Merge tag 'pm-5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
74                                  AES_FLAGS_ENCRYPT |            \
75                                  AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79 #define AES_FLAGS_OWN_SHA       BIT(5)
80
81 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH  50
84
85 #define ATMEL_AES_DMA_THRESHOLD         256
86
87
88 struct atmel_aes_caps {
89         bool                    has_dualbuff;
90         bool                    has_cfb64;
91         bool                    has_gcm;
92         bool                    has_xts;
93         bool                    has_authenc;
94         u32                     max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104         struct atmel_aes_dev    *dd;
105         atmel_aes_fn_t          start;
106         int                     keylen;
107         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
108         u16                     block_size;
109         bool                    is_aead;
110 };
111
112 struct atmel_aes_ctx {
113         struct atmel_aes_base_ctx       base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117         struct atmel_aes_base_ctx       base;
118
119         __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
120         size_t                  offset;
121         struct scatterlist      src[2];
122         struct scatterlist      dst[2];
123         u32                     blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127         struct atmel_aes_base_ctx       base;
128
129         struct scatterlist      src[2];
130         struct scatterlist      dst[2];
131
132         __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
133         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
134         __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
135         size_t                  textlen;
136
137         const __be32            *ghash_in;
138         __be32                  *ghash_out;
139         atmel_aes_fn_t          ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143         struct atmel_aes_base_ctx       base;
144
145         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
146 };
147
148 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149 struct atmel_aes_authenc_ctx {
150         struct atmel_aes_base_ctx       base;
151         struct atmel_sha_authenc_ctx    *auth;
152 };
153 #endif
154
155 struct atmel_aes_reqctx {
156         unsigned long           mode;
157         u8                      lastc[AES_BLOCK_SIZE];
158 };
159
160 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161 struct atmel_aes_authenc_reqctx {
162         struct atmel_aes_reqctx base;
163
164         struct scatterlist      src[2];
165         struct scatterlist      dst[2];
166         size_t                  textlen;
167         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168
169         /* auth_req MUST be place last. */
170         struct ahash_request    auth_req;
171 };
172 #endif
173
174 struct atmel_aes_dma {
175         struct dma_chan         *chan;
176         struct scatterlist      *sg;
177         int                     nents;
178         unsigned int            remainder;
179         unsigned int            sg_len;
180 };
181
182 struct atmel_aes_dev {
183         struct list_head        list;
184         unsigned long           phys_base;
185         void __iomem            *io_base;
186
187         struct crypto_async_request     *areq;
188         struct atmel_aes_base_ctx       *ctx;
189
190         bool                    is_async;
191         atmel_aes_fn_t          resume;
192         atmel_aes_fn_t          cpu_transfer_complete;
193
194         struct device           *dev;
195         struct clk              *iclk;
196         int                     irq;
197
198         unsigned long           flags;
199
200         spinlock_t              lock;
201         struct crypto_queue     queue;
202
203         struct tasklet_struct   done_task;
204         struct tasklet_struct   queue_task;
205
206         size_t                  total;
207         size_t                  datalen;
208         u32                     *data;
209
210         struct atmel_aes_dma    src;
211         struct atmel_aes_dma    dst;
212
213         size_t                  buflen;
214         void                    *buf;
215         struct scatterlist      aligned_sg;
216         struct scatterlist      *real_dst;
217
218         struct atmel_aes_caps   caps;
219
220         u32                     hw_version;
221 };
222
223 struct atmel_aes_drv {
224         struct list_head        dev_list;
225         spinlock_t              lock;
226 };
227
228 static struct atmel_aes_drv atmel_aes = {
229         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232
233 #ifdef VERBOSE_DEBUG
234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236         switch (offset) {
237         case AES_CR:
238                 return "CR";
239
240         case AES_MR:
241                 return "MR";
242
243         case AES_ISR:
244                 return "ISR";
245
246         case AES_IMR:
247                 return "IMR";
248
249         case AES_IER:
250                 return "IER";
251
252         case AES_IDR:
253                 return "IDR";
254
255         case AES_KEYWR(0):
256         case AES_KEYWR(1):
257         case AES_KEYWR(2):
258         case AES_KEYWR(3):
259         case AES_KEYWR(4):
260         case AES_KEYWR(5):
261         case AES_KEYWR(6):
262         case AES_KEYWR(7):
263                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264                 break;
265
266         case AES_IDATAR(0):
267         case AES_IDATAR(1):
268         case AES_IDATAR(2):
269         case AES_IDATAR(3):
270                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271                 break;
272
273         case AES_ODATAR(0):
274         case AES_ODATAR(1):
275         case AES_ODATAR(2):
276         case AES_ODATAR(3):
277                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278                 break;
279
280         case AES_IVR(0):
281         case AES_IVR(1):
282         case AES_IVR(2):
283         case AES_IVR(3):
284                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285                 break;
286
287         case AES_AADLENR:
288                 return "AADLENR";
289
290         case AES_CLENR:
291                 return "CLENR";
292
293         case AES_GHASHR(0):
294         case AES_GHASHR(1):
295         case AES_GHASHR(2):
296         case AES_GHASHR(3):
297                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298                 break;
299
300         case AES_TAGR(0):
301         case AES_TAGR(1):
302         case AES_TAGR(2):
303         case AES_TAGR(3):
304                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305                 break;
306
307         case AES_CTRR:
308                 return "CTRR";
309
310         case AES_GCMHR(0):
311         case AES_GCMHR(1):
312         case AES_GCMHR(2):
313         case AES_GCMHR(3):
314                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315                 break;
316
317         case AES_EMR:
318                 return "EMR";
319
320         case AES_TWR(0):
321         case AES_TWR(1):
322         case AES_TWR(2):
323         case AES_TWR(3):
324                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325                 break;
326
327         case AES_ALPHAR(0):
328         case AES_ALPHAR(1):
329         case AES_ALPHAR(2):
330         case AES_ALPHAR(3):
331                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332                 break;
333
334         default:
335                 snprintf(tmp, sz, "0x%02x", offset);
336                 break;
337         }
338
339         return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342
343 /* Shared functions */
344
345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347         u32 value = readl_relaxed(dd->io_base + offset);
348
349 #ifdef VERBOSE_DEBUG
350         if (dd->flags & AES_FLAGS_DUMP_REG) {
351                 char tmp[16];
352
353                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355         }
356 #endif /* VERBOSE_DEBUG */
357
358         return value;
359 }
360
361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362                                         u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365         if (dd->flags & AES_FLAGS_DUMP_REG) {
366                 char tmp[16];
367
368                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370         }
371 #endif /* VERBOSE_DEBUG */
372
373         writel_relaxed(value, dd->io_base + offset);
374 }
375
376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377                                         u32 *value, int count)
378 {
379         for (; count--; value++, offset += 4)
380                 *value = atmel_aes_read(dd, offset);
381 }
382
383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384                               const u32 *value, int count)
385 {
386         for (; count--; value++, offset += 4)
387                 atmel_aes_write(dd, offset, *value);
388 }
389
390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391                                         void *value)
392 {
393         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395
396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397                                          const void *value)
398 {
399         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401
402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403                                                 atmel_aes_fn_t resume)
404 {
405         u32 isr = atmel_aes_read(dd, AES_ISR);
406
407         if (unlikely(isr & AES_INT_DATARDY))
408                 return resume(dd);
409
410         dd->resume = resume;
411         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412         return -EINPROGRESS;
413 }
414
415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417         len &= block_size - 1;
418         return len ? block_size - len : 0;
419 }
420
421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423         struct atmel_aes_dev *aes_dd = NULL;
424         struct atmel_aes_dev *tmp;
425
426         spin_lock_bh(&atmel_aes.lock);
427         if (!ctx->dd) {
428                 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429                         aes_dd = tmp;
430                         break;
431                 }
432                 ctx->dd = aes_dd;
433         } else {
434                 aes_dd = ctx->dd;
435         }
436
437         spin_unlock_bh(&atmel_aes.lock);
438
439         return aes_dd;
440 }
441
442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444         int err;
445
446         err = clk_enable(dd->iclk);
447         if (err)
448                 return err;
449
450         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452
453         return 0;
454 }
455
456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457 {
458         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459 }
460
461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462 {
463         int err;
464
465         err = atmel_aes_hw_init(dd);
466         if (err)
467                 return err;
468
469         dd->hw_version = atmel_aes_get_version(dd);
470
471         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472
473         clk_disable(dd->iclk);
474         return 0;
475 }
476
477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478                                       const struct atmel_aes_reqctx *rctx)
479 {
480         /* Clear all but persistent flags and set request flags. */
481         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482 }
483
484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485 {
486         return (dd->flags & AES_FLAGS_ENCRYPT);
487 }
488
489 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
492
493 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
494 {
495         struct skcipher_request *req = skcipher_request_cast(dd->areq);
496         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
497         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
498         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
499
500         if (req->cryptlen < ivsize)
501                 return;
502
503         if (rctx->mode & AES_FLAGS_ENCRYPT) {
504                 scatterwalk_map_and_copy(req->iv, req->dst,
505                                          req->cryptlen - ivsize, ivsize, 0);
506         } else {
507                 if (req->src == req->dst)
508                         memcpy(req->iv, rctx->lastc, ivsize);
509                 else
510                         scatterwalk_map_and_copy(req->iv, req->src,
511                                                  req->cryptlen - ivsize,
512                                                  ivsize, 0);
513         }
514 }
515
516 static inline struct atmel_aes_ctr_ctx *
517 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
518 {
519         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
520 }
521
522 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
523 {
524         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
525         struct skcipher_request *req = skcipher_request_cast(dd->areq);
526         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
527         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
528         int i;
529
530         /*
531          * The CTR transfer works in fragments of data of maximum 1 MByte
532          * because of the 16 bit CTR counter embedded in the IP. When reaching
533          * here, ctx->blocks contains the number of blocks of the last fragment
534          * processed, there is no need to explicit cast it to u16.
535          */
536         for (i = 0; i < ctx->blocks; i++)
537                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
538
539         memcpy(req->iv, ctx->iv, ivsize);
540 }
541
542 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
543 {
544         struct skcipher_request *req = skcipher_request_cast(dd->areq);
545         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
546
547 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
548         if (dd->ctx->is_aead)
549                 atmel_aes_authenc_complete(dd, err);
550 #endif
551
552         clk_disable(dd->iclk);
553         dd->flags &= ~AES_FLAGS_BUSY;
554
555         if (!err && !dd->ctx->is_aead &&
556             (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
557                 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
558                         atmel_aes_set_iv_as_last_ciphertext_block(dd);
559                 else
560                         atmel_aes_ctr_update_req_iv(dd);
561         }
562
563         if (dd->is_async)
564                 dd->areq->complete(dd->areq, err);
565
566         tasklet_schedule(&dd->queue_task);
567
568         return err;
569 }
570
571 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
572                                      const __be32 *iv, const u32 *key, int keylen)
573 {
574         u32 valmr = 0;
575
576         /* MR register must be set before IV registers */
577         if (keylen == AES_KEYSIZE_128)
578                 valmr |= AES_MR_KEYSIZE_128;
579         else if (keylen == AES_KEYSIZE_192)
580                 valmr |= AES_MR_KEYSIZE_192;
581         else
582                 valmr |= AES_MR_KEYSIZE_256;
583
584         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
585
586         if (use_dma) {
587                 valmr |= AES_MR_SMOD_IDATAR0;
588                 if (dd->caps.has_dualbuff)
589                         valmr |= AES_MR_DUALBUFF;
590         } else {
591                 valmr |= AES_MR_SMOD_AUTO;
592         }
593
594         atmel_aes_write(dd, AES_MR, valmr);
595
596         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
597
598         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
599                 atmel_aes_write_block(dd, AES_IVR(0), iv);
600 }
601
602 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
603                                         const __be32 *iv)
604
605 {
606         atmel_aes_write_ctrl_key(dd, use_dma, iv,
607                                  dd->ctx->key, dd->ctx->keylen);
608 }
609
610 /* CPU transfer */
611
612 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
613 {
614         int err = 0;
615         u32 isr;
616
617         for (;;) {
618                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
619                 dd->data += 4;
620                 dd->datalen -= AES_BLOCK_SIZE;
621
622                 if (dd->datalen < AES_BLOCK_SIZE)
623                         break;
624
625                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
626
627                 isr = atmel_aes_read(dd, AES_ISR);
628                 if (!(isr & AES_INT_DATARDY)) {
629                         dd->resume = atmel_aes_cpu_transfer;
630                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
631                         return -EINPROGRESS;
632                 }
633         }
634
635         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
636                                  dd->buf, dd->total))
637                 err = -EINVAL;
638
639         if (err)
640                 return atmel_aes_complete(dd, err);
641
642         return dd->cpu_transfer_complete(dd);
643 }
644
645 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
646                                struct scatterlist *src,
647                                struct scatterlist *dst,
648                                size_t len,
649                                atmel_aes_fn_t resume)
650 {
651         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
652
653         if (unlikely(len == 0))
654                 return -EINVAL;
655
656         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
657
658         dd->total = len;
659         dd->real_dst = dst;
660         dd->cpu_transfer_complete = resume;
661         dd->datalen = len + padlen;
662         dd->data = (u32 *)dd->buf;
663         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
664         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
665 }
666
667
668 /* DMA transfer */
669
670 static void atmel_aes_dma_callback(void *data);
671
672 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
673                                     struct scatterlist *sg,
674                                     size_t len,
675                                     struct atmel_aes_dma *dma)
676 {
677         int nents;
678
679         if (!IS_ALIGNED(len, dd->ctx->block_size))
680                 return false;
681
682         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
683                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
684                         return false;
685
686                 if (len <= sg->length) {
687                         if (!IS_ALIGNED(len, dd->ctx->block_size))
688                                 return false;
689
690                         dma->nents = nents+1;
691                         dma->remainder = sg->length - len;
692                         sg->length = len;
693                         return true;
694                 }
695
696                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
697                         return false;
698
699                 len -= sg->length;
700         }
701
702         return false;
703 }
704
705 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
706 {
707         struct scatterlist *sg = dma->sg;
708         int nents = dma->nents;
709
710         if (!dma->remainder)
711                 return;
712
713         while (--nents > 0 && sg)
714                 sg = sg_next(sg);
715
716         if (!sg)
717                 return;
718
719         sg->length += dma->remainder;
720 }
721
722 static int atmel_aes_map(struct atmel_aes_dev *dd,
723                          struct scatterlist *src,
724                          struct scatterlist *dst,
725                          size_t len)
726 {
727         bool src_aligned, dst_aligned;
728         size_t padlen;
729
730         dd->total = len;
731         dd->src.sg = src;
732         dd->dst.sg = dst;
733         dd->real_dst = dst;
734
735         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
736         if (src == dst)
737                 dst_aligned = src_aligned;
738         else
739                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
740         if (!src_aligned || !dst_aligned) {
741                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
742
743                 if (dd->buflen < len + padlen)
744                         return -ENOMEM;
745
746                 if (!src_aligned) {
747                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
748                         dd->src.sg = &dd->aligned_sg;
749                         dd->src.nents = 1;
750                         dd->src.remainder = 0;
751                 }
752
753                 if (!dst_aligned) {
754                         dd->dst.sg = &dd->aligned_sg;
755                         dd->dst.nents = 1;
756                         dd->dst.remainder = 0;
757                 }
758
759                 sg_init_table(&dd->aligned_sg, 1);
760                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
761         }
762
763         if (dd->src.sg == dd->dst.sg) {
764                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
765                                             DMA_BIDIRECTIONAL);
766                 dd->dst.sg_len = dd->src.sg_len;
767                 if (!dd->src.sg_len)
768                         return -EFAULT;
769         } else {
770                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
771                                             DMA_TO_DEVICE);
772                 if (!dd->src.sg_len)
773                         return -EFAULT;
774
775                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
776                                             DMA_FROM_DEVICE);
777                 if (!dd->dst.sg_len) {
778                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
779                                      DMA_TO_DEVICE);
780                         return -EFAULT;
781                 }
782         }
783
784         return 0;
785 }
786
787 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
788 {
789         if (dd->src.sg == dd->dst.sg) {
790                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
791                              DMA_BIDIRECTIONAL);
792
793                 if (dd->src.sg != &dd->aligned_sg)
794                         atmel_aes_restore_sg(&dd->src);
795         } else {
796                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
797                              DMA_FROM_DEVICE);
798
799                 if (dd->dst.sg != &dd->aligned_sg)
800                         atmel_aes_restore_sg(&dd->dst);
801
802                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
803                              DMA_TO_DEVICE);
804
805                 if (dd->src.sg != &dd->aligned_sg)
806                         atmel_aes_restore_sg(&dd->src);
807         }
808
809         if (dd->dst.sg == &dd->aligned_sg)
810                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
811                                     dd->buf, dd->total);
812 }
813
814 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
815                                         enum dma_slave_buswidth addr_width,
816                                         enum dma_transfer_direction dir,
817                                         u32 maxburst)
818 {
819         struct dma_async_tx_descriptor *desc;
820         struct dma_slave_config config;
821         dma_async_tx_callback callback;
822         struct atmel_aes_dma *dma;
823         int err;
824
825         memset(&config, 0, sizeof(config));
826         config.src_addr_width = addr_width;
827         config.dst_addr_width = addr_width;
828         config.src_maxburst = maxburst;
829         config.dst_maxburst = maxburst;
830
831         switch (dir) {
832         case DMA_MEM_TO_DEV:
833                 dma = &dd->src;
834                 callback = NULL;
835                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
836                 break;
837
838         case DMA_DEV_TO_MEM:
839                 dma = &dd->dst;
840                 callback = atmel_aes_dma_callback;
841                 config.src_addr = dd->phys_base + AES_ODATAR(0);
842                 break;
843
844         default:
845                 return -EINVAL;
846         }
847
848         err = dmaengine_slave_config(dma->chan, &config);
849         if (err)
850                 return err;
851
852         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
853                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
854         if (!desc)
855                 return -ENOMEM;
856
857         desc->callback = callback;
858         desc->callback_param = dd;
859         dmaengine_submit(desc);
860         dma_async_issue_pending(dma->chan);
861
862         return 0;
863 }
864
865 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
866                                struct scatterlist *src,
867                                struct scatterlist *dst,
868                                size_t len,
869                                atmel_aes_fn_t resume)
870 {
871         enum dma_slave_buswidth addr_width;
872         u32 maxburst;
873         int err;
874
875         switch (dd->ctx->block_size) {
876         case CFB8_BLOCK_SIZE:
877                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
878                 maxburst = 1;
879                 break;
880
881         case CFB16_BLOCK_SIZE:
882                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
883                 maxburst = 1;
884                 break;
885
886         case CFB32_BLOCK_SIZE:
887         case CFB64_BLOCK_SIZE:
888                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
889                 maxburst = 1;
890                 break;
891
892         case AES_BLOCK_SIZE:
893                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
894                 maxburst = dd->caps.max_burst_size;
895                 break;
896
897         default:
898                 err = -EINVAL;
899                 goto exit;
900         }
901
902         err = atmel_aes_map(dd, src, dst, len);
903         if (err)
904                 goto exit;
905
906         dd->resume = resume;
907
908         /* Set output DMA transfer first */
909         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
910                                            maxburst);
911         if (err)
912                 goto unmap;
913
914         /* Then set input DMA transfer */
915         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
916                                            maxburst);
917         if (err)
918                 goto output_transfer_stop;
919
920         return -EINPROGRESS;
921
922 output_transfer_stop:
923         dmaengine_terminate_sync(dd->dst.chan);
924 unmap:
925         atmel_aes_unmap(dd);
926 exit:
927         return atmel_aes_complete(dd, err);
928 }
929
930 static void atmel_aes_dma_callback(void *data)
931 {
932         struct atmel_aes_dev *dd = data;
933
934         atmel_aes_unmap(dd);
935         dd->is_async = true;
936         (void)dd->resume(dd);
937 }
938
939 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
940                                   struct crypto_async_request *new_areq)
941 {
942         struct crypto_async_request *areq, *backlog;
943         struct atmel_aes_base_ctx *ctx;
944         unsigned long flags;
945         bool start_async;
946         int err, ret = 0;
947
948         spin_lock_irqsave(&dd->lock, flags);
949         if (new_areq)
950                 ret = crypto_enqueue_request(&dd->queue, new_areq);
951         if (dd->flags & AES_FLAGS_BUSY) {
952                 spin_unlock_irqrestore(&dd->lock, flags);
953                 return ret;
954         }
955         backlog = crypto_get_backlog(&dd->queue);
956         areq = crypto_dequeue_request(&dd->queue);
957         if (areq)
958                 dd->flags |= AES_FLAGS_BUSY;
959         spin_unlock_irqrestore(&dd->lock, flags);
960
961         if (!areq)
962                 return ret;
963
964         if (backlog)
965                 backlog->complete(backlog, -EINPROGRESS);
966
967         ctx = crypto_tfm_ctx(areq->tfm);
968
969         dd->areq = areq;
970         dd->ctx = ctx;
971         start_async = (areq != new_areq);
972         dd->is_async = start_async;
973
974         /* WARNING: ctx->start() MAY change dd->is_async. */
975         err = ctx->start(dd);
976         return (start_async) ? ret : err;
977 }
978
979
980 /* AES async block ciphers */
981
982 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
983 {
984         return atmel_aes_complete(dd, 0);
985 }
986
987 static int atmel_aes_start(struct atmel_aes_dev *dd)
988 {
989         struct skcipher_request *req = skcipher_request_cast(dd->areq);
990         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
991         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
992                         dd->ctx->block_size != AES_BLOCK_SIZE);
993         int err;
994
995         atmel_aes_set_mode(dd, rctx);
996
997         err = atmel_aes_hw_init(dd);
998         if (err)
999                 return atmel_aes_complete(dd, err);
1000
1001         atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002         if (use_dma)
1003                 return atmel_aes_dma_start(dd, req->src, req->dst,
1004                                            req->cryptlen,
1005                                            atmel_aes_transfer_complete);
1006
1007         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008                                    atmel_aes_transfer_complete);
1009 }
1010
1011 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012 {
1013         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015         struct scatterlist *src, *dst;
1016         size_t datalen;
1017         u32 ctr;
1018         u16 start, end;
1019         bool use_dma, fragmented = false;
1020
1021         /* Check for transfer completion. */
1022         ctx->offset += dd->total;
1023         if (ctx->offset >= req->cryptlen)
1024                 return atmel_aes_transfer_complete(dd);
1025
1026         /* Compute data length. */
1027         datalen = req->cryptlen - ctx->offset;
1028         ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029         ctr = be32_to_cpu(ctx->iv[3]);
1030
1031         /* Check 16bit counter overflow. */
1032         start = ctr & 0xffff;
1033         end = start + ctx->blocks - 1;
1034
1035         if (ctx->blocks >> 16 || end < start) {
1036                 ctr |= 0xffff;
1037                 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038                 fragmented = true;
1039         }
1040
1041         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043         /* Jump to offset. */
1044         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045         dst = ((req->src == req->dst) ? src :
1046                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048         /* Configure hardware. */
1049         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050         if (unlikely(fragmented)) {
1051                 /*
1052                  * Increment the counter manually to cope with the hardware
1053                  * counter overflow.
1054                  */
1055                 ctx->iv[3] = cpu_to_be32(ctr);
1056                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057         }
1058
1059         if (use_dma)
1060                 return atmel_aes_dma_start(dd, src, dst, datalen,
1061                                            atmel_aes_ctr_transfer);
1062
1063         return atmel_aes_cpu_start(dd, src, dst, datalen,
1064                                    atmel_aes_ctr_transfer);
1065 }
1066
1067 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068 {
1069         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072         int err;
1073
1074         atmel_aes_set_mode(dd, rctx);
1075
1076         err = atmel_aes_hw_init(dd);
1077         if (err)
1078                 return atmel_aes_complete(dd, err);
1079
1080         memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081         ctx->offset = 0;
1082         dd->total = 0;
1083         return atmel_aes_ctr_transfer(dd);
1084 }
1085
1086 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087 {
1088         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090         struct atmel_aes_reqctx *rctx;
1091         struct atmel_aes_dev *dd;
1092
1093         switch (mode & AES_FLAGS_OPMODE_MASK) {
1094         case AES_FLAGS_CFB8:
1095                 ctx->block_size = CFB8_BLOCK_SIZE;
1096                 break;
1097
1098         case AES_FLAGS_CFB16:
1099                 ctx->block_size = CFB16_BLOCK_SIZE;
1100                 break;
1101
1102         case AES_FLAGS_CFB32:
1103                 ctx->block_size = CFB32_BLOCK_SIZE;
1104                 break;
1105
1106         case AES_FLAGS_CFB64:
1107                 ctx->block_size = CFB64_BLOCK_SIZE;
1108                 break;
1109
1110         default:
1111                 ctx->block_size = AES_BLOCK_SIZE;
1112                 break;
1113         }
1114         ctx->is_aead = false;
1115
1116         dd = atmel_aes_find_dev(ctx);
1117         if (!dd)
1118                 return -ENODEV;
1119
1120         rctx = skcipher_request_ctx(req);
1121         rctx->mode = mode;
1122
1123         if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124             !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125                 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127                 if (req->cryptlen >= ivsize)
1128                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1129                                                  req->cryptlen - ivsize,
1130                                                  ivsize, 0);
1131         }
1132
1133         return atmel_aes_handle_queue(dd, &req->base);
1134 }
1135
1136 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137                            unsigned int keylen)
1138 {
1139         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141         if (keylen != AES_KEYSIZE_128 &&
1142             keylen != AES_KEYSIZE_192 &&
1143             keylen != AES_KEYSIZE_256)
1144                 return -EINVAL;
1145
1146         memcpy(ctx->key, key, keylen);
1147         ctx->keylen = keylen;
1148
1149         return 0;
1150 }
1151
1152 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153 {
1154         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155 }
1156
1157 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158 {
1159         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160 }
1161
1162 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163 {
1164         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165 }
1166
1167 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168 {
1169         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170 }
1171
1172 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173 {
1174         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175 }
1176
1177 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178 {
1179         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180 }
1181
1182 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183 {
1184         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185 }
1186
1187 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188 {
1189         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190 }
1191
1192 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193 {
1194         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195 }
1196
1197 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198 {
1199         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200 }
1201
1202 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203 {
1204         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205 }
1206
1207 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208 {
1209         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210 }
1211
1212 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213 {
1214         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215 }
1216
1217 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218 {
1219         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220 }
1221
1222 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223 {
1224         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225 }
1226
1227 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228 {
1229         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230 }
1231
1232 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233 {
1234         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235 }
1236
1237 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238 {
1239         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240 }
1241
1242 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243 {
1244         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245
1246         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247         ctx->base.start = atmel_aes_start;
1248
1249         return 0;
1250 }
1251
1252 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253 {
1254         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255
1256         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257         ctx->base.start = atmel_aes_ctr_start;
1258
1259         return 0;
1260 }
1261
1262 static struct skcipher_alg aes_algs[] = {
1263 {
1264         .base.cra_name          = "ecb(aes)",
1265         .base.cra_driver_name   = "atmel-ecb-aes",
1266         .base.cra_blocksize     = AES_BLOCK_SIZE,
1267         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1268
1269         .init                   = atmel_aes_init_tfm,
1270         .min_keysize            = AES_MIN_KEY_SIZE,
1271         .max_keysize            = AES_MAX_KEY_SIZE,
1272         .setkey                 = atmel_aes_setkey,
1273         .encrypt                = atmel_aes_ecb_encrypt,
1274         .decrypt                = atmel_aes_ecb_decrypt,
1275 },
1276 {
1277         .base.cra_name          = "cbc(aes)",
1278         .base.cra_driver_name   = "atmel-cbc-aes",
1279         .base.cra_blocksize     = AES_BLOCK_SIZE,
1280         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1281
1282         .init                   = atmel_aes_init_tfm,
1283         .min_keysize            = AES_MIN_KEY_SIZE,
1284         .max_keysize            = AES_MAX_KEY_SIZE,
1285         .setkey                 = atmel_aes_setkey,
1286         .encrypt                = atmel_aes_cbc_encrypt,
1287         .decrypt                = atmel_aes_cbc_decrypt,
1288         .ivsize                 = AES_BLOCK_SIZE,
1289 },
1290 {
1291         .base.cra_name          = "ofb(aes)",
1292         .base.cra_driver_name   = "atmel-ofb-aes",
1293         .base.cra_blocksize     = AES_BLOCK_SIZE,
1294         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1295
1296         .init                   = atmel_aes_init_tfm,
1297         .min_keysize            = AES_MIN_KEY_SIZE,
1298         .max_keysize            = AES_MAX_KEY_SIZE,
1299         .setkey                 = atmel_aes_setkey,
1300         .encrypt                = atmel_aes_ofb_encrypt,
1301         .decrypt                = atmel_aes_ofb_decrypt,
1302         .ivsize                 = AES_BLOCK_SIZE,
1303 },
1304 {
1305         .base.cra_name          = "cfb(aes)",
1306         .base.cra_driver_name   = "atmel-cfb-aes",
1307         .base.cra_blocksize     = AES_BLOCK_SIZE,
1308         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1309
1310         .init                   = atmel_aes_init_tfm,
1311         .min_keysize            = AES_MIN_KEY_SIZE,
1312         .max_keysize            = AES_MAX_KEY_SIZE,
1313         .setkey                 = atmel_aes_setkey,
1314         .encrypt                = atmel_aes_cfb_encrypt,
1315         .decrypt                = atmel_aes_cfb_decrypt,
1316         .ivsize                 = AES_BLOCK_SIZE,
1317 },
1318 {
1319         .base.cra_name          = "cfb32(aes)",
1320         .base.cra_driver_name   = "atmel-cfb32-aes",
1321         .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1322         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1323
1324         .init                   = atmel_aes_init_tfm,
1325         .min_keysize            = AES_MIN_KEY_SIZE,
1326         .max_keysize            = AES_MAX_KEY_SIZE,
1327         .setkey                 = atmel_aes_setkey,
1328         .encrypt                = atmel_aes_cfb32_encrypt,
1329         .decrypt                = atmel_aes_cfb32_decrypt,
1330         .ivsize                 = AES_BLOCK_SIZE,
1331 },
1332 {
1333         .base.cra_name          = "cfb16(aes)",
1334         .base.cra_driver_name   = "atmel-cfb16-aes",
1335         .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1336         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1337
1338         .init                   = atmel_aes_init_tfm,
1339         .min_keysize            = AES_MIN_KEY_SIZE,
1340         .max_keysize            = AES_MAX_KEY_SIZE,
1341         .setkey                 = atmel_aes_setkey,
1342         .encrypt                = atmel_aes_cfb16_encrypt,
1343         .decrypt                = atmel_aes_cfb16_decrypt,
1344         .ivsize                 = AES_BLOCK_SIZE,
1345 },
1346 {
1347         .base.cra_name          = "cfb8(aes)",
1348         .base.cra_driver_name   = "atmel-cfb8-aes",
1349         .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1350         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1351
1352         .init                   = atmel_aes_init_tfm,
1353         .min_keysize            = AES_MIN_KEY_SIZE,
1354         .max_keysize            = AES_MAX_KEY_SIZE,
1355         .setkey                 = atmel_aes_setkey,
1356         .encrypt                = atmel_aes_cfb8_encrypt,
1357         .decrypt                = atmel_aes_cfb8_decrypt,
1358         .ivsize                 = AES_BLOCK_SIZE,
1359 },
1360 {
1361         .base.cra_name          = "ctr(aes)",
1362         .base.cra_driver_name   = "atmel-ctr-aes",
1363         .base.cra_blocksize     = 1,
1364         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1365
1366         .init                   = atmel_aes_ctr_init_tfm,
1367         .min_keysize            = AES_MIN_KEY_SIZE,
1368         .max_keysize            = AES_MAX_KEY_SIZE,
1369         .setkey                 = atmel_aes_setkey,
1370         .encrypt                = atmel_aes_ctr_encrypt,
1371         .decrypt                = atmel_aes_ctr_decrypt,
1372         .ivsize                 = AES_BLOCK_SIZE,
1373 },
1374 };
1375
1376 static struct skcipher_alg aes_cfb64_alg = {
1377         .base.cra_name          = "cfb64(aes)",
1378         .base.cra_driver_name   = "atmel-cfb64-aes",
1379         .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1380         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1381
1382         .init                   = atmel_aes_init_tfm,
1383         .min_keysize            = AES_MIN_KEY_SIZE,
1384         .max_keysize            = AES_MAX_KEY_SIZE,
1385         .setkey                 = atmel_aes_setkey,
1386         .encrypt                = atmel_aes_cfb64_encrypt,
1387         .decrypt                = atmel_aes_cfb64_decrypt,
1388         .ivsize                 = AES_BLOCK_SIZE,
1389 };
1390
1391
1392 /* gcm aead functions */
1393
1394 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395                                const u32 *data, size_t datalen,
1396                                const __be32 *ghash_in, __be32 *ghash_out,
1397                                atmel_aes_fn_t resume);
1398 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409 static inline struct atmel_aes_gcm_ctx *
1410 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411 {
1412         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413 }
1414
1415 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416                                const u32 *data, size_t datalen,
1417                                const __be32 *ghash_in, __be32 *ghash_out,
1418                                atmel_aes_fn_t resume)
1419 {
1420         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422         dd->data = (u32 *)data;
1423         dd->datalen = datalen;
1424         ctx->ghash_in = ghash_in;
1425         ctx->ghash_out = ghash_out;
1426         ctx->ghash_resume = resume;
1427
1428         atmel_aes_write_ctrl(dd, false, NULL);
1429         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430 }
1431
1432 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433 {
1434         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436         /* Set the data length. */
1437         atmel_aes_write(dd, AES_AADLENR, dd->total);
1438         atmel_aes_write(dd, AES_CLENR, 0);
1439
1440         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441         if (ctx->ghash_in)
1442                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444         return atmel_aes_gcm_ghash_finalize(dd);
1445 }
1446
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448 {
1449         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450         u32 isr;
1451
1452         /* Write data into the Input Data Registers. */
1453         while (dd->datalen > 0) {
1454                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455                 dd->data += 4;
1456                 dd->datalen -= AES_BLOCK_SIZE;
1457
1458                 isr = atmel_aes_read(dd, AES_ISR);
1459                 if (!(isr & AES_INT_DATARDY)) {
1460                         dd->resume = atmel_aes_gcm_ghash_finalize;
1461                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462                         return -EINPROGRESS;
1463                 }
1464         }
1465
1466         /* Read the computed hash from GHASHRx. */
1467         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469         return ctx->ghash_resume(dd);
1470 }
1471
1472
1473 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474 {
1475         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476         struct aead_request *req = aead_request_cast(dd->areq);
1477         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479         size_t ivsize = crypto_aead_ivsize(tfm);
1480         size_t datalen, padlen;
1481         const void *iv = req->iv;
1482         u8 *data = dd->buf;
1483         int err;
1484
1485         atmel_aes_set_mode(dd, rctx);
1486
1487         err = atmel_aes_hw_init(dd);
1488         if (err)
1489                 return atmel_aes_complete(dd, err);
1490
1491         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492                 memcpy(ctx->j0, iv, ivsize);
1493                 ctx->j0[3] = cpu_to_be32(1);
1494                 return atmel_aes_gcm_process(dd);
1495         }
1496
1497         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499         if (datalen > dd->buflen)
1500                 return atmel_aes_complete(dd, -EINVAL);
1501
1502         memcpy(data, iv, ivsize);
1503         memset(data + ivsize, 0, padlen + sizeof(u64));
1504         ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507                                    NULL, ctx->j0, atmel_aes_gcm_process);
1508 }
1509
1510 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511 {
1512         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513         struct aead_request *req = aead_request_cast(dd->areq);
1514         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515         bool enc = atmel_aes_is_encrypt(dd);
1516         u32 authsize;
1517
1518         /* Compute text length. */
1519         authsize = crypto_aead_authsize(tfm);
1520         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522         /*
1523          * According to tcrypt test suite, the GCM Automatic Tag Generation
1524          * fails when both the message and its associated data are empty.
1525          */
1526         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527                 dd->flags |= AES_FLAGS_GTAGEN;
1528
1529         atmel_aes_write_ctrl(dd, false, NULL);
1530         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531 }
1532
1533 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534 {
1535         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536         struct aead_request *req = aead_request_cast(dd->areq);
1537         __be32 j0_lsw, *j0 = ctx->j0;
1538         size_t padlen;
1539
1540         /* Write incr32(J0) into IV. */
1541         j0_lsw = j0[3];
1542         be32_add_cpu(&j0[3], 1);
1543         atmel_aes_write_block(dd, AES_IVR(0), j0);
1544         j0[3] = j0_lsw;
1545
1546         /* Set aad and text lengths. */
1547         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550         /* Check whether AAD are present. */
1551         if (unlikely(req->assoclen == 0)) {
1552                 dd->datalen = 0;
1553                 return atmel_aes_gcm_data(dd);
1554         }
1555
1556         /* Copy assoc data and add padding. */
1557         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558         if (unlikely(req->assoclen + padlen > dd->buflen))
1559                 return atmel_aes_complete(dd, -EINVAL);
1560         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562         /* Write assoc data into the Input Data register. */
1563         dd->data = (u32 *)dd->buf;
1564         dd->datalen = req->assoclen + padlen;
1565         return atmel_aes_gcm_data(dd);
1566 }
1567
1568 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569 {
1570         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571         struct aead_request *req = aead_request_cast(dd->areq);
1572         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573         struct scatterlist *src, *dst;
1574         u32 isr, mr;
1575
1576         /* Write AAD first. */
1577         while (dd->datalen > 0) {
1578                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579                 dd->data += 4;
1580                 dd->datalen -= AES_BLOCK_SIZE;
1581
1582                 isr = atmel_aes_read(dd, AES_ISR);
1583                 if (!(isr & AES_INT_DATARDY)) {
1584                         dd->resume = atmel_aes_gcm_data;
1585                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586                         return -EINPROGRESS;
1587                 }
1588         }
1589
1590         /* GMAC only. */
1591         if (unlikely(ctx->textlen == 0))
1592                 return atmel_aes_gcm_tag_init(dd);
1593
1594         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596         dst = ((req->src == req->dst) ? src :
1597                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599         if (use_dma) {
1600                 /* Update the Mode Register for DMA transfers. */
1601                 mr = atmel_aes_read(dd, AES_MR);
1602                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603                 mr |= AES_MR_SMOD_IDATAR0;
1604                 if (dd->caps.has_dualbuff)
1605                         mr |= AES_MR_DUALBUFF;
1606                 atmel_aes_write(dd, AES_MR, mr);
1607
1608                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609                                            atmel_aes_gcm_tag_init);
1610         }
1611
1612         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613                                    atmel_aes_gcm_tag_init);
1614 }
1615
1616 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617 {
1618         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619         struct aead_request *req = aead_request_cast(dd->areq);
1620         __be64 *data = dd->buf;
1621
1622         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624                         dd->resume = atmel_aes_gcm_tag_init;
1625                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626                         return -EINPROGRESS;
1627                 }
1628
1629                 return atmel_aes_gcm_finalize(dd);
1630         }
1631
1632         /* Read the GCM Intermediate Hash Word Registers. */
1633         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635         data[0] = cpu_to_be64(req->assoclen * 8);
1636         data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640 }
1641
1642 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643 {
1644         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645         unsigned long flags;
1646
1647         /*
1648          * Change mode to CTR to complete the tag generation.
1649          * Use J0 as Initialization Vector.
1650          */
1651         flags = dd->flags;
1652         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653         dd->flags |= AES_FLAGS_CTR;
1654         atmel_aes_write_ctrl(dd, false, ctx->j0);
1655         dd->flags = flags;
1656
1657         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659 }
1660
1661 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662 {
1663         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664         struct aead_request *req = aead_request_cast(dd->areq);
1665         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666         bool enc = atmel_aes_is_encrypt(dd);
1667         u32 offset, authsize, itag[4], *otag = ctx->tag;
1668         int err;
1669
1670         /* Read the computed tag. */
1671         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673         else
1674                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676         offset = req->assoclen + ctx->textlen;
1677         authsize = crypto_aead_authsize(tfm);
1678         if (enc) {
1679                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680                 err = 0;
1681         } else {
1682                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684         }
1685
1686         return atmel_aes_complete(dd, err);
1687 }
1688
1689 static int atmel_aes_gcm_crypt(struct aead_request *req,
1690                                unsigned long mode)
1691 {
1692         struct atmel_aes_base_ctx *ctx;
1693         struct atmel_aes_reqctx *rctx;
1694         struct atmel_aes_dev *dd;
1695
1696         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697         ctx->block_size = AES_BLOCK_SIZE;
1698         ctx->is_aead = true;
1699
1700         dd = atmel_aes_find_dev(ctx);
1701         if (!dd)
1702                 return -ENODEV;
1703
1704         rctx = aead_request_ctx(req);
1705         rctx->mode = AES_FLAGS_GCM | mode;
1706
1707         return atmel_aes_handle_queue(dd, &req->base);
1708 }
1709
1710 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711                                 unsigned int keylen)
1712 {
1713         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715         if (keylen != AES_KEYSIZE_256 &&
1716             keylen != AES_KEYSIZE_192 &&
1717             keylen != AES_KEYSIZE_128)
1718                 return -EINVAL;
1719
1720         memcpy(ctx->key, key, keylen);
1721         ctx->keylen = keylen;
1722
1723         return 0;
1724 }
1725
1726 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727                                      unsigned int authsize)
1728 {
1729         return crypto_gcm_check_authsize(authsize);
1730 }
1731
1732 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733 {
1734         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735 }
1736
1737 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738 {
1739         return atmel_aes_gcm_crypt(req, 0);
1740 }
1741
1742 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743 {
1744         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745
1746         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747         ctx->base.start = atmel_aes_gcm_start;
1748
1749         return 0;
1750 }
1751
1752 static struct aead_alg aes_gcm_alg = {
1753         .setkey         = atmel_aes_gcm_setkey,
1754         .setauthsize    = atmel_aes_gcm_setauthsize,
1755         .encrypt        = atmel_aes_gcm_encrypt,
1756         .decrypt        = atmel_aes_gcm_decrypt,
1757         .init           = atmel_aes_gcm_init,
1758         .ivsize         = GCM_AES_IV_SIZE,
1759         .maxauthsize    = AES_BLOCK_SIZE,
1760
1761         .base = {
1762                 .cra_name               = "gcm(aes)",
1763                 .cra_driver_name        = "atmel-gcm-aes",
1764                 .cra_blocksize          = 1,
1765                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1766         },
1767 };
1768
1769
1770 /* xts functions */
1771
1772 static inline struct atmel_aes_xts_ctx *
1773 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774 {
1775         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776 }
1777
1778 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781 {
1782         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785         unsigned long flags;
1786         int err;
1787
1788         atmel_aes_set_mode(dd, rctx);
1789
1790         err = atmel_aes_hw_init(dd);
1791         if (err)
1792                 return atmel_aes_complete(dd, err);
1793
1794         /* Compute the tweak value from req->iv with ecb(aes). */
1795         flags = dd->flags;
1796         dd->flags &= ~AES_FLAGS_MODE_MASK;
1797         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798         atmel_aes_write_ctrl_key(dd, false, NULL,
1799                                  ctx->key2, ctx->base.keylen);
1800         dd->flags = flags;
1801
1802         atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804 }
1805
1806 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807 {
1808         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811         static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812         u8 *tweak_bytes = (u8 *)tweak;
1813         int i;
1814
1815         /* Read the computed ciphered tweak value. */
1816         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817         /*
1818          * Hardware quirk:
1819          * the order of the ciphered tweak bytes need to be reversed before
1820          * writing them into the ODATARx registers.
1821          */
1822         for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823                 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825                 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826                 tweak_bytes[i] = tmp;
1827         }
1828
1829         /* Process the data. */
1830         atmel_aes_write_ctrl(dd, use_dma, NULL);
1831         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833         if (use_dma)
1834                 return atmel_aes_dma_start(dd, req->src, req->dst,
1835                                            req->cryptlen,
1836                                            atmel_aes_transfer_complete);
1837
1838         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839                                    atmel_aes_transfer_complete);
1840 }
1841
1842 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843                                 unsigned int keylen)
1844 {
1845         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846         int err;
1847
1848         err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849         if (err)
1850                 return err;
1851
1852         memcpy(ctx->base.key, key, keylen/2);
1853         memcpy(ctx->key2, key + keylen/2, keylen/2);
1854         ctx->base.keylen = keylen/2;
1855
1856         return 0;
1857 }
1858
1859 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860 {
1861         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862 }
1863
1864 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865 {
1866         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867 }
1868
1869 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870 {
1871         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872
1873         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874         ctx->base.start = atmel_aes_xts_start;
1875
1876         return 0;
1877 }
1878
1879 static struct skcipher_alg aes_xts_alg = {
1880         .base.cra_name          = "xts(aes)",
1881         .base.cra_driver_name   = "atmel-xts-aes",
1882         .base.cra_blocksize     = AES_BLOCK_SIZE,
1883         .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1884
1885         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1886         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1887         .ivsize                 = AES_BLOCK_SIZE,
1888         .setkey                 = atmel_aes_xts_setkey,
1889         .encrypt                = atmel_aes_xts_encrypt,
1890         .decrypt                = atmel_aes_xts_decrypt,
1891         .init                   = atmel_aes_xts_init_tfm,
1892 };
1893
1894 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895 /* authenc aead functions */
1896
1897 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899                                   bool is_async);
1900 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901                                       bool is_async);
1902 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904                                    bool is_async);
1905
1906 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907 {
1908         struct aead_request *req = aead_request_cast(dd->areq);
1909         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912                 atmel_sha_authenc_abort(&rctx->auth_req);
1913         dd->flags &= ~AES_FLAGS_OWN_SHA;
1914 }
1915
1916 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917 {
1918         struct aead_request *req = aead_request_cast(dd->areq);
1919         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922         int err;
1923
1924         atmel_aes_set_mode(dd, &rctx->base);
1925
1926         err = atmel_aes_hw_init(dd);
1927         if (err)
1928                 return atmel_aes_complete(dd, err);
1929
1930         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931                                           atmel_aes_authenc_init, dd);
1932 }
1933
1934 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935                                   bool is_async)
1936 {
1937         struct aead_request *req = aead_request_cast(dd->areq);
1938         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940         if (is_async)
1941                 dd->is_async = true;
1942         if (err)
1943                 return atmel_aes_complete(dd, err);
1944
1945         /* If here, we've got the ownership of the SHA device. */
1946         dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948         /* Configure the SHA device. */
1949         return atmel_sha_authenc_init(&rctx->auth_req,
1950                                       req->src, req->assoclen,
1951                                       rctx->textlen,
1952                                       atmel_aes_authenc_transfer, dd);
1953 }
1954
1955 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956                                       bool is_async)
1957 {
1958         struct aead_request *req = aead_request_cast(dd->areq);
1959         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960         bool enc = atmel_aes_is_encrypt(dd);
1961         struct scatterlist *src, *dst;
1962         __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963         u32 emr;
1964
1965         if (is_async)
1966                 dd->is_async = true;
1967         if (err)
1968                 return atmel_aes_complete(dd, err);
1969
1970         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972         dst = src;
1973
1974         if (req->src != req->dst)
1975                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977         /* Configure the AES device. */
1978         memcpy(iv, req->iv, sizeof(iv));
1979
1980         /*
1981          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982          * 'true' even if the data transfer is actually performed by the CPU (so
1983          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985          * must be set to *_MR_SMOD_IDATAR0.
1986          */
1987         atmel_aes_write_ctrl(dd, true, iv);
1988         emr = AES_EMR_PLIPEN;
1989         if (!enc)
1990                 emr |= AES_EMR_PLIPD;
1991         atmel_aes_write(dd, AES_EMR, emr);
1992
1993         /* Transfer data. */
1994         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995                                    atmel_aes_authenc_digest);
1996 }
1997
1998 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999 {
2000         struct aead_request *req = aead_request_cast(dd->areq);
2001         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003         /* atmel_sha_authenc_final() releases the SHA device. */
2004         dd->flags &= ~AES_FLAGS_OWN_SHA;
2005         return atmel_sha_authenc_final(&rctx->auth_req,
2006                                        rctx->digest, sizeof(rctx->digest),
2007                                        atmel_aes_authenc_final, dd);
2008 }
2009
2010 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011                                    bool is_async)
2012 {
2013         struct aead_request *req = aead_request_cast(dd->areq);
2014         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016         bool enc = atmel_aes_is_encrypt(dd);
2017         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018         u32 offs, authsize;
2019
2020         if (is_async)
2021                 dd->is_async = true;
2022         if (err)
2023                 goto complete;
2024
2025         offs = req->assoclen + rctx->textlen;
2026         authsize = crypto_aead_authsize(tfm);
2027         if (enc) {
2028                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029         } else {
2030                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031                 if (crypto_memneq(idigest, odigest, authsize))
2032                         err = -EBADMSG;
2033         }
2034
2035 complete:
2036         return atmel_aes_complete(dd, err);
2037 }
2038
2039 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040                                     unsigned int keylen)
2041 {
2042         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043         struct crypto_authenc_keys keys;
2044         int err;
2045
2046         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047                 goto badkey;
2048
2049         if (keys.enckeylen > sizeof(ctx->base.key))
2050                 goto badkey;
2051
2052         /* Save auth key. */
2053         err = atmel_sha_authenc_setkey(ctx->auth,
2054                                        keys.authkey, keys.authkeylen,
2055                                        crypto_aead_get_flags(tfm));
2056         if (err) {
2057                 memzero_explicit(&keys, sizeof(keys));
2058                 return err;
2059         }
2060
2061         /* Save enc key. */
2062         ctx->base.keylen = keys.enckeylen;
2063         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065         memzero_explicit(&keys, sizeof(keys));
2066         return 0;
2067
2068 badkey:
2069         memzero_explicit(&keys, sizeof(keys));
2070         return -EINVAL;
2071 }
2072
2073 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074                                       unsigned long auth_mode)
2075 {
2076         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078
2079         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080         if (IS_ERR(ctx->auth))
2081                 return PTR_ERR(ctx->auth);
2082
2083         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084                                       auth_reqsize));
2085         ctx->base.start = atmel_aes_authenc_start;
2086
2087         return 0;
2088 }
2089
2090 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091 {
2092         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093 }
2094
2095 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096 {
2097         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098 }
2099
2100 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101 {
2102         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103 }
2104
2105 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106 {
2107         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108 }
2109
2110 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111 {
2112         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113 }
2114
2115 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116 {
2117         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119         atmel_sha_authenc_free(ctx->auth);
2120 }
2121
2122 static int atmel_aes_authenc_crypt(struct aead_request *req,
2123                                    unsigned long mode)
2124 {
2125         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128         u32 authsize = crypto_aead_authsize(tfm);
2129         bool enc = (mode & AES_FLAGS_ENCRYPT);
2130         struct atmel_aes_dev *dd;
2131
2132         /* Compute text length. */
2133         if (!enc && req->cryptlen < authsize)
2134                 return -EINVAL;
2135         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137         /*
2138          * Currently, empty messages are not supported yet:
2139          * the SHA auto-padding can be used only on non-empty messages.
2140          * Hence a special case needs to be implemented for empty message.
2141          */
2142         if (!rctx->textlen && !req->assoclen)
2143                 return -EINVAL;
2144
2145         rctx->base.mode = mode;
2146         ctx->block_size = AES_BLOCK_SIZE;
2147         ctx->is_aead = true;
2148
2149         dd = atmel_aes_find_dev(ctx);
2150         if (!dd)
2151                 return -ENODEV;
2152
2153         return atmel_aes_handle_queue(dd, &req->base);
2154 }
2155
2156 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157 {
2158         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159 }
2160
2161 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162 {
2163         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164 }
2165
2166 static struct aead_alg aes_authenc_algs[] = {
2167 {
2168         .setkey         = atmel_aes_authenc_setkey,
2169         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2170         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2171         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2172         .exit           = atmel_aes_authenc_exit_tfm,
2173         .ivsize         = AES_BLOCK_SIZE,
2174         .maxauthsize    = SHA1_DIGEST_SIZE,
2175
2176         .base = {
2177                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2178                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2179                 .cra_blocksize          = AES_BLOCK_SIZE,
2180                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2181         },
2182 },
2183 {
2184         .setkey         = atmel_aes_authenc_setkey,
2185         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2186         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2187         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2188         .exit           = atmel_aes_authenc_exit_tfm,
2189         .ivsize         = AES_BLOCK_SIZE,
2190         .maxauthsize    = SHA224_DIGEST_SIZE,
2191
2192         .base = {
2193                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2194                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2195                 .cra_blocksize          = AES_BLOCK_SIZE,
2196                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2197         },
2198 },
2199 {
2200         .setkey         = atmel_aes_authenc_setkey,
2201         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2202         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2203         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2204         .exit           = atmel_aes_authenc_exit_tfm,
2205         .ivsize         = AES_BLOCK_SIZE,
2206         .maxauthsize    = SHA256_DIGEST_SIZE,
2207
2208         .base = {
2209                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2210                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2211                 .cra_blocksize          = AES_BLOCK_SIZE,
2212                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2213         },
2214 },
2215 {
2216         .setkey         = atmel_aes_authenc_setkey,
2217         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2218         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2219         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2220         .exit           = atmel_aes_authenc_exit_tfm,
2221         .ivsize         = AES_BLOCK_SIZE,
2222         .maxauthsize    = SHA384_DIGEST_SIZE,
2223
2224         .base = {
2225                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2226                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2227                 .cra_blocksize          = AES_BLOCK_SIZE,
2228                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2229         },
2230 },
2231 {
2232         .setkey         = atmel_aes_authenc_setkey,
2233         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2234         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2235         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2236         .exit           = atmel_aes_authenc_exit_tfm,
2237         .ivsize         = AES_BLOCK_SIZE,
2238         .maxauthsize    = SHA512_DIGEST_SIZE,
2239
2240         .base = {
2241                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2242                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2243                 .cra_blocksize          = AES_BLOCK_SIZE,
2244                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2245         },
2246 },
2247 };
2248 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250 /* Probe functions */
2251
2252 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253 {
2254         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258         if (!dd->buf) {
2259                 dev_err(dd->dev, "unable to alloc pages.\n");
2260                 return -ENOMEM;
2261         }
2262
2263         return 0;
2264 }
2265
2266 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267 {
2268         free_page((unsigned long)dd->buf);
2269 }
2270
2271 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272 {
2273         int ret;
2274
2275         /* Try to grab 2 DMA channels */
2276         dd->src.chan = dma_request_chan(dd->dev, "tx");
2277         if (IS_ERR(dd->src.chan)) {
2278                 ret = PTR_ERR(dd->src.chan);
2279                 goto err_dma_in;
2280         }
2281
2282         dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283         if (IS_ERR(dd->dst.chan)) {
2284                 ret = PTR_ERR(dd->dst.chan);
2285                 goto err_dma_out;
2286         }
2287
2288         return 0;
2289
2290 err_dma_out:
2291         dma_release_channel(dd->src.chan);
2292 err_dma_in:
2293         dev_err(dd->dev, "no DMA channel available\n");
2294         return ret;
2295 }
2296
2297 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298 {
2299         dma_release_channel(dd->dst.chan);
2300         dma_release_channel(dd->src.chan);
2301 }
2302
2303 static void atmel_aes_queue_task(unsigned long data)
2304 {
2305         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307         atmel_aes_handle_queue(dd, NULL);
2308 }
2309
2310 static void atmel_aes_done_task(unsigned long data)
2311 {
2312         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314         dd->is_async = true;
2315         (void)dd->resume(dd);
2316 }
2317
2318 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319 {
2320         struct atmel_aes_dev *aes_dd = dev_id;
2321         u32 reg;
2322
2323         reg = atmel_aes_read(aes_dd, AES_ISR);
2324         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325                 atmel_aes_write(aes_dd, AES_IDR, reg);
2326                 if (AES_FLAGS_BUSY & aes_dd->flags)
2327                         tasklet_schedule(&aes_dd->done_task);
2328                 else
2329                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330                 return IRQ_HANDLED;
2331         }
2332
2333         return IRQ_NONE;
2334 }
2335
2336 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337 {
2338         int i;
2339
2340 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341         if (dd->caps.has_authenc)
2342                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343                         crypto_unregister_aead(&aes_authenc_algs[i]);
2344 #endif
2345
2346         if (dd->caps.has_xts)
2347                 crypto_unregister_skcipher(&aes_xts_alg);
2348
2349         if (dd->caps.has_gcm)
2350                 crypto_unregister_aead(&aes_gcm_alg);
2351
2352         if (dd->caps.has_cfb64)
2353                 crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356                 crypto_unregister_skcipher(&aes_algs[i]);
2357 }
2358
2359 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360 {
2361         alg->cra_flags = CRYPTO_ALG_ASYNC;
2362         alg->cra_alignmask = 0xf;
2363         alg->cra_priority = ATMEL_AES_PRIORITY;
2364         alg->cra_module = THIS_MODULE;
2365 }
2366
2367 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368 {
2369         int err, i, j;
2370
2371         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372                 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374                 err = crypto_register_skcipher(&aes_algs[i]);
2375                 if (err)
2376                         goto err_aes_algs;
2377         }
2378
2379         if (dd->caps.has_cfb64) {
2380                 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382                 err = crypto_register_skcipher(&aes_cfb64_alg);
2383                 if (err)
2384                         goto err_aes_cfb64_alg;
2385         }
2386
2387         if (dd->caps.has_gcm) {
2388                 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390                 err = crypto_register_aead(&aes_gcm_alg);
2391                 if (err)
2392                         goto err_aes_gcm_alg;
2393         }
2394
2395         if (dd->caps.has_xts) {
2396                 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398                 err = crypto_register_skcipher(&aes_xts_alg);
2399                 if (err)
2400                         goto err_aes_xts_alg;
2401         }
2402
2403 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404         if (dd->caps.has_authenc) {
2405                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406                         atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408                         err = crypto_register_aead(&aes_authenc_algs[i]);
2409                         if (err)
2410                                 goto err_aes_authenc_alg;
2411                 }
2412         }
2413 #endif
2414
2415         return 0;
2416
2417 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418         /* i = ARRAY_SIZE(aes_authenc_algs); */
2419 err_aes_authenc_alg:
2420         for (j = 0; j < i; j++)
2421                 crypto_unregister_aead(&aes_authenc_algs[j]);
2422         crypto_unregister_skcipher(&aes_xts_alg);
2423 #endif
2424 err_aes_xts_alg:
2425         crypto_unregister_aead(&aes_gcm_alg);
2426 err_aes_gcm_alg:
2427         crypto_unregister_skcipher(&aes_cfb64_alg);
2428 err_aes_cfb64_alg:
2429         i = ARRAY_SIZE(aes_algs);
2430 err_aes_algs:
2431         for (j = 0; j < i; j++)
2432                 crypto_unregister_skcipher(&aes_algs[j]);
2433
2434         return err;
2435 }
2436
2437 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438 {
2439         dd->caps.has_dualbuff = 0;
2440         dd->caps.has_cfb64 = 0;
2441         dd->caps.has_gcm = 0;
2442         dd->caps.has_xts = 0;
2443         dd->caps.has_authenc = 0;
2444         dd->caps.max_burst_size = 1;
2445
2446         /* keep only major version number */
2447         switch (dd->hw_version & 0xff0) {
2448         case 0x500:
2449                 dd->caps.has_dualbuff = 1;
2450                 dd->caps.has_cfb64 = 1;
2451                 dd->caps.has_gcm = 1;
2452                 dd->caps.has_xts = 1;
2453                 dd->caps.has_authenc = 1;
2454                 dd->caps.max_burst_size = 4;
2455                 break;
2456         case 0x200:
2457                 dd->caps.has_dualbuff = 1;
2458                 dd->caps.has_cfb64 = 1;
2459                 dd->caps.has_gcm = 1;
2460                 dd->caps.max_burst_size = 4;
2461                 break;
2462         case 0x130:
2463                 dd->caps.has_dualbuff = 1;
2464                 dd->caps.has_cfb64 = 1;
2465                 dd->caps.max_burst_size = 4;
2466                 break;
2467         case 0x120:
2468                 break;
2469         default:
2470                 dev_warn(dd->dev,
2471                                 "Unmanaged aes version, set minimum capabilities\n");
2472                 break;
2473         }
2474 }
2475
2476 #if defined(CONFIG_OF)
2477 static const struct of_device_id atmel_aes_dt_ids[] = {
2478         { .compatible = "atmel,at91sam9g46-aes" },
2479         { /* sentinel */ }
2480 };
2481 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482 #endif
2483
2484 static int atmel_aes_probe(struct platform_device *pdev)
2485 {
2486         struct atmel_aes_dev *aes_dd;
2487         struct device *dev = &pdev->dev;
2488         struct resource *aes_res;
2489         int err;
2490
2491         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492         if (!aes_dd)
2493                 return -ENOMEM;
2494
2495         aes_dd->dev = dev;
2496
2497         platform_set_drvdata(pdev, aes_dd);
2498
2499         INIT_LIST_HEAD(&aes_dd->list);
2500         spin_lock_init(&aes_dd->lock);
2501
2502         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503                                         (unsigned long)aes_dd);
2504         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505                                         (unsigned long)aes_dd);
2506
2507         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509         /* Get the base address */
2510         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511         if (!aes_res) {
2512                 dev_err(dev, "no MEM resource info\n");
2513                 err = -ENODEV;
2514                 goto err_tasklet_kill;
2515         }
2516         aes_dd->phys_base = aes_res->start;
2517
2518         /* Get the IRQ */
2519         aes_dd->irq = platform_get_irq(pdev,  0);
2520         if (aes_dd->irq < 0) {
2521                 err = aes_dd->irq;
2522                 goto err_tasklet_kill;
2523         }
2524
2525         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526                                IRQF_SHARED, "atmel-aes", aes_dd);
2527         if (err) {
2528                 dev_err(dev, "unable to request aes irq.\n");
2529                 goto err_tasklet_kill;
2530         }
2531
2532         /* Initializing the clock */
2533         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534         if (IS_ERR(aes_dd->iclk)) {
2535                 dev_err(dev, "clock initialization failed.\n");
2536                 err = PTR_ERR(aes_dd->iclk);
2537                 goto err_tasklet_kill;
2538         }
2539
2540         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541         if (IS_ERR(aes_dd->io_base)) {
2542                 dev_err(dev, "can't ioremap\n");
2543                 err = PTR_ERR(aes_dd->io_base);
2544                 goto err_tasklet_kill;
2545         }
2546
2547         err = clk_prepare(aes_dd->iclk);
2548         if (err)
2549                 goto err_tasklet_kill;
2550
2551         err = atmel_aes_hw_version_init(aes_dd);
2552         if (err)
2553                 goto err_iclk_unprepare;
2554
2555         atmel_aes_get_cap(aes_dd);
2556
2557 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559                 err = -EPROBE_DEFER;
2560                 goto err_iclk_unprepare;
2561         }
2562 #endif
2563
2564         err = atmel_aes_buff_init(aes_dd);
2565         if (err)
2566                 goto err_iclk_unprepare;
2567
2568         err = atmel_aes_dma_init(aes_dd);
2569         if (err)
2570                 goto err_buff_cleanup;
2571
2572         spin_lock(&atmel_aes.lock);
2573         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574         spin_unlock(&atmel_aes.lock);
2575
2576         err = atmel_aes_register_algs(aes_dd);
2577         if (err)
2578                 goto err_algs;
2579
2580         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581                         dma_chan_name(aes_dd->src.chan),
2582                         dma_chan_name(aes_dd->dst.chan));
2583
2584         return 0;
2585
2586 err_algs:
2587         spin_lock(&atmel_aes.lock);
2588         list_del(&aes_dd->list);
2589         spin_unlock(&atmel_aes.lock);
2590         atmel_aes_dma_cleanup(aes_dd);
2591 err_buff_cleanup:
2592         atmel_aes_buff_cleanup(aes_dd);
2593 err_iclk_unprepare:
2594         clk_unprepare(aes_dd->iclk);
2595 err_tasklet_kill:
2596         tasklet_kill(&aes_dd->done_task);
2597         tasklet_kill(&aes_dd->queue_task);
2598
2599         return err;
2600 }
2601
2602 static int atmel_aes_remove(struct platform_device *pdev)
2603 {
2604         struct atmel_aes_dev *aes_dd;
2605
2606         aes_dd = platform_get_drvdata(pdev);
2607         if (!aes_dd)
2608                 return -ENODEV;
2609         spin_lock(&atmel_aes.lock);
2610         list_del(&aes_dd->list);
2611         spin_unlock(&atmel_aes.lock);
2612
2613         atmel_aes_unregister_algs(aes_dd);
2614
2615         tasklet_kill(&aes_dd->done_task);
2616         tasklet_kill(&aes_dd->queue_task);
2617
2618         atmel_aes_dma_cleanup(aes_dd);
2619         atmel_aes_buff_cleanup(aes_dd);
2620
2621         clk_unprepare(aes_dd->iclk);
2622
2623         return 0;
2624 }
2625
2626 static struct platform_driver atmel_aes_driver = {
2627         .probe          = atmel_aes_probe,
2628         .remove         = atmel_aes_remove,
2629         .driver         = {
2630                 .name   = "atmel_aes",
2631                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632         },
2633 };
2634
2635 module_platform_driver(atmel_aes_driver);
2636
2637 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638 MODULE_LICENSE("GPL v2");
2639 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");