Merge tag 'mtd/for-4.16' of git://git.infradead.org/linux-mtd
[linux-2.6-microblaze.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/hashtable.h>
33 #include <trace/events/power.h>
34
35 #include <asm/cputhreads.h>
36 #include <asm/firmware.h>
37 #include <asm/reg.h>
38 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <asm/opal.h>
40 #include <linux/timer.h>
41
42 #define POWERNV_MAX_PSTATES_ORDER  8
43 #define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
44 #define PMSR_PSAFE_ENABLE       (1UL << 30)
45 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
46 #define MAX_PSTATE_SHIFT        32
47 #define LPSTATE_SHIFT           48
48 #define GPSTATE_SHIFT           56
49
50 #define MAX_RAMP_DOWN_TIME                              5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *                      ~= 3.8 * (sec * sec)
59  *
60  * At 0 ms      ramp_down_percent = 0
61  * At 5120 ms   ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)         ((time * time) >> 18)
64
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL                          2000
67
68 /**
69  * struct global_pstate_info -  Per policy data structure to maintain history of
70  *                              global pstates
71  * @highest_lpstate_idx:        The local pstate index from which we are
72  *                              ramping down
73  * @elapsed_time:               Time in ms spent in ramping down from
74  *                              highest_lpstate_idx
75  * @last_sampled_time:          Time from boot in ms when global pstates were
76  *                              last set
77  * @last_lpstate_idx,           Last set value of local pstate and global
78  * last_gpstate_idx             pstate in terms of cpufreq table index
79  * @timer:                      Is used for ramping down if cpu goes idle for
80  *                              a long time with global pstate held high
81  * @gpstate_lock:               A spinlock to maintain synchronization between
82  *                              routines called by the timer handler and
83  *                              governer's target_index calls
84  */
85 struct global_pstate_info {
86         int highest_lpstate_idx;
87         unsigned int elapsed_time;
88         unsigned int last_sampled_time;
89         int last_lpstate_idx;
90         int last_gpstate_idx;
91         spinlock_t gpstate_lock;
92         struct timer_list timer;
93         struct cpufreq_policy *policy;
94 };
95
96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97
98 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
99 /**
100  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
101  *                                indexed by a function of pstate id.
102  *
103  * @pstate_id: pstate id for this entry.
104  *
105  * @cpufreq_table_idx: Index into the powernv_freqs
106  *                     cpufreq_frequency_table for frequency
107  *                     corresponding to pstate_id.
108  *
109  * @hentry: hlist_node that hooks this entry into the pstate_revmap
110  *          hashtable
111  */
112 struct pstate_idx_revmap_data {
113         u8 pstate_id;
114         unsigned int cpufreq_table_idx;
115         struct hlist_node hentry;
116 };
117
118 static bool rebooting, throttled, occ_reset;
119
120 static const char * const throttle_reason[] = {
121         "No throttling",
122         "Power Cap",
123         "Processor Over Temperature",
124         "Power Supply Failure",
125         "Over Current",
126         "OCC Reset"
127 };
128
129 enum throttle_reason_type {
130         NO_THROTTLE = 0,
131         POWERCAP,
132         CPU_OVERTEMP,
133         POWER_SUPPLY_FAILURE,
134         OVERCURRENT,
135         OCC_RESET_THROTTLE,
136         OCC_MAX_REASON
137 };
138
139 static struct chip {
140         unsigned int id;
141         bool throttled;
142         bool restore;
143         u8 throttle_reason;
144         cpumask_t mask;
145         struct work_struct throttle;
146         int throttle_turbo;
147         int throttle_sub_turbo;
148         int reason[OCC_MAX_REASON];
149 } *chips;
150
151 static int nr_chips;
152 static DEFINE_PER_CPU(struct chip *, chip_info);
153
154 /*
155  * Note:
156  * The set of pstates consists of contiguous integers.
157  * powernv_pstate_info stores the index of the frequency table for
158  * max, min and nominal frequencies. It also stores number of
159  * available frequencies.
160  *
161  * powernv_pstate_info.nominal indicates the index to the highest
162  * non-turbo frequency.
163  */
164 static struct powernv_pstate_info {
165         unsigned int min;
166         unsigned int max;
167         unsigned int nominal;
168         unsigned int nr_pstates;
169         bool wof_enabled;
170 } powernv_pstate_info;
171
172 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
173 {
174         return ((pmsr_val >> shift) & 0xFF);
175 }
176
177 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
178 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
179 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
180
181 /* Use following functions for conversions between pstate_id and index */
182
183 /**
184  * idx_to_pstate : Returns the pstate id corresponding to the
185  *                 frequency in the cpufreq frequency table
186  *                 powernv_freqs indexed by @i.
187  *
188  *                 If @i is out of bound, this will return the pstate
189  *                 corresponding to the nominal frequency.
190  */
191 static inline u8 idx_to_pstate(unsigned int i)
192 {
193         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
194                 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
195                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
196         }
197
198         return powernv_freqs[i].driver_data;
199 }
200
201 /**
202  * pstate_to_idx : Returns the index in the cpufreq frequencytable
203  *                 powernv_freqs for the frequency whose corresponding
204  *                 pstate id is @pstate.
205  *
206  *                 If no frequency corresponding to @pstate is found,
207  *                 this will return the index of the nominal
208  *                 frequency.
209  */
210 static unsigned int pstate_to_idx(u8 pstate)
211 {
212         unsigned int key = pstate % POWERNV_MAX_PSTATES;
213         struct pstate_idx_revmap_data *revmap_data;
214
215         hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
216                 if (revmap_data->pstate_id == pstate)
217                         return revmap_data->cpufreq_table_idx;
218         }
219
220         pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
221         return powernv_pstate_info.nominal;
222 }
223
224 static inline void reset_gpstates(struct cpufreq_policy *policy)
225 {
226         struct global_pstate_info *gpstates = policy->driver_data;
227
228         gpstates->highest_lpstate_idx = 0;
229         gpstates->elapsed_time = 0;
230         gpstates->last_sampled_time = 0;
231         gpstates->last_lpstate_idx = 0;
232         gpstates->last_gpstate_idx = 0;
233 }
234
235 /*
236  * Initialize the freq table based on data obtained
237  * from the firmware passed via device-tree
238  */
239 static int init_powernv_pstates(void)
240 {
241         struct device_node *power_mgt;
242         int i, nr_pstates = 0;
243         const __be32 *pstate_ids, *pstate_freqs;
244         u32 len_ids, len_freqs;
245         u32 pstate_min, pstate_max, pstate_nominal;
246         u32 pstate_turbo, pstate_ultra_turbo;
247
248         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
249         if (!power_mgt) {
250                 pr_warn("power-mgt node not found\n");
251                 return -ENODEV;
252         }
253
254         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
255                 pr_warn("ibm,pstate-min node not found\n");
256                 return -ENODEV;
257         }
258
259         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
260                 pr_warn("ibm,pstate-max node not found\n");
261                 return -ENODEV;
262         }
263
264         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
265                                  &pstate_nominal)) {
266                 pr_warn("ibm,pstate-nominal not found\n");
267                 return -ENODEV;
268         }
269
270         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
271                                  &pstate_ultra_turbo)) {
272                 powernv_pstate_info.wof_enabled = false;
273                 goto next;
274         }
275
276         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
277                                  &pstate_turbo)) {
278                 powernv_pstate_info.wof_enabled = false;
279                 goto next;
280         }
281
282         if (pstate_turbo == pstate_ultra_turbo)
283                 powernv_pstate_info.wof_enabled = false;
284         else
285                 powernv_pstate_info.wof_enabled = true;
286
287 next:
288         pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
289                 pstate_nominal, pstate_max);
290         pr_info("Workload Optimized Frequency is %s in the platform\n",
291                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
292
293         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
294         if (!pstate_ids) {
295                 pr_warn("ibm,pstate-ids not found\n");
296                 return -ENODEV;
297         }
298
299         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
300                                       &len_freqs);
301         if (!pstate_freqs) {
302                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
303                 return -ENODEV;
304         }
305
306         if (len_ids != len_freqs) {
307                 pr_warn("Entries in ibm,pstate-ids and "
308                         "ibm,pstate-frequencies-mhz does not match\n");
309         }
310
311         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
312         if (!nr_pstates) {
313                 pr_warn("No PStates found\n");
314                 return -ENODEV;
315         }
316
317         powernv_pstate_info.nr_pstates = nr_pstates;
318         pr_debug("NR PStates %d\n", nr_pstates);
319
320         for (i = 0; i < nr_pstates; i++) {
321                 u32 id = be32_to_cpu(pstate_ids[i]);
322                 u32 freq = be32_to_cpu(pstate_freqs[i]);
323                 struct pstate_idx_revmap_data *revmap_data;
324                 unsigned int key;
325
326                 pr_debug("PState id %d freq %d MHz\n", id, freq);
327                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
328                 powernv_freqs[i].driver_data = id & 0xFF;
329
330                 revmap_data = (struct pstate_idx_revmap_data *)
331                               kmalloc(sizeof(*revmap_data), GFP_KERNEL);
332
333                 revmap_data->pstate_id = id & 0xFF;
334                 revmap_data->cpufreq_table_idx = i;
335                 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
336                 hash_add(pstate_revmap, &revmap_data->hentry, key);
337
338                 if (id == pstate_max)
339                         powernv_pstate_info.max = i;
340                 if (id == pstate_nominal)
341                         powernv_pstate_info.nominal = i;
342                 if (id == pstate_min)
343                         powernv_pstate_info.min = i;
344
345                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
346                         int j;
347
348                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
349                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
350                 }
351         }
352
353         /* End of list marker entry */
354         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
355         return 0;
356 }
357
358 /* Returns the CPU frequency corresponding to the pstate_id. */
359 static unsigned int pstate_id_to_freq(u8 pstate_id)
360 {
361         int i;
362
363         i = pstate_to_idx(pstate_id);
364         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
365                 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
366                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
367                 i = powernv_pstate_info.nominal;
368         }
369
370         return powernv_freqs[i].frequency;
371 }
372
373 /*
374  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
375  * the firmware
376  */
377 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
378                                         char *buf)
379 {
380         return sprintf(buf, "%u\n",
381                 powernv_freqs[powernv_pstate_info.nominal].frequency);
382 }
383
384 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
385         __ATTR_RO(cpuinfo_nominal_freq);
386
387 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
388
389 static struct freq_attr *powernv_cpu_freq_attr[] = {
390         &cpufreq_freq_attr_scaling_available_freqs,
391         &cpufreq_freq_attr_cpuinfo_nominal_freq,
392         &cpufreq_freq_attr_scaling_boost_freqs,
393         NULL,
394 };
395
396 #define throttle_attr(name, member)                                     \
397 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
398 {                                                                       \
399         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
400                                                                         \
401         return sprintf(buf, "%u\n", chip->member);                      \
402 }                                                                       \
403                                                                         \
404 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
405
406 throttle_attr(unthrottle, reason[NO_THROTTLE]);
407 throttle_attr(powercap, reason[POWERCAP]);
408 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
409 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
410 throttle_attr(overcurrent, reason[OVERCURRENT]);
411 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
412 throttle_attr(turbo_stat, throttle_turbo);
413 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
414
415 static struct attribute *throttle_attrs[] = {
416         &throttle_attr_unthrottle.attr,
417         &throttle_attr_powercap.attr,
418         &throttle_attr_overtemp.attr,
419         &throttle_attr_supply_fault.attr,
420         &throttle_attr_overcurrent.attr,
421         &throttle_attr_occ_reset.attr,
422         &throttle_attr_turbo_stat.attr,
423         &throttle_attr_sub_turbo_stat.attr,
424         NULL,
425 };
426
427 static const struct attribute_group throttle_attr_grp = {
428         .name   = "throttle_stats",
429         .attrs  = throttle_attrs,
430 };
431
432 /* Helper routines */
433
434 /* Access helpers to power mgt SPR */
435
436 static inline unsigned long get_pmspr(unsigned long sprn)
437 {
438         switch (sprn) {
439         case SPRN_PMCR:
440                 return mfspr(SPRN_PMCR);
441
442         case SPRN_PMICR:
443                 return mfspr(SPRN_PMICR);
444
445         case SPRN_PMSR:
446                 return mfspr(SPRN_PMSR);
447         }
448         BUG();
449 }
450
451 static inline void set_pmspr(unsigned long sprn, unsigned long val)
452 {
453         switch (sprn) {
454         case SPRN_PMCR:
455                 mtspr(SPRN_PMCR, val);
456                 return;
457
458         case SPRN_PMICR:
459                 mtspr(SPRN_PMICR, val);
460                 return;
461         }
462         BUG();
463 }
464
465 /*
466  * Use objects of this type to query/update
467  * pstates on a remote CPU via smp_call_function.
468  */
469 struct powernv_smp_call_data {
470         unsigned int freq;
471         u8 pstate_id;
472         u8 gpstate_id;
473 };
474
475 /*
476  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
477  *
478  * Called via smp_call_function.
479  *
480  * Note: The caller of the smp_call_function should pass an argument of
481  * the type 'struct powernv_smp_call_data *' along with this function.
482  *
483  * The current frequency on this CPU will be returned via
484  * ((struct powernv_smp_call_data *)arg)->freq;
485  */
486 static void powernv_read_cpu_freq(void *arg)
487 {
488         unsigned long pmspr_val;
489         struct powernv_smp_call_data *freq_data = arg;
490
491         pmspr_val = get_pmspr(SPRN_PMSR);
492         freq_data->pstate_id = extract_local_pstate(pmspr_val);
493         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
494
495         pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
496                  raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
497                  freq_data->freq);
498 }
499
500 /*
501  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
502  * firmware for CPU 'cpu'. This value is reported through the sysfs
503  * file cpuinfo_cur_freq.
504  */
505 static unsigned int powernv_cpufreq_get(unsigned int cpu)
506 {
507         struct powernv_smp_call_data freq_data;
508
509         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
510                         &freq_data, 1);
511
512         return freq_data.freq;
513 }
514
515 /*
516  * set_pstate: Sets the pstate on this CPU.
517  *
518  * This is called via an smp_call_function.
519  *
520  * The caller must ensure that freq_data is of the type
521  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
522  * on this CPU should be present in freq_data->pstate_id.
523  */
524 static void set_pstate(void *data)
525 {
526         unsigned long val;
527         struct powernv_smp_call_data *freq_data = data;
528         unsigned long pstate_ul = freq_data->pstate_id;
529         unsigned long gpstate_ul = freq_data->gpstate_id;
530
531         val = get_pmspr(SPRN_PMCR);
532         val = val & 0x0000FFFFFFFFFFFFULL;
533
534         pstate_ul = pstate_ul & 0xFF;
535         gpstate_ul = gpstate_ul & 0xFF;
536
537         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
538         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
539
540         pr_debug("Setting cpu %d pmcr to %016lX\n",
541                         raw_smp_processor_id(), val);
542         set_pmspr(SPRN_PMCR, val);
543 }
544
545 /*
546  * get_nominal_index: Returns the index corresponding to the nominal
547  * pstate in the cpufreq table
548  */
549 static inline unsigned int get_nominal_index(void)
550 {
551         return powernv_pstate_info.nominal;
552 }
553
554 static void powernv_cpufreq_throttle_check(void *data)
555 {
556         struct chip *chip;
557         unsigned int cpu = smp_processor_id();
558         unsigned long pmsr;
559         u8 pmsr_pmax;
560         unsigned int pmsr_pmax_idx;
561
562         pmsr = get_pmspr(SPRN_PMSR);
563         chip = this_cpu_read(chip_info);
564
565         /* Check for Pmax Capping */
566         pmsr_pmax = extract_max_pstate(pmsr);
567         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
568         if (pmsr_pmax_idx != powernv_pstate_info.max) {
569                 if (chip->throttled)
570                         goto next;
571                 chip->throttled = true;
572                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
573                         pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
574                                      cpu, chip->id, pmsr_pmax,
575                                      idx_to_pstate(powernv_pstate_info.nominal));
576                         chip->throttle_sub_turbo++;
577                 } else {
578                         chip->throttle_turbo++;
579                 }
580                 trace_powernv_throttle(chip->id,
581                                       throttle_reason[chip->throttle_reason],
582                                       pmsr_pmax);
583         } else if (chip->throttled) {
584                 chip->throttled = false;
585                 trace_powernv_throttle(chip->id,
586                                       throttle_reason[chip->throttle_reason],
587                                       pmsr_pmax);
588         }
589
590         /* Check if Psafe_mode_active is set in PMSR. */
591 next:
592         if (pmsr & PMSR_PSAFE_ENABLE) {
593                 throttled = true;
594                 pr_info("Pstate set to safe frequency\n");
595         }
596
597         /* Check if SPR_EM_DISABLE is set in PMSR */
598         if (pmsr & PMSR_SPR_EM_DISABLE) {
599                 throttled = true;
600                 pr_info("Frequency Control disabled from OS\n");
601         }
602
603         if (throttled) {
604                 pr_info("PMSR = %16lx\n", pmsr);
605                 pr_warn("CPU Frequency could be throttled\n");
606         }
607 }
608
609 /**
610  * calc_global_pstate - Calculate global pstate
611  * @elapsed_time:               Elapsed time in milliseconds
612  * @local_pstate_idx:           New local pstate
613  * @highest_lpstate_idx:        pstate from which its ramping down
614  *
615  * Finds the appropriate global pstate based on the pstate from which its
616  * ramping down and the time elapsed in ramping down. It follows a quadratic
617  * equation which ensures that it reaches ramping down to pmin in 5sec.
618  */
619 static inline int calc_global_pstate(unsigned int elapsed_time,
620                                      int highest_lpstate_idx,
621                                      int local_pstate_idx)
622 {
623         int index_diff;
624
625         /*
626          * Using ramp_down_percent we get the percentage of rampdown
627          * that we are expecting to be dropping. Difference between
628          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
629          * number of how many pstates we will drop eventually by the end of
630          * 5 seconds, then just scale it get the number pstates to be dropped.
631          */
632         index_diff =  ((int)ramp_down_percent(elapsed_time) *
633                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
634
635         /* Ensure that global pstate is >= to local pstate */
636         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
637                 return local_pstate_idx;
638         else
639                 return highest_lpstate_idx + index_diff;
640 }
641
642 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
643 {
644         unsigned int timer_interval;
645
646         /*
647          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
648          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
649          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
650          * seconds of ramp down time.
651          */
652         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
653              > MAX_RAMP_DOWN_TIME)
654                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
655         else
656                 timer_interval = GPSTATE_TIMER_INTERVAL;
657
658         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
659 }
660
661 /**
662  * gpstate_timer_handler
663  *
664  * @data: pointer to cpufreq_policy on which timer was queued
665  *
666  * This handler brings down the global pstate closer to the local pstate
667  * according quadratic equation. Queues a new timer if it is still not equal
668  * to local pstate
669  */
670 void gpstate_timer_handler(struct timer_list *t)
671 {
672         struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
673         struct cpufreq_policy *policy = gpstates->policy;
674         int gpstate_idx, lpstate_idx;
675         unsigned long val;
676         unsigned int time_diff = jiffies_to_msecs(jiffies)
677                                         - gpstates->last_sampled_time;
678         struct powernv_smp_call_data freq_data;
679
680         if (!spin_trylock(&gpstates->gpstate_lock))
681                 return;
682
683         /*
684          * If PMCR was last updated was using fast_swtich then
685          * We may have wrong in gpstate->last_lpstate_idx
686          * value. Hence, read from PMCR to get correct data.
687          */
688         val = get_pmspr(SPRN_PMCR);
689         freq_data.gpstate_id = extract_global_pstate(val);
690         freq_data.pstate_id = extract_local_pstate(val);
691         if (freq_data.gpstate_id  == freq_data.pstate_id) {
692                 reset_gpstates(policy);
693                 spin_unlock(&gpstates->gpstate_lock);
694                 return;
695         }
696
697         gpstates->last_sampled_time += time_diff;
698         gpstates->elapsed_time += time_diff;
699
700         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
701                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
702                 lpstate_idx = gpstate_idx;
703                 reset_gpstates(policy);
704                 gpstates->highest_lpstate_idx = gpstate_idx;
705         } else {
706                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
707                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
708                                                  gpstates->highest_lpstate_idx,
709                                                  lpstate_idx);
710         }
711         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
712         gpstates->last_gpstate_idx = gpstate_idx;
713         gpstates->last_lpstate_idx = lpstate_idx;
714         /*
715          * If local pstate is equal to global pstate, rampdown is over
716          * So timer is not required to be queued.
717          */
718         if (gpstate_idx != gpstates->last_lpstate_idx)
719                 queue_gpstate_timer(gpstates);
720
721         spin_unlock(&gpstates->gpstate_lock);
722
723         /* Timer may get migrated to a different cpu on cpu hot unplug */
724         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
725 }
726
727 /*
728  * powernv_cpufreq_target_index: Sets the frequency corresponding to
729  * the cpufreq table entry indexed by new_index on the cpus in the
730  * mask policy->cpus
731  */
732 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
733                                         unsigned int new_index)
734 {
735         struct powernv_smp_call_data freq_data;
736         unsigned int cur_msec, gpstate_idx;
737         struct global_pstate_info *gpstates = policy->driver_data;
738
739         if (unlikely(rebooting) && new_index != get_nominal_index())
740                 return 0;
741
742         if (!throttled) {
743                 /* we don't want to be preempted while
744                  * checking if the CPU frequency has been throttled
745                  */
746                 preempt_disable();
747                 powernv_cpufreq_throttle_check(NULL);
748                 preempt_enable();
749         }
750
751         cur_msec = jiffies_to_msecs(get_jiffies_64());
752
753         spin_lock(&gpstates->gpstate_lock);
754         freq_data.pstate_id = idx_to_pstate(new_index);
755
756         if (!gpstates->last_sampled_time) {
757                 gpstate_idx = new_index;
758                 gpstates->highest_lpstate_idx = new_index;
759                 goto gpstates_done;
760         }
761
762         if (gpstates->last_gpstate_idx < new_index) {
763                 gpstates->elapsed_time += cur_msec -
764                                                  gpstates->last_sampled_time;
765
766                 /*
767                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
768                  * we should be resetting all global pstate related data. Set it
769                  * equal to local pstate to start fresh.
770                  */
771                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
772                         reset_gpstates(policy);
773                         gpstates->highest_lpstate_idx = new_index;
774                         gpstate_idx = new_index;
775                 } else {
776                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
777                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
778                                                          gpstates->highest_lpstate_idx,
779                                                          new_index);
780                 }
781         } else {
782                 reset_gpstates(policy);
783                 gpstates->highest_lpstate_idx = new_index;
784                 gpstate_idx = new_index;
785         }
786
787         /*
788          * If local pstate is equal to global pstate, rampdown is over
789          * So timer is not required to be queued.
790          */
791         if (gpstate_idx != new_index)
792                 queue_gpstate_timer(gpstates);
793         else
794                 del_timer_sync(&gpstates->timer);
795
796 gpstates_done:
797         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
798         gpstates->last_sampled_time = cur_msec;
799         gpstates->last_gpstate_idx = gpstate_idx;
800         gpstates->last_lpstate_idx = new_index;
801
802         spin_unlock(&gpstates->gpstate_lock);
803
804         /*
805          * Use smp_call_function to send IPI and execute the
806          * mtspr on target CPU.  We could do that without IPI
807          * if current CPU is within policy->cpus (core)
808          */
809         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
810         return 0;
811 }
812
813 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
814 {
815         int base, i, ret;
816         struct kernfs_node *kn;
817         struct global_pstate_info *gpstates;
818
819         base = cpu_first_thread_sibling(policy->cpu);
820
821         for (i = 0; i < threads_per_core; i++)
822                 cpumask_set_cpu(base + i, policy->cpus);
823
824         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
825         if (!kn) {
826                 int ret;
827
828                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
829                 if (ret) {
830                         pr_info("Failed to create throttle stats directory for cpu %d\n",
831                                 policy->cpu);
832                         return ret;
833                 }
834         } else {
835                 kernfs_put(kn);
836         }
837
838         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
839         if (!gpstates)
840                 return -ENOMEM;
841
842         policy->driver_data = gpstates;
843
844         /* initialize timer */
845         gpstates->policy = policy;
846         timer_setup(&gpstates->timer, gpstate_timer_handler,
847                     TIMER_PINNED | TIMER_DEFERRABLE);
848         gpstates->timer.expires = jiffies +
849                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
850         spin_lock_init(&gpstates->gpstate_lock);
851         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
852
853         if (ret < 0) {
854                 kfree(policy->driver_data);
855                 return ret;
856         }
857
858         policy->fast_switch_possible = true;
859         return ret;
860 }
861
862 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
863 {
864         /* timer is deleted in cpufreq_cpu_stop() */
865         kfree(policy->driver_data);
866
867         return 0;
868 }
869
870 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
871                                 unsigned long action, void *unused)
872 {
873         int cpu;
874         struct cpufreq_policy cpu_policy;
875
876         rebooting = true;
877         for_each_online_cpu(cpu) {
878                 cpufreq_get_policy(&cpu_policy, cpu);
879                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
880         }
881
882         return NOTIFY_DONE;
883 }
884
885 static struct notifier_block powernv_cpufreq_reboot_nb = {
886         .notifier_call = powernv_cpufreq_reboot_notifier,
887 };
888
889 void powernv_cpufreq_work_fn(struct work_struct *work)
890 {
891         struct chip *chip = container_of(work, struct chip, throttle);
892         unsigned int cpu;
893         cpumask_t mask;
894
895         get_online_cpus();
896         cpumask_and(&mask, &chip->mask, cpu_online_mask);
897         smp_call_function_any(&mask,
898                               powernv_cpufreq_throttle_check, NULL, 0);
899
900         if (!chip->restore)
901                 goto out;
902
903         chip->restore = false;
904         for_each_cpu(cpu, &mask) {
905                 int index;
906                 struct cpufreq_policy policy;
907
908                 cpufreq_get_policy(&policy, cpu);
909                 index = cpufreq_table_find_index_c(&policy, policy.cur);
910                 powernv_cpufreq_target_index(&policy, index);
911                 cpumask_andnot(&mask, &mask, policy.cpus);
912         }
913 out:
914         put_online_cpus();
915 }
916
917 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
918                                    unsigned long msg_type, void *_msg)
919 {
920         struct opal_msg *msg = _msg;
921         struct opal_occ_msg omsg;
922         int i;
923
924         if (msg_type != OPAL_MSG_OCC)
925                 return 0;
926
927         omsg.type = be64_to_cpu(msg->params[0]);
928
929         switch (omsg.type) {
930         case OCC_RESET:
931                 occ_reset = true;
932                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
933                 /*
934                  * powernv_cpufreq_throttle_check() is called in
935                  * target() callback which can detect the throttle state
936                  * for governors like ondemand.
937                  * But static governors will not call target() often thus
938                  * report throttling here.
939                  */
940                 if (!throttled) {
941                         throttled = true;
942                         pr_warn("CPU frequency is throttled for duration\n");
943                 }
944
945                 break;
946         case OCC_LOAD:
947                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
948                 break;
949         case OCC_THROTTLE:
950                 omsg.chip = be64_to_cpu(msg->params[1]);
951                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
952
953                 if (occ_reset) {
954                         occ_reset = false;
955                         throttled = false;
956                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
957
958                         for (i = 0; i < nr_chips; i++) {
959                                 chips[i].restore = true;
960                                 schedule_work(&chips[i].throttle);
961                         }
962
963                         return 0;
964                 }
965
966                 for (i = 0; i < nr_chips; i++)
967                         if (chips[i].id == omsg.chip)
968                                 break;
969
970                 if (omsg.throttle_status >= 0 &&
971                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
972                         chips[i].throttle_reason = omsg.throttle_status;
973                         chips[i].reason[omsg.throttle_status]++;
974                 }
975
976                 if (!omsg.throttle_status)
977                         chips[i].restore = true;
978
979                 schedule_work(&chips[i].throttle);
980         }
981         return 0;
982 }
983
984 static struct notifier_block powernv_cpufreq_opal_nb = {
985         .notifier_call  = powernv_cpufreq_occ_msg,
986         .next           = NULL,
987         .priority       = 0,
988 };
989
990 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
991 {
992         struct powernv_smp_call_data freq_data;
993         struct global_pstate_info *gpstates = policy->driver_data;
994
995         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
996         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
997         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
998         del_timer_sync(&gpstates->timer);
999 }
1000
1001 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1002                                         unsigned int target_freq)
1003 {
1004         int index;
1005         struct powernv_smp_call_data freq_data;
1006
1007         index = cpufreq_table_find_index_dl(policy, target_freq);
1008         freq_data.pstate_id = powernv_freqs[index].driver_data;
1009         freq_data.gpstate_id = powernv_freqs[index].driver_data;
1010         set_pstate(&freq_data);
1011
1012         return powernv_freqs[index].frequency;
1013 }
1014
1015 static struct cpufreq_driver powernv_cpufreq_driver = {
1016         .name           = "powernv-cpufreq",
1017         .flags          = CPUFREQ_CONST_LOOPS,
1018         .init           = powernv_cpufreq_cpu_init,
1019         .exit           = powernv_cpufreq_cpu_exit,
1020         .verify         = cpufreq_generic_frequency_table_verify,
1021         .target_index   = powernv_cpufreq_target_index,
1022         .fast_switch    = powernv_fast_switch,
1023         .get            = powernv_cpufreq_get,
1024         .stop_cpu       = powernv_cpufreq_stop_cpu,
1025         .attr           = powernv_cpu_freq_attr,
1026 };
1027
1028 static int init_chip_info(void)
1029 {
1030         unsigned int chip[256];
1031         unsigned int cpu, i;
1032         unsigned int prev_chip_id = UINT_MAX;
1033
1034         for_each_possible_cpu(cpu) {
1035                 unsigned int id = cpu_to_chip_id(cpu);
1036
1037                 if (prev_chip_id != id) {
1038                         prev_chip_id = id;
1039                         chip[nr_chips++] = id;
1040                 }
1041         }
1042
1043         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1044         if (!chips)
1045                 return -ENOMEM;
1046
1047         for (i = 0; i < nr_chips; i++) {
1048                 chips[i].id = chip[i];
1049                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1050                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1051                 for_each_cpu(cpu, &chips[i].mask)
1052                         per_cpu(chip_info, cpu) =  &chips[i];
1053         }
1054
1055         return 0;
1056 }
1057
1058 static inline void clean_chip_info(void)
1059 {
1060         kfree(chips);
1061 }
1062
1063 static inline void unregister_all_notifiers(void)
1064 {
1065         opal_message_notifier_unregister(OPAL_MSG_OCC,
1066                                          &powernv_cpufreq_opal_nb);
1067         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1068 }
1069
1070 static int __init powernv_cpufreq_init(void)
1071 {
1072         int rc = 0;
1073
1074         /* Don't probe on pseries (guest) platforms */
1075         if (!firmware_has_feature(FW_FEATURE_OPAL))
1076                 return -ENODEV;
1077
1078         /* Discover pstates from device tree and init */
1079         rc = init_powernv_pstates();
1080         if (rc)
1081                 goto out;
1082
1083         /* Populate chip info */
1084         rc = init_chip_info();
1085         if (rc)
1086                 goto out;
1087
1088         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1089         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1090
1091         if (powernv_pstate_info.wof_enabled)
1092                 powernv_cpufreq_driver.boost_enabled = true;
1093         else
1094                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1095
1096         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1097         if (rc) {
1098                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1099                 goto cleanup_notifiers;
1100         }
1101
1102         if (powernv_pstate_info.wof_enabled)
1103                 cpufreq_enable_boost_support();
1104
1105         return 0;
1106 cleanup_notifiers:
1107         unregister_all_notifiers();
1108         clean_chip_info();
1109 out:
1110         pr_info("Platform driver disabled. System does not support PState control\n");
1111         return rc;
1112 }
1113 module_init(powernv_cpufreq_init);
1114
1115 static void __exit powernv_cpufreq_exit(void)
1116 {
1117         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1118         unregister_all_notifiers();
1119         clean_chip_info();
1120 }
1121 module_exit(powernv_cpufreq_exit);
1122
1123 MODULE_LICENSE("GPL");
1124 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");