Merge branch 'for-5.13/wacom' into for-linus
[linux-2.6-microblaze.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config:       Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @context_loaded:     ensure context is only loaded once
358  * @data:               specific sdma interface structure
359  * @bd_pool:            dma_pool for bd
360  * @terminate_worker:   used to call back into terminate work function
361  */
362 struct sdma_channel {
363         struct virt_dma_chan            vc;
364         struct sdma_desc                *desc;
365         struct sdma_engine              *sdma;
366         unsigned int                    channel;
367         enum dma_transfer_direction             direction;
368         struct dma_slave_config         slave_config;
369         enum sdma_peripheral_type       peripheral_type;
370         unsigned int                    event_id0;
371         unsigned int                    event_id1;
372         enum dma_slave_buswidth         word_size;
373         unsigned int                    pc_from_device, pc_to_device;
374         unsigned int                    device_to_device;
375         unsigned int                    pc_to_pc;
376         unsigned long                   flags;
377         dma_addr_t                      per_address, per_address2;
378         unsigned long                   event_mask[2];
379         unsigned long                   watermark_level;
380         u32                             shp_addr, per_addr;
381         enum dma_status                 status;
382         bool                            context_loaded;
383         struct imx_dma_data             data;
384         struct work_struct              terminate_worker;
385 };
386
387 #define IMX_DMA_SG_LOOP         BIT(0)
388
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
393
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395
396 /**
397  * struct sdma_firmware_header - Layout of the firmware image
398  *
399  * @magic:              "SDMA"
400  * @version_major:      increased whenever layout of struct
401  *                      sdma_script_start_addrs changes.
402  * @version_minor:      firmware minor version (for binary compatible changes)
403  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
404  * @num_script_addrs:   Number of script addresses in this image
405  * @ram_code_start:     offset of SDMA ram image in this firmware image
406  * @ram_code_size:      size of SDMA ram image
407  * @script_addrs:       Stores the start address of the SDMA scripts
408  *                      (in SDMA memory space)
409  */
410 struct sdma_firmware_header {
411         u32     magic;
412         u32     version_major;
413         u32     version_minor;
414         u32     script_addrs_start;
415         u32     num_script_addrs;
416         u32     ram_code_start;
417         u32     ram_code_size;
418 };
419
420 struct sdma_driver_data {
421         int chnenbl0;
422         int num_events;
423         struct sdma_script_start_addrs  *script_addrs;
424         bool check_ratio;
425 };
426
427 struct sdma_engine {
428         struct device                   *dev;
429         struct sdma_channel             channel[MAX_DMA_CHANNELS];
430         struct sdma_channel_control     *channel_control;
431         void __iomem                    *regs;
432         struct sdma_context_data        *context;
433         dma_addr_t                      context_phys;
434         struct dma_device               dma_device;
435         struct clk                      *clk_ipg;
436         struct clk                      *clk_ahb;
437         spinlock_t                      channel_0_lock;
438         u32                             script_number;
439         struct sdma_script_start_addrs  *script_addrs;
440         const struct sdma_driver_data   *drvdata;
441         u32                             spba_start_addr;
442         u32                             spba_end_addr;
443         unsigned int                    irq;
444         dma_addr_t                      bd0_phys;
445         struct sdma_buffer_descriptor   *bd0;
446         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
447         bool                            clk_ratio;
448 };
449
450 static int sdma_config_write(struct dma_chan *chan,
451                        struct dma_slave_config *dmaengine_cfg,
452                        enum dma_transfer_direction direction);
453
454 static struct sdma_driver_data sdma_imx31 = {
455         .chnenbl0 = SDMA_CHNENBL0_IMX31,
456         .num_events = 32,
457 };
458
459 static struct sdma_script_start_addrs sdma_script_imx25 = {
460         .ap_2_ap_addr = 729,
461         .uart_2_mcu_addr = 904,
462         .per_2_app_addr = 1255,
463         .mcu_2_app_addr = 834,
464         .uartsh_2_mcu_addr = 1120,
465         .per_2_shp_addr = 1329,
466         .mcu_2_shp_addr = 1048,
467         .ata_2_mcu_addr = 1560,
468         .mcu_2_ata_addr = 1479,
469         .app_2_per_addr = 1189,
470         .app_2_mcu_addr = 770,
471         .shp_2_per_addr = 1407,
472         .shp_2_mcu_addr = 979,
473 };
474
475 static struct sdma_driver_data sdma_imx25 = {
476         .chnenbl0 = SDMA_CHNENBL0_IMX35,
477         .num_events = 48,
478         .script_addrs = &sdma_script_imx25,
479 };
480
481 static struct sdma_driver_data sdma_imx35 = {
482         .chnenbl0 = SDMA_CHNENBL0_IMX35,
483         .num_events = 48,
484 };
485
486 static struct sdma_script_start_addrs sdma_script_imx51 = {
487         .ap_2_ap_addr = 642,
488         .uart_2_mcu_addr = 817,
489         .mcu_2_app_addr = 747,
490         .mcu_2_shp_addr = 961,
491         .ata_2_mcu_addr = 1473,
492         .mcu_2_ata_addr = 1392,
493         .app_2_per_addr = 1033,
494         .app_2_mcu_addr = 683,
495         .shp_2_per_addr = 1251,
496         .shp_2_mcu_addr = 892,
497 };
498
499 static struct sdma_driver_data sdma_imx51 = {
500         .chnenbl0 = SDMA_CHNENBL0_IMX35,
501         .num_events = 48,
502         .script_addrs = &sdma_script_imx51,
503 };
504
505 static struct sdma_script_start_addrs sdma_script_imx53 = {
506         .ap_2_ap_addr = 642,
507         .app_2_mcu_addr = 683,
508         .mcu_2_app_addr = 747,
509         .uart_2_mcu_addr = 817,
510         .shp_2_mcu_addr = 891,
511         .mcu_2_shp_addr = 960,
512         .uartsh_2_mcu_addr = 1032,
513         .spdif_2_mcu_addr = 1100,
514         .mcu_2_spdif_addr = 1134,
515         .firi_2_mcu_addr = 1193,
516         .mcu_2_firi_addr = 1290,
517 };
518
519 static struct sdma_driver_data sdma_imx53 = {
520         .chnenbl0 = SDMA_CHNENBL0_IMX35,
521         .num_events = 48,
522         .script_addrs = &sdma_script_imx53,
523 };
524
525 static struct sdma_script_start_addrs sdma_script_imx6q = {
526         .ap_2_ap_addr = 642,
527         .uart_2_mcu_addr = 817,
528         .mcu_2_app_addr = 747,
529         .per_2_per_addr = 6331,
530         .uartsh_2_mcu_addr = 1032,
531         .mcu_2_shp_addr = 960,
532         .app_2_mcu_addr = 683,
533         .shp_2_mcu_addr = 891,
534         .spdif_2_mcu_addr = 1100,
535         .mcu_2_spdif_addr = 1134,
536 };
537
538 static struct sdma_driver_data sdma_imx6q = {
539         .chnenbl0 = SDMA_CHNENBL0_IMX35,
540         .num_events = 48,
541         .script_addrs = &sdma_script_imx6q,
542 };
543
544 static struct sdma_script_start_addrs sdma_script_imx7d = {
545         .ap_2_ap_addr = 644,
546         .uart_2_mcu_addr = 819,
547         .mcu_2_app_addr = 749,
548         .uartsh_2_mcu_addr = 1034,
549         .mcu_2_shp_addr = 962,
550         .app_2_mcu_addr = 685,
551         .shp_2_mcu_addr = 893,
552         .spdif_2_mcu_addr = 1102,
553         .mcu_2_spdif_addr = 1136,
554 };
555
556 static struct sdma_driver_data sdma_imx7d = {
557         .chnenbl0 = SDMA_CHNENBL0_IMX35,
558         .num_events = 48,
559         .script_addrs = &sdma_script_imx7d,
560 };
561
562 static struct sdma_driver_data sdma_imx8mq = {
563         .chnenbl0 = SDMA_CHNENBL0_IMX35,
564         .num_events = 48,
565         .script_addrs = &sdma_script_imx7d,
566         .check_ratio = 1,
567 };
568
569 static const struct of_device_id sdma_dt_ids[] = {
570         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
571         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
572         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
573         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
574         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
575         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
576         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
577         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
578         { /* sentinel */ }
579 };
580 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
581
582 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
583 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
584 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
585 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
586
587 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
588 {
589         u32 chnenbl0 = sdma->drvdata->chnenbl0;
590         return chnenbl0 + event * 4;
591 }
592
593 static int sdma_config_ownership(struct sdma_channel *sdmac,
594                 bool event_override, bool mcu_override, bool dsp_override)
595 {
596         struct sdma_engine *sdma = sdmac->sdma;
597         int channel = sdmac->channel;
598         unsigned long evt, mcu, dsp;
599
600         if (event_override && mcu_override && dsp_override)
601                 return -EINVAL;
602
603         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
604         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
605         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
606
607         if (dsp_override)
608                 __clear_bit(channel, &dsp);
609         else
610                 __set_bit(channel, &dsp);
611
612         if (event_override)
613                 __clear_bit(channel, &evt);
614         else
615                 __set_bit(channel, &evt);
616
617         if (mcu_override)
618                 __clear_bit(channel, &mcu);
619         else
620                 __set_bit(channel, &mcu);
621
622         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
623         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
624         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
625
626         return 0;
627 }
628
629 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
630 {
631         writel(BIT(channel), sdma->regs + SDMA_H_START);
632 }
633
634 /*
635  * sdma_run_channel0 - run a channel and wait till it's done
636  */
637 static int sdma_run_channel0(struct sdma_engine *sdma)
638 {
639         int ret;
640         u32 reg;
641
642         sdma_enable_channel(sdma, 0);
643
644         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
645                                                 reg, !(reg & 1), 1, 500);
646         if (ret)
647                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
648
649         /* Set bits of CONFIG register with dynamic context switching */
650         reg = readl(sdma->regs + SDMA_H_CONFIG);
651         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
652                 reg |= SDMA_H_CONFIG_CSM;
653                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
654         }
655
656         return ret;
657 }
658
659 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
660                 u32 address)
661 {
662         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
663         void *buf_virt;
664         dma_addr_t buf_phys;
665         int ret;
666         unsigned long flags;
667
668         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
669         if (!buf_virt) {
670                 return -ENOMEM;
671         }
672
673         spin_lock_irqsave(&sdma->channel_0_lock, flags);
674
675         bd0->mode.command = C0_SETPM;
676         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
677         bd0->mode.count = size / 2;
678         bd0->buffer_addr = buf_phys;
679         bd0->ext_buffer_addr = address;
680
681         memcpy(buf_virt, buf, size);
682
683         ret = sdma_run_channel0(sdma);
684
685         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
686
687         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
688
689         return ret;
690 }
691
692 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
693 {
694         struct sdma_engine *sdma = sdmac->sdma;
695         int channel = sdmac->channel;
696         unsigned long val;
697         u32 chnenbl = chnenbl_ofs(sdma, event);
698
699         val = readl_relaxed(sdma->regs + chnenbl);
700         __set_bit(channel, &val);
701         writel_relaxed(val, sdma->regs + chnenbl);
702 }
703
704 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
705 {
706         struct sdma_engine *sdma = sdmac->sdma;
707         int channel = sdmac->channel;
708         u32 chnenbl = chnenbl_ofs(sdma, event);
709         unsigned long val;
710
711         val = readl_relaxed(sdma->regs + chnenbl);
712         __clear_bit(channel, &val);
713         writel_relaxed(val, sdma->regs + chnenbl);
714 }
715
716 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
717 {
718         return container_of(t, struct sdma_desc, vd.tx);
719 }
720
721 static void sdma_start_desc(struct sdma_channel *sdmac)
722 {
723         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
724         struct sdma_desc *desc;
725         struct sdma_engine *sdma = sdmac->sdma;
726         int channel = sdmac->channel;
727
728         if (!vd) {
729                 sdmac->desc = NULL;
730                 return;
731         }
732         sdmac->desc = desc = to_sdma_desc(&vd->tx);
733
734         list_del(&vd->node);
735
736         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
737         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
738         sdma_enable_channel(sdma, sdmac->channel);
739 }
740
741 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
742 {
743         struct sdma_buffer_descriptor *bd;
744         int error = 0;
745         enum dma_status old_status = sdmac->status;
746
747         /*
748          * loop mode. Iterate over descriptors, re-setup them and
749          * call callback function.
750          */
751         while (sdmac->desc) {
752                 struct sdma_desc *desc = sdmac->desc;
753
754                 bd = &desc->bd[desc->buf_tail];
755
756                 if (bd->mode.status & BD_DONE)
757                         break;
758
759                 if (bd->mode.status & BD_RROR) {
760                         bd->mode.status &= ~BD_RROR;
761                         sdmac->status = DMA_ERROR;
762                         error = -EIO;
763                 }
764
765                /*
766                 * We use bd->mode.count to calculate the residue, since contains
767                 * the number of bytes present in the current buffer descriptor.
768                 */
769
770                 desc->chn_real_count = bd->mode.count;
771                 bd->mode.status |= BD_DONE;
772                 bd->mode.count = desc->period_len;
773                 desc->buf_ptail = desc->buf_tail;
774                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
775
776                 /*
777                  * The callback is called from the interrupt context in order
778                  * to reduce latency and to avoid the risk of altering the
779                  * SDMA transaction status by the time the client tasklet is
780                  * executed.
781                  */
782                 spin_unlock(&sdmac->vc.lock);
783                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
784                 spin_lock(&sdmac->vc.lock);
785
786                 if (error)
787                         sdmac->status = old_status;
788         }
789 }
790
791 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
792 {
793         struct sdma_channel *sdmac = (struct sdma_channel *) data;
794         struct sdma_buffer_descriptor *bd;
795         int i, error = 0;
796
797         sdmac->desc->chn_real_count = 0;
798         /*
799          * non loop mode. Iterate over all descriptors, collect
800          * errors and call callback function
801          */
802         for (i = 0; i < sdmac->desc->num_bd; i++) {
803                 bd = &sdmac->desc->bd[i];
804
805                  if (bd->mode.status & (BD_DONE | BD_RROR))
806                         error = -EIO;
807                  sdmac->desc->chn_real_count += bd->mode.count;
808         }
809
810         if (error)
811                 sdmac->status = DMA_ERROR;
812         else
813                 sdmac->status = DMA_COMPLETE;
814 }
815
816 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
817 {
818         struct sdma_engine *sdma = dev_id;
819         unsigned long stat;
820
821         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
822         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
823         /* channel 0 is special and not handled here, see run_channel0() */
824         stat &= ~1;
825
826         while (stat) {
827                 int channel = fls(stat) - 1;
828                 struct sdma_channel *sdmac = &sdma->channel[channel];
829                 struct sdma_desc *desc;
830
831                 spin_lock(&sdmac->vc.lock);
832                 desc = sdmac->desc;
833                 if (desc) {
834                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
835                                 sdma_update_channel_loop(sdmac);
836                         } else {
837                                 mxc_sdma_handle_channel_normal(sdmac);
838                                 vchan_cookie_complete(&desc->vd);
839                                 sdma_start_desc(sdmac);
840                         }
841                 }
842
843                 spin_unlock(&sdmac->vc.lock);
844                 __clear_bit(channel, &stat);
845         }
846
847         return IRQ_HANDLED;
848 }
849
850 /*
851  * sets the pc of SDMA script according to the peripheral type
852  */
853 static void sdma_get_pc(struct sdma_channel *sdmac,
854                 enum sdma_peripheral_type peripheral_type)
855 {
856         struct sdma_engine *sdma = sdmac->sdma;
857         int per_2_emi = 0, emi_2_per = 0;
858         /*
859          * These are needed once we start to support transfers between
860          * two peripherals or memory-to-memory transfers
861          */
862         int per_2_per = 0, emi_2_emi = 0;
863
864         sdmac->pc_from_device = 0;
865         sdmac->pc_to_device = 0;
866         sdmac->device_to_device = 0;
867         sdmac->pc_to_pc = 0;
868
869         switch (peripheral_type) {
870         case IMX_DMATYPE_MEMORY:
871                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
872                 break;
873         case IMX_DMATYPE_DSP:
874                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
875                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
876                 break;
877         case IMX_DMATYPE_FIRI:
878                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
879                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
880                 break;
881         case IMX_DMATYPE_UART:
882                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
883                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
884                 break;
885         case IMX_DMATYPE_UART_SP:
886                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
887                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
888                 break;
889         case IMX_DMATYPE_ATA:
890                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
891                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
892                 break;
893         case IMX_DMATYPE_CSPI:
894         case IMX_DMATYPE_EXT:
895         case IMX_DMATYPE_SSI:
896         case IMX_DMATYPE_SAI:
897                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
898                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
899                 break;
900         case IMX_DMATYPE_SSI_DUAL:
901                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
902                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
903                 break;
904         case IMX_DMATYPE_SSI_SP:
905         case IMX_DMATYPE_MMC:
906         case IMX_DMATYPE_SDHC:
907         case IMX_DMATYPE_CSPI_SP:
908         case IMX_DMATYPE_ESAI:
909         case IMX_DMATYPE_MSHC_SP:
910                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
911                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
912                 break;
913         case IMX_DMATYPE_ASRC:
914                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
915                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
916                 per_2_per = sdma->script_addrs->per_2_per_addr;
917                 break;
918         case IMX_DMATYPE_ASRC_SP:
919                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
920                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
921                 per_2_per = sdma->script_addrs->per_2_per_addr;
922                 break;
923         case IMX_DMATYPE_MSHC:
924                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
925                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
926                 break;
927         case IMX_DMATYPE_CCM:
928                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
929                 break;
930         case IMX_DMATYPE_SPDIF:
931                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
932                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
933                 break;
934         case IMX_DMATYPE_IPU_MEMORY:
935                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
936                 break;
937         default:
938                 break;
939         }
940
941         sdmac->pc_from_device = per_2_emi;
942         sdmac->pc_to_device = emi_2_per;
943         sdmac->device_to_device = per_2_per;
944         sdmac->pc_to_pc = emi_2_emi;
945 }
946
947 static int sdma_load_context(struct sdma_channel *sdmac)
948 {
949         struct sdma_engine *sdma = sdmac->sdma;
950         int channel = sdmac->channel;
951         int load_address;
952         struct sdma_context_data *context = sdma->context;
953         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
954         int ret;
955         unsigned long flags;
956
957         if (sdmac->context_loaded)
958                 return 0;
959
960         if (sdmac->direction == DMA_DEV_TO_MEM)
961                 load_address = sdmac->pc_from_device;
962         else if (sdmac->direction == DMA_DEV_TO_DEV)
963                 load_address = sdmac->device_to_device;
964         else if (sdmac->direction == DMA_MEM_TO_MEM)
965                 load_address = sdmac->pc_to_pc;
966         else
967                 load_address = sdmac->pc_to_device;
968
969         if (load_address < 0)
970                 return load_address;
971
972         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
973         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
974         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
975         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
976         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
977         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
978
979         spin_lock_irqsave(&sdma->channel_0_lock, flags);
980
981         memset(context, 0, sizeof(*context));
982         context->channel_state.pc = load_address;
983
984         /* Send by context the event mask,base address for peripheral
985          * and watermark level
986          */
987         context->gReg[0] = sdmac->event_mask[1];
988         context->gReg[1] = sdmac->event_mask[0];
989         context->gReg[2] = sdmac->per_addr;
990         context->gReg[6] = sdmac->shp_addr;
991         context->gReg[7] = sdmac->watermark_level;
992
993         bd0->mode.command = C0_SETDM;
994         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
995         bd0->mode.count = sizeof(*context) / 4;
996         bd0->buffer_addr = sdma->context_phys;
997         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
998         ret = sdma_run_channel0(sdma);
999
1000         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1001
1002         sdmac->context_loaded = true;
1003
1004         return ret;
1005 }
1006
1007 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1008 {
1009         return container_of(chan, struct sdma_channel, vc.chan);
1010 }
1011
1012 static int sdma_disable_channel(struct dma_chan *chan)
1013 {
1014         struct sdma_channel *sdmac = to_sdma_chan(chan);
1015         struct sdma_engine *sdma = sdmac->sdma;
1016         int channel = sdmac->channel;
1017
1018         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1019         sdmac->status = DMA_ERROR;
1020
1021         return 0;
1022 }
1023 static void sdma_channel_terminate_work(struct work_struct *work)
1024 {
1025         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1026                                                   terminate_worker);
1027         unsigned long flags;
1028         LIST_HEAD(head);
1029
1030         /*
1031          * According to NXP R&D team a delay of one BD SDMA cost time
1032          * (maximum is 1ms) should be added after disable of the channel
1033          * bit, to ensure SDMA core has really been stopped after SDMA
1034          * clients call .device_terminate_all.
1035          */
1036         usleep_range(1000, 2000);
1037
1038         spin_lock_irqsave(&sdmac->vc.lock, flags);
1039         vchan_get_all_descriptors(&sdmac->vc, &head);
1040         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1041         vchan_dma_desc_free_list(&sdmac->vc, &head);
1042         sdmac->context_loaded = false;
1043 }
1044
1045 static int sdma_terminate_all(struct dma_chan *chan)
1046 {
1047         struct sdma_channel *sdmac = to_sdma_chan(chan);
1048         unsigned long flags;
1049
1050         spin_lock_irqsave(&sdmac->vc.lock, flags);
1051
1052         sdma_disable_channel(chan);
1053
1054         if (sdmac->desc) {
1055                 vchan_terminate_vdesc(&sdmac->desc->vd);
1056                 sdmac->desc = NULL;
1057                 schedule_work(&sdmac->terminate_worker);
1058         }
1059
1060         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1061
1062         return 0;
1063 }
1064
1065 static void sdma_channel_synchronize(struct dma_chan *chan)
1066 {
1067         struct sdma_channel *sdmac = to_sdma_chan(chan);
1068
1069         vchan_synchronize(&sdmac->vc);
1070
1071         flush_work(&sdmac->terminate_worker);
1072 }
1073
1074 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1075 {
1076         struct sdma_engine *sdma = sdmac->sdma;
1077
1078         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1079         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1080
1081         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1082         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1083
1084         if (sdmac->event_id0 > 31)
1085                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1086
1087         if (sdmac->event_id1 > 31)
1088                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1089
1090         /*
1091          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1092          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1093          * r0(event_mask[1]) and r1(event_mask[0]).
1094          */
1095         if (lwml > hwml) {
1096                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1097                                                 SDMA_WATERMARK_LEVEL_HWML);
1098                 sdmac->watermark_level |= hwml;
1099                 sdmac->watermark_level |= lwml << 16;
1100                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1101         }
1102
1103         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1104                         sdmac->per_address2 <= sdma->spba_end_addr)
1105                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1106
1107         if (sdmac->per_address >= sdma->spba_start_addr &&
1108                         sdmac->per_address <= sdma->spba_end_addr)
1109                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1110
1111         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1112 }
1113
1114 static int sdma_config_channel(struct dma_chan *chan)
1115 {
1116         struct sdma_channel *sdmac = to_sdma_chan(chan);
1117         int ret;
1118
1119         sdma_disable_channel(chan);
1120
1121         sdmac->event_mask[0] = 0;
1122         sdmac->event_mask[1] = 0;
1123         sdmac->shp_addr = 0;
1124         sdmac->per_addr = 0;
1125
1126         switch (sdmac->peripheral_type) {
1127         case IMX_DMATYPE_DSP:
1128                 sdma_config_ownership(sdmac, false, true, true);
1129                 break;
1130         case IMX_DMATYPE_MEMORY:
1131                 sdma_config_ownership(sdmac, false, true, false);
1132                 break;
1133         default:
1134                 sdma_config_ownership(sdmac, true, true, false);
1135                 break;
1136         }
1137
1138         sdma_get_pc(sdmac, sdmac->peripheral_type);
1139
1140         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1141                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1142                 /* Handle multiple event channels differently */
1143                 if (sdmac->event_id1) {
1144                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1145                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1146                                 sdma_set_watermarklevel_for_p2p(sdmac);
1147                 } else
1148                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1149
1150                 /* Address */
1151                 sdmac->shp_addr = sdmac->per_address;
1152                 sdmac->per_addr = sdmac->per_address2;
1153         } else {
1154                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1155         }
1156
1157         ret = sdma_load_context(sdmac);
1158
1159         return ret;
1160 }
1161
1162 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1163                 unsigned int priority)
1164 {
1165         struct sdma_engine *sdma = sdmac->sdma;
1166         int channel = sdmac->channel;
1167
1168         if (priority < MXC_SDMA_MIN_PRIORITY
1169             || priority > MXC_SDMA_MAX_PRIORITY) {
1170                 return -EINVAL;
1171         }
1172
1173         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1174
1175         return 0;
1176 }
1177
1178 static int sdma_request_channel0(struct sdma_engine *sdma)
1179 {
1180         int ret = -EBUSY;
1181
1182         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1183                                         GFP_NOWAIT);
1184         if (!sdma->bd0) {
1185                 ret = -ENOMEM;
1186                 goto out;
1187         }
1188
1189         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1190         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1191
1192         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1193         return 0;
1194 out:
1195
1196         return ret;
1197 }
1198
1199
1200 static int sdma_alloc_bd(struct sdma_desc *desc)
1201 {
1202         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1203         int ret = 0;
1204
1205         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1206                                        &desc->bd_phys, GFP_NOWAIT);
1207         if (!desc->bd) {
1208                 ret = -ENOMEM;
1209                 goto out;
1210         }
1211 out:
1212         return ret;
1213 }
1214
1215 static void sdma_free_bd(struct sdma_desc *desc)
1216 {
1217         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1218
1219         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1220                           desc->bd_phys);
1221 }
1222
1223 static void sdma_desc_free(struct virt_dma_desc *vd)
1224 {
1225         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1226
1227         sdma_free_bd(desc);
1228         kfree(desc);
1229 }
1230
1231 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1232 {
1233         struct sdma_channel *sdmac = to_sdma_chan(chan);
1234         struct imx_dma_data *data = chan->private;
1235         struct imx_dma_data mem_data;
1236         int prio, ret;
1237
1238         /*
1239          * MEMCPY may never setup chan->private by filter function such as
1240          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1241          * Please note in any other slave case, you have to setup chan->private
1242          * with 'struct imx_dma_data' in your own filter function if you want to
1243          * request dma channel by dma_request_channel() rather than
1244          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1245          * to warn you to correct your filter function.
1246          */
1247         if (!data) {
1248                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1249                 mem_data.priority = 2;
1250                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1251                 mem_data.dma_request = 0;
1252                 mem_data.dma_request2 = 0;
1253                 data = &mem_data;
1254
1255                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1256         }
1257
1258         switch (data->priority) {
1259         case DMA_PRIO_HIGH:
1260                 prio = 3;
1261                 break;
1262         case DMA_PRIO_MEDIUM:
1263                 prio = 2;
1264                 break;
1265         case DMA_PRIO_LOW:
1266         default:
1267                 prio = 1;
1268                 break;
1269         }
1270
1271         sdmac->peripheral_type = data->peripheral_type;
1272         sdmac->event_id0 = data->dma_request;
1273         sdmac->event_id1 = data->dma_request2;
1274
1275         ret = clk_enable(sdmac->sdma->clk_ipg);
1276         if (ret)
1277                 return ret;
1278         ret = clk_enable(sdmac->sdma->clk_ahb);
1279         if (ret)
1280                 goto disable_clk_ipg;
1281
1282         ret = sdma_set_channel_priority(sdmac, prio);
1283         if (ret)
1284                 goto disable_clk_ahb;
1285
1286         return 0;
1287
1288 disable_clk_ahb:
1289         clk_disable(sdmac->sdma->clk_ahb);
1290 disable_clk_ipg:
1291         clk_disable(sdmac->sdma->clk_ipg);
1292         return ret;
1293 }
1294
1295 static void sdma_free_chan_resources(struct dma_chan *chan)
1296 {
1297         struct sdma_channel *sdmac = to_sdma_chan(chan);
1298         struct sdma_engine *sdma = sdmac->sdma;
1299
1300         sdma_terminate_all(chan);
1301
1302         sdma_channel_synchronize(chan);
1303
1304         sdma_event_disable(sdmac, sdmac->event_id0);
1305         if (sdmac->event_id1)
1306                 sdma_event_disable(sdmac, sdmac->event_id1);
1307
1308         sdmac->event_id0 = 0;
1309         sdmac->event_id1 = 0;
1310         sdmac->context_loaded = false;
1311
1312         sdma_set_channel_priority(sdmac, 0);
1313
1314         clk_disable(sdma->clk_ipg);
1315         clk_disable(sdma->clk_ahb);
1316 }
1317
1318 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1319                                 enum dma_transfer_direction direction, u32 bds)
1320 {
1321         struct sdma_desc *desc;
1322
1323         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1324         if (!desc)
1325                 goto err_out;
1326
1327         sdmac->status = DMA_IN_PROGRESS;
1328         sdmac->direction = direction;
1329         sdmac->flags = 0;
1330
1331         desc->chn_count = 0;
1332         desc->chn_real_count = 0;
1333         desc->buf_tail = 0;
1334         desc->buf_ptail = 0;
1335         desc->sdmac = sdmac;
1336         desc->num_bd = bds;
1337
1338         if (sdma_alloc_bd(desc))
1339                 goto err_desc_out;
1340
1341         /* No slave_config called in MEMCPY case, so do here */
1342         if (direction == DMA_MEM_TO_MEM)
1343                 sdma_config_ownership(sdmac, false, true, false);
1344
1345         if (sdma_load_context(sdmac))
1346                 goto err_desc_out;
1347
1348         return desc;
1349
1350 err_desc_out:
1351         kfree(desc);
1352 err_out:
1353         return NULL;
1354 }
1355
1356 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1357                 struct dma_chan *chan, dma_addr_t dma_dst,
1358                 dma_addr_t dma_src, size_t len, unsigned long flags)
1359 {
1360         struct sdma_channel *sdmac = to_sdma_chan(chan);
1361         struct sdma_engine *sdma = sdmac->sdma;
1362         int channel = sdmac->channel;
1363         size_t count;
1364         int i = 0, param;
1365         struct sdma_buffer_descriptor *bd;
1366         struct sdma_desc *desc;
1367
1368         if (!chan || !len)
1369                 return NULL;
1370
1371         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1372                 &dma_src, &dma_dst, len, channel);
1373
1374         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1375                                         len / SDMA_BD_MAX_CNT + 1);
1376         if (!desc)
1377                 return NULL;
1378
1379         do {
1380                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1381                 bd = &desc->bd[i];
1382                 bd->buffer_addr = dma_src;
1383                 bd->ext_buffer_addr = dma_dst;
1384                 bd->mode.count = count;
1385                 desc->chn_count += count;
1386                 bd->mode.command = 0;
1387
1388                 dma_src += count;
1389                 dma_dst += count;
1390                 len -= count;
1391                 i++;
1392
1393                 param = BD_DONE | BD_EXTD | BD_CONT;
1394                 /* last bd */
1395                 if (!len) {
1396                         param |= BD_INTR;
1397                         param |= BD_LAST;
1398                         param &= ~BD_CONT;
1399                 }
1400
1401                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1402                                 i, count, bd->buffer_addr,
1403                                 param & BD_WRAP ? "wrap" : "",
1404                                 param & BD_INTR ? " intr" : "");
1405
1406                 bd->mode.status = param;
1407         } while (len);
1408
1409         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1410 }
1411
1412 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1413                 struct dma_chan *chan, struct scatterlist *sgl,
1414                 unsigned int sg_len, enum dma_transfer_direction direction,
1415                 unsigned long flags, void *context)
1416 {
1417         struct sdma_channel *sdmac = to_sdma_chan(chan);
1418         struct sdma_engine *sdma = sdmac->sdma;
1419         int i, count;
1420         int channel = sdmac->channel;
1421         struct scatterlist *sg;
1422         struct sdma_desc *desc;
1423
1424         sdma_config_write(chan, &sdmac->slave_config, direction);
1425
1426         desc = sdma_transfer_init(sdmac, direction, sg_len);
1427         if (!desc)
1428                 goto err_out;
1429
1430         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1431                         sg_len, channel);
1432
1433         for_each_sg(sgl, sg, sg_len, i) {
1434                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1435                 int param;
1436
1437                 bd->buffer_addr = sg->dma_address;
1438
1439                 count = sg_dma_len(sg);
1440
1441                 if (count > SDMA_BD_MAX_CNT) {
1442                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1443                                         channel, count, SDMA_BD_MAX_CNT);
1444                         goto err_bd_out;
1445                 }
1446
1447                 bd->mode.count = count;
1448                 desc->chn_count += count;
1449
1450                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1451                         goto err_bd_out;
1452
1453                 switch (sdmac->word_size) {
1454                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1455                         bd->mode.command = 0;
1456                         if (count & 3 || sg->dma_address & 3)
1457                                 goto err_bd_out;
1458                         break;
1459                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1460                         bd->mode.command = 2;
1461                         if (count & 1 || sg->dma_address & 1)
1462                                 goto err_bd_out;
1463                         break;
1464                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1465                         bd->mode.command = 1;
1466                         break;
1467                 default:
1468                         goto err_bd_out;
1469                 }
1470
1471                 param = BD_DONE | BD_EXTD | BD_CONT;
1472
1473                 if (i + 1 == sg_len) {
1474                         param |= BD_INTR;
1475                         param |= BD_LAST;
1476                         param &= ~BD_CONT;
1477                 }
1478
1479                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1480                                 i, count, (u64)sg->dma_address,
1481                                 param & BD_WRAP ? "wrap" : "",
1482                                 param & BD_INTR ? " intr" : "");
1483
1484                 bd->mode.status = param;
1485         }
1486
1487         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1488 err_bd_out:
1489         sdma_free_bd(desc);
1490         kfree(desc);
1491 err_out:
1492         sdmac->status = DMA_ERROR;
1493         return NULL;
1494 }
1495
1496 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1497                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1498                 size_t period_len, enum dma_transfer_direction direction,
1499                 unsigned long flags)
1500 {
1501         struct sdma_channel *sdmac = to_sdma_chan(chan);
1502         struct sdma_engine *sdma = sdmac->sdma;
1503         int num_periods = buf_len / period_len;
1504         int channel = sdmac->channel;
1505         int i = 0, buf = 0;
1506         struct sdma_desc *desc;
1507
1508         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1509
1510         sdma_config_write(chan, &sdmac->slave_config, direction);
1511
1512         desc = sdma_transfer_init(sdmac, direction, num_periods);
1513         if (!desc)
1514                 goto err_out;
1515
1516         desc->period_len = period_len;
1517
1518         sdmac->flags |= IMX_DMA_SG_LOOP;
1519
1520         if (period_len > SDMA_BD_MAX_CNT) {
1521                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1522                                 channel, period_len, SDMA_BD_MAX_CNT);
1523                 goto err_bd_out;
1524         }
1525
1526         while (buf < buf_len) {
1527                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1528                 int param;
1529
1530                 bd->buffer_addr = dma_addr;
1531
1532                 bd->mode.count = period_len;
1533
1534                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1535                         goto err_bd_out;
1536                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1537                         bd->mode.command = 0;
1538                 else
1539                         bd->mode.command = sdmac->word_size;
1540
1541                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1542                 if (i + 1 == num_periods)
1543                         param |= BD_WRAP;
1544
1545                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1546                                 i, period_len, (u64)dma_addr,
1547                                 param & BD_WRAP ? "wrap" : "",
1548                                 param & BD_INTR ? " intr" : "");
1549
1550                 bd->mode.status = param;
1551
1552                 dma_addr += period_len;
1553                 buf += period_len;
1554
1555                 i++;
1556         }
1557
1558         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1559 err_bd_out:
1560         sdma_free_bd(desc);
1561         kfree(desc);
1562 err_out:
1563         sdmac->status = DMA_ERROR;
1564         return NULL;
1565 }
1566
1567 static int sdma_config_write(struct dma_chan *chan,
1568                        struct dma_slave_config *dmaengine_cfg,
1569                        enum dma_transfer_direction direction)
1570 {
1571         struct sdma_channel *sdmac = to_sdma_chan(chan);
1572
1573         if (direction == DMA_DEV_TO_MEM) {
1574                 sdmac->per_address = dmaengine_cfg->src_addr;
1575                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1576                         dmaengine_cfg->src_addr_width;
1577                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1578         } else if (direction == DMA_DEV_TO_DEV) {
1579                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1580                 sdmac->per_address = dmaengine_cfg->dst_addr;
1581                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1582                         SDMA_WATERMARK_LEVEL_LWML;
1583                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1584                         SDMA_WATERMARK_LEVEL_HWML;
1585                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1586         } else {
1587                 sdmac->per_address = dmaengine_cfg->dst_addr;
1588                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1589                         dmaengine_cfg->dst_addr_width;
1590                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1591         }
1592         sdmac->direction = direction;
1593         return sdma_config_channel(chan);
1594 }
1595
1596 static int sdma_config(struct dma_chan *chan,
1597                        struct dma_slave_config *dmaengine_cfg)
1598 {
1599         struct sdma_channel *sdmac = to_sdma_chan(chan);
1600
1601         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1602
1603         /* Set ENBLn earlier to make sure dma request triggered after that */
1604         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1605                 return -EINVAL;
1606         sdma_event_enable(sdmac, sdmac->event_id0);
1607
1608         if (sdmac->event_id1) {
1609                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1610                         return -EINVAL;
1611                 sdma_event_enable(sdmac, sdmac->event_id1);
1612         }
1613
1614         return 0;
1615 }
1616
1617 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1618                                       dma_cookie_t cookie,
1619                                       struct dma_tx_state *txstate)
1620 {
1621         struct sdma_channel *sdmac = to_sdma_chan(chan);
1622         struct sdma_desc *desc = NULL;
1623         u32 residue;
1624         struct virt_dma_desc *vd;
1625         enum dma_status ret;
1626         unsigned long flags;
1627
1628         ret = dma_cookie_status(chan, cookie, txstate);
1629         if (ret == DMA_COMPLETE || !txstate)
1630                 return ret;
1631
1632         spin_lock_irqsave(&sdmac->vc.lock, flags);
1633
1634         vd = vchan_find_desc(&sdmac->vc, cookie);
1635         if (vd)
1636                 desc = to_sdma_desc(&vd->tx);
1637         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1638                 desc = sdmac->desc;
1639
1640         if (desc) {
1641                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1642                         residue = (desc->num_bd - desc->buf_ptail) *
1643                                 desc->period_len - desc->chn_real_count;
1644                 else
1645                         residue = desc->chn_count - desc->chn_real_count;
1646         } else {
1647                 residue = 0;
1648         }
1649
1650         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1651
1652         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1653                          residue);
1654
1655         return sdmac->status;
1656 }
1657
1658 static void sdma_issue_pending(struct dma_chan *chan)
1659 {
1660         struct sdma_channel *sdmac = to_sdma_chan(chan);
1661         unsigned long flags;
1662
1663         spin_lock_irqsave(&sdmac->vc.lock, flags);
1664         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1665                 sdma_start_desc(sdmac);
1666         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1667 }
1668
1669 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1670 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1671 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1672 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1673
1674 static void sdma_add_scripts(struct sdma_engine *sdma,
1675                 const struct sdma_script_start_addrs *addr)
1676 {
1677         s32 *addr_arr = (u32 *)addr;
1678         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1679         int i;
1680
1681         /* use the default firmware in ROM if missing external firmware */
1682         if (!sdma->script_number)
1683                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1684
1685         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1686                                   / sizeof(s32)) {
1687                 dev_err(sdma->dev,
1688                         "SDMA script number %d not match with firmware.\n",
1689                         sdma->script_number);
1690                 return;
1691         }
1692
1693         for (i = 0; i < sdma->script_number; i++)
1694                 if (addr_arr[i] > 0)
1695                         saddr_arr[i] = addr_arr[i];
1696 }
1697
1698 static void sdma_load_firmware(const struct firmware *fw, void *context)
1699 {
1700         struct sdma_engine *sdma = context;
1701         const struct sdma_firmware_header *header;
1702         const struct sdma_script_start_addrs *addr;
1703         unsigned short *ram_code;
1704
1705         if (!fw) {
1706                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1707                 /* In this case we just use the ROM firmware. */
1708                 return;
1709         }
1710
1711         if (fw->size < sizeof(*header))
1712                 goto err_firmware;
1713
1714         header = (struct sdma_firmware_header *)fw->data;
1715
1716         if (header->magic != SDMA_FIRMWARE_MAGIC)
1717                 goto err_firmware;
1718         if (header->ram_code_start + header->ram_code_size > fw->size)
1719                 goto err_firmware;
1720         switch (header->version_major) {
1721         case 1:
1722                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1723                 break;
1724         case 2:
1725                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1726                 break;
1727         case 3:
1728                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1729                 break;
1730         case 4:
1731                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1732                 break;
1733         default:
1734                 dev_err(sdma->dev, "unknown firmware version\n");
1735                 goto err_firmware;
1736         }
1737
1738         addr = (void *)header + header->script_addrs_start;
1739         ram_code = (void *)header + header->ram_code_start;
1740
1741         clk_enable(sdma->clk_ipg);
1742         clk_enable(sdma->clk_ahb);
1743         /* download the RAM image for SDMA */
1744         sdma_load_script(sdma, ram_code,
1745                         header->ram_code_size,
1746                         addr->ram_code_start_addr);
1747         clk_disable(sdma->clk_ipg);
1748         clk_disable(sdma->clk_ahb);
1749
1750         sdma_add_scripts(sdma, addr);
1751
1752         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1753                         header->version_major,
1754                         header->version_minor);
1755
1756 err_firmware:
1757         release_firmware(fw);
1758 }
1759
1760 #define EVENT_REMAP_CELLS 3
1761
1762 static int sdma_event_remap(struct sdma_engine *sdma)
1763 {
1764         struct device_node *np = sdma->dev->of_node;
1765         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1766         struct property *event_remap;
1767         struct regmap *gpr;
1768         char propname[] = "fsl,sdma-event-remap";
1769         u32 reg, val, shift, num_map, i;
1770         int ret = 0;
1771
1772         if (IS_ERR(np) || IS_ERR(gpr_np))
1773                 goto out;
1774
1775         event_remap = of_find_property(np, propname, NULL);
1776         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1777         if (!num_map) {
1778                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1779                 goto out;
1780         } else if (num_map % EVENT_REMAP_CELLS) {
1781                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1782                                 propname, EVENT_REMAP_CELLS);
1783                 ret = -EINVAL;
1784                 goto out;
1785         }
1786
1787         gpr = syscon_node_to_regmap(gpr_np);
1788         if (IS_ERR(gpr)) {
1789                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1790                 ret = PTR_ERR(gpr);
1791                 goto out;
1792         }
1793
1794         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1795                 ret = of_property_read_u32_index(np, propname, i, &reg);
1796                 if (ret) {
1797                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1798                                         propname, i);
1799                         goto out;
1800                 }
1801
1802                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1803                 if (ret) {
1804                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1805                                         propname, i + 1);
1806                         goto out;
1807                 }
1808
1809                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1810                 if (ret) {
1811                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1812                                         propname, i + 2);
1813                         goto out;
1814                 }
1815
1816                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1817         }
1818
1819 out:
1820         if (!IS_ERR(gpr_np))
1821                 of_node_put(gpr_np);
1822
1823         return ret;
1824 }
1825
1826 static int sdma_get_firmware(struct sdma_engine *sdma,
1827                 const char *fw_name)
1828 {
1829         int ret;
1830
1831         ret = request_firmware_nowait(THIS_MODULE,
1832                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1833                         GFP_KERNEL, sdma, sdma_load_firmware);
1834
1835         return ret;
1836 }
1837
1838 static int sdma_init(struct sdma_engine *sdma)
1839 {
1840         int i, ret;
1841         dma_addr_t ccb_phys;
1842
1843         ret = clk_enable(sdma->clk_ipg);
1844         if (ret)
1845                 return ret;
1846         ret = clk_enable(sdma->clk_ahb);
1847         if (ret)
1848                 goto disable_clk_ipg;
1849
1850         if (sdma->drvdata->check_ratio &&
1851             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1852                 sdma->clk_ratio = 1;
1853
1854         /* Be sure SDMA has not started yet */
1855         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1856
1857         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1858                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1859                         sizeof(struct sdma_context_data),
1860                         &ccb_phys, GFP_KERNEL);
1861
1862         if (!sdma->channel_control) {
1863                 ret = -ENOMEM;
1864                 goto err_dma_alloc;
1865         }
1866
1867         sdma->context = (void *)sdma->channel_control +
1868                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1869         sdma->context_phys = ccb_phys +
1870                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1871
1872         /* disable all channels */
1873         for (i = 0; i < sdma->drvdata->num_events; i++)
1874                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1875
1876         /* All channels have priority 0 */
1877         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1878                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1879
1880         ret = sdma_request_channel0(sdma);
1881         if (ret)
1882                 goto err_dma_alloc;
1883
1884         sdma_config_ownership(&sdma->channel[0], false, true, false);
1885
1886         /* Set Command Channel (Channel Zero) */
1887         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1888
1889         /* Set bits of CONFIG register but with static context switching */
1890         if (sdma->clk_ratio)
1891                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1892         else
1893                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1894
1895         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1896
1897         /* Initializes channel's priorities */
1898         sdma_set_channel_priority(&sdma->channel[0], 7);
1899
1900         clk_disable(sdma->clk_ipg);
1901         clk_disable(sdma->clk_ahb);
1902
1903         return 0;
1904
1905 err_dma_alloc:
1906         clk_disable(sdma->clk_ahb);
1907 disable_clk_ipg:
1908         clk_disable(sdma->clk_ipg);
1909         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1910         return ret;
1911 }
1912
1913 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1914 {
1915         struct sdma_channel *sdmac = to_sdma_chan(chan);
1916         struct imx_dma_data *data = fn_param;
1917
1918         if (!imx_dma_is_general_purpose(chan))
1919                 return false;
1920
1921         sdmac->data = *data;
1922         chan->private = &sdmac->data;
1923
1924         return true;
1925 }
1926
1927 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1928                                    struct of_dma *ofdma)
1929 {
1930         struct sdma_engine *sdma = ofdma->of_dma_data;
1931         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1932         struct imx_dma_data data;
1933
1934         if (dma_spec->args_count != 3)
1935                 return NULL;
1936
1937         data.dma_request = dma_spec->args[0];
1938         data.peripheral_type = dma_spec->args[1];
1939         data.priority = dma_spec->args[2];
1940         /*
1941          * init dma_request2 to zero, which is not used by the dts.
1942          * For P2P, dma_request2 is init from dma_request_channel(),
1943          * chan->private will point to the imx_dma_data, and in
1944          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1945          * be set to sdmac->event_id1.
1946          */
1947         data.dma_request2 = 0;
1948
1949         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1950                                      ofdma->of_node);
1951 }
1952
1953 static int sdma_probe(struct platform_device *pdev)
1954 {
1955         struct device_node *np = pdev->dev.of_node;
1956         struct device_node *spba_bus;
1957         const char *fw_name;
1958         int ret;
1959         int irq;
1960         struct resource *iores;
1961         struct resource spba_res;
1962         int i;
1963         struct sdma_engine *sdma;
1964         s32 *saddr_arr;
1965
1966         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1967         if (ret)
1968                 return ret;
1969
1970         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1971         if (!sdma)
1972                 return -ENOMEM;
1973
1974         spin_lock_init(&sdma->channel_0_lock);
1975
1976         sdma->dev = &pdev->dev;
1977         sdma->drvdata = of_device_get_match_data(sdma->dev);
1978
1979         irq = platform_get_irq(pdev, 0);
1980         if (irq < 0)
1981                 return irq;
1982
1983         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1984         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1985         if (IS_ERR(sdma->regs))
1986                 return PTR_ERR(sdma->regs);
1987
1988         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1989         if (IS_ERR(sdma->clk_ipg))
1990                 return PTR_ERR(sdma->clk_ipg);
1991
1992         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1993         if (IS_ERR(sdma->clk_ahb))
1994                 return PTR_ERR(sdma->clk_ahb);
1995
1996         ret = clk_prepare(sdma->clk_ipg);
1997         if (ret)
1998                 return ret;
1999
2000         ret = clk_prepare(sdma->clk_ahb);
2001         if (ret)
2002                 goto err_clk;
2003
2004         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2005                                sdma);
2006         if (ret)
2007                 goto err_irq;
2008
2009         sdma->irq = irq;
2010
2011         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2012         if (!sdma->script_addrs) {
2013                 ret = -ENOMEM;
2014                 goto err_irq;
2015         }
2016
2017         /* initially no scripts available */
2018         saddr_arr = (s32 *)sdma->script_addrs;
2019         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2020                 saddr_arr[i] = -EINVAL;
2021
2022         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2023         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2024         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2025
2026         INIT_LIST_HEAD(&sdma->dma_device.channels);
2027         /* Initialize channel parameters */
2028         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2029                 struct sdma_channel *sdmac = &sdma->channel[i];
2030
2031                 sdmac->sdma = sdma;
2032
2033                 sdmac->channel = i;
2034                 sdmac->vc.desc_free = sdma_desc_free;
2035                 INIT_WORK(&sdmac->terminate_worker,
2036                                 sdma_channel_terminate_work);
2037                 /*
2038                  * Add the channel to the DMAC list. Do not add channel 0 though
2039                  * because we need it internally in the SDMA driver. This also means
2040                  * that channel 0 in dmaengine counting matches sdma channel 1.
2041                  */
2042                 if (i)
2043                         vchan_init(&sdmac->vc, &sdma->dma_device);
2044         }
2045
2046         ret = sdma_init(sdma);
2047         if (ret)
2048                 goto err_init;
2049
2050         ret = sdma_event_remap(sdma);
2051         if (ret)
2052                 goto err_init;
2053
2054         if (sdma->drvdata->script_addrs)
2055                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2056
2057         sdma->dma_device.dev = &pdev->dev;
2058
2059         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2060         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2061         sdma->dma_device.device_tx_status = sdma_tx_status;
2062         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2063         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2064         sdma->dma_device.device_config = sdma_config;
2065         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2066         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2067         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2068         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2069         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2070         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2071         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2072         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2073         sdma->dma_device.copy_align = 2;
2074         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2075
2076         platform_set_drvdata(pdev, sdma);
2077
2078         ret = dma_async_device_register(&sdma->dma_device);
2079         if (ret) {
2080                 dev_err(&pdev->dev, "unable to register\n");
2081                 goto err_init;
2082         }
2083
2084         if (np) {
2085                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2086                 if (ret) {
2087                         dev_err(&pdev->dev, "failed to register controller\n");
2088                         goto err_register;
2089                 }
2090
2091                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2092                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2093                 if (!ret) {
2094                         sdma->spba_start_addr = spba_res.start;
2095                         sdma->spba_end_addr = spba_res.end;
2096                 }
2097                 of_node_put(spba_bus);
2098         }
2099
2100         /*
2101          * Because that device tree does not encode ROM script address,
2102          * the RAM script in firmware is mandatory for device tree
2103          * probe, otherwise it fails.
2104          */
2105         ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2106                                       &fw_name);
2107         if (ret) {
2108                 dev_warn(&pdev->dev, "failed to get firmware name\n");
2109         } else {
2110                 ret = sdma_get_firmware(sdma, fw_name);
2111                 if (ret)
2112                         dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2113         }
2114
2115         return 0;
2116
2117 err_register:
2118         dma_async_device_unregister(&sdma->dma_device);
2119 err_init:
2120         kfree(sdma->script_addrs);
2121 err_irq:
2122         clk_unprepare(sdma->clk_ahb);
2123 err_clk:
2124         clk_unprepare(sdma->clk_ipg);
2125         return ret;
2126 }
2127
2128 static int sdma_remove(struct platform_device *pdev)
2129 {
2130         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2131         int i;
2132
2133         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2134         dma_async_device_unregister(&sdma->dma_device);
2135         kfree(sdma->script_addrs);
2136         clk_unprepare(sdma->clk_ahb);
2137         clk_unprepare(sdma->clk_ipg);
2138         /* Kill the tasklet */
2139         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2140                 struct sdma_channel *sdmac = &sdma->channel[i];
2141
2142                 tasklet_kill(&sdmac->vc.task);
2143                 sdma_free_chan_resources(&sdmac->vc.chan);
2144         }
2145
2146         platform_set_drvdata(pdev, NULL);
2147         return 0;
2148 }
2149
2150 static struct platform_driver sdma_driver = {
2151         .driver         = {
2152                 .name   = "imx-sdma",
2153                 .of_match_table = sdma_dt_ids,
2154         },
2155         .remove         = sdma_remove,
2156         .probe          = sdma_probe,
2157 };
2158
2159 module_platform_driver(sdma_driver);
2160
2161 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2162 MODULE_DESCRIPTION("i.MX SDMA driver");
2163 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2164 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2165 #endif
2166 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2167 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2168 #endif
2169 MODULE_LICENSE("GPL");