Merge tag 'block-5.13-2021-05-09' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / dma / dma-axi-dmac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/slab.h>
24 #include <linux/fpga/adi-axi-common.h>
25
26 #include <dt-bindings/dma/axi-dmac.h>
27
28 #include "dmaengine.h"
29 #include "virt-dma.h"
30
31 /*
32  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
33  * various instantiation parameters which decided the exact feature set support
34  * by the core.
35  *
36  * Each channel of the core has a source interface and a destination interface.
37  * The number of channels and the type of the channel interfaces is selected at
38  * configuration time. A interface can either be a connected to a central memory
39  * interconnect, which allows access to system memory, or it can be connected to
40  * a dedicated bus which is directly connected to a data port on a peripheral.
41  * Given that those are configuration options of the core that are selected when
42  * it is instantiated this means that they can not be changed by software at
43  * runtime. By extension this means that each channel is uni-directional. It can
44  * either be device to memory or memory to device, but not both. Also since the
45  * device side is a dedicated data bus only connected to a single peripheral
46  * there is no address than can or needs to be configured for the device side.
47  */
48
49 #define AXI_DMAC_REG_INTERFACE_DESC     0x10
50 #define   AXI_DMAC_DMA_SRC_TYPE_MSK     GENMASK(13, 12)
51 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
52 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK    GENMASK(11, 8)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
54 #define   AXI_DMAC_DMA_DST_TYPE_MSK     GENMASK(5, 4)
55 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
56 #define   AXI_DMAC_DMA_DST_WIDTH_MSK    GENMASK(3, 0)
57 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
58
59 #define AXI_DMAC_REG_IRQ_MASK           0x80
60 #define AXI_DMAC_REG_IRQ_PENDING        0x84
61 #define AXI_DMAC_REG_IRQ_SOURCE         0x88
62
63 #define AXI_DMAC_REG_CTRL               0x400
64 #define AXI_DMAC_REG_TRANSFER_ID        0x404
65 #define AXI_DMAC_REG_START_TRANSFER     0x408
66 #define AXI_DMAC_REG_FLAGS              0x40c
67 #define AXI_DMAC_REG_DEST_ADDRESS       0x410
68 #define AXI_DMAC_REG_SRC_ADDRESS        0x414
69 #define AXI_DMAC_REG_X_LENGTH           0x418
70 #define AXI_DMAC_REG_Y_LENGTH           0x41c
71 #define AXI_DMAC_REG_DEST_STRIDE        0x420
72 #define AXI_DMAC_REG_SRC_STRIDE         0x424
73 #define AXI_DMAC_REG_TRANSFER_DONE      0x428
74 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
75 #define AXI_DMAC_REG_STATUS             0x430
76 #define AXI_DMAC_REG_CURRENT_SRC_ADDR   0x434
77 #define AXI_DMAC_REG_CURRENT_DEST_ADDR  0x438
78 #define AXI_DMAC_REG_PARTIAL_XFER_LEN   0x44c
79 #define AXI_DMAC_REG_PARTIAL_XFER_ID    0x450
80
81 #define AXI_DMAC_CTRL_ENABLE            BIT(0)
82 #define AXI_DMAC_CTRL_PAUSE             BIT(1)
83
84 #define AXI_DMAC_IRQ_SOT                BIT(0)
85 #define AXI_DMAC_IRQ_EOT                BIT(1)
86
87 #define AXI_DMAC_FLAG_CYCLIC            BIT(0)
88 #define AXI_DMAC_FLAG_LAST              BIT(1)
89 #define AXI_DMAC_FLAG_PARTIAL_REPORT    BIT(2)
90
91 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
92
93 /* The maximum ID allocated by the hardware is 31 */
94 #define AXI_DMAC_SG_UNUSED 32U
95
96 struct axi_dmac_sg {
97         dma_addr_t src_addr;
98         dma_addr_t dest_addr;
99         unsigned int x_len;
100         unsigned int y_len;
101         unsigned int dest_stride;
102         unsigned int src_stride;
103         unsigned int id;
104         unsigned int partial_len;
105         bool schedule_when_free;
106 };
107
108 struct axi_dmac_desc {
109         struct virt_dma_desc vdesc;
110         bool cyclic;
111         bool have_partial_xfer;
112
113         unsigned int num_submitted;
114         unsigned int num_completed;
115         unsigned int num_sgs;
116         struct axi_dmac_sg sg[];
117 };
118
119 struct axi_dmac_chan {
120         struct virt_dma_chan vchan;
121
122         struct axi_dmac_desc *next_desc;
123         struct list_head active_descs;
124         enum dma_transfer_direction direction;
125
126         unsigned int src_width;
127         unsigned int dest_width;
128         unsigned int src_type;
129         unsigned int dest_type;
130
131         unsigned int max_length;
132         unsigned int address_align_mask;
133         unsigned int length_align_mask;
134
135         bool hw_partial_xfer;
136         bool hw_cyclic;
137         bool hw_2d;
138 };
139
140 struct axi_dmac {
141         void __iomem *base;
142         int irq;
143
144         struct clk *clk;
145
146         struct dma_device dma_dev;
147         struct axi_dmac_chan chan;
148 };
149
150 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
151 {
152         return container_of(chan->vchan.chan.device, struct axi_dmac,
153                 dma_dev);
154 }
155
156 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
157 {
158         return container_of(c, struct axi_dmac_chan, vchan.chan);
159 }
160
161 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
162 {
163         return container_of(vdesc, struct axi_dmac_desc, vdesc);
164 }
165
166 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
167         unsigned int val)
168 {
169         writel(val, axi_dmac->base + reg);
170 }
171
172 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
173 {
174         return readl(axi_dmac->base + reg);
175 }
176
177 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
178 {
179         return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
180 }
181
182 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
183 {
184         return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
185 }
186
187 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
188 {
189         if (len == 0)
190                 return false;
191         if ((len & chan->length_align_mask) != 0) /* Not aligned */
192                 return false;
193         return true;
194 }
195
196 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
197 {
198         if ((addr & chan->address_align_mask) != 0) /* Not aligned */
199                 return false;
200         return true;
201 }
202
203 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
204 {
205         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
206         struct virt_dma_desc *vdesc;
207         struct axi_dmac_desc *desc;
208         struct axi_dmac_sg *sg;
209         unsigned int flags = 0;
210         unsigned int val;
211
212         val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
213         if (val) /* Queue is full, wait for the next SOT IRQ */
214                 return;
215
216         desc = chan->next_desc;
217
218         if (!desc) {
219                 vdesc = vchan_next_desc(&chan->vchan);
220                 if (!vdesc)
221                         return;
222                 list_move_tail(&vdesc->node, &chan->active_descs);
223                 desc = to_axi_dmac_desc(vdesc);
224         }
225         sg = &desc->sg[desc->num_submitted];
226
227         /* Already queued in cyclic mode. Wait for it to finish */
228         if (sg->id != AXI_DMAC_SG_UNUSED) {
229                 sg->schedule_when_free = true;
230                 return;
231         }
232
233         desc->num_submitted++;
234         if (desc->num_submitted == desc->num_sgs ||
235             desc->have_partial_xfer) {
236                 if (desc->cyclic)
237                         desc->num_submitted = 0; /* Start again */
238                 else
239                         chan->next_desc = NULL;
240                 flags |= AXI_DMAC_FLAG_LAST;
241         } else {
242                 chan->next_desc = desc;
243         }
244
245         sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
246
247         if (axi_dmac_dest_is_mem(chan)) {
248                 axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
249                 axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
250         }
251
252         if (axi_dmac_src_is_mem(chan)) {
253                 axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
254                 axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
255         }
256
257         /*
258          * If the hardware supports cyclic transfers and there is no callback to
259          * call and only a single segment, enable hw cyclic mode to avoid
260          * unnecessary interrupts.
261          */
262         if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
263                 desc->num_sgs == 1)
264                 flags |= AXI_DMAC_FLAG_CYCLIC;
265
266         if (chan->hw_partial_xfer)
267                 flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
268
269         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
270         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
271         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
272         axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
273 }
274
275 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
276 {
277         return list_first_entry_or_null(&chan->active_descs,
278                 struct axi_dmac_desc, vdesc.node);
279 }
280
281 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
282         struct axi_dmac_sg *sg)
283 {
284         if (chan->hw_2d)
285                 return sg->x_len * sg->y_len;
286         else
287                 return sg->x_len;
288 }
289
290 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
291 {
292         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
293         struct axi_dmac_desc *desc;
294         struct axi_dmac_sg *sg;
295         u32 xfer_done, len, id, i;
296         bool found_sg;
297
298         do {
299                 len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
300                 id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
301
302                 found_sg = false;
303                 list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
304                         for (i = 0; i < desc->num_sgs; i++) {
305                                 sg = &desc->sg[i];
306                                 if (sg->id == AXI_DMAC_SG_UNUSED)
307                                         continue;
308                                 if (sg->id == id) {
309                                         desc->have_partial_xfer = true;
310                                         sg->partial_len = len;
311                                         found_sg = true;
312                                         break;
313                                 }
314                         }
315                         if (found_sg)
316                                 break;
317                 }
318
319                 if (found_sg) {
320                         dev_dbg(dmac->dma_dev.dev,
321                                 "Found partial segment id=%u, len=%u\n",
322                                 id, len);
323                 } else {
324                         dev_warn(dmac->dma_dev.dev,
325                                  "Not found partial segment id=%u, len=%u\n",
326                                  id, len);
327                 }
328
329                 /* Check if we have any more partial transfers */
330                 xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
331                 xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
332
333         } while (!xfer_done);
334 }
335
336 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
337         struct axi_dmac_desc *active)
338 {
339         struct dmaengine_result *rslt = &active->vdesc.tx_result;
340         unsigned int start = active->num_completed - 1;
341         struct axi_dmac_sg *sg;
342         unsigned int i, total;
343
344         rslt->result = DMA_TRANS_NOERROR;
345         rslt->residue = 0;
346
347         /*
348          * We get here if the last completed segment is partial, which
349          * means we can compute the residue from that segment onwards
350          */
351         for (i = start; i < active->num_sgs; i++) {
352                 sg = &active->sg[i];
353                 total = axi_dmac_total_sg_bytes(chan, sg);
354                 rslt->residue += (total - sg->partial_len);
355         }
356 }
357
358 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
359         unsigned int completed_transfers)
360 {
361         struct axi_dmac_desc *active;
362         struct axi_dmac_sg *sg;
363         bool start_next = false;
364
365         active = axi_dmac_active_desc(chan);
366         if (!active)
367                 return false;
368
369         if (chan->hw_partial_xfer &&
370             (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
371                 axi_dmac_dequeue_partial_xfers(chan);
372
373         do {
374                 sg = &active->sg[active->num_completed];
375                 if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
376                         break;
377                 if (!(BIT(sg->id) & completed_transfers))
378                         break;
379                 active->num_completed++;
380                 sg->id = AXI_DMAC_SG_UNUSED;
381                 if (sg->schedule_when_free) {
382                         sg->schedule_when_free = false;
383                         start_next = true;
384                 }
385
386                 if (sg->partial_len)
387                         axi_dmac_compute_residue(chan, active);
388
389                 if (active->cyclic)
390                         vchan_cyclic_callback(&active->vdesc);
391
392                 if (active->num_completed == active->num_sgs ||
393                     sg->partial_len) {
394                         if (active->cyclic) {
395                                 active->num_completed = 0; /* wrap around */
396                         } else {
397                                 list_del(&active->vdesc.node);
398                                 vchan_cookie_complete(&active->vdesc);
399                                 active = axi_dmac_active_desc(chan);
400                         }
401                 }
402         } while (active);
403
404         return start_next;
405 }
406
407 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
408 {
409         struct axi_dmac *dmac = devid;
410         unsigned int pending;
411         bool start_next = false;
412
413         pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
414         if (!pending)
415                 return IRQ_NONE;
416
417         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
418
419         spin_lock(&dmac->chan.vchan.lock);
420         /* One or more transfers have finished */
421         if (pending & AXI_DMAC_IRQ_EOT) {
422                 unsigned int completed;
423
424                 completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
425                 start_next = axi_dmac_transfer_done(&dmac->chan, completed);
426         }
427         /* Space has become available in the descriptor queue */
428         if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
429                 axi_dmac_start_transfer(&dmac->chan);
430         spin_unlock(&dmac->chan.vchan.lock);
431
432         return IRQ_HANDLED;
433 }
434
435 static int axi_dmac_terminate_all(struct dma_chan *c)
436 {
437         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
438         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
439         unsigned long flags;
440         LIST_HEAD(head);
441
442         spin_lock_irqsave(&chan->vchan.lock, flags);
443         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
444         chan->next_desc = NULL;
445         vchan_get_all_descriptors(&chan->vchan, &head);
446         list_splice_tail_init(&chan->active_descs, &head);
447         spin_unlock_irqrestore(&chan->vchan.lock, flags);
448
449         vchan_dma_desc_free_list(&chan->vchan, &head);
450
451         return 0;
452 }
453
454 static void axi_dmac_synchronize(struct dma_chan *c)
455 {
456         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
457
458         vchan_synchronize(&chan->vchan);
459 }
460
461 static void axi_dmac_issue_pending(struct dma_chan *c)
462 {
463         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
464         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
465         unsigned long flags;
466
467         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
468
469         spin_lock_irqsave(&chan->vchan.lock, flags);
470         if (vchan_issue_pending(&chan->vchan))
471                 axi_dmac_start_transfer(chan);
472         spin_unlock_irqrestore(&chan->vchan.lock, flags);
473 }
474
475 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
476 {
477         struct axi_dmac_desc *desc;
478         unsigned int i;
479
480         desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
481         if (!desc)
482                 return NULL;
483
484         for (i = 0; i < num_sgs; i++)
485                 desc->sg[i].id = AXI_DMAC_SG_UNUSED;
486
487         desc->num_sgs = num_sgs;
488
489         return desc;
490 }
491
492 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
493         enum dma_transfer_direction direction, dma_addr_t addr,
494         unsigned int num_periods, unsigned int period_len,
495         struct axi_dmac_sg *sg)
496 {
497         unsigned int num_segments, i;
498         unsigned int segment_size;
499         unsigned int len;
500
501         /* Split into multiple equally sized segments if necessary */
502         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
503         segment_size = DIV_ROUND_UP(period_len, num_segments);
504         /* Take care of alignment */
505         segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
506
507         for (i = 0; i < num_periods; i++) {
508                 len = period_len;
509
510                 while (len > segment_size) {
511                         if (direction == DMA_DEV_TO_MEM)
512                                 sg->dest_addr = addr;
513                         else
514                                 sg->src_addr = addr;
515                         sg->x_len = segment_size;
516                         sg->y_len = 1;
517                         sg++;
518                         addr += segment_size;
519                         len -= segment_size;
520                 }
521
522                 if (direction == DMA_DEV_TO_MEM)
523                         sg->dest_addr = addr;
524                 else
525                         sg->src_addr = addr;
526                 sg->x_len = len;
527                 sg->y_len = 1;
528                 sg++;
529                 addr += len;
530         }
531
532         return sg;
533 }
534
535 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
536         struct dma_chan *c, struct scatterlist *sgl,
537         unsigned int sg_len, enum dma_transfer_direction direction,
538         unsigned long flags, void *context)
539 {
540         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
541         struct axi_dmac_desc *desc;
542         struct axi_dmac_sg *dsg;
543         struct scatterlist *sg;
544         unsigned int num_sgs;
545         unsigned int i;
546
547         if (direction != chan->direction)
548                 return NULL;
549
550         num_sgs = 0;
551         for_each_sg(sgl, sg, sg_len, i)
552                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
553
554         desc = axi_dmac_alloc_desc(num_sgs);
555         if (!desc)
556                 return NULL;
557
558         dsg = desc->sg;
559
560         for_each_sg(sgl, sg, sg_len, i) {
561                 if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
562                     !axi_dmac_check_len(chan, sg_dma_len(sg))) {
563                         kfree(desc);
564                         return NULL;
565                 }
566
567                 dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
568                         sg_dma_len(sg), dsg);
569         }
570
571         desc->cyclic = false;
572
573         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
574 }
575
576 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
577         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
578         size_t period_len, enum dma_transfer_direction direction,
579         unsigned long flags)
580 {
581         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
582         struct axi_dmac_desc *desc;
583         unsigned int num_periods, num_segments;
584
585         if (direction != chan->direction)
586                 return NULL;
587
588         if (!axi_dmac_check_len(chan, buf_len) ||
589             !axi_dmac_check_addr(chan, buf_addr))
590                 return NULL;
591
592         if (period_len == 0 || buf_len % period_len)
593                 return NULL;
594
595         num_periods = buf_len / period_len;
596         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
597
598         desc = axi_dmac_alloc_desc(num_periods * num_segments);
599         if (!desc)
600                 return NULL;
601
602         axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
603                 period_len, desc->sg);
604
605         desc->cyclic = true;
606
607         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
608 }
609
610 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
611         struct dma_chan *c, struct dma_interleaved_template *xt,
612         unsigned long flags)
613 {
614         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
615         struct axi_dmac_desc *desc;
616         size_t dst_icg, src_icg;
617
618         if (xt->frame_size != 1)
619                 return NULL;
620
621         if (xt->dir != chan->direction)
622                 return NULL;
623
624         if (axi_dmac_src_is_mem(chan)) {
625                 if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
626                         return NULL;
627         }
628
629         if (axi_dmac_dest_is_mem(chan)) {
630                 if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
631                         return NULL;
632         }
633
634         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
635         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
636
637         if (chan->hw_2d) {
638                 if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
639                     xt->numf == 0)
640                         return NULL;
641                 if (xt->sgl[0].size + dst_icg > chan->max_length ||
642                     xt->sgl[0].size + src_icg > chan->max_length)
643                         return NULL;
644         } else {
645                 if (dst_icg != 0 || src_icg != 0)
646                         return NULL;
647                 if (chan->max_length / xt->sgl[0].size < xt->numf)
648                         return NULL;
649                 if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
650                         return NULL;
651         }
652
653         desc = axi_dmac_alloc_desc(1);
654         if (!desc)
655                 return NULL;
656
657         if (axi_dmac_src_is_mem(chan)) {
658                 desc->sg[0].src_addr = xt->src_start;
659                 desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
660         }
661
662         if (axi_dmac_dest_is_mem(chan)) {
663                 desc->sg[0].dest_addr = xt->dst_start;
664                 desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
665         }
666
667         if (chan->hw_2d) {
668                 desc->sg[0].x_len = xt->sgl[0].size;
669                 desc->sg[0].y_len = xt->numf;
670         } else {
671                 desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
672                 desc->sg[0].y_len = 1;
673         }
674
675         if (flags & DMA_CYCLIC)
676                 desc->cyclic = true;
677
678         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
679 }
680
681 static void axi_dmac_free_chan_resources(struct dma_chan *c)
682 {
683         vchan_free_chan_resources(to_virt_chan(c));
684 }
685
686 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
687 {
688         kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
689 }
690
691 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
692 {
693         switch (reg) {
694         case AXI_DMAC_REG_IRQ_MASK:
695         case AXI_DMAC_REG_IRQ_SOURCE:
696         case AXI_DMAC_REG_IRQ_PENDING:
697         case AXI_DMAC_REG_CTRL:
698         case AXI_DMAC_REG_TRANSFER_ID:
699         case AXI_DMAC_REG_START_TRANSFER:
700         case AXI_DMAC_REG_FLAGS:
701         case AXI_DMAC_REG_DEST_ADDRESS:
702         case AXI_DMAC_REG_SRC_ADDRESS:
703         case AXI_DMAC_REG_X_LENGTH:
704         case AXI_DMAC_REG_Y_LENGTH:
705         case AXI_DMAC_REG_DEST_STRIDE:
706         case AXI_DMAC_REG_SRC_STRIDE:
707         case AXI_DMAC_REG_TRANSFER_DONE:
708         case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
709         case AXI_DMAC_REG_STATUS:
710         case AXI_DMAC_REG_CURRENT_SRC_ADDR:
711         case AXI_DMAC_REG_CURRENT_DEST_ADDR:
712         case AXI_DMAC_REG_PARTIAL_XFER_LEN:
713         case AXI_DMAC_REG_PARTIAL_XFER_ID:
714                 return true;
715         default:
716                 return false;
717         }
718 }
719
720 static const struct regmap_config axi_dmac_regmap_config = {
721         .reg_bits = 32,
722         .val_bits = 32,
723         .reg_stride = 4,
724         .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
725         .readable_reg = axi_dmac_regmap_rdwr,
726         .writeable_reg = axi_dmac_regmap_rdwr,
727 };
728
729 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
730 {
731         chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
732
733         if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
734                 chan->direction = DMA_MEM_TO_MEM;
735         else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
736                 chan->direction = DMA_MEM_TO_DEV;
737         else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
738                 chan->direction = DMA_DEV_TO_MEM;
739         else
740                 chan->direction = DMA_DEV_TO_DEV;
741 }
742
743 /*
744  * The configuration stored in the devicetree matches the configuration
745  * parameters of the peripheral instance and allows the driver to know which
746  * features are implemented and how it should behave.
747  */
748 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
749         struct axi_dmac_chan *chan)
750 {
751         u32 val;
752         int ret;
753
754         ret = of_property_read_u32(of_chan, "reg", &val);
755         if (ret)
756                 return ret;
757
758         /* We only support 1 channel for now */
759         if (val != 0)
760                 return -EINVAL;
761
762         ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
763         if (ret)
764                 return ret;
765         if (val > AXI_DMAC_BUS_TYPE_FIFO)
766                 return -EINVAL;
767         chan->src_type = val;
768
769         ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
770         if (ret)
771                 return ret;
772         if (val > AXI_DMAC_BUS_TYPE_FIFO)
773                 return -EINVAL;
774         chan->dest_type = val;
775
776         ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
777         if (ret)
778                 return ret;
779         chan->src_width = val / 8;
780
781         ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
782         if (ret)
783                 return ret;
784         chan->dest_width = val / 8;
785
786         axi_dmac_adjust_chan_params(chan);
787
788         return 0;
789 }
790
791 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
792 {
793         struct device_node *of_channels, *of_chan;
794         int ret;
795
796         of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
797         if (of_channels == NULL)
798                 return -ENODEV;
799
800         for_each_child_of_node(of_channels, of_chan) {
801                 ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
802                 if (ret) {
803                         of_node_put(of_chan);
804                         of_node_put(of_channels);
805                         return -EINVAL;
806                 }
807         }
808         of_node_put(of_channels);
809
810         return 0;
811 }
812
813 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
814 {
815         struct axi_dmac_chan *chan = &dmac->chan;
816         unsigned int val, desc;
817
818         desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
819         if (desc == 0) {
820                 dev_err(dev, "DMA interface register reads zero\n");
821                 return -EFAULT;
822         }
823
824         val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
825         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
826                 dev_err(dev, "Invalid source bus type read: %d\n", val);
827                 return -EINVAL;
828         }
829         chan->src_type = val;
830
831         val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
832         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
833                 dev_err(dev, "Invalid destination bus type read: %d\n", val);
834                 return -EINVAL;
835         }
836         chan->dest_type = val;
837
838         val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
839         if (val == 0) {
840                 dev_err(dev, "Source bus width is zero\n");
841                 return -EINVAL;
842         }
843         /* widths are stored in log2 */
844         chan->src_width = 1 << val;
845
846         val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
847         if (val == 0) {
848                 dev_err(dev, "Destination bus width is zero\n");
849                 return -EINVAL;
850         }
851         chan->dest_width = 1 << val;
852
853         axi_dmac_adjust_chan_params(chan);
854
855         return 0;
856 }
857
858 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
859 {
860         struct axi_dmac_chan *chan = &dmac->chan;
861
862         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
863         if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
864                 chan->hw_cyclic = true;
865
866         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
867         if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
868                 chan->hw_2d = true;
869
870         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
871         chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
872         if (chan->max_length != UINT_MAX)
873                 chan->max_length++;
874
875         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
876         if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
877             chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
878                 dev_err(dmac->dma_dev.dev,
879                         "Destination memory-mapped interface not supported.");
880                 return -ENODEV;
881         }
882
883         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
884         if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
885             chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
886                 dev_err(dmac->dma_dev.dev,
887                         "Source memory-mapped interface not supported.");
888                 return -ENODEV;
889         }
890
891         if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
892                 chan->hw_partial_xfer = true;
893
894         if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
895                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
896                 chan->length_align_mask =
897                         axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
898         } else {
899                 chan->length_align_mask = chan->address_align_mask;
900         }
901
902         return 0;
903 }
904
905 static int axi_dmac_probe(struct platform_device *pdev)
906 {
907         struct dma_device *dma_dev;
908         struct axi_dmac *dmac;
909         struct resource *res;
910         struct regmap *regmap;
911         unsigned int version;
912         int ret;
913
914         dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
915         if (!dmac)
916                 return -ENOMEM;
917
918         dmac->irq = platform_get_irq(pdev, 0);
919         if (dmac->irq < 0)
920                 return dmac->irq;
921         if (dmac->irq == 0)
922                 return -EINVAL;
923
924         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
925         dmac->base = devm_ioremap_resource(&pdev->dev, res);
926         if (IS_ERR(dmac->base))
927                 return PTR_ERR(dmac->base);
928
929         dmac->clk = devm_clk_get(&pdev->dev, NULL);
930         if (IS_ERR(dmac->clk))
931                 return PTR_ERR(dmac->clk);
932
933         ret = clk_prepare_enable(dmac->clk);
934         if (ret < 0)
935                 return ret;
936
937         version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
938
939         if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
940                 ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
941         else
942                 ret = axi_dmac_parse_dt(&pdev->dev, dmac);
943
944         if (ret < 0)
945                 goto err_clk_disable;
946
947         INIT_LIST_HEAD(&dmac->chan.active_descs);
948
949         dma_set_max_seg_size(&pdev->dev, UINT_MAX);
950
951         dma_dev = &dmac->dma_dev;
952         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
953         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
954         dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
955         dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
956         dma_dev->device_tx_status = dma_cookie_status;
957         dma_dev->device_issue_pending = axi_dmac_issue_pending;
958         dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
959         dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
960         dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
961         dma_dev->device_terminate_all = axi_dmac_terminate_all;
962         dma_dev->device_synchronize = axi_dmac_synchronize;
963         dma_dev->dev = &pdev->dev;
964         dma_dev->chancnt = 1;
965         dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
966         dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
967         dma_dev->directions = BIT(dmac->chan.direction);
968         dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
969         INIT_LIST_HEAD(&dma_dev->channels);
970
971         dmac->chan.vchan.desc_free = axi_dmac_desc_free;
972         vchan_init(&dmac->chan.vchan, dma_dev);
973
974         ret = axi_dmac_detect_caps(dmac, version);
975         if (ret)
976                 goto err_clk_disable;
977
978         dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
979
980         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
981
982         ret = dma_async_device_register(dma_dev);
983         if (ret)
984                 goto err_clk_disable;
985
986         ret = of_dma_controller_register(pdev->dev.of_node,
987                 of_dma_xlate_by_chan_id, dma_dev);
988         if (ret)
989                 goto err_unregister_device;
990
991         ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
992                 dev_name(&pdev->dev), dmac);
993         if (ret)
994                 goto err_unregister_of;
995
996         platform_set_drvdata(pdev, dmac);
997
998         regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
999                  &axi_dmac_regmap_config);
1000         if (IS_ERR(regmap)) {
1001                 ret = PTR_ERR(regmap);
1002                 goto err_free_irq;
1003         }
1004
1005         return 0;
1006
1007 err_free_irq:
1008         free_irq(dmac->irq, dmac);
1009 err_unregister_of:
1010         of_dma_controller_free(pdev->dev.of_node);
1011 err_unregister_device:
1012         dma_async_device_unregister(&dmac->dma_dev);
1013 err_clk_disable:
1014         clk_disable_unprepare(dmac->clk);
1015
1016         return ret;
1017 }
1018
1019 static int axi_dmac_remove(struct platform_device *pdev)
1020 {
1021         struct axi_dmac *dmac = platform_get_drvdata(pdev);
1022
1023         of_dma_controller_free(pdev->dev.of_node);
1024         free_irq(dmac->irq, dmac);
1025         tasklet_kill(&dmac->chan.vchan.task);
1026         dma_async_device_unregister(&dmac->dma_dev);
1027         clk_disable_unprepare(dmac->clk);
1028
1029         return 0;
1030 }
1031
1032 static const struct of_device_id axi_dmac_of_match_table[] = {
1033         { .compatible = "adi,axi-dmac-1.00.a" },
1034         { },
1035 };
1036 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1037
1038 static struct platform_driver axi_dmac_driver = {
1039         .driver = {
1040                 .name = "dma-axi-dmac",
1041                 .of_match_table = axi_dmac_of_match_table,
1042         },
1043         .probe = axi_dmac_probe,
1044         .remove = axi_dmac_remove,
1045 };
1046 module_platform_driver(axi_dmac_driver);
1047
1048 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1049 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1050 MODULE_LICENSE("GPL v2");