Merge tag 'nds32-for-linus-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / dma / amba-pl08x.c
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  * Copyirght (c) 2017 Linaro Ltd.
5  *
6  * Author: Peter Pearse <peter.pearse@arm.com>
7  * Author: Linus Walleij <linus.walleij@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * The full GNU General Public License is in this distribution in the file
20  * called COPYING.
21  *
22  * Documentation: ARM DDI 0196G == PL080
23  * Documentation: ARM DDI 0218E == PL081
24  * Documentation: S3C6410 User's Manual == PL080S
25  *
26  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
27  * channel.
28  *
29  * The PL080 has 8 channels available for simultaneous use, and the PL081
30  * has only two channels. So on these DMA controllers the number of channels
31  * and the number of incoming DMA signals are two totally different things.
32  * It is usually not possible to theoretically handle all physical signals,
33  * so a multiplexing scheme with possible denial of use is necessary.
34  *
35  * The PL080 has a dual bus master, PL081 has a single master.
36  *
37  * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
38  * It differs in following aspects:
39  * - CH_CONFIG register at different offset,
40  * - separate CH_CONTROL2 register for transfer size,
41  * - bigger maximum transfer size,
42  * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
43  * - no support for peripheral flow control.
44  *
45  * Memory to peripheral transfer may be visualized as
46  *      Get data from memory to DMAC
47  *      Until no data left
48  *              On burst request from peripheral
49  *                      Destination burst from DMAC to peripheral
50  *                      Clear burst request
51  *      Raise terminal count interrupt
52  *
53  * For peripherals with a FIFO:
54  * Source      burst size == half the depth of the peripheral FIFO
55  * Destination burst size == the depth of the peripheral FIFO
56  *
57  * (Bursts are irrelevant for mem to mem transfers - there are no burst
58  * signals, the DMA controller will simply facilitate its AHB master.)
59  *
60  * ASSUMES default (little) endianness for DMA transfers
61  *
62  * The PL08x has two flow control settings:
63  *  - DMAC flow control: the transfer size defines the number of transfers
64  *    which occur for the current LLI entry, and the DMAC raises TC at the
65  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
66  *    to both the BREQ and SREQ signals (contrary to documented),
67  *    transferring data if either is active.  The LBREQ and LSREQ signals
68  *    are ignored.
69  *
70  *  - Peripheral flow control: the transfer size is ignored (and should be
71  *    zero).  The data is transferred from the current LLI entry, until
72  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
73  *    will then move to the next LLI entry. Unsupported by PL080S.
74  */
75 #include <linux/amba/bus.h>
76 #include <linux/amba/pl08x.h>
77 #include <linux/debugfs.h>
78 #include <linux/delay.h>
79 #include <linux/device.h>
80 #include <linux/dmaengine.h>
81 #include <linux/dmapool.h>
82 #include <linux/dma-mapping.h>
83 #include <linux/export.h>
84 #include <linux/init.h>
85 #include <linux/interrupt.h>
86 #include <linux/module.h>
87 #include <linux/of.h>
88 #include <linux/of_dma.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
93
94 #include "dmaengine.h"
95 #include "virt-dma.h"
96
97 #define DRIVER_NAME     "pl08xdmac"
98
99 #define PL80X_DMA_BUSWIDTHS \
100         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
101         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
102         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
103         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
104
105 static struct amba_driver pl08x_amba_driver;
106 struct pl08x_driver_data;
107
108 /**
109  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
110  * @config_offset: offset to the configuration register
111  * @channels: the number of channels available in this variant
112  * @signals: the number of request signals available from the hardware
113  * @dualmaster: whether this version supports dual AHB masters or not.
114  * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
115  *      channels have Nomadik security extension bits that need to be checked
116  *      for permission before use and some registers are missing
117  * @pl080s: whether this variant is a Samsung PL080S, which has separate
118  *      register and LLI word for transfer size.
119  * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
120  * @max_transfer_size: the maximum single element transfer size for this
121  *      PL08x variant.
122  */
123 struct vendor_data {
124         u8 config_offset;
125         u8 channels;
126         u8 signals;
127         bool dualmaster;
128         bool nomadik;
129         bool pl080s;
130         bool ftdmac020;
131         u32 max_transfer_size;
132 };
133
134 /**
135  * struct pl08x_bus_data - information of source or destination
136  * busses for a transfer
137  * @addr: current address
138  * @maxwidth: the maximum width of a transfer on this bus
139  * @buswidth: the width of this bus in bytes: 1, 2 or 4
140  */
141 struct pl08x_bus_data {
142         dma_addr_t addr;
143         u8 maxwidth;
144         u8 buswidth;
145 };
146
147 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
148
149 /**
150  * struct pl08x_phy_chan - holder for the physical channels
151  * @id: physical index to this channel
152  * @base: memory base address for this physical channel
153  * @reg_config: configuration address for this physical channel
154  * @reg_control: control address for this physical channel
155  * @reg_src: transfer source address register
156  * @reg_dst: transfer destination address register
157  * @reg_lli: transfer LLI address register
158  * @reg_busy: if the variant has a special per-channel busy register,
159  * this contains a pointer to it
160  * @lock: a lock to use when altering an instance of this struct
161  * @serving: the virtual channel currently being served by this physical
162  * channel
163  * @locked: channel unavailable for the system, e.g. dedicated to secure
164  * world
165  * @ftdmac020: channel is on a FTDMAC020
166  * @pl080s: channel is on a PL08s
167  */
168 struct pl08x_phy_chan {
169         unsigned int id;
170         void __iomem *base;
171         void __iomem *reg_config;
172         void __iomem *reg_control;
173         void __iomem *reg_src;
174         void __iomem *reg_dst;
175         void __iomem *reg_lli;
176         void __iomem *reg_busy;
177         spinlock_t lock;
178         struct pl08x_dma_chan *serving;
179         bool locked;
180         bool ftdmac020;
181         bool pl080s;
182 };
183
184 /**
185  * struct pl08x_sg - structure containing data per sg
186  * @src_addr: src address of sg
187  * @dst_addr: dst address of sg
188  * @len: transfer len in bytes
189  * @node: node for txd's dsg_list
190  */
191 struct pl08x_sg {
192         dma_addr_t src_addr;
193         dma_addr_t dst_addr;
194         size_t len;
195         struct list_head node;
196 };
197
198 /**
199  * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
200  * @vd: virtual DMA descriptor
201  * @dsg_list: list of children sg's
202  * @llis_bus: DMA memory address (physical) start for the LLIs
203  * @llis_va: virtual memory address start for the LLIs
204  * @cctl: control reg values for current txd
205  * @ccfg: config reg values for current txd
206  * @done: this marks completed descriptors, which should not have their
207  *   mux released.
208  * @cyclic: indicate cyclic transfers
209  */
210 struct pl08x_txd {
211         struct virt_dma_desc vd;
212         struct list_head dsg_list;
213         dma_addr_t llis_bus;
214         u32 *llis_va;
215         /* Default cctl value for LLIs */
216         u32 cctl;
217         /*
218          * Settings to be put into the physical channel when we
219          * trigger this txd.  Other registers are in llis_va[0].
220          */
221         u32 ccfg;
222         bool done;
223         bool cyclic;
224 };
225
226 /**
227  * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
228  * states
229  * @PL08X_CHAN_IDLE: the channel is idle
230  * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
231  * channel and is running a transfer on it
232  * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
233  * channel, but the transfer is currently paused
234  * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
235  * channel to become available (only pertains to memcpy channels)
236  */
237 enum pl08x_dma_chan_state {
238         PL08X_CHAN_IDLE,
239         PL08X_CHAN_RUNNING,
240         PL08X_CHAN_PAUSED,
241         PL08X_CHAN_WAITING,
242 };
243
244 /**
245  * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
246  * @vc: wrappped virtual channel
247  * @phychan: the physical channel utilized by this channel, if there is one
248  * @name: name of channel
249  * @cd: channel platform data
250  * @cfg: slave configuration
251  * @at: active transaction on this channel
252  * @host: a pointer to the host (internal use)
253  * @state: whether the channel is idle, paused, running etc
254  * @slave: whether this channel is a device (slave) or for memcpy
255  * @signal: the physical DMA request signal which this channel is using
256  * @mux_use: count of descriptors using this DMA request signal setting
257  * @waiting_at: time in jiffies when this channel moved to waiting state
258  */
259 struct pl08x_dma_chan {
260         struct virt_dma_chan vc;
261         struct pl08x_phy_chan *phychan;
262         const char *name;
263         struct pl08x_channel_data *cd;
264         struct dma_slave_config cfg;
265         struct pl08x_txd *at;
266         struct pl08x_driver_data *host;
267         enum pl08x_dma_chan_state state;
268         bool slave;
269         int signal;
270         unsigned mux_use;
271         unsigned long waiting_at;
272 };
273
274 /**
275  * struct pl08x_driver_data - the local state holder for the PL08x
276  * @slave: optional slave engine for this instance
277  * @memcpy: memcpy engine for this instance
278  * @has_slave: the PL08x has a slave engine (routed signals)
279  * @base: virtual memory base (remapped) for the PL08x
280  * @adev: the corresponding AMBA (PrimeCell) bus entry
281  * @vd: vendor data for this PL08x variant
282  * @pd: platform data passed in from the platform/machine
283  * @phy_chans: array of data for the physical channels
284  * @pool: a pool for the LLI descriptors
285  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
286  * fetches
287  * @mem_buses: set to indicate memory transfers on AHB2.
288  * @lli_words: how many words are used in each LLI item for this variant
289  */
290 struct pl08x_driver_data {
291         struct dma_device slave;
292         struct dma_device memcpy;
293         bool has_slave;
294         void __iomem *base;
295         struct amba_device *adev;
296         const struct vendor_data *vd;
297         struct pl08x_platform_data *pd;
298         struct pl08x_phy_chan *phy_chans;
299         struct dma_pool *pool;
300         u8 lli_buses;
301         u8 mem_buses;
302         u8 lli_words;
303 };
304
305 /*
306  * PL08X specific defines
307  */
308
309 /* The order of words in an LLI. */
310 #define PL080_LLI_SRC           0
311 #define PL080_LLI_DST           1
312 #define PL080_LLI_LLI           2
313 #define PL080_LLI_CCTL          3
314 #define PL080S_LLI_CCTL2        4
315
316 /* Total words in an LLI. */
317 #define PL080_LLI_WORDS         4
318 #define PL080S_LLI_WORDS        8
319
320 /*
321  * Number of LLIs in each LLI buffer allocated for one transfer
322  * (maximum times we call dma_pool_alloc on this pool without freeing)
323  */
324 #define MAX_NUM_TSFR_LLIS       512
325 #define PL08X_ALIGN             8
326
327 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
328 {
329         return container_of(chan, struct pl08x_dma_chan, vc.chan);
330 }
331
332 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
333 {
334         return container_of(tx, struct pl08x_txd, vd.tx);
335 }
336
337 /*
338  * Mux handling.
339  *
340  * This gives us the DMA request input to the PL08x primecell which the
341  * peripheral described by the channel data will be routed to, possibly
342  * via a board/SoC specific external MUX.  One important point to note
343  * here is that this does not depend on the physical channel.
344  */
345 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
346 {
347         const struct pl08x_platform_data *pd = plchan->host->pd;
348         int ret;
349
350         if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
351                 ret = pd->get_xfer_signal(plchan->cd);
352                 if (ret < 0) {
353                         plchan->mux_use = 0;
354                         return ret;
355                 }
356
357                 plchan->signal = ret;
358         }
359         return 0;
360 }
361
362 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
363 {
364         const struct pl08x_platform_data *pd = plchan->host->pd;
365
366         if (plchan->signal >= 0) {
367                 WARN_ON(plchan->mux_use == 0);
368
369                 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
370                         pd->put_xfer_signal(plchan->cd, plchan->signal);
371                         plchan->signal = -1;
372                 }
373         }
374 }
375
376 /*
377  * Physical channel handling
378  */
379
380 /* Whether a certain channel is busy or not */
381 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
382 {
383         unsigned int val;
384
385         /* If we have a special busy register, take a shortcut */
386         if (ch->reg_busy) {
387                 val = readl(ch->reg_busy);
388                 return !!(val & BIT(ch->id));
389         }
390         val = readl(ch->reg_config);
391         return val & PL080_CONFIG_ACTIVE;
392 }
393
394 /*
395  * pl08x_write_lli() - Write an LLI into the DMA controller.
396  *
397  * The PL08x derivatives support linked lists, but the first item of the
398  * list containing the source, destination, control word and next LLI is
399  * ignored. Instead the driver has to write those values directly into the
400  * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
401  * register need to be set up for the first transfer.
402  */
403 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
404                 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
405 {
406         if (pl08x->vd->pl080s)
407                 dev_vdbg(&pl08x->adev->dev,
408                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
409                         "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
410                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
411                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
412                         lli[PL080S_LLI_CCTL2], ccfg);
413         else
414                 dev_vdbg(&pl08x->adev->dev,
415                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
416                         "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
417                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
418                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
419
420         writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
421         writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
422         writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
423
424         /*
425          * The FTMAC020 has a different layout in the CCTL word of the LLI
426          * and the CCTL register which is split in CSR and SIZE registers.
427          * Convert the LLI item CCTL into the proper values to write into
428          * the CSR and SIZE registers.
429          */
430         if (phychan->ftdmac020) {
431                 u32 llictl = lli[PL080_LLI_CCTL];
432                 u32 val = 0;
433
434                 /* Write the transfer size (12 bits) to the size register */
435                 writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
436                                phychan->base + FTDMAC020_CH_SIZE);
437                 /*
438                  * Then write the control bits 28..16 to the control register
439                  * by shuffleing the bits around to where they are in the
440                  * main register. The mapping is as follows:
441                  * Bit 28: TC_MSK - mask on all except last LLI
442                  * Bit 27..25: SRC_WIDTH
443                  * Bit 24..22: DST_WIDTH
444                  * Bit 21..20: SRCAD_CTRL
445                  * Bit 19..17: DSTAD_CTRL
446                  * Bit 17: SRC_SEL
447                  * Bit 16: DST_SEL
448                  */
449                 if (llictl & FTDMAC020_LLI_TC_MSK)
450                         val |= FTDMAC020_CH_CSR_TC_MSK;
451                 val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
452                         (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
453                          FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
454                 val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
455                         (FTDMAC020_LLI_DST_WIDTH_SHIFT -
456                          FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
457                 val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
458                         (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
459                          FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
460                 val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
461                         (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
462                          FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
463                 if (llictl & FTDMAC020_LLI_SRC_SEL)
464                         val |= FTDMAC020_CH_CSR_SRC_SEL;
465                 if (llictl & FTDMAC020_LLI_DST_SEL)
466                         val |= FTDMAC020_CH_CSR_DST_SEL;
467
468                 /*
469                  * Set up the bits that exist in the CSR but are not
470                  * part the LLI, i.e. only gets written to the control
471                  * register right here.
472                  *
473                  * FIXME: do not just handle memcpy, also handle slave DMA.
474                  */
475                 switch (pl08x->pd->memcpy_burst_size) {
476                 default:
477                 case PL08X_BURST_SZ_1:
478                         val |= PL080_BSIZE_1 <<
479                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480                         break;
481                 case PL08X_BURST_SZ_4:
482                         val |= PL080_BSIZE_4 <<
483                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484                         break;
485                 case PL08X_BURST_SZ_8:
486                         val |= PL080_BSIZE_8 <<
487                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488                         break;
489                 case PL08X_BURST_SZ_16:
490                         val |= PL080_BSIZE_16 <<
491                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492                         break;
493                 case PL08X_BURST_SZ_32:
494                         val |= PL080_BSIZE_32 <<
495                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496                         break;
497                 case PL08X_BURST_SZ_64:
498                         val |= PL080_BSIZE_64 <<
499                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
500                         break;
501                 case PL08X_BURST_SZ_128:
502                         val |= PL080_BSIZE_128 <<
503                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
504                         break;
505                 case PL08X_BURST_SZ_256:
506                         val |= PL080_BSIZE_256 <<
507                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
508                         break;
509                 }
510
511                 /* Protection flags */
512                 if (pl08x->pd->memcpy_prot_buff)
513                         val |= FTDMAC020_CH_CSR_PROT2;
514                 if (pl08x->pd->memcpy_prot_cache)
515                         val |= FTDMAC020_CH_CSR_PROT3;
516                 /* We are the kernel, so we are in privileged mode */
517                 val |= FTDMAC020_CH_CSR_PROT1;
518
519                 writel_relaxed(val, phychan->reg_control);
520         } else {
521                 /* Bits are just identical */
522                 writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
523         }
524
525         /* Second control word on the PL080s */
526         if (pl08x->vd->pl080s)
527                 writel_relaxed(lli[PL080S_LLI_CCTL2],
528                                 phychan->base + PL080S_CH_CONTROL2);
529
530         writel(ccfg, phychan->reg_config);
531 }
532
533 /*
534  * Set the initial DMA register values i.e. those for the first LLI
535  * The next LLI pointer and the configuration interrupt bit have
536  * been set when the LLIs were constructed.  Poke them into the hardware
537  * and start the transfer.
538  */
539 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
540 {
541         struct pl08x_driver_data *pl08x = plchan->host;
542         struct pl08x_phy_chan *phychan = plchan->phychan;
543         struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
544         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
545         u32 val;
546
547         list_del(&txd->vd.node);
548
549         plchan->at = txd;
550
551         /* Wait for channel inactive */
552         while (pl08x_phy_channel_busy(phychan))
553                 cpu_relax();
554
555         pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
556
557         /* Enable the DMA channel */
558         /* Do not access config register until channel shows as disabled */
559         while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
560                 cpu_relax();
561
562         /* Do not access config register until channel shows as inactive */
563         if (phychan->ftdmac020) {
564                 val = readl(phychan->reg_config);
565                 while (val & FTDMAC020_CH_CFG_BUSY)
566                         val = readl(phychan->reg_config);
567
568                 val = readl(phychan->reg_control);
569                 while (val & FTDMAC020_CH_CSR_EN)
570                         val = readl(phychan->reg_control);
571
572                 writel(val | FTDMAC020_CH_CSR_EN,
573                        phychan->reg_control);
574         } else {
575                 val = readl(phychan->reg_config);
576                 while ((val & PL080_CONFIG_ACTIVE) ||
577                        (val & PL080_CONFIG_ENABLE))
578                         val = readl(phychan->reg_config);
579
580                 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
581         }
582 }
583
584 /*
585  * Pause the channel by setting the HALT bit.
586  *
587  * For M->P transfers, pause the DMAC first and then stop the peripheral -
588  * the FIFO can only drain if the peripheral is still requesting data.
589  * (note: this can still timeout if the DMAC FIFO never drains of data.)
590  *
591  * For P->M transfers, disable the peripheral first to stop it filling
592  * the DMAC FIFO, and then pause the DMAC.
593  */
594 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
595 {
596         u32 val;
597         int timeout;
598
599         if (ch->ftdmac020) {
600                 /* Use the enable bit on the FTDMAC020 */
601                 val = readl(ch->reg_control);
602                 val &= ~FTDMAC020_CH_CSR_EN;
603                 writel(val, ch->reg_control);
604                 return;
605         }
606
607         /* Set the HALT bit and wait for the FIFO to drain */
608         val = readl(ch->reg_config);
609         val |= PL080_CONFIG_HALT;
610         writel(val, ch->reg_config);
611
612         /* Wait for channel inactive */
613         for (timeout = 1000; timeout; timeout--) {
614                 if (!pl08x_phy_channel_busy(ch))
615                         break;
616                 udelay(1);
617         }
618         if (pl08x_phy_channel_busy(ch))
619                 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
620 }
621
622 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
623 {
624         u32 val;
625
626         /* Use the enable bit on the FTDMAC020 */
627         if (ch->ftdmac020) {
628                 val = readl(ch->reg_control);
629                 val |= FTDMAC020_CH_CSR_EN;
630                 writel(val, ch->reg_control);
631                 return;
632         }
633
634         /* Clear the HALT bit */
635         val = readl(ch->reg_config);
636         val &= ~PL080_CONFIG_HALT;
637         writel(val, ch->reg_config);
638 }
639
640 /*
641  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
642  * clears any pending interrupt status.  This should not be used for
643  * an on-going transfer, but as a method of shutting down a channel
644  * (eg, when it's no longer used) or terminating a transfer.
645  */
646 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
647         struct pl08x_phy_chan *ch)
648 {
649         u32 val;
650
651         /* The layout for the FTDMAC020 is different */
652         if (ch->ftdmac020) {
653                 /* Disable all interrupts */
654                 val = readl(ch->reg_config);
655                 val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
656                         FTDMAC020_CH_CFG_INT_ERR_MASK |
657                         FTDMAC020_CH_CFG_INT_TC_MASK);
658                 writel(val, ch->reg_config);
659
660                 /* Abort and disable channel */
661                 val = readl(ch->reg_control);
662                 val &= ~FTDMAC020_CH_CSR_EN;
663                 val |= FTDMAC020_CH_CSR_ABT;
664                 writel(val, ch->reg_control);
665
666                 /* Clear ABT and ERR interrupt flags */
667                 writel(BIT(ch->id) | BIT(ch->id + 16),
668                        pl08x->base + PL080_ERR_CLEAR);
669                 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
670
671                 return;
672         }
673
674         val = readl(ch->reg_config);
675         val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
676                  PL080_CONFIG_TC_IRQ_MASK);
677         writel(val, ch->reg_config);
678
679         writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
680         writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
681 }
682
683 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
684 {
685         u32 val;
686         u32 bytes;
687
688         if (ch->ftdmac020) {
689                 bytes = readl(ch->base + FTDMAC020_CH_SIZE);
690
691                 val = readl(ch->reg_control);
692                 val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
693                 val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
694         } else if (ch->pl080s) {
695                 val = readl(ch->base + PL080S_CH_CONTROL2);
696                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
697
698                 val = readl(ch->reg_control);
699                 val &= PL080_CONTROL_SWIDTH_MASK;
700                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
701         } else {
702                 /* Plain PL08x */
703                 val = readl(ch->reg_control);
704                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
705
706                 val &= PL080_CONTROL_SWIDTH_MASK;
707                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
708         }
709
710         switch (val) {
711         case PL080_WIDTH_8BIT:
712                 break;
713         case PL080_WIDTH_16BIT:
714                 bytes *= 2;
715                 break;
716         case PL080_WIDTH_32BIT:
717                 bytes *= 4;
718                 break;
719         }
720         return bytes;
721 }
722
723 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
724 {
725         u32 val;
726         u32 bytes;
727
728         if (ch->ftdmac020) {
729                 val = llis_va[PL080_LLI_CCTL];
730                 bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
731
732                 val = llis_va[PL080_LLI_CCTL];
733                 val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
734                 val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
735         } else if (ch->pl080s) {
736                 val = llis_va[PL080S_LLI_CCTL2];
737                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
738
739                 val = llis_va[PL080_LLI_CCTL];
740                 val &= PL080_CONTROL_SWIDTH_MASK;
741                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
742         } else {
743                 /* Plain PL08x */
744                 val = llis_va[PL080_LLI_CCTL];
745                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
746
747                 val &= PL080_CONTROL_SWIDTH_MASK;
748                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
749         }
750
751         switch (val) {
752         case PL080_WIDTH_8BIT:
753                 break;
754         case PL080_WIDTH_16BIT:
755                 bytes *= 2;
756                 break;
757         case PL080_WIDTH_32BIT:
758                 bytes *= 4;
759                 break;
760         }
761         return bytes;
762 }
763
764 /* The channel should be paused when calling this */
765 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
766 {
767         struct pl08x_driver_data *pl08x = plchan->host;
768         const u32 *llis_va, *llis_va_limit;
769         struct pl08x_phy_chan *ch;
770         dma_addr_t llis_bus;
771         struct pl08x_txd *txd;
772         u32 llis_max_words;
773         size_t bytes;
774         u32 clli;
775
776         ch = plchan->phychan;
777         txd = plchan->at;
778
779         if (!ch || !txd)
780                 return 0;
781
782         /*
783          * Follow the LLIs to get the number of remaining
784          * bytes in the currently active transaction.
785          */
786         clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
787
788         /* First get the remaining bytes in the active transfer */
789         bytes = get_bytes_in_phy_channel(ch);
790
791         if (!clli)
792                 return bytes;
793
794         llis_va = txd->llis_va;
795         llis_bus = txd->llis_bus;
796
797         llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
798         BUG_ON(clli < llis_bus || clli >= llis_bus +
799                                                 sizeof(u32) * llis_max_words);
800
801         /*
802          * Locate the next LLI - as this is an array,
803          * it's simple maths to find.
804          */
805         llis_va += (clli - llis_bus) / sizeof(u32);
806
807         llis_va_limit = llis_va + llis_max_words;
808
809         for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
810                 bytes += get_bytes_in_lli(ch, llis_va);
811
812                 /*
813                  * A LLI pointer going backward terminates the LLI list
814                  */
815                 if (llis_va[PL080_LLI_LLI] <= clli)
816                         break;
817         }
818
819         return bytes;
820 }
821
822 /*
823  * Allocate a physical channel for a virtual channel
824  *
825  * Try to locate a physical channel to be used for this transfer. If all
826  * are taken return NULL and the requester will have to cope by using
827  * some fallback PIO mode or retrying later.
828  */
829 static struct pl08x_phy_chan *
830 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
831                       struct pl08x_dma_chan *virt_chan)
832 {
833         struct pl08x_phy_chan *ch = NULL;
834         unsigned long flags;
835         int i;
836
837         for (i = 0; i < pl08x->vd->channels; i++) {
838                 ch = &pl08x->phy_chans[i];
839
840                 spin_lock_irqsave(&ch->lock, flags);
841
842                 if (!ch->locked && !ch->serving) {
843                         ch->serving = virt_chan;
844                         spin_unlock_irqrestore(&ch->lock, flags);
845                         break;
846                 }
847
848                 spin_unlock_irqrestore(&ch->lock, flags);
849         }
850
851         if (i == pl08x->vd->channels) {
852                 /* No physical channel available, cope with it */
853                 return NULL;
854         }
855
856         return ch;
857 }
858
859 /* Mark the physical channel as free.  Note, this write is atomic. */
860 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
861                                          struct pl08x_phy_chan *ch)
862 {
863         ch->serving = NULL;
864 }
865
866 /*
867  * Try to allocate a physical channel.  When successful, assign it to
868  * this virtual channel, and initiate the next descriptor.  The
869  * virtual channel lock must be held at this point.
870  */
871 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
872 {
873         struct pl08x_driver_data *pl08x = plchan->host;
874         struct pl08x_phy_chan *ch;
875
876         ch = pl08x_get_phy_channel(pl08x, plchan);
877         if (!ch) {
878                 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
879                 plchan->state = PL08X_CHAN_WAITING;
880                 plchan->waiting_at = jiffies;
881                 return;
882         }
883
884         dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
885                 ch->id, plchan->name);
886
887         plchan->phychan = ch;
888         plchan->state = PL08X_CHAN_RUNNING;
889         pl08x_start_next_txd(plchan);
890 }
891
892 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
893         struct pl08x_dma_chan *plchan)
894 {
895         struct pl08x_driver_data *pl08x = plchan->host;
896
897         dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
898                 ch->id, plchan->name);
899
900         /*
901          * We do this without taking the lock; we're really only concerned
902          * about whether this pointer is NULL or not, and we're guaranteed
903          * that this will only be called when it _already_ is non-NULL.
904          */
905         ch->serving = plchan;
906         plchan->phychan = ch;
907         plchan->state = PL08X_CHAN_RUNNING;
908         pl08x_start_next_txd(plchan);
909 }
910
911 /*
912  * Free a physical DMA channel, potentially reallocating it to another
913  * virtual channel if we have any pending.
914  */
915 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
916 {
917         struct pl08x_driver_data *pl08x = plchan->host;
918         struct pl08x_dma_chan *p, *next;
919         unsigned long waiting_at;
920  retry:
921         next = NULL;
922         waiting_at = jiffies;
923
924         /*
925          * Find a waiting virtual channel for the next transfer.
926          * To be fair, time when each channel reached waiting state is compared
927          * to select channel that is waiting for the longest time.
928          */
929         list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
930                 if (p->state == PL08X_CHAN_WAITING &&
931                     p->waiting_at <= waiting_at) {
932                         next = p;
933                         waiting_at = p->waiting_at;
934                 }
935
936         if (!next && pl08x->has_slave) {
937                 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
938                         if (p->state == PL08X_CHAN_WAITING &&
939                             p->waiting_at <= waiting_at) {
940                                 next = p;
941                                 waiting_at = p->waiting_at;
942                         }
943         }
944
945         /* Ensure that the physical channel is stopped */
946         pl08x_terminate_phy_chan(pl08x, plchan->phychan);
947
948         if (next) {
949                 bool success;
950
951                 /*
952                  * Eww.  We know this isn't going to deadlock
953                  * but lockdep probably doesn't.
954                  */
955                 spin_lock(&next->vc.lock);
956                 /* Re-check the state now that we have the lock */
957                 success = next->state == PL08X_CHAN_WAITING;
958                 if (success)
959                         pl08x_phy_reassign_start(plchan->phychan, next);
960                 spin_unlock(&next->vc.lock);
961
962                 /* If the state changed, try to find another channel */
963                 if (!success)
964                         goto retry;
965         } else {
966                 /* No more jobs, so free up the physical channel */
967                 pl08x_put_phy_channel(pl08x, plchan->phychan);
968         }
969
970         plchan->phychan = NULL;
971         plchan->state = PL08X_CHAN_IDLE;
972 }
973
974 /*
975  * LLI handling
976  */
977
978 static inline unsigned int
979 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
980                         u32 cctl,
981                         bool source)
982 {
983         u32 val;
984
985         if (pl08x->vd->ftdmac020) {
986                 if (source)
987                         val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
988                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
989                 else
990                         val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
991                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
992         } else {
993                 if (source)
994                         val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
995                                 PL080_CONTROL_SWIDTH_SHIFT;
996                 else
997                         val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
998                                 PL080_CONTROL_DWIDTH_SHIFT;
999         }
1000
1001         switch (val) {
1002         case PL080_WIDTH_8BIT:
1003                 return 1;
1004         case PL080_WIDTH_16BIT:
1005                 return 2;
1006         case PL080_WIDTH_32BIT:
1007                 return 4;
1008         default:
1009                 break;
1010         }
1011         BUG();
1012         return 0;
1013 }
1014
1015 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1016                                          u32 cctl,
1017                                          u8 srcwidth, u8 dstwidth,
1018                                          size_t tsize)
1019 {
1020         u32 retbits = cctl;
1021
1022         /*
1023          * Remove all src, dst and transfer size bits, then set the
1024          * width and size according to the parameters. The bit offsets
1025          * are different in the FTDMAC020 so we need to accound for this.
1026          */
1027         if (pl08x->vd->ftdmac020) {
1028                 retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1029                 retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1030                 retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1031
1032                 switch (srcwidth) {
1033                 case 1:
1034                         retbits |= PL080_WIDTH_8BIT <<
1035                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1036                         break;
1037                 case 2:
1038                         retbits |= PL080_WIDTH_16BIT <<
1039                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1040                         break;
1041                 case 4:
1042                         retbits |= PL080_WIDTH_32BIT <<
1043                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1044                         break;
1045                 default:
1046                         BUG();
1047                         break;
1048                 }
1049
1050                 switch (dstwidth) {
1051                 case 1:
1052                         retbits |= PL080_WIDTH_8BIT <<
1053                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1054                         break;
1055                 case 2:
1056                         retbits |= PL080_WIDTH_16BIT <<
1057                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1058                         break;
1059                 case 4:
1060                         retbits |= PL080_WIDTH_32BIT <<
1061                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1062                         break;
1063                 default:
1064                         BUG();
1065                         break;
1066                 }
1067
1068                 tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1069                 retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1070         } else {
1071                 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1072                 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1073                 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1074
1075                 switch (srcwidth) {
1076                 case 1:
1077                         retbits |= PL080_WIDTH_8BIT <<
1078                                 PL080_CONTROL_SWIDTH_SHIFT;
1079                         break;
1080                 case 2:
1081                         retbits |= PL080_WIDTH_16BIT <<
1082                                 PL080_CONTROL_SWIDTH_SHIFT;
1083                         break;
1084                 case 4:
1085                         retbits |= PL080_WIDTH_32BIT <<
1086                                 PL080_CONTROL_SWIDTH_SHIFT;
1087                         break;
1088                 default:
1089                         BUG();
1090                         break;
1091                 }
1092
1093                 switch (dstwidth) {
1094                 case 1:
1095                         retbits |= PL080_WIDTH_8BIT <<
1096                                 PL080_CONTROL_DWIDTH_SHIFT;
1097                         break;
1098                 case 2:
1099                         retbits |= PL080_WIDTH_16BIT <<
1100                                 PL080_CONTROL_DWIDTH_SHIFT;
1101                         break;
1102                 case 4:
1103                         retbits |= PL080_WIDTH_32BIT <<
1104                                 PL080_CONTROL_DWIDTH_SHIFT;
1105                         break;
1106                 default:
1107                         BUG();
1108                         break;
1109                 }
1110
1111                 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1112                 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1113         }
1114
1115         return retbits;
1116 }
1117
1118 struct pl08x_lli_build_data {
1119         struct pl08x_txd *txd;
1120         struct pl08x_bus_data srcbus;
1121         struct pl08x_bus_data dstbus;
1122         size_t remainder;
1123         u32 lli_bus;
1124 };
1125
1126 /*
1127  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1128  * victim in case src & dest are not similarly aligned. i.e. If after aligning
1129  * masters address with width requirements of transfer (by sending few byte by
1130  * byte data), slave is still not aligned, then its width will be reduced to
1131  * BYTE.
1132  * - prefers the destination bus if both available
1133  * - prefers bus with fixed address (i.e. peripheral)
1134  */
1135 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1136                                     struct pl08x_lli_build_data *bd,
1137                                     struct pl08x_bus_data **mbus,
1138                                     struct pl08x_bus_data **sbus,
1139                                     u32 cctl)
1140 {
1141         bool dst_incr;
1142         bool src_incr;
1143
1144         /*
1145          * The FTDMAC020 only supports memory-to-memory transfer, so
1146          * source and destination always increase.
1147          */
1148         if (pl08x->vd->ftdmac020) {
1149                 dst_incr = true;
1150                 src_incr = true;
1151         } else {
1152                 dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1153                 src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1154         }
1155
1156         /*
1157          * If either bus is not advancing, i.e. it is a peripheral, that
1158          * one becomes master
1159          */
1160         if (!dst_incr) {
1161                 *mbus = &bd->dstbus;
1162                 *sbus = &bd->srcbus;
1163         } else if (!src_incr) {
1164                 *mbus = &bd->srcbus;
1165                 *sbus = &bd->dstbus;
1166         } else {
1167                 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1168                         *mbus = &bd->dstbus;
1169                         *sbus = &bd->srcbus;
1170                 } else {
1171                         *mbus = &bd->srcbus;
1172                         *sbus = &bd->dstbus;
1173                 }
1174         }
1175 }
1176
1177 /*
1178  * Fills in one LLI for a certain transfer descriptor and advance the counter
1179  */
1180 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1181                                     struct pl08x_lli_build_data *bd,
1182                                     int num_llis, int len, u32 cctl, u32 cctl2)
1183 {
1184         u32 offset = num_llis * pl08x->lli_words;
1185         u32 *llis_va = bd->txd->llis_va + offset;
1186         dma_addr_t llis_bus = bd->txd->llis_bus;
1187
1188         BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1189
1190         /* Advance the offset to next LLI. */
1191         offset += pl08x->lli_words;
1192
1193         llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1194         llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1195         llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1196         llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1197         llis_va[PL080_LLI_CCTL] = cctl;
1198         if (pl08x->vd->pl080s)
1199                 llis_va[PL080S_LLI_CCTL2] = cctl2;
1200
1201         if (pl08x->vd->ftdmac020) {
1202                 /* FIXME: only memcpy so far so both increase */
1203                 bd->srcbus.addr += len;
1204                 bd->dstbus.addr += len;
1205         } else {
1206                 if (cctl & PL080_CONTROL_SRC_INCR)
1207                         bd->srcbus.addr += len;
1208                 if (cctl & PL080_CONTROL_DST_INCR)
1209                         bd->dstbus.addr += len;
1210         }
1211
1212         BUG_ON(bd->remainder < len);
1213
1214         bd->remainder -= len;
1215 }
1216
1217 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1218                         struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1219                         int num_llis, size_t *total_bytes)
1220 {
1221         *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1222         pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1223         (*total_bytes) += len;
1224 }
1225
1226 #if 1
1227 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1228                            const u32 *llis_va, int num_llis)
1229 {
1230         int i;
1231
1232         if (pl08x->vd->pl080s) {
1233                 dev_vdbg(&pl08x->adev->dev,
1234                         "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1235                         "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1236                 for (i = 0; i < num_llis; i++) {
1237                         dev_vdbg(&pl08x->adev->dev,
1238                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1239                                 i, llis_va, llis_va[PL080_LLI_SRC],
1240                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1241                                 llis_va[PL080_LLI_CCTL],
1242                                 llis_va[PL080S_LLI_CCTL2]);
1243                         llis_va += pl08x->lli_words;
1244                 }
1245         } else {
1246                 dev_vdbg(&pl08x->adev->dev,
1247                         "%-3s %-9s  %-10s %-10s %-10s %s\n",
1248                         "lli", "", "csrc", "cdst", "clli", "cctl");
1249                 for (i = 0; i < num_llis; i++) {
1250                         dev_vdbg(&pl08x->adev->dev,
1251                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1252                                 i, llis_va, llis_va[PL080_LLI_SRC],
1253                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1254                                 llis_va[PL080_LLI_CCTL]);
1255                         llis_va += pl08x->lli_words;
1256                 }
1257         }
1258 }
1259 #else
1260 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1261                                   const u32 *llis_va, int num_llis) {}
1262 #endif
1263
1264 /*
1265  * This fills in the table of LLIs for the transfer descriptor
1266  * Note that we assume we never have to change the burst sizes
1267  * Return 0 for error
1268  */
1269 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1270                               struct pl08x_txd *txd)
1271 {
1272         struct pl08x_bus_data *mbus, *sbus;
1273         struct pl08x_lli_build_data bd;
1274         int num_llis = 0;
1275         u32 cctl, early_bytes = 0;
1276         size_t max_bytes_per_lli, total_bytes;
1277         u32 *llis_va, *last_lli;
1278         struct pl08x_sg *dsg;
1279
1280         txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1281         if (!txd->llis_va) {
1282                 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1283                 return 0;
1284         }
1285
1286         bd.txd = txd;
1287         bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1288         cctl = txd->cctl;
1289
1290         /* Find maximum width of the source bus */
1291         bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1292
1293         /* Find maximum width of the destination bus */
1294         bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1295
1296         list_for_each_entry(dsg, &txd->dsg_list, node) {
1297                 total_bytes = 0;
1298                 cctl = txd->cctl;
1299
1300                 bd.srcbus.addr = dsg->src_addr;
1301                 bd.dstbus.addr = dsg->dst_addr;
1302                 bd.remainder = dsg->len;
1303                 bd.srcbus.buswidth = bd.srcbus.maxwidth;
1304                 bd.dstbus.buswidth = bd.dstbus.maxwidth;
1305
1306                 pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1307
1308                 dev_vdbg(&pl08x->adev->dev,
1309                         "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1310                         (u64)bd.srcbus.addr,
1311                         cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1312                         bd.srcbus.buswidth,
1313                         (u64)bd.dstbus.addr,
1314                         cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1315                         bd.dstbus.buswidth,
1316                         bd.remainder);
1317                 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1318                         mbus == &bd.srcbus ? "src" : "dst",
1319                         sbus == &bd.srcbus ? "src" : "dst");
1320
1321                 /*
1322                  * Zero length is only allowed if all these requirements are
1323                  * met:
1324                  * - flow controller is peripheral.
1325                  * - src.addr is aligned to src.width
1326                  * - dst.addr is aligned to dst.width
1327                  *
1328                  * sg_len == 1 should be true, as there can be two cases here:
1329                  *
1330                  * - Memory addresses are contiguous and are not scattered.
1331                  *   Here, Only one sg will be passed by user driver, with
1332                  *   memory address and zero length. We pass this to controller
1333                  *   and after the transfer it will receive the last burst
1334                  *   request from peripheral and so transfer finishes.
1335                  *
1336                  * - Memory addresses are scattered and are not contiguous.
1337                  *   Here, Obviously as DMA controller doesn't know when a lli's
1338                  *   transfer gets over, it can't load next lli. So in this
1339                  *   case, there has to be an assumption that only one lli is
1340                  *   supported. Thus, we can't have scattered addresses.
1341                  */
1342                 if (!bd.remainder) {
1343                         u32 fc;
1344
1345                         /* FTDMAC020 only does memory-to-memory */
1346                         if (pl08x->vd->ftdmac020)
1347                                 fc = PL080_FLOW_MEM2MEM;
1348                         else
1349                                 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1350                                         PL080_CONFIG_FLOW_CONTROL_SHIFT;
1351                         if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1352                                         (fc <= PL080_FLOW_SRC2DST_SRC))) {
1353                                 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1354                                         __func__);
1355                                 return 0;
1356                         }
1357
1358                         if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1359                                 !IS_BUS_ALIGNED(&bd.dstbus)) {
1360                                 dev_err(&pl08x->adev->dev,
1361                                         "%s src & dst address must be aligned to src"
1362                                         " & dst width if peripheral is flow controller",
1363                                         __func__);
1364                                 return 0;
1365                         }
1366
1367                         cctl = pl08x_lli_control_bits(pl08x, cctl,
1368                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1369                                         0);
1370                         pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1371                                         0, cctl, 0);
1372                         break;
1373                 }
1374
1375                 /*
1376                  * Send byte by byte for following cases
1377                  * - Less than a bus width available
1378                  * - until master bus is aligned
1379                  */
1380                 if (bd.remainder < mbus->buswidth)
1381                         early_bytes = bd.remainder;
1382                 else if (!IS_BUS_ALIGNED(mbus)) {
1383                         early_bytes = mbus->buswidth -
1384                                 (mbus->addr & (mbus->buswidth - 1));
1385                         if ((bd.remainder - early_bytes) < mbus->buswidth)
1386                                 early_bytes = bd.remainder;
1387                 }
1388
1389                 if (early_bytes) {
1390                         dev_vdbg(&pl08x->adev->dev,
1391                                 "%s byte width LLIs (remain 0x%08zx)\n",
1392                                 __func__, bd.remainder);
1393                         prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1394                                 num_llis++, &total_bytes);
1395                 }
1396
1397                 if (bd.remainder) {
1398                         /*
1399                          * Master now aligned
1400                          * - if slave is not then we must set its width down
1401                          */
1402                         if (!IS_BUS_ALIGNED(sbus)) {
1403                                 dev_dbg(&pl08x->adev->dev,
1404                                         "%s set down bus width to one byte\n",
1405                                         __func__);
1406
1407                                 sbus->buswidth = 1;
1408                         }
1409
1410                         /*
1411                          * Bytes transferred = tsize * src width, not
1412                          * MIN(buswidths)
1413                          */
1414                         max_bytes_per_lli = bd.srcbus.buswidth *
1415                                                 pl08x->vd->max_transfer_size;
1416                         dev_vdbg(&pl08x->adev->dev,
1417                                 "%s max bytes per lli = %zu\n",
1418                                 __func__, max_bytes_per_lli);
1419
1420                         /*
1421                          * Make largest possible LLIs until less than one bus
1422                          * width left
1423                          */
1424                         while (bd.remainder > (mbus->buswidth - 1)) {
1425                                 size_t lli_len, tsize, width;
1426
1427                                 /*
1428                                  * If enough left try to send max possible,
1429                                  * otherwise try to send the remainder
1430                                  */
1431                                 lli_len = min(bd.remainder, max_bytes_per_lli);
1432
1433                                 /*
1434                                  * Check against maximum bus alignment:
1435                                  * Calculate actual transfer size in relation to
1436                                  * bus width an get a maximum remainder of the
1437                                  * highest bus width - 1
1438                                  */
1439                                 width = max(mbus->buswidth, sbus->buswidth);
1440                                 lli_len = (lli_len / width) * width;
1441                                 tsize = lli_len / bd.srcbus.buswidth;
1442
1443                                 dev_vdbg(&pl08x->adev->dev,
1444                                         "%s fill lli with single lli chunk of "
1445                                         "size 0x%08zx (remainder 0x%08zx)\n",
1446                                         __func__, lli_len, bd.remainder);
1447
1448                                 cctl = pl08x_lli_control_bits(pl08x, cctl,
1449                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1450                                         tsize);
1451                                 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1452                                                 lli_len, cctl, tsize);
1453                                 total_bytes += lli_len;
1454                         }
1455
1456                         /*
1457                          * Send any odd bytes
1458                          */
1459                         if (bd.remainder) {
1460                                 dev_vdbg(&pl08x->adev->dev,
1461                                         "%s align with boundary, send odd bytes (remain %zu)\n",
1462                                         __func__, bd.remainder);
1463                                 prep_byte_width_lli(pl08x, &bd, &cctl,
1464                                         bd.remainder, num_llis++, &total_bytes);
1465                         }
1466                 }
1467
1468                 if (total_bytes != dsg->len) {
1469                         dev_err(&pl08x->adev->dev,
1470                                 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1471                                 __func__, total_bytes, dsg->len);
1472                         return 0;
1473                 }
1474
1475                 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1476                         dev_err(&pl08x->adev->dev,
1477                                 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1478                                 __func__, MAX_NUM_TSFR_LLIS);
1479                         return 0;
1480                 }
1481         }
1482
1483         llis_va = txd->llis_va;
1484         last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1485
1486         if (txd->cyclic) {
1487                 /* Link back to the first LLI. */
1488                 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1489         } else {
1490                 /* The final LLI terminates the LLI. */
1491                 last_lli[PL080_LLI_LLI] = 0;
1492                 /* The final LLI element shall also fire an interrupt. */
1493                 if (pl08x->vd->ftdmac020)
1494                         last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1495                 else
1496                         last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1497         }
1498
1499         pl08x_dump_lli(pl08x, llis_va, num_llis);
1500
1501         return num_llis;
1502 }
1503
1504 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1505                            struct pl08x_txd *txd)
1506 {
1507         struct pl08x_sg *dsg, *_dsg;
1508
1509         if (txd->llis_va)
1510                 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1511
1512         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1513                 list_del(&dsg->node);
1514                 kfree(dsg);
1515         }
1516
1517         kfree(txd);
1518 }
1519
1520 static void pl08x_desc_free(struct virt_dma_desc *vd)
1521 {
1522         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1523         struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1524
1525         dma_descriptor_unmap(&vd->tx);
1526         if (!txd->done)
1527                 pl08x_release_mux(plchan);
1528
1529         pl08x_free_txd(plchan->host, txd);
1530 }
1531
1532 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1533                                 struct pl08x_dma_chan *plchan)
1534 {
1535         LIST_HEAD(head);
1536
1537         vchan_get_all_descriptors(&plchan->vc, &head);
1538         vchan_dma_desc_free_list(&plchan->vc, &head);
1539 }
1540
1541 /*
1542  * The DMA ENGINE API
1543  */
1544 static void pl08x_free_chan_resources(struct dma_chan *chan)
1545 {
1546         /* Ensure all queued descriptors are freed */
1547         vchan_free_chan_resources(to_virt_chan(chan));
1548 }
1549
1550 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1551                 struct dma_chan *chan, unsigned long flags)
1552 {
1553         struct dma_async_tx_descriptor *retval = NULL;
1554
1555         return retval;
1556 }
1557
1558 /*
1559  * Code accessing dma_async_is_complete() in a tight loop may give problems.
1560  * If slaves are relying on interrupts to signal completion this function
1561  * must not be called with interrupts disabled.
1562  */
1563 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1564                 dma_cookie_t cookie, struct dma_tx_state *txstate)
1565 {
1566         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1567         struct virt_dma_desc *vd;
1568         unsigned long flags;
1569         enum dma_status ret;
1570         size_t bytes = 0;
1571
1572         ret = dma_cookie_status(chan, cookie, txstate);
1573         if (ret == DMA_COMPLETE)
1574                 return ret;
1575
1576         /*
1577          * There's no point calculating the residue if there's
1578          * no txstate to store the value.
1579          */
1580         if (!txstate) {
1581                 if (plchan->state == PL08X_CHAN_PAUSED)
1582                         ret = DMA_PAUSED;
1583                 return ret;
1584         }
1585
1586         spin_lock_irqsave(&plchan->vc.lock, flags);
1587         ret = dma_cookie_status(chan, cookie, txstate);
1588         if (ret != DMA_COMPLETE) {
1589                 vd = vchan_find_desc(&plchan->vc, cookie);
1590                 if (vd) {
1591                         /* On the issued list, so hasn't been processed yet */
1592                         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1593                         struct pl08x_sg *dsg;
1594
1595                         list_for_each_entry(dsg, &txd->dsg_list, node)
1596                                 bytes += dsg->len;
1597                 } else {
1598                         bytes = pl08x_getbytes_chan(plchan);
1599                 }
1600         }
1601         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1602
1603         /*
1604          * This cookie not complete yet
1605          * Get number of bytes left in the active transactions and queue
1606          */
1607         dma_set_residue(txstate, bytes);
1608
1609         if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1610                 ret = DMA_PAUSED;
1611
1612         /* Whether waiting or running, we're in progress */
1613         return ret;
1614 }
1615
1616 /* PrimeCell DMA extension */
1617 struct burst_table {
1618         u32 burstwords;
1619         u32 reg;
1620 };
1621
1622 static const struct burst_table burst_sizes[] = {
1623         {
1624                 .burstwords = 256,
1625                 .reg = PL080_BSIZE_256,
1626         },
1627         {
1628                 .burstwords = 128,
1629                 .reg = PL080_BSIZE_128,
1630         },
1631         {
1632                 .burstwords = 64,
1633                 .reg = PL080_BSIZE_64,
1634         },
1635         {
1636                 .burstwords = 32,
1637                 .reg = PL080_BSIZE_32,
1638         },
1639         {
1640                 .burstwords = 16,
1641                 .reg = PL080_BSIZE_16,
1642         },
1643         {
1644                 .burstwords = 8,
1645                 .reg = PL080_BSIZE_8,
1646         },
1647         {
1648                 .burstwords = 4,
1649                 .reg = PL080_BSIZE_4,
1650         },
1651         {
1652                 .burstwords = 0,
1653                 .reg = PL080_BSIZE_1,
1654         },
1655 };
1656
1657 /*
1658  * Given the source and destination available bus masks, select which
1659  * will be routed to each port.  We try to have source and destination
1660  * on separate ports, but always respect the allowable settings.
1661  */
1662 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1663 {
1664         u32 cctl = 0;
1665         u32 dst_ahb2;
1666         u32 src_ahb2;
1667
1668         /* The FTDMAC020 use different bits to indicate src/dst bus */
1669         if (ftdmac020) {
1670                 dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1671                 src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1672         } else {
1673                 dst_ahb2 = PL080_CONTROL_DST_AHB2;
1674                 src_ahb2 = PL080_CONTROL_SRC_AHB2;
1675         }
1676
1677         if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1678                 cctl |= dst_ahb2;
1679         if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1680                 cctl |= src_ahb2;
1681
1682         return cctl;
1683 }
1684
1685 static u32 pl08x_cctl(u32 cctl)
1686 {
1687         cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1688                   PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1689                   PL080_CONTROL_PROT_MASK);
1690
1691         /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1692         return cctl | PL080_CONTROL_PROT_SYS;
1693 }
1694
1695 static u32 pl08x_width(enum dma_slave_buswidth width)
1696 {
1697         switch (width) {
1698         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1699                 return PL080_WIDTH_8BIT;
1700         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1701                 return PL080_WIDTH_16BIT;
1702         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1703                 return PL080_WIDTH_32BIT;
1704         default:
1705                 return ~0;
1706         }
1707 }
1708
1709 static u32 pl08x_burst(u32 maxburst)
1710 {
1711         int i;
1712
1713         for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1714                 if (burst_sizes[i].burstwords <= maxburst)
1715                         break;
1716
1717         return burst_sizes[i].reg;
1718 }
1719
1720 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1721         enum dma_slave_buswidth addr_width, u32 maxburst)
1722 {
1723         u32 width, burst, cctl = 0;
1724
1725         width = pl08x_width(addr_width);
1726         if (width == ~0)
1727                 return ~0;
1728
1729         cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1730         cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1731
1732         /*
1733          * If this channel will only request single transfers, set this
1734          * down to ONE element.  Also select one element if no maxburst
1735          * is specified.
1736          */
1737         if (plchan->cd->single)
1738                 maxburst = 1;
1739
1740         burst = pl08x_burst(maxburst);
1741         cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1742         cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1743
1744         return pl08x_cctl(cctl);
1745 }
1746
1747 /*
1748  * Slave transactions callback to the slave device to allow
1749  * synchronization of slave DMA signals with the DMAC enable
1750  */
1751 static void pl08x_issue_pending(struct dma_chan *chan)
1752 {
1753         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1754         unsigned long flags;
1755
1756         spin_lock_irqsave(&plchan->vc.lock, flags);
1757         if (vchan_issue_pending(&plchan->vc)) {
1758                 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1759                         pl08x_phy_alloc_and_start(plchan);
1760         }
1761         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1762 }
1763
1764 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1765 {
1766         struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1767
1768         if (txd)
1769                 INIT_LIST_HEAD(&txd->dsg_list);
1770         return txd;
1771 }
1772
1773 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1774 {
1775         u32 cctl = 0;
1776
1777         /* Conjure cctl */
1778         switch (pl08x->pd->memcpy_burst_size) {
1779         default:
1780                 dev_err(&pl08x->adev->dev,
1781                         "illegal burst size for memcpy, set to 1\n");
1782                 /* Fall through */
1783         case PL08X_BURST_SZ_1:
1784                 cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1785                         PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1786                 break;
1787         case PL08X_BURST_SZ_4:
1788                 cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1789                         PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1790                 break;
1791         case PL08X_BURST_SZ_8:
1792                 cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1793                         PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1794                 break;
1795         case PL08X_BURST_SZ_16:
1796                 cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1797                         PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1798                 break;
1799         case PL08X_BURST_SZ_32:
1800                 cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1801                         PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1802                 break;
1803         case PL08X_BURST_SZ_64:
1804                 cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1805                         PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1806                 break;
1807         case PL08X_BURST_SZ_128:
1808                 cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1809                         PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1810                 break;
1811         case PL08X_BURST_SZ_256:
1812                 cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1813                         PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1814                 break;
1815         }
1816
1817         switch (pl08x->pd->memcpy_bus_width) {
1818         default:
1819                 dev_err(&pl08x->adev->dev,
1820                         "illegal bus width for memcpy, set to 8 bits\n");
1821                 /* Fall through */
1822         case PL08X_BUS_WIDTH_8_BITS:
1823                 cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1824                         PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1825                 break;
1826         case PL08X_BUS_WIDTH_16_BITS:
1827                 cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1828                         PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1829                 break;
1830         case PL08X_BUS_WIDTH_32_BITS:
1831                 cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1832                         PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1833                 break;
1834         }
1835
1836         /* Protection flags */
1837         if (pl08x->pd->memcpy_prot_buff)
1838                 cctl |= PL080_CONTROL_PROT_BUFF;
1839         if (pl08x->pd->memcpy_prot_cache)
1840                 cctl |= PL080_CONTROL_PROT_CACHE;
1841
1842         /* We are the kernel, so we are in privileged mode */
1843         cctl |= PL080_CONTROL_PROT_SYS;
1844
1845         /* Both to be incremented or the code will break */
1846         cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1847
1848         if (pl08x->vd->dualmaster)
1849                 cctl |= pl08x_select_bus(false,
1850                                          pl08x->mem_buses,
1851                                          pl08x->mem_buses);
1852
1853         return cctl;
1854 }
1855
1856 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1857 {
1858         u32 cctl = 0;
1859
1860         /* Conjure cctl */
1861         switch (pl08x->pd->memcpy_bus_width) {
1862         default:
1863                 dev_err(&pl08x->adev->dev,
1864                         "illegal bus width for memcpy, set to 8 bits\n");
1865                 /* Fall through */
1866         case PL08X_BUS_WIDTH_8_BITS:
1867                 cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1868                         PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1869                 break;
1870         case PL08X_BUS_WIDTH_16_BITS:
1871                 cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1872                         PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1873                 break;
1874         case PL08X_BUS_WIDTH_32_BITS:
1875                 cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1876                         PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1877                 break;
1878         }
1879
1880         /*
1881          * By default mask the TC IRQ on all LLIs, it will be unmasked on
1882          * the last LLI item by other code.
1883          */
1884         cctl |= FTDMAC020_LLI_TC_MSK;
1885
1886         /*
1887          * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1888          * and FTDMAC020_LLI_DSTAD_CTL as zero
1889          */
1890         if (pl08x->vd->dualmaster)
1891                 cctl |= pl08x_select_bus(true,
1892                                          pl08x->mem_buses,
1893                                          pl08x->mem_buses);
1894
1895         return cctl;
1896 }
1897
1898 /*
1899  * Initialize a descriptor to be used by memcpy submit
1900  */
1901 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1902                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1903                 size_t len, unsigned long flags)
1904 {
1905         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1906         struct pl08x_driver_data *pl08x = plchan->host;
1907         struct pl08x_txd *txd;
1908         struct pl08x_sg *dsg;
1909         int ret;
1910
1911         txd = pl08x_get_txd(plchan);
1912         if (!txd) {
1913                 dev_err(&pl08x->adev->dev,
1914                         "%s no memory for descriptor\n", __func__);
1915                 return NULL;
1916         }
1917
1918         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1919         if (!dsg) {
1920                 pl08x_free_txd(pl08x, txd);
1921                 return NULL;
1922         }
1923         list_add_tail(&dsg->node, &txd->dsg_list);
1924
1925         dsg->src_addr = src;
1926         dsg->dst_addr = dest;
1927         dsg->len = len;
1928         if (pl08x->vd->ftdmac020) {
1929                 /* Writing CCFG zero ENABLES all interrupts */
1930                 txd->ccfg = 0;
1931                 txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1932         } else {
1933                 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1934                         PL080_CONFIG_TC_IRQ_MASK |
1935                         PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1936                 txd->cctl = pl08x_memcpy_cctl(pl08x);
1937         }
1938
1939         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1940         if (!ret) {
1941                 pl08x_free_txd(pl08x, txd);
1942                 return NULL;
1943         }
1944
1945         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1946 }
1947
1948 static struct pl08x_txd *pl08x_init_txd(
1949                 struct dma_chan *chan,
1950                 enum dma_transfer_direction direction,
1951                 dma_addr_t *slave_addr)
1952 {
1953         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1954         struct pl08x_driver_data *pl08x = plchan->host;
1955         struct pl08x_txd *txd;
1956         enum dma_slave_buswidth addr_width;
1957         int ret, tmp;
1958         u8 src_buses, dst_buses;
1959         u32 maxburst, cctl;
1960
1961         txd = pl08x_get_txd(plchan);
1962         if (!txd) {
1963                 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1964                 return NULL;
1965         }
1966
1967         /*
1968          * Set up addresses, the PrimeCell configured address
1969          * will take precedence since this may configure the
1970          * channel target address dynamically at runtime.
1971          */
1972         if (direction == DMA_MEM_TO_DEV) {
1973                 cctl = PL080_CONTROL_SRC_INCR;
1974                 *slave_addr = plchan->cfg.dst_addr;
1975                 addr_width = plchan->cfg.dst_addr_width;
1976                 maxburst = plchan->cfg.dst_maxburst;
1977                 src_buses = pl08x->mem_buses;
1978                 dst_buses = plchan->cd->periph_buses;
1979         } else if (direction == DMA_DEV_TO_MEM) {
1980                 cctl = PL080_CONTROL_DST_INCR;
1981                 *slave_addr = plchan->cfg.src_addr;
1982                 addr_width = plchan->cfg.src_addr_width;
1983                 maxburst = plchan->cfg.src_maxburst;
1984                 src_buses = plchan->cd->periph_buses;
1985                 dst_buses = pl08x->mem_buses;
1986         } else {
1987                 pl08x_free_txd(pl08x, txd);
1988                 dev_err(&pl08x->adev->dev,
1989                         "%s direction unsupported\n", __func__);
1990                 return NULL;
1991         }
1992
1993         cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1994         if (cctl == ~0) {
1995                 pl08x_free_txd(pl08x, txd);
1996                 dev_err(&pl08x->adev->dev,
1997                         "DMA slave configuration botched?\n");
1998                 return NULL;
1999         }
2000
2001         txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
2002
2003         if (plchan->cfg.device_fc)
2004                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
2005                         PL080_FLOW_PER2MEM_PER;
2006         else
2007                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
2008                         PL080_FLOW_PER2MEM;
2009
2010         txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
2011                 PL080_CONFIG_TC_IRQ_MASK |
2012                 tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2013
2014         ret = pl08x_request_mux(plchan);
2015         if (ret < 0) {
2016                 pl08x_free_txd(pl08x, txd);
2017                 dev_dbg(&pl08x->adev->dev,
2018                         "unable to mux for transfer on %s due to platform restrictions\n",
2019                         plchan->name);
2020                 return NULL;
2021         }
2022
2023         dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2024                  plchan->signal, plchan->name);
2025
2026         /* Assign the flow control signal to this channel */
2027         if (direction == DMA_MEM_TO_DEV)
2028                 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2029         else
2030                 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2031
2032         return txd;
2033 }
2034
2035 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2036                            enum dma_transfer_direction direction,
2037                            dma_addr_t slave_addr,
2038                            dma_addr_t buf_addr,
2039                            unsigned int len)
2040 {
2041         struct pl08x_sg *dsg;
2042
2043         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2044         if (!dsg)
2045                 return -ENOMEM;
2046
2047         list_add_tail(&dsg->node, &txd->dsg_list);
2048
2049         dsg->len = len;
2050         if (direction == DMA_MEM_TO_DEV) {
2051                 dsg->src_addr = buf_addr;
2052                 dsg->dst_addr = slave_addr;
2053         } else {
2054                 dsg->src_addr = slave_addr;
2055                 dsg->dst_addr = buf_addr;
2056         }
2057
2058         return 0;
2059 }
2060
2061 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2062                 struct dma_chan *chan, struct scatterlist *sgl,
2063                 unsigned int sg_len, enum dma_transfer_direction direction,
2064                 unsigned long flags, void *context)
2065 {
2066         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2067         struct pl08x_driver_data *pl08x = plchan->host;
2068         struct pl08x_txd *txd;
2069         struct scatterlist *sg;
2070         int ret, tmp;
2071         dma_addr_t slave_addr;
2072
2073         dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2074                         __func__, sg_dma_len(sgl), plchan->name);
2075
2076         txd = pl08x_init_txd(chan, direction, &slave_addr);
2077         if (!txd)
2078                 return NULL;
2079
2080         for_each_sg(sgl, sg, sg_len, tmp) {
2081                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2082                                       sg_dma_address(sg),
2083                                       sg_dma_len(sg));
2084                 if (ret) {
2085                         pl08x_release_mux(plchan);
2086                         pl08x_free_txd(pl08x, txd);
2087                         dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2088                                         __func__);
2089                         return NULL;
2090                 }
2091         }
2092
2093         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2094         if (!ret) {
2095                 pl08x_release_mux(plchan);
2096                 pl08x_free_txd(pl08x, txd);
2097                 return NULL;
2098         }
2099
2100         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2101 }
2102
2103 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2104                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2105                 size_t period_len, enum dma_transfer_direction direction,
2106                 unsigned long flags)
2107 {
2108         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2109         struct pl08x_driver_data *pl08x = plchan->host;
2110         struct pl08x_txd *txd;
2111         int ret, tmp;
2112         dma_addr_t slave_addr;
2113
2114         dev_dbg(&pl08x->adev->dev,
2115                 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2116                 __func__, period_len, buf_len,
2117                 direction == DMA_MEM_TO_DEV ? "to" : "from",
2118                 plchan->name);
2119
2120         txd = pl08x_init_txd(chan, direction, &slave_addr);
2121         if (!txd)
2122                 return NULL;
2123
2124         txd->cyclic = true;
2125         txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2126         for (tmp = 0; tmp < buf_len; tmp += period_len) {
2127                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2128                                       buf_addr + tmp, period_len);
2129                 if (ret) {
2130                         pl08x_release_mux(plchan);
2131                         pl08x_free_txd(pl08x, txd);
2132                         return NULL;
2133                 }
2134         }
2135
2136         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2137         if (!ret) {
2138                 pl08x_release_mux(plchan);
2139                 pl08x_free_txd(pl08x, txd);
2140                 return NULL;
2141         }
2142
2143         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2144 }
2145
2146 static int pl08x_config(struct dma_chan *chan,
2147                         struct dma_slave_config *config)
2148 {
2149         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2150         struct pl08x_driver_data *pl08x = plchan->host;
2151
2152         if (!plchan->slave)
2153                 return -EINVAL;
2154
2155         /* Reject definitely invalid configurations */
2156         if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2157             config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2158                 return -EINVAL;
2159
2160         if (config->device_fc && pl08x->vd->pl080s) {
2161                 dev_err(&pl08x->adev->dev,
2162                         "%s: PL080S does not support peripheral flow control\n",
2163                         __func__);
2164                 return -EINVAL;
2165         }
2166
2167         plchan->cfg = *config;
2168
2169         return 0;
2170 }
2171
2172 static int pl08x_terminate_all(struct dma_chan *chan)
2173 {
2174         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2175         struct pl08x_driver_data *pl08x = plchan->host;
2176         unsigned long flags;
2177
2178         spin_lock_irqsave(&plchan->vc.lock, flags);
2179         if (!plchan->phychan && !plchan->at) {
2180                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2181                 return 0;
2182         }
2183
2184         plchan->state = PL08X_CHAN_IDLE;
2185
2186         if (plchan->phychan) {
2187                 /*
2188                  * Mark physical channel as free and free any slave
2189                  * signal
2190                  */
2191                 pl08x_phy_free(plchan);
2192         }
2193         /* Dequeue jobs and free LLIs */
2194         if (plchan->at) {
2195                 vchan_terminate_vdesc(&plchan->at->vd);
2196                 plchan->at = NULL;
2197         }
2198         /* Dequeue jobs not yet fired as well */
2199         pl08x_free_txd_list(pl08x, plchan);
2200
2201         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2202
2203         return 0;
2204 }
2205
2206 static void pl08x_synchronize(struct dma_chan *chan)
2207 {
2208         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2209
2210         vchan_synchronize(&plchan->vc);
2211 }
2212
2213 static int pl08x_pause(struct dma_chan *chan)
2214 {
2215         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2216         unsigned long flags;
2217
2218         /*
2219          * Anything succeeds on channels with no physical allocation and
2220          * no queued transfers.
2221          */
2222         spin_lock_irqsave(&plchan->vc.lock, flags);
2223         if (!plchan->phychan && !plchan->at) {
2224                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2225                 return 0;
2226         }
2227
2228         pl08x_pause_phy_chan(plchan->phychan);
2229         plchan->state = PL08X_CHAN_PAUSED;
2230
2231         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2232
2233         return 0;
2234 }
2235
2236 static int pl08x_resume(struct dma_chan *chan)
2237 {
2238         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2239         unsigned long flags;
2240
2241         /*
2242          * Anything succeeds on channels with no physical allocation and
2243          * no queued transfers.
2244          */
2245         spin_lock_irqsave(&plchan->vc.lock, flags);
2246         if (!plchan->phychan && !plchan->at) {
2247                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2248                 return 0;
2249         }
2250
2251         pl08x_resume_phy_chan(plchan->phychan);
2252         plchan->state = PL08X_CHAN_RUNNING;
2253
2254         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2255
2256         return 0;
2257 }
2258
2259 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2260 {
2261         struct pl08x_dma_chan *plchan;
2262         char *name = chan_id;
2263
2264         /* Reject channels for devices not bound to this driver */
2265         if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2266                 return false;
2267
2268         plchan = to_pl08x_chan(chan);
2269
2270         /* Check that the channel is not taken! */
2271         if (!strcmp(plchan->name, name))
2272                 return true;
2273
2274         return false;
2275 }
2276 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2277
2278 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2279 {
2280         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2281
2282         return plchan->cd == chan_id;
2283 }
2284
2285 /*
2286  * Just check that the device is there and active
2287  * TODO: turn this bit on/off depending on the number of physical channels
2288  * actually used, if it is zero... well shut it off. That will save some
2289  * power. Cut the clock at the same time.
2290  */
2291 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2292 {
2293         /* The Nomadik variant does not have the config register */
2294         if (pl08x->vd->nomadik)
2295                 return;
2296         /* The FTDMAC020 variant does this in another register */
2297         if (pl08x->vd->ftdmac020) {
2298                 writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2299                 return;
2300         }
2301         writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2302 }
2303
2304 static irqreturn_t pl08x_irq(int irq, void *dev)
2305 {
2306         struct pl08x_driver_data *pl08x = dev;
2307         u32 mask = 0, err, tc, i;
2308
2309         /* check & clear - ERR & TC interrupts */
2310         err = readl(pl08x->base + PL080_ERR_STATUS);
2311         if (err) {
2312                 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2313                         __func__, err);
2314                 writel(err, pl08x->base + PL080_ERR_CLEAR);
2315         }
2316         tc = readl(pl08x->base + PL080_TC_STATUS);
2317         if (tc)
2318                 writel(tc, pl08x->base + PL080_TC_CLEAR);
2319
2320         if (!err && !tc)
2321                 return IRQ_NONE;
2322
2323         for (i = 0; i < pl08x->vd->channels; i++) {
2324                 if ((BIT(i) & err) || (BIT(i) & tc)) {
2325                         /* Locate physical channel */
2326                         struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2327                         struct pl08x_dma_chan *plchan = phychan->serving;
2328                         struct pl08x_txd *tx;
2329
2330                         if (!plchan) {
2331                                 dev_err(&pl08x->adev->dev,
2332                                         "%s Error TC interrupt on unused channel: 0x%08x\n",
2333                                         __func__, i);
2334                                 continue;
2335                         }
2336
2337                         spin_lock(&plchan->vc.lock);
2338                         tx = plchan->at;
2339                         if (tx && tx->cyclic) {
2340                                 vchan_cyclic_callback(&tx->vd);
2341                         } else if (tx) {
2342                                 plchan->at = NULL;
2343                                 /*
2344                                  * This descriptor is done, release its mux
2345                                  * reservation.
2346                                  */
2347                                 pl08x_release_mux(plchan);
2348                                 tx->done = true;
2349                                 vchan_cookie_complete(&tx->vd);
2350
2351                                 /*
2352                                  * And start the next descriptor (if any),
2353                                  * otherwise free this channel.
2354                                  */
2355                                 if (vchan_next_desc(&plchan->vc))
2356                                         pl08x_start_next_txd(plchan);
2357                                 else
2358                                         pl08x_phy_free(plchan);
2359                         }
2360                         spin_unlock(&plchan->vc.lock);
2361
2362                         mask |= BIT(i);
2363                 }
2364         }
2365
2366         return mask ? IRQ_HANDLED : IRQ_NONE;
2367 }
2368
2369 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2370 {
2371         chan->slave = true;
2372         chan->name = chan->cd->bus_id;
2373         chan->cfg.src_addr = chan->cd->addr;
2374         chan->cfg.dst_addr = chan->cd->addr;
2375 }
2376
2377 /*
2378  * Initialise the DMAC memcpy/slave channels.
2379  * Make a local wrapper to hold required data
2380  */
2381 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2382                 struct dma_device *dmadev, unsigned int channels, bool slave)
2383 {
2384         struct pl08x_dma_chan *chan;
2385         int i;
2386
2387         INIT_LIST_HEAD(&dmadev->channels);
2388
2389         /*
2390          * Register as many many memcpy as we have physical channels,
2391          * we won't always be able to use all but the code will have
2392          * to cope with that situation.
2393          */
2394         for (i = 0; i < channels; i++) {
2395                 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2396                 if (!chan)
2397                         return -ENOMEM;
2398
2399                 chan->host = pl08x;
2400                 chan->state = PL08X_CHAN_IDLE;
2401                 chan->signal = -1;
2402
2403                 if (slave) {
2404                         chan->cd = &pl08x->pd->slave_channels[i];
2405                         /*
2406                          * Some implementations have muxed signals, whereas some
2407                          * use a mux in front of the signals and need dynamic
2408                          * assignment of signals.
2409                          */
2410                         chan->signal = i;
2411                         pl08x_dma_slave_init(chan);
2412                 } else {
2413                         chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2414                         if (!chan->cd) {
2415                                 kfree(chan);
2416                                 return -ENOMEM;
2417                         }
2418                         chan->cd->bus_id = "memcpy";
2419                         chan->cd->periph_buses = pl08x->pd->mem_buses;
2420                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2421                         if (!chan->name) {
2422                                 kfree(chan->cd);
2423                                 kfree(chan);
2424                                 return -ENOMEM;
2425                         }
2426                 }
2427                 dev_dbg(&pl08x->adev->dev,
2428                          "initialize virtual channel \"%s\"\n",
2429                          chan->name);
2430
2431                 chan->vc.desc_free = pl08x_desc_free;
2432                 vchan_init(&chan->vc, dmadev);
2433         }
2434         dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2435                  i, slave ? "slave" : "memcpy");
2436         return i;
2437 }
2438
2439 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2440 {
2441         struct pl08x_dma_chan *chan = NULL;
2442         struct pl08x_dma_chan *next;
2443
2444         list_for_each_entry_safe(chan,
2445                                  next, &dmadev->channels, vc.chan.device_node) {
2446                 list_del(&chan->vc.chan.device_node);
2447                 kfree(chan);
2448         }
2449 }
2450
2451 #ifdef CONFIG_DEBUG_FS
2452 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2453 {
2454         switch (state) {
2455         case PL08X_CHAN_IDLE:
2456                 return "idle";
2457         case PL08X_CHAN_RUNNING:
2458                 return "running";
2459         case PL08X_CHAN_PAUSED:
2460                 return "paused";
2461         case PL08X_CHAN_WAITING:
2462                 return "waiting";
2463         default:
2464                 break;
2465         }
2466         return "UNKNOWN STATE";
2467 }
2468
2469 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2470 {
2471         struct pl08x_driver_data *pl08x = s->private;
2472         struct pl08x_dma_chan *chan;
2473         struct pl08x_phy_chan *ch;
2474         unsigned long flags;
2475         int i;
2476
2477         seq_printf(s, "PL08x physical channels:\n");
2478         seq_printf(s, "CHANNEL:\tUSER:\n");
2479         seq_printf(s, "--------\t-----\n");
2480         for (i = 0; i < pl08x->vd->channels; i++) {
2481                 struct pl08x_dma_chan *virt_chan;
2482
2483                 ch = &pl08x->phy_chans[i];
2484
2485                 spin_lock_irqsave(&ch->lock, flags);
2486                 virt_chan = ch->serving;
2487
2488                 seq_printf(s, "%d\t\t%s%s\n",
2489                            ch->id,
2490                            virt_chan ? virt_chan->name : "(none)",
2491                            ch->locked ? " LOCKED" : "");
2492
2493                 spin_unlock_irqrestore(&ch->lock, flags);
2494         }
2495
2496         seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2497         seq_printf(s, "CHANNEL:\tSTATE:\n");
2498         seq_printf(s, "--------\t------\n");
2499         list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2500                 seq_printf(s, "%s\t\t%s\n", chan->name,
2501                            pl08x_state_str(chan->state));
2502         }
2503
2504         if (pl08x->has_slave) {
2505                 seq_printf(s, "\nPL08x virtual slave channels:\n");
2506                 seq_printf(s, "CHANNEL:\tSTATE:\n");
2507                 seq_printf(s, "--------\t------\n");
2508                 list_for_each_entry(chan, &pl08x->slave.channels,
2509                                     vc.chan.device_node) {
2510                         seq_printf(s, "%s\t\t%s\n", chan->name,
2511                                    pl08x_state_str(chan->state));
2512                 }
2513         }
2514
2515         return 0;
2516 }
2517
2518 DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2519
2520 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2521 {
2522         /* Expose a simple debugfs interface to view all clocks */
2523         (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2524                         S_IFREG | S_IRUGO, NULL, pl08x,
2525                         &pl08x_debugfs_fops);
2526 }
2527
2528 #else
2529 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2530 {
2531 }
2532 #endif
2533
2534 #ifdef CONFIG_OF
2535 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2536                                          u32 id)
2537 {
2538         struct pl08x_dma_chan *chan;
2539
2540         /* Trying to get a slave channel from something with no slave support */
2541         if (!pl08x->has_slave)
2542                 return NULL;
2543
2544         list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2545                 if (chan->signal == id)
2546                         return &chan->vc.chan;
2547         }
2548
2549         return NULL;
2550 }
2551
2552 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2553                                        struct of_dma *ofdma)
2554 {
2555         struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2556         struct dma_chan *dma_chan;
2557         struct pl08x_dma_chan *plchan;
2558
2559         if (!pl08x)
2560                 return NULL;
2561
2562         if (dma_spec->args_count != 2) {
2563                 dev_err(&pl08x->adev->dev,
2564                         "DMA channel translation requires two cells\n");
2565                 return NULL;
2566         }
2567
2568         dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2569         if (!dma_chan) {
2570                 dev_err(&pl08x->adev->dev,
2571                         "DMA slave channel not found\n");
2572                 return NULL;
2573         }
2574
2575         plchan = to_pl08x_chan(dma_chan);
2576         dev_dbg(&pl08x->adev->dev,
2577                 "translated channel for signal %d\n",
2578                 dma_spec->args[0]);
2579
2580         /* Augment channel data for applicable AHB buses */
2581         plchan->cd->periph_buses = dma_spec->args[1];
2582         return dma_get_slave_channel(dma_chan);
2583 }
2584
2585 static int pl08x_of_probe(struct amba_device *adev,
2586                           struct pl08x_driver_data *pl08x,
2587                           struct device_node *np)
2588 {
2589         struct pl08x_platform_data *pd;
2590         struct pl08x_channel_data *chanp = NULL;
2591         u32 val;
2592         int ret;
2593         int i;
2594
2595         pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2596         if (!pd)
2597                 return -ENOMEM;
2598
2599         /* Eligible bus masters for fetching LLIs */
2600         if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2601                 pd->lli_buses |= PL08X_AHB1;
2602         if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2603                 pd->lli_buses |= PL08X_AHB2;
2604         if (!pd->lli_buses) {
2605                 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2606                 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2607         }
2608
2609         /* Eligible bus masters for memory access */
2610         if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2611                 pd->mem_buses |= PL08X_AHB1;
2612         if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2613                 pd->mem_buses |= PL08X_AHB2;
2614         if (!pd->mem_buses) {
2615                 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2616                 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2617         }
2618
2619         /* Parse the memcpy channel properties */
2620         ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2621         if (ret) {
2622                 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2623                 val = 1;
2624         }
2625         switch (val) {
2626         default:
2627                 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2628                 /* Fall through */
2629         case 1:
2630                 pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2631                 break;
2632         case 4:
2633                 pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2634                 break;
2635         case 8:
2636                 pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2637                 break;
2638         case 16:
2639                 pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2640                 break;
2641         case 32:
2642                 pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2643                 break;
2644         case 64:
2645                 pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2646                 break;
2647         case 128:
2648                 pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2649                 break;
2650         case 256:
2651                 pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2652                 break;
2653         }
2654
2655         ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2656         if (ret) {
2657                 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2658                 val = 8;
2659         }
2660         switch (val) {
2661         default:
2662                 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2663                 /* Fall through */
2664         case 8:
2665                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2666                 break;
2667         case 16:
2668                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2669                 break;
2670         case 32:
2671                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2672                 break;
2673         }
2674
2675         /*
2676          * Allocate channel data for all possible slave channels (one
2677          * for each possible signal), channels will then be allocated
2678          * for a device and have it's AHB interfaces set up at
2679          * translation time.
2680          */
2681         if (pl08x->vd->signals) {
2682                 chanp = devm_kcalloc(&adev->dev,
2683                                      pl08x->vd->signals,
2684                                      sizeof(struct pl08x_channel_data),
2685                                      GFP_KERNEL);
2686                 if (!chanp)
2687                         return -ENOMEM;
2688
2689                 pd->slave_channels = chanp;
2690                 for (i = 0; i < pl08x->vd->signals; i++) {
2691                         /*
2692                          * chanp->periph_buses will be assigned at translation
2693                          */
2694                         chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2695                         chanp++;
2696                 }
2697                 pd->num_slave_channels = pl08x->vd->signals;
2698         }
2699
2700         pl08x->pd = pd;
2701
2702         return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2703                                           pl08x);
2704 }
2705 #else
2706 static inline int pl08x_of_probe(struct amba_device *adev,
2707                                  struct pl08x_driver_data *pl08x,
2708                                  struct device_node *np)
2709 {
2710         return -EINVAL;
2711 }
2712 #endif
2713
2714 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2715 {
2716         struct pl08x_driver_data *pl08x;
2717         struct vendor_data *vd = id->data;
2718         struct device_node *np = adev->dev.of_node;
2719         u32 tsfr_size;
2720         int ret = 0;
2721         int i;
2722
2723         ret = amba_request_regions(adev, NULL);
2724         if (ret)
2725                 return ret;
2726
2727         /* Ensure that we can do DMA */
2728         ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2729         if (ret)
2730                 goto out_no_pl08x;
2731
2732         /* Create the driver state holder */
2733         pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2734         if (!pl08x) {
2735                 ret = -ENOMEM;
2736                 goto out_no_pl08x;
2737         }
2738
2739         /* Assign useful pointers to the driver state */
2740         pl08x->adev = adev;
2741         pl08x->vd = vd;
2742
2743         pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2744         if (!pl08x->base) {
2745                 ret = -ENOMEM;
2746                 goto out_no_ioremap;
2747         }
2748
2749         if (vd->ftdmac020) {
2750                 u32 val;
2751
2752                 val = readl(pl08x->base + FTDMAC020_REVISION);
2753                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2754                          (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2755                 val = readl(pl08x->base + FTDMAC020_FEATURE);
2756                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2757                          "%s built-in bridge, %s, %s linked lists\n",
2758                          (val >> 12) & 0x0f,
2759                          (val & BIT(10)) ? "no" : "has",
2760                          (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2761                          (val & BIT(8)) ? "supports" : "does not support");
2762
2763                 /* Vendor data from feature register */
2764                 if (!(val & BIT(8)))
2765                         dev_warn(&pl08x->adev->dev,
2766                                  "linked lists not supported, required\n");
2767                 vd->channels = (val >> 12) & 0x0f;
2768                 vd->dualmaster = !!(val & BIT(9));
2769         }
2770
2771         /* Initialize memcpy engine */
2772         dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2773         pl08x->memcpy.dev = &adev->dev;
2774         pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2775         pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2776         pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2777         pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2778         pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2779         pl08x->memcpy.device_config = pl08x_config;
2780         pl08x->memcpy.device_pause = pl08x_pause;
2781         pl08x->memcpy.device_resume = pl08x_resume;
2782         pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2783         pl08x->memcpy.device_synchronize = pl08x_synchronize;
2784         pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2785         pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2786         pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2787         pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2788         if (vd->ftdmac020)
2789                 pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2790
2791
2792         /*
2793          * Initialize slave engine, if the block has no signals, that means
2794          * we have no slave support.
2795          */
2796         if (vd->signals) {
2797                 pl08x->has_slave = true;
2798                 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2799                 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2800                 pl08x->slave.dev = &adev->dev;
2801                 pl08x->slave.device_free_chan_resources =
2802                         pl08x_free_chan_resources;
2803                 pl08x->slave.device_prep_dma_interrupt =
2804                         pl08x_prep_dma_interrupt;
2805                 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2806                 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2807                 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2808                 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2809                 pl08x->slave.device_config = pl08x_config;
2810                 pl08x->slave.device_pause = pl08x_pause;
2811                 pl08x->slave.device_resume = pl08x_resume;
2812                 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2813                 pl08x->slave.device_synchronize = pl08x_synchronize;
2814                 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2815                 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2816                 pl08x->slave.directions =
2817                         BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2818                 pl08x->slave.residue_granularity =
2819                         DMA_RESIDUE_GRANULARITY_SEGMENT;
2820         }
2821
2822         /* Get the platform data */
2823         pl08x->pd = dev_get_platdata(&adev->dev);
2824         if (!pl08x->pd) {
2825                 if (np) {
2826                         ret = pl08x_of_probe(adev, pl08x, np);
2827                         if (ret)
2828                                 goto out_no_platdata;
2829                 } else {
2830                         dev_err(&adev->dev, "no platform data supplied\n");
2831                         ret = -EINVAL;
2832                         goto out_no_platdata;
2833                 }
2834         } else {
2835                 pl08x->slave.filter.map = pl08x->pd->slave_map;
2836                 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2837                 pl08x->slave.filter.fn = pl08x_filter_fn;
2838         }
2839
2840         /* By default, AHB1 only.  If dualmaster, from platform */
2841         pl08x->lli_buses = PL08X_AHB1;
2842         pl08x->mem_buses = PL08X_AHB1;
2843         if (pl08x->vd->dualmaster) {
2844                 pl08x->lli_buses = pl08x->pd->lli_buses;
2845                 pl08x->mem_buses = pl08x->pd->mem_buses;
2846         }
2847
2848         if (vd->pl080s)
2849                 pl08x->lli_words = PL080S_LLI_WORDS;
2850         else
2851                 pl08x->lli_words = PL080_LLI_WORDS;
2852         tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2853
2854         /* A DMA memory pool for LLIs, align on 1-byte boundary */
2855         pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2856                                                 tsfr_size, PL08X_ALIGN, 0);
2857         if (!pl08x->pool) {
2858                 ret = -ENOMEM;
2859                 goto out_no_lli_pool;
2860         }
2861
2862         /* Turn on the PL08x */
2863         pl08x_ensure_on(pl08x);
2864
2865         /* Clear any pending interrupts */
2866         if (vd->ftdmac020)
2867                 /* This variant has error IRQs in bits 16-19 */
2868                 writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2869         else
2870                 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2871         writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2872
2873         /* Attach the interrupt handler */
2874         ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2875         if (ret) {
2876                 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2877                         __func__, adev->irq[0]);
2878                 goto out_no_irq;
2879         }
2880
2881         /* Initialize physical channels */
2882         pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2883                         GFP_KERNEL);
2884         if (!pl08x->phy_chans) {
2885                 ret = -ENOMEM;
2886                 goto out_no_phychans;
2887         }
2888
2889         for (i = 0; i < vd->channels; i++) {
2890                 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2891
2892                 ch->id = i;
2893                 ch->base = pl08x->base + PL080_Cx_BASE(i);
2894                 if (vd->ftdmac020) {
2895                         /* FTDMA020 has a special channel busy register */
2896                         ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2897                         ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2898                         ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2899                         ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2900                         ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2901                         ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2902                         ch->ftdmac020 = true;
2903                 } else {
2904                         ch->reg_config = ch->base + vd->config_offset;
2905                         ch->reg_control = ch->base + PL080_CH_CONTROL;
2906                         ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2907                         ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2908                         ch->reg_lli = ch->base + PL080_CH_LLI;
2909                 }
2910                 if (vd->pl080s)
2911                         ch->pl080s = true;
2912
2913                 spin_lock_init(&ch->lock);
2914
2915                 /*
2916                  * Nomadik variants can have channels that are locked
2917                  * down for the secure world only. Lock up these channels
2918                  * by perpetually serving a dummy virtual channel.
2919                  */
2920                 if (vd->nomadik) {
2921                         u32 val;
2922
2923                         val = readl(ch->reg_config);
2924                         if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2925                                 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2926                                 ch->locked = true;
2927                         }
2928                 }
2929
2930                 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2931                         i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2932         }
2933
2934         /* Register as many memcpy channels as there are physical channels */
2935         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2936                                               pl08x->vd->channels, false);
2937         if (ret <= 0) {
2938                 dev_warn(&pl08x->adev->dev,
2939                          "%s failed to enumerate memcpy channels - %d\n",
2940                          __func__, ret);
2941                 goto out_no_memcpy;
2942         }
2943
2944         /* Register slave channels */
2945         if (pl08x->has_slave) {
2946                 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2947                                         pl08x->pd->num_slave_channels, true);
2948                 if (ret < 0) {
2949                         dev_warn(&pl08x->adev->dev,
2950                                  "%s failed to enumerate slave channels - %d\n",
2951                                  __func__, ret);
2952                         goto out_no_slave;
2953                 }
2954         }
2955
2956         ret = dma_async_device_register(&pl08x->memcpy);
2957         if (ret) {
2958                 dev_warn(&pl08x->adev->dev,
2959                         "%s failed to register memcpy as an async device - %d\n",
2960                         __func__, ret);
2961                 goto out_no_memcpy_reg;
2962         }
2963
2964         if (pl08x->has_slave) {
2965                 ret = dma_async_device_register(&pl08x->slave);
2966                 if (ret) {
2967                         dev_warn(&pl08x->adev->dev,
2968                         "%s failed to register slave as an async device - %d\n",
2969                         __func__, ret);
2970                         goto out_no_slave_reg;
2971                 }
2972         }
2973
2974         amba_set_drvdata(adev, pl08x);
2975         init_pl08x_debugfs(pl08x);
2976         dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2977                  amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2978                  (unsigned long long)adev->res.start, adev->irq[0]);
2979
2980         return 0;
2981
2982 out_no_slave_reg:
2983         dma_async_device_unregister(&pl08x->memcpy);
2984 out_no_memcpy_reg:
2985         if (pl08x->has_slave)
2986                 pl08x_free_virtual_channels(&pl08x->slave);
2987 out_no_slave:
2988         pl08x_free_virtual_channels(&pl08x->memcpy);
2989 out_no_memcpy:
2990         kfree(pl08x->phy_chans);
2991 out_no_phychans:
2992         free_irq(adev->irq[0], pl08x);
2993 out_no_irq:
2994         dma_pool_destroy(pl08x->pool);
2995 out_no_lli_pool:
2996 out_no_platdata:
2997         iounmap(pl08x->base);
2998 out_no_ioremap:
2999         kfree(pl08x);
3000 out_no_pl08x:
3001         amba_release_regions(adev);
3002         return ret;
3003 }
3004
3005 /* PL080 has 8 channels and the PL080 have just 2 */
3006 static struct vendor_data vendor_pl080 = {
3007         .config_offset = PL080_CH_CONFIG,
3008         .channels = 8,
3009         .signals = 16,
3010         .dualmaster = true,
3011         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3012 };
3013
3014 static struct vendor_data vendor_nomadik = {
3015         .config_offset = PL080_CH_CONFIG,
3016         .channels = 8,
3017         .signals = 32,
3018         .dualmaster = true,
3019         .nomadik = true,
3020         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3021 };
3022
3023 static struct vendor_data vendor_pl080s = {
3024         .config_offset = PL080S_CH_CONFIG,
3025         .channels = 8,
3026         .signals = 32,
3027         .pl080s = true,
3028         .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3029 };
3030
3031 static struct vendor_data vendor_pl081 = {
3032         .config_offset = PL080_CH_CONFIG,
3033         .channels = 2,
3034         .signals = 16,
3035         .dualmaster = false,
3036         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3037 };
3038
3039 static struct vendor_data vendor_ftdmac020 = {
3040         .config_offset = PL080_CH_CONFIG,
3041         .ftdmac020 = true,
3042         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3043 };
3044
3045 static const struct amba_id pl08x_ids[] = {
3046         /* Samsung PL080S variant */
3047         {
3048                 .id     = 0x0a141080,
3049                 .mask   = 0xffffffff,
3050                 .data   = &vendor_pl080s,
3051         },
3052         /* PL080 */
3053         {
3054                 .id     = 0x00041080,
3055                 .mask   = 0x000fffff,
3056                 .data   = &vendor_pl080,
3057         },
3058         /* PL081 */
3059         {
3060                 .id     = 0x00041081,
3061                 .mask   = 0x000fffff,
3062                 .data   = &vendor_pl081,
3063         },
3064         /* Nomadik 8815 PL080 variant */
3065         {
3066                 .id     = 0x00280080,
3067                 .mask   = 0x00ffffff,
3068                 .data   = &vendor_nomadik,
3069         },
3070         /* Faraday Technology FTDMAC020 */
3071         {
3072                 .id     = 0x0003b080,
3073                 .mask   = 0x000fffff,
3074                 .data   = &vendor_ftdmac020,
3075         },
3076         { 0, 0 },
3077 };
3078
3079 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3080
3081 static struct amba_driver pl08x_amba_driver = {
3082         .drv.name       = DRIVER_NAME,
3083         .id_table       = pl08x_ids,
3084         .probe          = pl08x_probe,
3085 };
3086
3087 static int __init pl08x_init(void)
3088 {
3089         int retval;
3090         retval = amba_driver_register(&pl08x_amba_driver);
3091         if (retval)
3092                 printk(KERN_WARNING DRIVER_NAME
3093                        "failed to register as an AMBA device (%d)\n",
3094                        retval);
3095         return retval;
3096 }
3097 subsys_initcall(pl08x_init);