Merge branch 'pci/virtualization'
[linux-2.6-microblaze.git] / drivers / crypto / padlock-sha.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Cryptographic API.
4  *
5  * Support for VIA PadLock hardware crypto engine.
6  *
7  * Copyright (c) 2006  Michal Ludvig <michal@logix.cz>
8  */
9
10 #include <crypto/internal/hash.h>
11 #include <crypto/padlock.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/scatterlist.h>
21 #include <asm/cpu_device_id.h>
22 #include <asm/fpu/api.h>
23
24 struct padlock_sha_desc {
25         struct shash_desc fallback;
26 };
27
28 struct padlock_sha_ctx {
29         struct crypto_shash *fallback;
30 };
31
32 static int padlock_sha_init(struct shash_desc *desc)
33 {
34         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
35         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
36
37         dctx->fallback.tfm = ctx->fallback;
38         return crypto_shash_init(&dctx->fallback);
39 }
40
41 static int padlock_sha_update(struct shash_desc *desc,
42                               const u8 *data, unsigned int length)
43 {
44         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
45
46         return crypto_shash_update(&dctx->fallback, data, length);
47 }
48
49 static int padlock_sha_export(struct shash_desc *desc, void *out)
50 {
51         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
52
53         return crypto_shash_export(&dctx->fallback, out);
54 }
55
56 static int padlock_sha_import(struct shash_desc *desc, const void *in)
57 {
58         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
59         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
60
61         dctx->fallback.tfm = ctx->fallback;
62         return crypto_shash_import(&dctx->fallback, in);
63 }
64
65 static inline void padlock_output_block(uint32_t *src,
66                         uint32_t *dst, size_t count)
67 {
68         while (count--)
69                 *dst++ = swab32(*src++);
70 }
71
72 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
73                               unsigned int count, u8 *out)
74 {
75         /* We can't store directly to *out as it may be unaligned. */
76         /* BTW Don't reduce the buffer size below 128 Bytes!
77          *     PadLock microcode needs it that big. */
78         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
79                 ((aligned(STACK_ALIGN)));
80         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
81         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
82         struct sha1_state state;
83         unsigned int space;
84         unsigned int leftover;
85         int err;
86
87         err = crypto_shash_export(&dctx->fallback, &state);
88         if (err)
89                 goto out;
90
91         if (state.count + count > ULONG_MAX)
92                 return crypto_shash_finup(&dctx->fallback, in, count, out);
93
94         leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
95         space =  SHA1_BLOCK_SIZE - leftover;
96         if (space) {
97                 if (count > space) {
98                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
99                               crypto_shash_export(&dctx->fallback, &state);
100                         if (err)
101                                 goto out;
102                         count -= space;
103                         in += space;
104                 } else {
105                         memcpy(state.buffer + leftover, in, count);
106                         in = state.buffer;
107                         count += leftover;
108                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
109                 }
110         }
111
112         memcpy(result, &state.state, SHA1_DIGEST_SIZE);
113
114         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
115                       : \
116                       : "c"((unsigned long)state.count + count), \
117                         "a"((unsigned long)state.count), \
118                         "S"(in), "D"(result));
119
120         padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
121
122 out:
123         return err;
124 }
125
126 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
127 {
128         u8 buf[4];
129
130         return padlock_sha1_finup(desc, buf, 0, out);
131 }
132
133 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
134                                 unsigned int count, u8 *out)
135 {
136         /* We can't store directly to *out as it may be unaligned. */
137         /* BTW Don't reduce the buffer size below 128 Bytes!
138          *     PadLock microcode needs it that big. */
139         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
140                 ((aligned(STACK_ALIGN)));
141         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
142         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
143         struct sha256_state state;
144         unsigned int space;
145         unsigned int leftover;
146         int err;
147
148         err = crypto_shash_export(&dctx->fallback, &state);
149         if (err)
150                 goto out;
151
152         if (state.count + count > ULONG_MAX)
153                 return crypto_shash_finup(&dctx->fallback, in, count, out);
154
155         leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
156         space =  SHA256_BLOCK_SIZE - leftover;
157         if (space) {
158                 if (count > space) {
159                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
160                               crypto_shash_export(&dctx->fallback, &state);
161                         if (err)
162                                 goto out;
163                         count -= space;
164                         in += space;
165                 } else {
166                         memcpy(state.buf + leftover, in, count);
167                         in = state.buf;
168                         count += leftover;
169                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
170                 }
171         }
172
173         memcpy(result, &state.state, SHA256_DIGEST_SIZE);
174
175         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
176                       : \
177                       : "c"((unsigned long)state.count + count), \
178                         "a"((unsigned long)state.count), \
179                         "S"(in), "D"(result));
180
181         padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
182
183 out:
184         return err;
185 }
186
187 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
188 {
189         u8 buf[4];
190
191         return padlock_sha256_finup(desc, buf, 0, out);
192 }
193
194 static int padlock_init_tfm(struct crypto_shash *hash)
195 {
196         const char *fallback_driver_name = crypto_shash_alg_name(hash);
197         struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
198         struct crypto_shash *fallback_tfm;
199
200         /* Allocate a fallback and abort if it failed. */
201         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
202                                           CRYPTO_ALG_NEED_FALLBACK);
203         if (IS_ERR(fallback_tfm)) {
204                 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
205                        fallback_driver_name);
206                 return PTR_ERR(fallback_tfm);
207         }
208
209         ctx->fallback = fallback_tfm;
210         hash->descsize += crypto_shash_descsize(fallback_tfm);
211         return 0;
212 }
213
214 static void padlock_exit_tfm(struct crypto_shash *hash)
215 {
216         struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
217
218         crypto_free_shash(ctx->fallback);
219 }
220
221 static struct shash_alg sha1_alg = {
222         .digestsize     =       SHA1_DIGEST_SIZE,
223         .init           =       padlock_sha_init,
224         .update         =       padlock_sha_update,
225         .finup          =       padlock_sha1_finup,
226         .final          =       padlock_sha1_final,
227         .export         =       padlock_sha_export,
228         .import         =       padlock_sha_import,
229         .init_tfm       =       padlock_init_tfm,
230         .exit_tfm       =       padlock_exit_tfm,
231         .descsize       =       sizeof(struct padlock_sha_desc),
232         .statesize      =       sizeof(struct sha1_state),
233         .base           =       {
234                 .cra_name               =       "sha1",
235                 .cra_driver_name        =       "sha1-padlock",
236                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
237                 .cra_flags              =       CRYPTO_ALG_NEED_FALLBACK,
238                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
239                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
240                 .cra_module             =       THIS_MODULE,
241         }
242 };
243
244 static struct shash_alg sha256_alg = {
245         .digestsize     =       SHA256_DIGEST_SIZE,
246         .init           =       padlock_sha_init,
247         .update         =       padlock_sha_update,
248         .finup          =       padlock_sha256_finup,
249         .final          =       padlock_sha256_final,
250         .export         =       padlock_sha_export,
251         .import         =       padlock_sha_import,
252         .init_tfm       =       padlock_init_tfm,
253         .exit_tfm       =       padlock_exit_tfm,
254         .descsize       =       sizeof(struct padlock_sha_desc),
255         .statesize      =       sizeof(struct sha256_state),
256         .base           =       {
257                 .cra_name               =       "sha256",
258                 .cra_driver_name        =       "sha256-padlock",
259                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
260                 .cra_flags              =       CRYPTO_ALG_NEED_FALLBACK,
261                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
262                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
263                 .cra_module             =       THIS_MODULE,
264         }
265 };
266
267 /* Add two shash_alg instance for hardware-implemented *
268 * multiple-parts hash supported by VIA Nano Processor.*/
269 static int padlock_sha1_init_nano(struct shash_desc *desc)
270 {
271         struct sha1_state *sctx = shash_desc_ctx(desc);
272
273         *sctx = (struct sha1_state){
274                 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
275         };
276
277         return 0;
278 }
279
280 static int padlock_sha1_update_nano(struct shash_desc *desc,
281                         const u8 *data, unsigned int len)
282 {
283         struct sha1_state *sctx = shash_desc_ctx(desc);
284         unsigned int partial, done;
285         const u8 *src;
286         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
287         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
288                 ((aligned(STACK_ALIGN)));
289         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
290
291         partial = sctx->count & 0x3f;
292         sctx->count += len;
293         done = 0;
294         src = data;
295         memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
296
297         if ((partial + len) >= SHA1_BLOCK_SIZE) {
298
299                 /* Append the bytes in state's buffer to a block to handle */
300                 if (partial) {
301                         done = -partial;
302                         memcpy(sctx->buffer + partial, data,
303                                 done + SHA1_BLOCK_SIZE);
304                         src = sctx->buffer;
305                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
306                         : "+S"(src), "+D"(dst) \
307                         : "a"((long)-1), "c"((unsigned long)1));
308                         done += SHA1_BLOCK_SIZE;
309                         src = data + done;
310                 }
311
312                 /* Process the left bytes from the input data */
313                 if (len - done >= SHA1_BLOCK_SIZE) {
314                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
315                         : "+S"(src), "+D"(dst)
316                         : "a"((long)-1),
317                         "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
318                         done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
319                         src = data + done;
320                 }
321                 partial = 0;
322         }
323         memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
324         memcpy(sctx->buffer + partial, src, len - done);
325
326         return 0;
327 }
328
329 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
330 {
331         struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
332         unsigned int partial, padlen;
333         __be64 bits;
334         static const u8 padding[64] = { 0x80, };
335
336         bits = cpu_to_be64(state->count << 3);
337
338         /* Pad out to 56 mod 64 */
339         partial = state->count & 0x3f;
340         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
341         padlock_sha1_update_nano(desc, padding, padlen);
342
343         /* Append length field bytes */
344         padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
345
346         /* Swap to output */
347         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
348
349         return 0;
350 }
351
352 static int padlock_sha256_init_nano(struct shash_desc *desc)
353 {
354         struct sha256_state *sctx = shash_desc_ctx(desc);
355
356         *sctx = (struct sha256_state){
357                 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
358                                 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
359         };
360
361         return 0;
362 }
363
364 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
365                           unsigned int len)
366 {
367         struct sha256_state *sctx = shash_desc_ctx(desc);
368         unsigned int partial, done;
369         const u8 *src;
370         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
371         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
372                 ((aligned(STACK_ALIGN)));
373         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
374
375         partial = sctx->count & 0x3f;
376         sctx->count += len;
377         done = 0;
378         src = data;
379         memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
380
381         if ((partial + len) >= SHA256_BLOCK_SIZE) {
382
383                 /* Append the bytes in state's buffer to a block to handle */
384                 if (partial) {
385                         done = -partial;
386                         memcpy(sctx->buf + partial, data,
387                                 done + SHA256_BLOCK_SIZE);
388                         src = sctx->buf;
389                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
390                         : "+S"(src), "+D"(dst)
391                         : "a"((long)-1), "c"((unsigned long)1));
392                         done += SHA256_BLOCK_SIZE;
393                         src = data + done;
394                 }
395
396                 /* Process the left bytes from input data*/
397                 if (len - done >= SHA256_BLOCK_SIZE) {
398                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
399                         : "+S"(src), "+D"(dst)
400                         : "a"((long)-1),
401                         "c"((unsigned long)((len - done) / 64)));
402                         done += ((len - done) - (len - done) % 64);
403                         src = data + done;
404                 }
405                 partial = 0;
406         }
407         memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
408         memcpy(sctx->buf + partial, src, len - done);
409
410         return 0;
411 }
412
413 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
414 {
415         struct sha256_state *state =
416                 (struct sha256_state *)shash_desc_ctx(desc);
417         unsigned int partial, padlen;
418         __be64 bits;
419         static const u8 padding[64] = { 0x80, };
420
421         bits = cpu_to_be64(state->count << 3);
422
423         /* Pad out to 56 mod 64 */
424         partial = state->count & 0x3f;
425         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
426         padlock_sha256_update_nano(desc, padding, padlen);
427
428         /* Append length field bytes */
429         padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
430
431         /* Swap to output */
432         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
433
434         return 0;
435 }
436
437 static int padlock_sha_export_nano(struct shash_desc *desc,
438                                 void *out)
439 {
440         int statesize = crypto_shash_statesize(desc->tfm);
441         void *sctx = shash_desc_ctx(desc);
442
443         memcpy(out, sctx, statesize);
444         return 0;
445 }
446
447 static int padlock_sha_import_nano(struct shash_desc *desc,
448                                 const void *in)
449 {
450         int statesize = crypto_shash_statesize(desc->tfm);
451         void *sctx = shash_desc_ctx(desc);
452
453         memcpy(sctx, in, statesize);
454         return 0;
455 }
456
457 static struct shash_alg sha1_alg_nano = {
458         .digestsize     =       SHA1_DIGEST_SIZE,
459         .init           =       padlock_sha1_init_nano,
460         .update         =       padlock_sha1_update_nano,
461         .final          =       padlock_sha1_final_nano,
462         .export         =       padlock_sha_export_nano,
463         .import         =       padlock_sha_import_nano,
464         .descsize       =       sizeof(struct sha1_state),
465         .statesize      =       sizeof(struct sha1_state),
466         .base           =       {
467                 .cra_name               =       "sha1",
468                 .cra_driver_name        =       "sha1-padlock-nano",
469                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
470                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
471                 .cra_module             =       THIS_MODULE,
472         }
473 };
474
475 static struct shash_alg sha256_alg_nano = {
476         .digestsize     =       SHA256_DIGEST_SIZE,
477         .init           =       padlock_sha256_init_nano,
478         .update         =       padlock_sha256_update_nano,
479         .final          =       padlock_sha256_final_nano,
480         .export         =       padlock_sha_export_nano,
481         .import         =       padlock_sha_import_nano,
482         .descsize       =       sizeof(struct sha256_state),
483         .statesize      =       sizeof(struct sha256_state),
484         .base           =       {
485                 .cra_name               =       "sha256",
486                 .cra_driver_name        =       "sha256-padlock-nano",
487                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
488                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
489                 .cra_module             =       THIS_MODULE,
490         }
491 };
492
493 static const struct x86_cpu_id padlock_sha_ids[] = {
494         X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
495         {}
496 };
497 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
498
499 static int __init padlock_init(void)
500 {
501         int rc = -ENODEV;
502         struct cpuinfo_x86 *c = &cpu_data(0);
503         struct shash_alg *sha1;
504         struct shash_alg *sha256;
505
506         if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
507                 return -ENODEV;
508
509         /* Register the newly added algorithm module if on *
510         * VIA Nano processor, or else just do as before */
511         if (c->x86_model < 0x0f) {
512                 sha1 = &sha1_alg;
513                 sha256 = &sha256_alg;
514         } else {
515                 sha1 = &sha1_alg_nano;
516                 sha256 = &sha256_alg_nano;
517         }
518
519         rc = crypto_register_shash(sha1);
520         if (rc)
521                 goto out;
522
523         rc = crypto_register_shash(sha256);
524         if (rc)
525                 goto out_unreg1;
526
527         printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
528
529         return 0;
530
531 out_unreg1:
532         crypto_unregister_shash(sha1);
533
534 out:
535         printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
536         return rc;
537 }
538
539 static void __exit padlock_fini(void)
540 {
541         struct cpuinfo_x86 *c = &cpu_data(0);
542
543         if (c->x86_model >= 0x0f) {
544                 crypto_unregister_shash(&sha1_alg_nano);
545                 crypto_unregister_shash(&sha256_alg_nano);
546         } else {
547                 crypto_unregister_shash(&sha1_alg);
548                 crypto_unregister_shash(&sha256_alg);
549         }
550 }
551
552 module_init(padlock_init);
553 module_exit(padlock_fini);
554
555 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
556 MODULE_LICENSE("GPL");
557 MODULE_AUTHOR("Michal Ludvig");
558
559 MODULE_ALIAS_CRYPTO("sha1-all");
560 MODULE_ALIAS_CRYPTO("sha256-all");
561 MODULE_ALIAS_CRYPTO("sha1-padlock");
562 MODULE_ALIAS_CRYPTO("sha256-padlock");