Merge tag 'drm-next-2021-05-10' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / drivers / crypto / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18
19 #include <crypto/ctr.h>
20 #include <crypto/internal/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha1.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <linux/soc/ixp4xx/npe.h>
31 #include <linux/soc/ixp4xx/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93 #define MD5_DIGEST_SIZE   16
94
95 struct buffer_desc {
96         u32 phys_next;
97 #ifdef __ARMEB__
98         u16 buf_len;
99         u16 pkt_len;
100 #else
101         u16 pkt_len;
102         u16 buf_len;
103 #endif
104         dma_addr_t phys_addr;
105         u32 __reserved[4];
106         struct buffer_desc *next;
107         enum dma_data_direction dir;
108 };
109
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112         u8 mode;                /* NPE_OP_*  operation mode */
113         u8 init_len;
114         u16 reserved;
115 #else
116         u16 reserved;
117         u8 init_len;
118         u8 mode;                /* NPE_OP_*  operation mode */
119 #endif
120         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
121         dma_addr_t icv_rev_aes; /* icv or rev aes */
122         dma_addr_t src_buf;
123         dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125         u16 auth_offs;          /* Authentication start offset */
126         u16 auth_len;           /* Authentication data length */
127         u16 crypt_offs;         /* Cryption start offset */
128         u16 crypt_len;          /* Cryption data length */
129 #else
130         u16 auth_len;           /* Authentication data length */
131         u16 auth_offs;          /* Authentication start offset */
132         u16 crypt_len;          /* Cryption data length */
133         u16 crypt_offs;         /* Cryption start offset */
134 #endif
135         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
136         u32 crypto_ctx;         /* NPE Crypto Param structure address */
137
138         /* Used by Host: 4*4 bytes*/
139         unsigned ctl_flags;
140         union {
141                 struct skcipher_request *ablk_req;
142                 struct aead_request *aead_req;
143                 struct crypto_tfm *tfm;
144         } data;
145         struct buffer_desc *regist_buf;
146         u8 *regist_ptr;
147 };
148
149 struct ablk_ctx {
150         struct buffer_desc *src;
151         struct buffer_desc *dst;
152 };
153
154 struct aead_ctx {
155         struct buffer_desc *src;
156         struct buffer_desc *dst;
157         struct scatterlist ivlist;
158         /* used when the hmac is not on one sg entry */
159         u8 *hmac_virt;
160         int encrypt;
161 };
162
163 struct ix_hash_algo {
164         u32 cfgword;
165         unsigned char *icv;
166 };
167
168 struct ix_sa_dir {
169         unsigned char *npe_ctx;
170         dma_addr_t npe_ctx_phys;
171         int npe_ctx_idx;
172         u8 npe_mode;
173 };
174
175 struct ixp_ctx {
176         struct ix_sa_dir encrypt;
177         struct ix_sa_dir decrypt;
178         int authkey_len;
179         u8 authkey[MAX_KEYLEN];
180         int enckey_len;
181         u8 enckey[MAX_KEYLEN];
182         u8 salt[MAX_IVLEN];
183         u8 nonce[CTR_RFC3686_NONCE_SIZE];
184         unsigned salted;
185         atomic_t configuring;
186         struct completion completion;
187 };
188
189 struct ixp_alg {
190         struct skcipher_alg crypto;
191         const struct ix_hash_algo *hash;
192         u32 cfg_enc;
193         u32 cfg_dec;
194
195         int registered;
196 };
197
198 struct ixp_aead_alg {
199         struct aead_alg crypto;
200         const struct ix_hash_algo *hash;
201         u32 cfg_enc;
202         u32 cfg_dec;
203
204         int registered;
205 };
206
207 static const struct ix_hash_algo hash_alg_md5 = {
208         .cfgword        = 0xAA010004,
209         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
210                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
211 };
212 static const struct ix_hash_algo hash_alg_sha1 = {
213         .cfgword        = 0x00000005,
214         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
215                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
216 };
217
218 static struct npe *npe_c;
219 static struct dma_pool *buffer_pool = NULL;
220 static struct dma_pool *ctx_pool = NULL;
221
222 static struct crypt_ctl *crypt_virt = NULL;
223 static dma_addr_t crypt_phys;
224
225 static int support_aes = 1;
226
227 #define DRIVER_NAME "ixp4xx_crypto"
228
229 static struct platform_device *pdev;
230
231 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
232 {
233         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
234 }
235
236 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
237 {
238         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
239 }
240
241 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
242 {
243         return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_enc;
244 }
245
246 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
247 {
248         return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_dec;
249 }
250
251 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
252 {
253         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
254 }
255
256 static int setup_crypt_desc(void)
257 {
258         struct device *dev = &pdev->dev;
259         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
260         crypt_virt = dma_alloc_coherent(dev,
261                                         NPE_QLEN * sizeof(struct crypt_ctl),
262                                         &crypt_phys, GFP_ATOMIC);
263         if (!crypt_virt)
264                 return -ENOMEM;
265         return 0;
266 }
267
268 static DEFINE_SPINLOCK(desc_lock);
269 static struct crypt_ctl *get_crypt_desc(void)
270 {
271         int i;
272         static int idx = 0;
273         unsigned long flags;
274
275         spin_lock_irqsave(&desc_lock, flags);
276
277         if (unlikely(!crypt_virt))
278                 setup_crypt_desc();
279         if (unlikely(!crypt_virt)) {
280                 spin_unlock_irqrestore(&desc_lock, flags);
281                 return NULL;
282         }
283         i = idx;
284         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
285                 if (++idx >= NPE_QLEN)
286                         idx = 0;
287                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
288                 spin_unlock_irqrestore(&desc_lock, flags);
289                 return crypt_virt +i;
290         } else {
291                 spin_unlock_irqrestore(&desc_lock, flags);
292                 return NULL;
293         }
294 }
295
296 static DEFINE_SPINLOCK(emerg_lock);
297 static struct crypt_ctl *get_crypt_desc_emerg(void)
298 {
299         int i;
300         static int idx = NPE_QLEN;
301         struct crypt_ctl *desc;
302         unsigned long flags;
303
304         desc = get_crypt_desc();
305         if (desc)
306                 return desc;
307         if (unlikely(!crypt_virt))
308                 return NULL;
309
310         spin_lock_irqsave(&emerg_lock, flags);
311         i = idx;
312         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
313                 if (++idx >= NPE_QLEN_TOTAL)
314                         idx = NPE_QLEN;
315                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
316                 spin_unlock_irqrestore(&emerg_lock, flags);
317                 return crypt_virt +i;
318         } else {
319                 spin_unlock_irqrestore(&emerg_lock, flags);
320                 return NULL;
321         }
322 }
323
324 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
325                            dma_addr_t phys)
326 {
327         while (buf) {
328                 struct buffer_desc *buf1;
329                 u32 phys1;
330
331                 buf1 = buf->next;
332                 phys1 = buf->phys_next;
333                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
334                 dma_pool_free(buffer_pool, buf, phys);
335                 buf = buf1;
336                 phys = phys1;
337         }
338 }
339
340 static struct tasklet_struct crypto_done_tasklet;
341
342 static void finish_scattered_hmac(struct crypt_ctl *crypt)
343 {
344         struct aead_request *req = crypt->data.aead_req;
345         struct aead_ctx *req_ctx = aead_request_ctx(req);
346         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
347         int authsize = crypto_aead_authsize(tfm);
348         int decryptlen = req->assoclen + req->cryptlen - authsize;
349
350         if (req_ctx->encrypt) {
351                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
352                         req->dst, decryptlen, authsize, 1);
353         }
354         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
355 }
356
357 static void one_packet(dma_addr_t phys)
358 {
359         struct device *dev = &pdev->dev;
360         struct crypt_ctl *crypt;
361         struct ixp_ctx *ctx;
362         int failed;
363
364         failed = phys & 0x1 ? -EBADMSG : 0;
365         phys &= ~0x3;
366         crypt = crypt_phys2virt(phys);
367
368         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
369         case CTL_FLAG_PERFORM_AEAD: {
370                 struct aead_request *req = crypt->data.aead_req;
371                 struct aead_ctx *req_ctx = aead_request_ctx(req);
372
373                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
375                 if (req_ctx->hmac_virt) {
376                         finish_scattered_hmac(crypt);
377                 }
378                 req->base.complete(&req->base, failed);
379                 break;
380         }
381         case CTL_FLAG_PERFORM_ABLK: {
382                 struct skcipher_request *req = crypt->data.ablk_req;
383                 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
384
385                 if (req_ctx->dst) {
386                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
387                 }
388                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
389                 req->base.complete(&req->base, failed);
390                 break;
391         }
392         case CTL_FLAG_GEN_ICV:
393                 ctx = crypto_tfm_ctx(crypt->data.tfm);
394                 dma_pool_free(ctx_pool, crypt->regist_ptr,
395                                 crypt->regist_buf->phys_addr);
396                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
397                 if (atomic_dec_and_test(&ctx->configuring))
398                         complete(&ctx->completion);
399                 break;
400         case CTL_FLAG_GEN_REVAES:
401                 ctx = crypto_tfm_ctx(crypt->data.tfm);
402                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
403                 if (atomic_dec_and_test(&ctx->configuring))
404                         complete(&ctx->completion);
405                 break;
406         default:
407                 BUG();
408         }
409         crypt->ctl_flags = CTL_FLAG_UNUSED;
410 }
411
412 static void irqhandler(void *_unused)
413 {
414         tasklet_schedule(&crypto_done_tasklet);
415 }
416
417 static void crypto_done_action(unsigned long arg)
418 {
419         int i;
420
421         for(i=0; i<4; i++) {
422                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
423                 if (!phys)
424                         return;
425                 one_packet(phys);
426         }
427         tasklet_schedule(&crypto_done_tasklet);
428 }
429
430 static int init_ixp_crypto(struct device *dev)
431 {
432         int ret = -ENODEV;
433         u32 msg[2] = { 0, 0 };
434
435         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
436                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
437                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
438                 return ret;
439         }
440         npe_c = npe_request(NPE_ID);
441         if (!npe_c)
442                 return ret;
443
444         if (!npe_running(npe_c)) {
445                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
446                 if (ret)
447                         goto npe_release;
448                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449                         goto npe_error;
450         } else {
451                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
452                         goto npe_error;
453
454                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
455                         goto npe_error;
456         }
457
458         switch ((msg[1]>>16) & 0xff) {
459         case 3:
460                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
461                                 npe_name(npe_c));
462                 support_aes = 0;
463                 break;
464         case 4:
465         case 5:
466                 support_aes = 1;
467                 break;
468         default:
469                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
470                         npe_name(npe_c));
471                 ret = -ENODEV;
472                 goto npe_release;
473         }
474         /* buffer_pool will also be used to sometimes store the hmac,
475          * so assure it is large enough
476          */
477         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
478         buffer_pool = dma_pool_create("buffer", dev,
479                         sizeof(struct buffer_desc), 32, 0);
480         ret = -ENOMEM;
481         if (!buffer_pool) {
482                 goto err;
483         }
484         ctx_pool = dma_pool_create("context", dev,
485                         NPE_CTX_LEN, 16, 0);
486         if (!ctx_pool) {
487                 goto err;
488         }
489         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
490                                  "ixp_crypto:out", NULL);
491         if (ret)
492                 goto err;
493         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
494                                  "ixp_crypto:in", NULL);
495         if (ret) {
496                 qmgr_release_queue(SEND_QID);
497                 goto err;
498         }
499         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
500         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
501
502         qmgr_enable_irq(RECV_QID);
503         return 0;
504
505 npe_error:
506         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
507         ret = -EIO;
508 err:
509         dma_pool_destroy(ctx_pool);
510         dma_pool_destroy(buffer_pool);
511 npe_release:
512         npe_release(npe_c);
513         return ret;
514 }
515
516 static void release_ixp_crypto(struct device *dev)
517 {
518         qmgr_disable_irq(RECV_QID);
519         tasklet_kill(&crypto_done_tasklet);
520
521         qmgr_release_queue(SEND_QID);
522         qmgr_release_queue(RECV_QID);
523
524         dma_pool_destroy(ctx_pool);
525         dma_pool_destroy(buffer_pool);
526
527         npe_release(npe_c);
528
529         if (crypt_virt) {
530                 dma_free_coherent(dev,
531                         NPE_QLEN * sizeof(struct crypt_ctl),
532                         crypt_virt, crypt_phys);
533         }
534 }
535
536 static void reset_sa_dir(struct ix_sa_dir *dir)
537 {
538         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
539         dir->npe_ctx_idx = 0;
540         dir->npe_mode = 0;
541 }
542
543 static int init_sa_dir(struct ix_sa_dir *dir)
544 {
545         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
546         if (!dir->npe_ctx) {
547                 return -ENOMEM;
548         }
549         reset_sa_dir(dir);
550         return 0;
551 }
552
553 static void free_sa_dir(struct ix_sa_dir *dir)
554 {
555         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
556         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
557 }
558
559 static int init_tfm(struct crypto_tfm *tfm)
560 {
561         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
562         int ret;
563
564         atomic_set(&ctx->configuring, 0);
565         ret = init_sa_dir(&ctx->encrypt);
566         if (ret)
567                 return ret;
568         ret = init_sa_dir(&ctx->decrypt);
569         if (ret) {
570                 free_sa_dir(&ctx->encrypt);
571         }
572         return ret;
573 }
574
575 static int init_tfm_ablk(struct crypto_skcipher *tfm)
576 {
577         crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx));
578         return init_tfm(crypto_skcipher_tfm(tfm));
579 }
580
581 static int init_tfm_aead(struct crypto_aead *tfm)
582 {
583         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
584         return init_tfm(crypto_aead_tfm(tfm));
585 }
586
587 static void exit_tfm(struct crypto_tfm *tfm)
588 {
589         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
590         free_sa_dir(&ctx->encrypt);
591         free_sa_dir(&ctx->decrypt);
592 }
593
594 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
595 {
596         exit_tfm(crypto_skcipher_tfm(tfm));
597 }
598
599 static void exit_tfm_aead(struct crypto_aead *tfm)
600 {
601         exit_tfm(crypto_aead_tfm(tfm));
602 }
603
604 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
605                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
606 {
607         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
608         struct crypt_ctl *crypt;
609         struct buffer_desc *buf;
610         int i;
611         u8 *pad;
612         dma_addr_t pad_phys, buf_phys;
613
614         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
615         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
616         if (!pad)
617                 return -ENOMEM;
618         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
619         if (!buf) {
620                 dma_pool_free(ctx_pool, pad, pad_phys);
621                 return -ENOMEM;
622         }
623         crypt = get_crypt_desc_emerg();
624         if (!crypt) {
625                 dma_pool_free(ctx_pool, pad, pad_phys);
626                 dma_pool_free(buffer_pool, buf, buf_phys);
627                 return -EAGAIN;
628         }
629
630         memcpy(pad, key, key_len);
631         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
632         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
633                 pad[i] ^= xpad;
634         }
635
636         crypt->data.tfm = tfm;
637         crypt->regist_ptr = pad;
638         crypt->regist_buf = buf;
639
640         crypt->auth_offs = 0;
641         crypt->auth_len = HMAC_PAD_BLOCKLEN;
642         crypt->crypto_ctx = ctx_addr;
643         crypt->src_buf = buf_phys;
644         crypt->icv_rev_aes = target;
645         crypt->mode = NPE_OP_HASH_GEN_ICV;
646         crypt->init_len = init_len;
647         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
648
649         buf->next = 0;
650         buf->buf_len = HMAC_PAD_BLOCKLEN;
651         buf->pkt_len = 0;
652         buf->phys_addr = pad_phys;
653
654         atomic_inc(&ctx->configuring);
655         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
656         BUG_ON(qmgr_stat_overflow(SEND_QID));
657         return 0;
658 }
659
660 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
661                 const u8 *key, int key_len, unsigned digest_len)
662 {
663         u32 itarget, otarget, npe_ctx_addr;
664         unsigned char *cinfo;
665         int init_len, ret = 0;
666         u32 cfgword;
667         struct ix_sa_dir *dir;
668         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
669         const struct ix_hash_algo *algo;
670
671         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
672         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
673         algo = ix_hash(tfm);
674
675         /* write cfg word to cryptinfo */
676         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
677 #ifndef __ARMEB__
678         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
679 #endif
680         *(u32*)cinfo = cpu_to_be32(cfgword);
681         cinfo += sizeof(cfgword);
682
683         /* write ICV to cryptinfo */
684         memcpy(cinfo, algo->icv, digest_len);
685         cinfo += digest_len;
686
687         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
688                                 + sizeof(algo->cfgword);
689         otarget = itarget + digest_len;
690         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
691         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
692
693         dir->npe_ctx_idx += init_len;
694         dir->npe_mode |= NPE_OP_HASH_ENABLE;
695
696         if (!encrypt)
697                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
698
699         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
700                         init_len, npe_ctx_addr, key, key_len);
701         if (ret)
702                 return ret;
703         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
704                         init_len, npe_ctx_addr, key, key_len);
705 }
706
707 static int gen_rev_aes_key(struct crypto_tfm *tfm)
708 {
709         struct crypt_ctl *crypt;
710         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
711         struct ix_sa_dir *dir = &ctx->decrypt;
712
713         crypt = get_crypt_desc_emerg();
714         if (!crypt) {
715                 return -EAGAIN;
716         }
717         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
718
719         crypt->data.tfm = tfm;
720         crypt->crypt_offs = 0;
721         crypt->crypt_len = AES_BLOCK128;
722         crypt->src_buf = 0;
723         crypt->crypto_ctx = dir->npe_ctx_phys;
724         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
725         crypt->mode = NPE_OP_ENC_GEN_KEY;
726         crypt->init_len = dir->npe_ctx_idx;
727         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
728
729         atomic_inc(&ctx->configuring);
730         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
731         BUG_ON(qmgr_stat_overflow(SEND_QID));
732         return 0;
733 }
734
735 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
736                 const u8 *key, int key_len)
737 {
738         u8 *cinfo;
739         u32 cipher_cfg;
740         u32 keylen_cfg = 0;
741         struct ix_sa_dir *dir;
742         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743         int err;
744
745         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746         cinfo = dir->npe_ctx;
747
748         if (encrypt) {
749                 cipher_cfg = cipher_cfg_enc(tfm);
750                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
751         } else {
752                 cipher_cfg = cipher_cfg_dec(tfm);
753         }
754         if (cipher_cfg & MOD_AES) {
755                 switch (key_len) {
756                 case 16: keylen_cfg = MOD_AES128; break;
757                 case 24: keylen_cfg = MOD_AES192; break;
758                 case 32: keylen_cfg = MOD_AES256; break;
759                 default:
760                         return -EINVAL;
761                 }
762                 cipher_cfg |= keylen_cfg;
763         } else {
764                 err = crypto_des_verify_key(tfm, key);
765                 if (err)
766                         return err;
767         }
768         /* write cfg word to cryptinfo */
769         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
770         cinfo += sizeof(cipher_cfg);
771
772         /* write cipher key to cryptinfo */
773         memcpy(cinfo, key, key_len);
774         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
775         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
776                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
777                 key_len = DES3_EDE_KEY_SIZE;
778         }
779         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
780         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
781         if ((cipher_cfg & MOD_AES) && !encrypt) {
782                 return gen_rev_aes_key(tfm);
783         }
784         return 0;
785 }
786
787 static struct buffer_desc *chainup_buffers(struct device *dev,
788                 struct scatterlist *sg, unsigned nbytes,
789                 struct buffer_desc *buf, gfp_t flags,
790                 enum dma_data_direction dir)
791 {
792         for (; nbytes > 0; sg = sg_next(sg)) {
793                 unsigned len = min(nbytes, sg->length);
794                 struct buffer_desc *next_buf;
795                 dma_addr_t next_buf_phys;
796                 void *ptr;
797
798                 nbytes -= len;
799                 ptr = sg_virt(sg);
800                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
801                 if (!next_buf) {
802                         buf = NULL;
803                         break;
804                 }
805                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
806                 buf->next = next_buf;
807                 buf->phys_next = next_buf_phys;
808                 buf = next_buf;
809
810                 buf->phys_addr = sg_dma_address(sg);
811                 buf->buf_len = len;
812                 buf->dir = dir;
813         }
814         buf->next = NULL;
815         buf->phys_next = 0;
816         return buf;
817 }
818
819 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
820                         unsigned int key_len)
821 {
822         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
823         int ret;
824
825         init_completion(&ctx->completion);
826         atomic_inc(&ctx->configuring);
827
828         reset_sa_dir(&ctx->encrypt);
829         reset_sa_dir(&ctx->decrypt);
830
831         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
832         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
833
834         ret = setup_cipher(&tfm->base, 0, key, key_len);
835         if (ret)
836                 goto out;
837         ret = setup_cipher(&tfm->base, 1, key, key_len);
838 out:
839         if (!atomic_dec_and_test(&ctx->configuring))
840                 wait_for_completion(&ctx->completion);
841         return ret;
842 }
843
844 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
845                             unsigned int key_len)
846 {
847         return verify_skcipher_des3_key(tfm, key) ?:
848                ablk_setkey(tfm, key, key_len);
849 }
850
851 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
852                 unsigned int key_len)
853 {
854         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
855
856         /* the nonce is stored in bytes at end of key */
857         if (key_len < CTR_RFC3686_NONCE_SIZE)
858                 return -EINVAL;
859
860         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
861                         CTR_RFC3686_NONCE_SIZE);
862
863         key_len -= CTR_RFC3686_NONCE_SIZE;
864         return ablk_setkey(tfm, key, key_len);
865 }
866
867 static int ablk_perform(struct skcipher_request *req, int encrypt)
868 {
869         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
870         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
871         unsigned ivsize = crypto_skcipher_ivsize(tfm);
872         struct ix_sa_dir *dir;
873         struct crypt_ctl *crypt;
874         unsigned int nbytes = req->cryptlen;
875         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
876         struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
877         struct buffer_desc src_hook;
878         struct device *dev = &pdev->dev;
879         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
880                                 GFP_KERNEL : GFP_ATOMIC;
881
882         if (qmgr_stat_full(SEND_QID))
883                 return -EAGAIN;
884         if (atomic_read(&ctx->configuring))
885                 return -EAGAIN;
886
887         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
888
889         crypt = get_crypt_desc();
890         if (!crypt)
891                 return -ENOMEM;
892
893         crypt->data.ablk_req = req;
894         crypt->crypto_ctx = dir->npe_ctx_phys;
895         crypt->mode = dir->npe_mode;
896         crypt->init_len = dir->npe_ctx_idx;
897
898         crypt->crypt_offs = 0;
899         crypt->crypt_len = nbytes;
900
901         BUG_ON(ivsize && !req->iv);
902         memcpy(crypt->iv, req->iv, ivsize);
903         if (req->src != req->dst) {
904                 struct buffer_desc dst_hook;
905                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
906                 /* This was never tested by Intel
907                  * for more than one dst buffer, I think. */
908                 req_ctx->dst = NULL;
909                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
910                                         flags, DMA_FROM_DEVICE))
911                         goto free_buf_dest;
912                 src_direction = DMA_TO_DEVICE;
913                 req_ctx->dst = dst_hook.next;
914                 crypt->dst_buf = dst_hook.phys_next;
915         } else {
916                 req_ctx->dst = NULL;
917         }
918         req_ctx->src = NULL;
919         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
920                                 flags, src_direction))
921                 goto free_buf_src;
922
923         req_ctx->src = src_hook.next;
924         crypt->src_buf = src_hook.phys_next;
925         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
926         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
927         BUG_ON(qmgr_stat_overflow(SEND_QID));
928         return -EINPROGRESS;
929
930 free_buf_src:
931         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
932 free_buf_dest:
933         if (req->src != req->dst) {
934                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
935         }
936         crypt->ctl_flags = CTL_FLAG_UNUSED;
937         return -ENOMEM;
938 }
939
940 static int ablk_encrypt(struct skcipher_request *req)
941 {
942         return ablk_perform(req, 1);
943 }
944
945 static int ablk_decrypt(struct skcipher_request *req)
946 {
947         return ablk_perform(req, 0);
948 }
949
950 static int ablk_rfc3686_crypt(struct skcipher_request *req)
951 {
952         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
953         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
954         u8 iv[CTR_RFC3686_BLOCK_SIZE];
955         u8 *info = req->iv;
956         int ret;
957
958         /* set up counter block */
959         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
960         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
961
962         /* initialize counter portion of counter block */
963         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
964                 cpu_to_be32(1);
965
966         req->iv = iv;
967         ret = ablk_perform(req, 1);
968         req->iv = info;
969         return ret;
970 }
971
972 static int aead_perform(struct aead_request *req, int encrypt,
973                 int cryptoffset, int eff_cryptlen, u8 *iv)
974 {
975         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
976         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
977         unsigned ivsize = crypto_aead_ivsize(tfm);
978         unsigned authsize = crypto_aead_authsize(tfm);
979         struct ix_sa_dir *dir;
980         struct crypt_ctl *crypt;
981         unsigned int cryptlen;
982         struct buffer_desc *buf, src_hook;
983         struct aead_ctx *req_ctx = aead_request_ctx(req);
984         struct device *dev = &pdev->dev;
985         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
986                                 GFP_KERNEL : GFP_ATOMIC;
987         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
988         unsigned int lastlen;
989
990         if (qmgr_stat_full(SEND_QID))
991                 return -EAGAIN;
992         if (atomic_read(&ctx->configuring))
993                 return -EAGAIN;
994
995         if (encrypt) {
996                 dir = &ctx->encrypt;
997                 cryptlen = req->cryptlen;
998         } else {
999                 dir = &ctx->decrypt;
1000                 /* req->cryptlen includes the authsize when decrypting */
1001                 cryptlen = req->cryptlen -authsize;
1002                 eff_cryptlen -= authsize;
1003         }
1004         crypt = get_crypt_desc();
1005         if (!crypt)
1006                 return -ENOMEM;
1007
1008         crypt->data.aead_req = req;
1009         crypt->crypto_ctx = dir->npe_ctx_phys;
1010         crypt->mode = dir->npe_mode;
1011         crypt->init_len = dir->npe_ctx_idx;
1012
1013         crypt->crypt_offs = cryptoffset;
1014         crypt->crypt_len = eff_cryptlen;
1015
1016         crypt->auth_offs = 0;
1017         crypt->auth_len = req->assoclen + cryptlen;
1018         BUG_ON(ivsize && !req->iv);
1019         memcpy(crypt->iv, req->iv, ivsize);
1020
1021         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1022                               &src_hook, flags, src_direction);
1023         req_ctx->src = src_hook.next;
1024         crypt->src_buf = src_hook.phys_next;
1025         if (!buf)
1026                 goto free_buf_src;
1027
1028         lastlen = buf->buf_len;
1029         if (lastlen >= authsize)
1030                 crypt->icv_rev_aes = buf->phys_addr +
1031                                      buf->buf_len - authsize;
1032
1033         req_ctx->dst = NULL;
1034
1035         if (req->src != req->dst) {
1036                 struct buffer_desc dst_hook;
1037
1038                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1039                 src_direction = DMA_TO_DEVICE;
1040
1041                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1042                                       &dst_hook, flags, DMA_FROM_DEVICE);
1043                 req_ctx->dst = dst_hook.next;
1044                 crypt->dst_buf = dst_hook.phys_next;
1045
1046                 if (!buf)
1047                         goto free_buf_dst;
1048
1049                 if (encrypt) {
1050                         lastlen = buf->buf_len;
1051                         if (lastlen >= authsize)
1052                                 crypt->icv_rev_aes = buf->phys_addr +
1053                                                      buf->buf_len - authsize;
1054                 }
1055         }
1056
1057         if (unlikely(lastlen < authsize)) {
1058                 /* The 12 hmac bytes are scattered,
1059                  * we need to copy them into a safe buffer */
1060                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1061                                 &crypt->icv_rev_aes);
1062                 if (unlikely(!req_ctx->hmac_virt))
1063                         goto free_buf_dst;
1064                 if (!encrypt) {
1065                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1066                                 req->src, cryptlen, authsize, 0);
1067                 }
1068                 req_ctx->encrypt = encrypt;
1069         } else {
1070                 req_ctx->hmac_virt = NULL;
1071         }
1072
1073         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1074         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1075         BUG_ON(qmgr_stat_overflow(SEND_QID));
1076         return -EINPROGRESS;
1077
1078 free_buf_dst:
1079         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1080 free_buf_src:
1081         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1082         crypt->ctl_flags = CTL_FLAG_UNUSED;
1083         return -ENOMEM;
1084 }
1085
1086 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1087 {
1088         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1089         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1090         int ret;
1091
1092         if (!ctx->enckey_len && !ctx->authkey_len)
1093                 return 0;
1094         init_completion(&ctx->completion);
1095         atomic_inc(&ctx->configuring);
1096
1097         reset_sa_dir(&ctx->encrypt);
1098         reset_sa_dir(&ctx->decrypt);
1099
1100         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1101         if (ret)
1102                 goto out;
1103         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1104         if (ret)
1105                 goto out;
1106         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1107                         ctx->authkey_len, digest_len);
1108         if (ret)
1109                 goto out;
1110         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1111                         ctx->authkey_len, digest_len);
1112 out:
1113         if (!atomic_dec_and_test(&ctx->configuring))
1114                 wait_for_completion(&ctx->completion);
1115         return ret;
1116 }
1117
1118 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1119 {
1120         int max = crypto_aead_maxauthsize(tfm) >> 2;
1121
1122         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1123                 return -EINVAL;
1124         return aead_setup(tfm, authsize);
1125 }
1126
1127 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1128                         unsigned int keylen)
1129 {
1130         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1131         struct crypto_authenc_keys keys;
1132
1133         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1134                 goto badkey;
1135
1136         if (keys.authkeylen > sizeof(ctx->authkey))
1137                 goto badkey;
1138
1139         if (keys.enckeylen > sizeof(ctx->enckey))
1140                 goto badkey;
1141
1142         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1143         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1144         ctx->authkey_len = keys.authkeylen;
1145         ctx->enckey_len = keys.enckeylen;
1146
1147         memzero_explicit(&keys, sizeof(keys));
1148         return aead_setup(tfm, crypto_aead_authsize(tfm));
1149 badkey:
1150         memzero_explicit(&keys, sizeof(keys));
1151         return -EINVAL;
1152 }
1153
1154 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1155                             unsigned int keylen)
1156 {
1157         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1158         struct crypto_authenc_keys keys;
1159         int err;
1160
1161         err = crypto_authenc_extractkeys(&keys, key, keylen);
1162         if (unlikely(err))
1163                 goto badkey;
1164
1165         err = -EINVAL;
1166         if (keys.authkeylen > sizeof(ctx->authkey))
1167                 goto badkey;
1168
1169         err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1170         if (err)
1171                 goto badkey;
1172
1173         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1174         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1175         ctx->authkey_len = keys.authkeylen;
1176         ctx->enckey_len = keys.enckeylen;
1177
1178         memzero_explicit(&keys, sizeof(keys));
1179         return aead_setup(tfm, crypto_aead_authsize(tfm));
1180 badkey:
1181         memzero_explicit(&keys, sizeof(keys));
1182         return err;
1183 }
1184
1185 static int aead_encrypt(struct aead_request *req)
1186 {
1187         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1188 }
1189
1190 static int aead_decrypt(struct aead_request *req)
1191 {
1192         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1193 }
1194
1195 static struct ixp_alg ixp4xx_algos[] = {
1196 {
1197         .crypto = {
1198                 .base.cra_name          = "cbc(des)",
1199                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1200
1201                 .min_keysize            = DES_KEY_SIZE,
1202                 .max_keysize            = DES_KEY_SIZE,
1203                 .ivsize                 = DES_BLOCK_SIZE,
1204         },
1205         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1206         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1207
1208 }, {
1209         .crypto = {
1210                 .base.cra_name          = "ecb(des)",
1211                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1212                 .min_keysize            = DES_KEY_SIZE,
1213                 .max_keysize            = DES_KEY_SIZE,
1214         },
1215         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1216         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1217 }, {
1218         .crypto = {
1219                 .base.cra_name          = "cbc(des3_ede)",
1220                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1221
1222                 .min_keysize            = DES3_EDE_KEY_SIZE,
1223                 .max_keysize            = DES3_EDE_KEY_SIZE,
1224                 .ivsize                 = DES3_EDE_BLOCK_SIZE,
1225                 .setkey                 = ablk_des3_setkey,
1226         },
1227         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1228         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1229 }, {
1230         .crypto = {
1231                 .base.cra_name          = "ecb(des3_ede)",
1232                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1233
1234                 .min_keysize            = DES3_EDE_KEY_SIZE,
1235                 .max_keysize            = DES3_EDE_KEY_SIZE,
1236                 .setkey                 = ablk_des3_setkey,
1237         },
1238         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1239         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1240 }, {
1241         .crypto = {
1242                 .base.cra_name          = "cbc(aes)",
1243                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1244
1245                 .min_keysize            = AES_MIN_KEY_SIZE,
1246                 .max_keysize            = AES_MAX_KEY_SIZE,
1247                 .ivsize                 = AES_BLOCK_SIZE,
1248         },
1249         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1250         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1251 }, {
1252         .crypto = {
1253                 .base.cra_name          = "ecb(aes)",
1254                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1255
1256                 .min_keysize            = AES_MIN_KEY_SIZE,
1257                 .max_keysize            = AES_MAX_KEY_SIZE,
1258         },
1259         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1260         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1261 }, {
1262         .crypto = {
1263                 .base.cra_name          = "ctr(aes)",
1264                 .base.cra_blocksize     = 1,
1265
1266                 .min_keysize            = AES_MIN_KEY_SIZE,
1267                 .max_keysize            = AES_MAX_KEY_SIZE,
1268                 .ivsize                 = AES_BLOCK_SIZE,
1269         },
1270         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1271         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1272 }, {
1273         .crypto = {
1274                 .base.cra_name          = "rfc3686(ctr(aes))",
1275                 .base.cra_blocksize     = 1,
1276
1277                 .min_keysize            = AES_MIN_KEY_SIZE,
1278                 .max_keysize            = AES_MAX_KEY_SIZE,
1279                 .ivsize                 = AES_BLOCK_SIZE,
1280                 .setkey                 = ablk_rfc3686_setkey,
1281                 .encrypt                = ablk_rfc3686_crypt,
1282                 .decrypt                = ablk_rfc3686_crypt,
1283         },
1284         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1285         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1286 } };
1287
1288 static struct ixp_aead_alg ixp4xx_aeads[] = {
1289 {
1290         .crypto = {
1291                 .base = {
1292                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1293                         .cra_blocksize  = DES_BLOCK_SIZE,
1294                 },
1295                 .ivsize         = DES_BLOCK_SIZE,
1296                 .maxauthsize    = MD5_DIGEST_SIZE,
1297         },
1298         .hash = &hash_alg_md5,
1299         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1300         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1301 }, {
1302         .crypto = {
1303                 .base = {
1304                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1305                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1306                 },
1307                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1308                 .maxauthsize    = MD5_DIGEST_SIZE,
1309                 .setkey         = des3_aead_setkey,
1310         },
1311         .hash = &hash_alg_md5,
1312         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1313         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1314 }, {
1315         .crypto = {
1316                 .base = {
1317                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1318                         .cra_blocksize  = DES_BLOCK_SIZE,
1319                 },
1320                         .ivsize         = DES_BLOCK_SIZE,
1321                         .maxauthsize    = SHA1_DIGEST_SIZE,
1322         },
1323         .hash = &hash_alg_sha1,
1324         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1325         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1326 }, {
1327         .crypto = {
1328                 .base = {
1329                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1330                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1331                 },
1332                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1333                 .maxauthsize    = SHA1_DIGEST_SIZE,
1334                 .setkey         = des3_aead_setkey,
1335         },
1336         .hash = &hash_alg_sha1,
1337         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1338         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1339 }, {
1340         .crypto = {
1341                 .base = {
1342                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1343                         .cra_blocksize  = AES_BLOCK_SIZE,
1344                 },
1345                 .ivsize         = AES_BLOCK_SIZE,
1346                 .maxauthsize    = MD5_DIGEST_SIZE,
1347         },
1348         .hash = &hash_alg_md5,
1349         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1350         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1351 }, {
1352         .crypto = {
1353                 .base = {
1354                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1355                         .cra_blocksize  = AES_BLOCK_SIZE,
1356                 },
1357                 .ivsize         = AES_BLOCK_SIZE,
1358                 .maxauthsize    = SHA1_DIGEST_SIZE,
1359         },
1360         .hash = &hash_alg_sha1,
1361         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1362         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1363 } };
1364
1365 #define IXP_POSTFIX "-ixp4xx"
1366
1367 static const struct platform_device_info ixp_dev_info __initdata = {
1368         .name           = DRIVER_NAME,
1369         .id             = 0,
1370         .dma_mask       = DMA_BIT_MASK(32),
1371 };
1372
1373 static int __init ixp_module_init(void)
1374 {
1375         int num = ARRAY_SIZE(ixp4xx_algos);
1376         int i, err;
1377
1378         pdev = platform_device_register_full(&ixp_dev_info);
1379         if (IS_ERR(pdev))
1380                 return PTR_ERR(pdev);
1381
1382         err = init_ixp_crypto(&pdev->dev);
1383         if (err) {
1384                 platform_device_unregister(pdev);
1385                 return err;
1386         }
1387         for (i=0; i< num; i++) {
1388                 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1389
1390                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1391                         "%s"IXP_POSTFIX, cra->base.cra_name) >=
1392                         CRYPTO_MAX_ALG_NAME)
1393                 {
1394                         continue;
1395                 }
1396                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1397                         continue;
1398                 }
1399
1400                 /* block ciphers */
1401                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1402                                       CRYPTO_ALG_ASYNC |
1403                                       CRYPTO_ALG_ALLOCATES_MEMORY;
1404                 if (!cra->setkey)
1405                         cra->setkey = ablk_setkey;
1406                 if (!cra->encrypt)
1407                         cra->encrypt = ablk_encrypt;
1408                 if (!cra->decrypt)
1409                         cra->decrypt = ablk_decrypt;
1410                 cra->init = init_tfm_ablk;
1411                 cra->exit = exit_tfm_ablk;
1412
1413                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1414                 cra->base.cra_module = THIS_MODULE;
1415                 cra->base.cra_alignmask = 3;
1416                 cra->base.cra_priority = 300;
1417                 if (crypto_register_skcipher(cra))
1418                         printk(KERN_ERR "Failed to register '%s'\n",
1419                                 cra->base.cra_name);
1420                 else
1421                         ixp4xx_algos[i].registered = 1;
1422         }
1423
1424         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1425                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1426
1427                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1428                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1429                     CRYPTO_MAX_ALG_NAME)
1430                         continue;
1431                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1432                         continue;
1433
1434                 /* authenc */
1435                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1436                                       CRYPTO_ALG_ASYNC |
1437                                       CRYPTO_ALG_ALLOCATES_MEMORY;
1438                 cra->setkey = cra->setkey ?: aead_setkey;
1439                 cra->setauthsize = aead_setauthsize;
1440                 cra->encrypt = aead_encrypt;
1441                 cra->decrypt = aead_decrypt;
1442                 cra->init = init_tfm_aead;
1443                 cra->exit = exit_tfm_aead;
1444
1445                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1446                 cra->base.cra_module = THIS_MODULE;
1447                 cra->base.cra_alignmask = 3;
1448                 cra->base.cra_priority = 300;
1449
1450                 if (crypto_register_aead(cra))
1451                         printk(KERN_ERR "Failed to register '%s'\n",
1452                                 cra->base.cra_driver_name);
1453                 else
1454                         ixp4xx_aeads[i].registered = 1;
1455         }
1456         return 0;
1457 }
1458
1459 static void __exit ixp_module_exit(void)
1460 {
1461         int num = ARRAY_SIZE(ixp4xx_algos);
1462         int i;
1463
1464         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1465                 if (ixp4xx_aeads[i].registered)
1466                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1467         }
1468
1469         for (i=0; i< num; i++) {
1470                 if (ixp4xx_algos[i].registered)
1471                         crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1472         }
1473         release_ixp_crypto(&pdev->dev);
1474         platform_device_unregister(pdev);
1475 }
1476
1477 module_init(ixp_module_init);
1478 module_exit(ixp_module_exit);
1479
1480 MODULE_LICENSE("GPL");
1481 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1482 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1483