OP_ALLOC;
468
469         return mci;
470
471 error:
472         _edac_mc_free(mci);
473
474         return NULL;
475 }
476 EXPORT_SYMBOL_GPL(edac_mc_alloc);
477
478 void edac_mc_free(struct mem_ctl_info *mci)
479 {
480         edac_dbg(1, "\n");
481
482         _edac_mc_free(mci);
483 }
484 EXPORT_SYMBOL_GPL(edac_mc_free);
485
486 bool edac_has_mcs(void)
487 {
488         bool ret;
489
490         mutex_lock(&mem_ctls_mutex);
491
492         ret = list_empty(&mc_devices);
493
494         mutex_unlock(&mem_ctls_mutex);
495
496         return !ret;
497 }
498 EXPORT_SYMBOL_GPL(edac_has_mcs);
499
500 /* Caller must hold mem_ctls_mutex */
501 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
502 {
503         struct mem_ctl_info *mci;
504         struct list_head *item;
505
506         edac_dbg(3, "\n");
507
508         list_for_each(item, &mc_devices) {
509                 mci = list_entry(item, struct mem_ctl_info, link);
510
511                 if (mci->pdev == dev)
512                         return mci;
513         }
514
515         return NULL;
516 }
517
518 /**
519  * find_mci_by_dev
520  *
521  *      scan list of controllers looking for the one that manages
522  *      the 'dev' device
523  * @dev: pointer to a struct device related with the MCI
524  */
525 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
526 {
527         struct mem_ctl_info *ret;
528
529         mutex_lock(&mem_ctls_mutex);
530         ret = __find_mci_by_dev(dev);
531         mutex_unlock(&mem_ctls_mutex);
532
533         return ret;
534 }
535 EXPORT_SYMBOL_GPL(find_mci_by_dev);
536
537 /*
538  * edac_mc_workq_function
539  *      performs the operation scheduled by a workq request
540  */
541 static void edac_mc_workq_function(struct work_struct *work_req)
542 {
543         struct delayed_work *d_work = to_delayed_work(work_req);
544         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
545
546         mutex_lock(&mem_ctls_mutex);
547
548         if (mci->op_state != OP_RUNNING_POLL) {
549                 mutex_unlock(&mem_ctls_mutex);
550                 return;
551         }
552
553         if (edac_op_state == EDAC_OPSTATE_POLL)
554                 mci->edac_check(mci);
555
556         mutex_unlock(&mem_ctls_mutex);
557
558         /* Queue ourselves again. */
559         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
560 }
561
562 /*
563  * edac_mc_reset_delay_period(unsigned long value)
564  *
565  *      user space has updated our poll period value, need to
566  *      reset our workq delays
567  */
568 void edac_mc_reset_delay_period(unsigned long value)
569 {
570         struct mem_ctl_info *mci;
571         struct list_head *item;
572
573         mutex_lock(&mem_ctls_mutex);
574
575         list_for_each(item, &mc_devices) {
576                 mci = list_entry(item, struct mem_ctl_info, link);
577
578                 if (mci->op_state == OP_RUNNING_POLL)
579                         edac_mod_work(&mci->work, value);
580         }
581         mutex_unlock(&mem_ctls_mutex);
582 }
583
584
585
586 /* Return 0 on success, 1 on failure.
587  * Before calling this function, caller must
588  * assign a unique value to mci->mc_idx.
589  *
590  *      locking model:
591  *
592  *              called with the mem_ctls_mutex lock held
593  */
594 static int add_mc_to_global_list(struct mem_ctl_info *mci)
595 {
596         struct list_head *item, *insert_before;
597         struct mem_ctl_info *p;
598
599         insert_before = &mc_devices;
600
601         p = __find_mci_by_dev(mci->pdev);
602         if (unlikely(p != NULL))
603                 goto fail0;
604
605         list_for_each(item, &mc_devices) {
606                 p = list_entry(item, struct mem_ctl_info, link);
607
608                 if (p->mc_idx >= mci->mc_idx) {
609                         if (unlikely(p->mc_idx == mci->mc_idx))
610                                 goto fail1;
611
612                         insert_before = item;
613                         break;
614                 }
615         }
616
617         list_add_tail_rcu(&mci->link, insert_before);
618         return 0;
619
620 fail0:
621         edac_printk(KERN_WARNING, EDAC_MC,
622                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
623                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
624         return 1;
625
626 fail1:
627         edac_printk(KERN_WARNING, EDAC_MC,
628                 "bug in low-level driver: attempt to assign\n"
629                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
630         return 1;
631 }
632
633 static int del_mc_from_global_list(struct mem_ctl_info *mci)
634 {
635         list_del_rcu(&mci->link);
636
637         /* these are for safe removal of devices from global list while
638          * NMI handlers may be traversing list
639          */
640         synchronize_rcu();
641         INIT_LIST_HEAD(&mci->link);
642
643         return list_empty(&mc_devices);
644 }
645
646 struct mem_ctl_info *edac_mc_find(int idx)
647 {
648         struct mem_ctl_info *mci;
649         struct list_head *item;
650
651         mutex_lock(&mem_ctls_mutex);
652
653         list_for_each(item, &mc_devices) {
654                 mci = list_entry(item, struct mem_ctl_info, link);
655                 if (mci->mc_idx == idx)
656                         goto unlock;
657         }
658
659         mci = NULL;
660 unlock:
661         mutex_unlock(&mem_ctls_mutex);
662         return mci;
663 }
664 EXPORT_SYMBOL(edac_mc_find);
665
666 const char *edac_get_owner(void)
667 {
668         return edac_mc_owner;
669 }
670 EXPORT_SYMBOL_GPL(edac_get_owner);
671
672 /* FIXME - should a warning be printed if no error detection? correction? */
673 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
674                                const struct attribute_group **groups)
675 {
676         int ret = -EINVAL;
677         edac_dbg(0, "\n");
678
679 #ifdef CONFIG_EDAC_DEBUG
680         if (edac_debug_level >= 3)
681                 edac_mc_dump_mci(mci);
682
683         if (edac_debug_level >= 4) {
684                 struct dimm_info *dimm;
685                 int i;
686
687                 for (i = 0; i < mci->nr_csrows; i++) {
688                         struct csrow_info *csrow = mci->csrows[i];
689                         u32 nr_pages = 0;
690                         int j;
691
692                         for (j = 0; j < csrow->nr_channels; j++)
693                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
694                         if (!nr_pages)
695                                 continue;
696                         edac_mc_dump_csrow(csrow);
697                         for (j = 0; j < csrow->nr_channels; j++)
698                                 if (csrow->channels[j]->dimm->nr_pages)
699                                         edac_mc_dump_channel(csrow->channels[j]);
700                 }
701
702                 mci_for_each_dimm(mci, dimm)
703                         edac_mc_dump_dimm(dimm);
704         }
705 #endif
706         mutex_lock(&mem_ctls_mutex);
707
708         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
709                 ret = -EPERM;
710                 goto fail0;
711         }
712
713         if (add_mc_to_global_list(mci))
714                 goto fail0;
715
716         /* set load time so that error rate can be tracked */
717         mci->start_time = jiffies;
718
719         mci->bus = edac_get_sysfs_subsys();
720
721         if (edac_create_sysfs_mci_device(mci, groups)) {
722                 edac_mc_printk(mci, KERN_WARNING,
723                         "failed to create sysfs device\n");
724                 goto fail1;
725         }
726
727         if (mci->edac_check) {
728                 mci->op_state = OP_RUNNING_POLL;
729
730                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
731                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
732
733         } else {
734                 mci->op_state = OP_RUNNING_INTERRUPT;
735         }
736
737         /* Report action taken */
738         edac_mc_printk(mci, KERN_INFO,
739                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
740                 mci->mod_name, mci->ctl_name, mci->dev_name,
741                 edac_op_state_to_string(mci->op_state));
742
743         edac_mc_owner = mci->mod_name;
744
745         mutex_unlock(&mem_ctls_mutex);
746         return 0;
747
748 fail1:
749         del_mc_from_global_list(mci);
750
751 fail0:
752         mutex_unlock(&mem_ctls_mutex);
753         return ret;
754 }
755 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
756
757 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
758 {
759         struct mem_ctl_info *mci;
760
761         edac_dbg(0, "\n");
762
763         mutex_lock(&mem_ctls_mutex);
764
765         /* find the requested mci struct in the global list */
766         mci = __find_mci_by_dev(dev);
767         if (mci == NULL) {
768                 mutex_unlock(&mem_ctls_mutex);
769                 return NULL;
770         }
771
772         /* mark MCI offline: */
773         mci->op_state = OP_OFFLINE;
774
775         if (del_mc_from_global_list(mci))
776                 edac_mc_owner = NULL;
777
778         mutex_unlock(&mem_ctls_mutex);
779
780         if (mci->edac_check)
781                 edac_stop_work(&mci->work);
782
783         /* remove from sysfs */
784         edac_remove_sysfs_mci_device(mci);
785
786         edac_printk(KERN_INFO, EDAC_MC,
787                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
788                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
789
790         return mci;
791 }
792 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
793
794 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
795                                 u32 size)
796 {
797         struct page *pg;
798         void *virt_addr;
799         unsigned long flags = 0;
800
801         edac_dbg(3, "\n");
802
803         /* ECC error page was not in our memory. Ignore it. */
804         if (!pfn_valid(page))
805                 return;
806
807         /* Find the actual page structure then map it and fix */
808         pg = pfn_to_page(page);
809
810         if (PageHighMem(pg))
811                 local_irq_save(flags);
812
813         virt_addr = kmap_atomic(pg);
814
815         /* Perform architecture specific atomic scrub operation */
816         edac_atomic_scrub(virt_addr + offset, size);
817
818         /* Unmap and complete */
819         kunmap_atomic(virt_addr);
820
821         if (PageHighMem(pg))
822                 local_irq_restore(flags);
823 }
824
825 /* FIXME - should return -1 */
826 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
827 {
828         struct csrow_info **csrows = mci->csrows;
829         int row, i, j, n;
830
831         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
832         row = -1;
833
834         for (i = 0; i < mci->nr_csrows; i++) {
835                 struct csrow_info *csrow = csrows[i];
836                 n = 0;
837                 for (j = 0; j < csrow->nr_channels; j++) {
838                         struct dimm_info *dimm = csrow->channels[j]->dimm;
839                         n += dimm->nr_pages;
840                 }
841                 if (n == 0)
842                         continue;
843
844                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
845                          mci->mc_idx,
846                          csrow->first_page, page, csrow->last_page,
847                          csrow->page_mask);
848
849                 if ((page >= csrow->first_page) &&
850                     (page <= csrow->last_page) &&
851                     ((page & csrow->page_mask) ==
852                      (csrow->first_page & csrow->page_mask))) {
853                         row = i;
854                         break;
855                 }
856         }
857
858         if (row == -1)
859                 edac_mc_printk(mci, KERN_ERR,
860                         "could not look up page error address %lx\n",
861                         (unsigned long)page);
862
863         return row;
864 }
865 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
866
867 const char *edac_layer_name[] = {
868         [EDAC_MC_LAYER_BRANCH] = "branch",
869         [EDAC_MC_LAYER_CHANNEL] = "channel",
870         [EDAC_MC_LAYER_SLOT] = "slot",
871         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
872         [EDAC_MC_LAYER_ALL_MEM] = "memory",
873 };
874 EXPORT_SYMBOL_GPL(edac_layer_name);
875
876 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
877 {
878         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
879         struct mem_ctl_info *mci = error_desc_to_mci(e);
880         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
881
882         mci->ce_mc += e->error_count;
883
884         if (dimm)
885                 dimm->ce_count += e->error_count;
886         else
887                 mci->ce_noinfo_count += e->error_count;
888 }
889
890 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
891 {
892         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
893         struct mem_ctl_info *mci = error_desc_to_mci(e);
894         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
895
896         mci->ue_mc += e->error_count;
897
898         if (dimm)
899                 dimm->ue_count += e->error_count;
900         else
901                 mci->ue_noinfo_count += e->error_count;
902 }
903
904 static void edac_ce_error(struct edac_raw_error_desc *e)
905 {
906         struct mem_ctl_info *mci = error_desc_to_mci(e);
907         unsigned long remapped_page;
908
909         if (edac_mc_get_log_ce()) {
910                 edac_mc_printk(mci, KERN_WARNING,
911                         "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
912                         e->error_count, e->msg,
913                         *e->msg ? " " : "",
914                         e->label, e->location, e->page_frame_number, e->offset_in_page,
915                         e->grain, e->syndrome,
916                         *e->other_detail ? " - " : "",
917                         e->other_detail);
918         }
919
920         edac_inc_ce_error(e);
921
922         if (mci->scrub_mode == SCRUB_SW_SRC) {
923                 /*
924                         * Some memory controllers (called MCs below) can remap
925                         * memory so that it is still available at a different
926                         * address when PCI devices map into memory.
927                         * MC's that can't do this, lose the memory where PCI
928                         * devices are mapped. This mapping is MC-dependent
929                         * and so we call back into the MC driver for it to
930                         * map the MC page to a physical (CPU) page which can
931                         * then be mapped to a virtual page - which can then
932                         * be scrubbed.
933                         */
934                 remapped_page = mci->ctl_page_to_phys ?
935                         mci->ctl_page_to_phys(mci, e->page_frame_number) :
936                         e->page_frame_number;
937
938                 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
939         }
940 }
941
942 static void edac_ue_error(struct edac_raw_error_desc *e)
943 {
944         struct mem_ctl_info *mci = error_desc_to_mci(e);
945
946         if (edac_mc_get_log_ue()) {
947                 edac_mc_printk(mci, KERN_WARNING,
948                         "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
949                         e->error_count, e->msg,
950                         *e->msg ? " " : "",
951                         e->label, e->location, e->page_frame_number, e->offset_in_page,
952                         e->grain,
953                         *e->other_detail ? " - " : "",
954                         e->other_detail);
955         }
956
957         edac_inc_ue_error(e);
958
959         if (edac_mc_get_panic_on_ue()) {
960                 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
961                         e->msg,
962                         *e->msg ? " " : "",
963                         e->label, e->location, e->page_frame_number, e->offset_in_page,
964                         e->grain,
965                         *e->other_detail ? " - " : "",
966                         e->other_detail);
967         }
968 }
969
970 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
971 {
972         struct mem_ctl_info *mci = error_desc_to_mci(e);
973         enum hw_event_mc_err_type type = e->type;
974         u16 count = e->error_count;
975
976         if (row < 0)
977                 return;
978
979         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
980
981         if (type == HW_EVENT_ERR_CORRECTED) {
982                 mci->csrows[row]->ce_count += count;
983                 if (chan >= 0)
984                         mci->csrows[row]->channels[chan]->ce_count += count;
985         } else {
986                 mci->csrows[row]->ue_count += count;
987         }
988 }
989
990 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
991 {
992         struct mem_ctl_info *mci = error_desc_to_mci(e);
993         u8 grain_bits;
994
995         /* Sanity-check driver-supplied grain value. */
996         if (WARN_ON_ONCE(!e->grain))
997                 e->grain = 1;
998
999         grain_bits = fls_long(e->grain - 1);
1000
1001         /* Report the error via the trace interface */
1002         if (IS_ENABLED(CONFIG_RAS))
1003                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1004                                mci->mc_idx, e->top_layer, e->mid_layer,
1005                                e->low_layer,
1006                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1007                                grain_bits, e->syndrome, e->other_detail);
1008
1009         if (e->type == HW_EVENT_ERR_CORRECTED)
1010                 edac_ce_error(e);
1011         else
1012                 edac_ue_error(e);
1013 }
1014 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1015
1016 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1017                           struct mem_ctl_info *mci,
1018                           const u16 error_count,
1019                           const unsigned long page_frame_number,
1020                           const unsigned long offset_in_page,
1021                           const unsigned long syndrome,
1022                           const int top_layer,
1023                           const int mid_layer,
1024                           const int low_layer,
1025                           const char *msg,
1026                           const char *other_detail)
1027 {
1028         struct dimm_info *dimm;
1029         char *p;
1030         int row = -1, chan = -1;
1031         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1032         int i, n_labels = 0;
1033         struct edac_raw_error_desc *e = &mci->error_desc;
1034         bool any_memory = true;
1035
1036         edac_dbg(3, "MC%d\n", mci->mc_idx);
1037
1038         /* Fills the error report buffer */
1039         memset(e, 0, sizeof (*e));
1040         e->error_count = error_count;
1041         e->type = type;
1042         e->top_layer = top_layer;
1043         e->mid_layer = mid_layer;
1044         e->low_layer = low_layer;
1045         e->page_frame_number = page_frame_number;
1046         e->offset_in_page = offset_in_page;
1047         e->syndrome = syndrome;
1048         /* need valid strings here for both: */
1049         e->msg = msg ?: "";
1050         e->other_detail = other_detail ?: "";
1051
1052         /*
1053          * Check if the event report is consistent and if the memory location is
1054          * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1055          * error counters will be incremented.
1056          */
1057         for (i = 0; i < mci->n_layers; i++) {
1058                 if (pos[i] >= (int)mci->layers[i].size) {
1059
1060                         edac_mc_printk(mci, KERN_ERR,
1061                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1062                                        edac_layer_name[mci->layers[i].type],
1063                                        pos[i], mci->layers[i].size);
1064                         /*
1065                          * Instead of just returning it, let's use what's
1066                          * known about the error. The increment routines and
1067                          * the DIMM filter logic will do the right thing by
1068                          * pointing the likely damaged DIMMs.
1069                          */
1070                         pos[i] = -1;
1071                 }
1072                 if (pos[i] >= 0)
1073                         any_memory = false;
1074         }
1075
1076         /*
1077          * Get the dimm label/grain that applies to the match criteria.
1078          * As the error algorithm may not be able to point to just one memory
1079          * stick, the logic here will get all possible labels that could
1080          * pottentially be affected by the error.
1081          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1082          * to have only the MC channel and the MC dimm (also called "branch")
1083          * but the channel is not known, as the memory is arranged in pairs,
1084          * where each memory belongs to a separate channel within the same
1085          * branch.
1086          */
1087         p = e->label;
1088         *p = '\0';
1089
1090         mci_for_each_dimm(mci, dimm) {
1091                 if (top_layer >= 0 && top_layer != dimm->location[0])
1092                         continue;
1093                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1094                         continue;
1095                 if (low_layer >= 0 && low_layer != dimm->location[2])
1096                         continue;
1097
1098                 /* get the max grain, over the error match range */
1099                 if (dimm->grain > e->grain)
1100                         e->grain = dimm->grain;
1101
1102                 /*
1103                  * If the error is memory-controller wide, there's no need to
1104                  * seek for the affected DIMMs because the whole channel/memory
1105                  * controller/... may be affected. Also, don't show errors for
1106                  * empty DIMM slots.
1107                  */
1108                 if (!dimm->nr_pages)
1109                         continue;
1110
1111                 n_labels++;
1112                 if (n_labels > EDAC_MAX_LABELS) {
1113                         p = e->label;
1114                         *p = '\0';
1115                 } else {
1116                         if (p != e->label) {
1117                                 strcpy(p, OTHER_LABEL);
1118                                 p += strlen(OTHER_LABEL);
1119                         }
1120                         strcpy(p, dimm->label);
1121                         p += strlen(p);
1122                 }
1123
1124                 /*
1125                  * get csrow/channel of the DIMM, in order to allow
1126                  * incrementing the compat API counters
1127                  */
1128                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1129                         mci->csbased ? "rank" : "dimm",
1130                         dimm->csrow, dimm->cschannel);
1131                 if (row == -1)
1132                         row = dimm->csrow;
1133                 else if (row >= 0 && row != dimm->csrow)
1134                         row = -2;
1135
1136                 if (chan == -1)
1137                         chan = dimm->cschannel;
1138                 else if (chan >= 0 && chan != dimm->cschannel)
1139                         chan = -2;
1140         }
1141
1142         if (any_memory)
1143                 strcpy(e->label, "any memory");
1144         else if (!*e->label)
1145                 strcpy(e->label, "unknown memory");
1146
1147         edac_inc_csrow(e, row, chan);
1148
1149         /* Fill the RAM location data */
1150         p = e->location;
1151
1152         for (i = 0; i < mci->n_layers; i++) {
1153                 if (pos[i] < 0)
1154                         continue;
1155
1156                 p += sprintf(p, "%s:%d ",
1157                              edac_layer_name[mci->layers[i].type],
1158                              pos[i]);
1159         }
1160         if (p > e->location)
1161                 *(p - 1) = '\0';
1162
1163         edac_raw_mc_handle_error(e);
1164 }
1165 EXPORT_SYMBOL_GPL(edac_mc_handle_error);