Merge tag 'platform-drivers-x86-v5.9-2' of git://git.infradead.org/linux-platform...
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 static char default_governor[CPUFREQ_NAME_LEN];
54
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66
67 static inline bool has_target(void)
68 {
69         return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78                               struct cpufreq_governor *new_gov,
79                               unsigned int new_pol);
80
81 /*
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 static struct kobject *cpufreq_global_kobject;
109
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112         if (have_governor_per_policy())
113                 return &policy->kobj;
114         else
115                 return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121         struct kernel_cpustat kcpustat;
122         u64 cur_wall_time;
123         u64 idle_time;
124         u64 busy_time;
125
126         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128         kcpustat_cpu_fetch(&kcpustat, cpu);
129
130         busy_time = kcpustat.cpustat[CPUTIME_USER];
131         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135         busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137         idle_time = cur_wall_time - busy_time;
138         if (wall)
139                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141         return div_u64(idle_time, NSEC_PER_USEC);
142 }
143
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148         if (idle_time == -1ULL)
149                 return get_cpu_idle_time_jiffy(cpu, wall);
150         else if (!io_busy)
151                 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153         return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158                 unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171                 struct cpufreq_frequency_table *table,
172                 unsigned int transition_latency)
173 {
174         policy->freq_table = table;
175         policy->cpuinfo.transition_latency = transition_latency;
176
177         /*
178          * The driver only supports the SMP configuration where all processors
179          * share the clock and voltage and clock.
180          */
181         cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220         struct cpufreq_policy *policy = NULL;
221         unsigned long flags;
222
223         if (WARN_ON(cpu >= nr_cpu_ids))
224                 return NULL;
225
226         /* get the cpufreq driver */
227         read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229         if (cpufreq_driver) {
230                 /* get the CPU */
231                 policy = cpufreq_cpu_get_raw(cpu);
232                 if (policy)
233                         kobject_get(&policy->kobj);
234         }
235
236         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238         return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248         kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258         if (WARN_ON(!policy))
259                 return;
260
261         lockdep_assert_held(&policy->rwsem);
262
263         up_write(&policy->rwsem);
264
265         cpufreq_cpu_put(policy);
266 }
267
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284         if (!policy)
285                 return NULL;
286
287         down_write(&policy->rwsem);
288
289         if (policy_is_inactive(policy)) {
290                 cpufreq_cpu_release(policy);
291                 return NULL;
292         }
293
294         return policy;
295 }
296
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         policy->transition_ongoing = false;
450         policy->transition_task = NULL;
451
452         wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463 static void cpufreq_list_transition_notifiers(void)
464 {
465         struct notifier_block *nb;
466
467         pr_info("Registered transition notifiers:\n");
468
469         mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472                 pr_info("%pS\n", nb->notifier_call);
473
474         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490         lockdep_assert_held(&policy->rwsem);
491
492         if (!policy->fast_switch_possible)
493                 return;
494
495         mutex_lock(&cpufreq_fast_switch_lock);
496         if (cpufreq_fast_switch_count >= 0) {
497                 cpufreq_fast_switch_count++;
498                 policy->fast_switch_enabled = true;
499         } else {
500                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501                         policy->cpu);
502                 cpufreq_list_transition_notifiers();
503         }
504         mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514         mutex_lock(&cpufreq_fast_switch_lock);
515         if (policy->fast_switch_enabled) {
516                 policy->fast_switch_enabled = false;
517                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518                         cpufreq_fast_switch_count--;
519         }
520         mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @policy: associated policy to interrogate
528  * @target_freq: target frequency to resolve.
529  *
530  * The target to driver frequency mapping is cached in the policy.
531  *
532  * Return: Lowest driver-supported frequency greater than or equal to the
533  * given target_freq, subject to policy (min/max) and driver limitations.
534  */
535 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
536                                          unsigned int target_freq)
537 {
538         target_freq = clamp_val(target_freq, policy->min, policy->max);
539         policy->cached_target_freq = target_freq;
540
541         if (cpufreq_driver->target_index) {
542                 unsigned int idx;
543
544                 idx = cpufreq_frequency_table_target(policy, target_freq,
545                                                      CPUFREQ_RELATION_L);
546                 policy->cached_resolved_idx = idx;
547                 return policy->freq_table[idx].frequency;
548         }
549
550         if (cpufreq_driver->resolve_freq)
551                 return cpufreq_driver->resolve_freq(policy, target_freq);
552
553         return target_freq;
554 }
555 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
556
557 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
558 {
559         unsigned int latency;
560
561         if (policy->transition_delay_us)
562                 return policy->transition_delay_us;
563
564         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
565         if (latency) {
566                 /*
567                  * For platforms that can change the frequency very fast (< 10
568                  * us), the above formula gives a decent transition delay. But
569                  * for platforms where transition_latency is in milliseconds, it
570                  * ends up giving unrealistic values.
571                  *
572                  * Cap the default transition delay to 10 ms, which seems to be
573                  * a reasonable amount of time after which we should reevaluate
574                  * the frequency.
575                  */
576                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
577         }
578
579         return LATENCY_MULTIPLIER;
580 }
581 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
582
583 /*********************************************************************
584  *                          SYSFS INTERFACE                          *
585  *********************************************************************/
586 static ssize_t show_boost(struct kobject *kobj,
587                           struct kobj_attribute *attr, char *buf)
588 {
589         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
590 }
591
592 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
593                            const char *buf, size_t count)
594 {
595         int ret, enable;
596
597         ret = sscanf(buf, "%d", &enable);
598         if (ret != 1 || enable < 0 || enable > 1)
599                 return -EINVAL;
600
601         if (cpufreq_boost_trigger_state(enable)) {
602                 pr_err("%s: Cannot %s BOOST!\n",
603                        __func__, enable ? "enable" : "disable");
604                 return -EINVAL;
605         }
606
607         pr_debug("%s: cpufreq BOOST %s\n",
608                  __func__, enable ? "enabled" : "disabled");
609
610         return count;
611 }
612 define_one_global_rw(boost);
613
614 static struct cpufreq_governor *find_governor(const char *str_governor)
615 {
616         struct cpufreq_governor *t;
617
618         for_each_governor(t)
619                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
620                         return t;
621
622         return NULL;
623 }
624
625 static struct cpufreq_governor *get_governor(const char *str_governor)
626 {
627         struct cpufreq_governor *t;
628
629         mutex_lock(&cpufreq_governor_mutex);
630         t = find_governor(str_governor);
631         if (!t)
632                 goto unlock;
633
634         if (!try_module_get(t->owner))
635                 t = NULL;
636
637 unlock:
638         mutex_unlock(&cpufreq_governor_mutex);
639
640         return t;
641 }
642
643 static unsigned int cpufreq_parse_policy(char *str_governor)
644 {
645         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
646                 return CPUFREQ_POLICY_PERFORMANCE;
647
648         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
649                 return CPUFREQ_POLICY_POWERSAVE;
650
651         return CPUFREQ_POLICY_UNKNOWN;
652 }
653
654 /**
655  * cpufreq_parse_governor - parse a governor string only for has_target()
656  * @str_governor: Governor name.
657  */
658 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
659 {
660         struct cpufreq_governor *t;
661
662         t = get_governor(str_governor);
663         if (t)
664                 return t;
665
666         if (request_module("cpufreq_%s", str_governor))
667                 return NULL;
668
669         return get_governor(str_governor);
670 }
671
672 /*
673  * cpufreq_per_cpu_attr_read() / show_##file_name() -
674  * print out cpufreq information
675  *
676  * Write out information from cpufreq_driver->policy[cpu]; object must be
677  * "unsigned int".
678  */
679
680 #define show_one(file_name, object)                     \
681 static ssize_t show_##file_name                         \
682 (struct cpufreq_policy *policy, char *buf)              \
683 {                                                       \
684         return sprintf(buf, "%u\n", policy->object);    \
685 }
686
687 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690 show_one(scaling_min_freq, min);
691 show_one(scaling_max_freq, max);
692
693 __weak unsigned int arch_freq_get_on_cpu(int cpu)
694 {
695         return 0;
696 }
697
698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699 {
700         ssize_t ret;
701         unsigned int freq;
702
703         freq = arch_freq_get_on_cpu(policy->cpu);
704         if (freq)
705                 ret = sprintf(buf, "%u\n", freq);
706         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
707                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
708         else
709                 ret = sprintf(buf, "%u\n", policy->cur);
710         return ret;
711 }
712
713 /*
714  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
715  */
716 #define store_one(file_name, object)                    \
717 static ssize_t store_##file_name                                        \
718 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
719 {                                                                       \
720         unsigned long val;                                              \
721         int ret;                                                        \
722                                                                         \
723         ret = sscanf(buf, "%lu", &val);                                 \
724         if (ret != 1)                                                   \
725                 return -EINVAL;                                         \
726                                                                         \
727         ret = freq_qos_update_request(policy->object##_freq_req, val);\
728         return ret >= 0 ? count : ret;                                  \
729 }
730
731 store_one(scaling_min_freq, min);
732 store_one(scaling_max_freq, max);
733
734 /*
735  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
736  */
737 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
738                                         char *buf)
739 {
740         unsigned int cur_freq = __cpufreq_get(policy);
741
742         if (cur_freq)
743                 return sprintf(buf, "%u\n", cur_freq);
744
745         return sprintf(buf, "<unknown>\n");
746 }
747
748 /*
749  * show_scaling_governor - show the current policy for the specified CPU
750  */
751 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
752 {
753         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
754                 return sprintf(buf, "powersave\n");
755         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
756                 return sprintf(buf, "performance\n");
757         else if (policy->governor)
758                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
759                                 policy->governor->name);
760         return -EINVAL;
761 }
762
763 /*
764  * store_scaling_governor - store policy for the specified CPU
765  */
766 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
767                                         const char *buf, size_t count)
768 {
769         char str_governor[16];
770         int ret;
771
772         ret = sscanf(buf, "%15s", str_governor);
773         if (ret != 1)
774                 return -EINVAL;
775
776         if (cpufreq_driver->setpolicy) {
777                 unsigned int new_pol;
778
779                 new_pol = cpufreq_parse_policy(str_governor);
780                 if (!new_pol)
781                         return -EINVAL;
782
783                 ret = cpufreq_set_policy(policy, NULL, new_pol);
784         } else {
785                 struct cpufreq_governor *new_gov;
786
787                 new_gov = cpufreq_parse_governor(str_governor);
788                 if (!new_gov)
789                         return -EINVAL;
790
791                 ret = cpufreq_set_policy(policy, new_gov,
792                                          CPUFREQ_POLICY_UNKNOWN);
793
794                 module_put(new_gov->owner);
795         }
796
797         return ret ? ret : count;
798 }
799
800 /*
801  * show_scaling_driver - show the cpufreq driver currently loaded
802  */
803 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
804 {
805         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
806 }
807
808 /*
809  * show_scaling_available_governors - show the available CPUfreq governors
810  */
811 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
812                                                 char *buf)
813 {
814         ssize_t i = 0;
815         struct cpufreq_governor *t;
816
817         if (!has_target()) {
818                 i += sprintf(buf, "performance powersave");
819                 goto out;
820         }
821
822         mutex_lock(&cpufreq_governor_mutex);
823         for_each_governor(t) {
824                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
825                     - (CPUFREQ_NAME_LEN + 2)))
826                         break;
827                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
828         }
829         mutex_unlock(&cpufreq_governor_mutex);
830 out:
831         i += sprintf(&buf[i], "\n");
832         return i;
833 }
834
835 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
836 {
837         ssize_t i = 0;
838         unsigned int cpu;
839
840         for_each_cpu(cpu, mask) {
841                 if (i)
842                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
843                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
844                 if (i >= (PAGE_SIZE - 5))
845                         break;
846         }
847         i += sprintf(&buf[i], "\n");
848         return i;
849 }
850 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
851
852 /*
853  * show_related_cpus - show the CPUs affected by each transition even if
854  * hw coordination is in use
855  */
856 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
857 {
858         return cpufreq_show_cpus(policy->related_cpus, buf);
859 }
860
861 /*
862  * show_affected_cpus - show the CPUs affected by each transition
863  */
864 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
865 {
866         return cpufreq_show_cpus(policy->cpus, buf);
867 }
868
869 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
870                                         const char *buf, size_t count)
871 {
872         unsigned int freq = 0;
873         unsigned int ret;
874
875         if (!policy->governor || !policy->governor->store_setspeed)
876                 return -EINVAL;
877
878         ret = sscanf(buf, "%u", &freq);
879         if (ret != 1)
880                 return -EINVAL;
881
882         policy->governor->store_setspeed(policy, freq);
883
884         return count;
885 }
886
887 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
888 {
889         if (!policy->governor || !policy->governor->show_setspeed)
890                 return sprintf(buf, "<unsupported>\n");
891
892         return policy->governor->show_setspeed(policy, buf);
893 }
894
895 /*
896  * show_bios_limit - show the current cpufreq HW/BIOS limitation
897  */
898 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
899 {
900         unsigned int limit;
901         int ret;
902         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
903         if (!ret)
904                 return sprintf(buf, "%u\n", limit);
905         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
906 }
907
908 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
909 cpufreq_freq_attr_ro(cpuinfo_min_freq);
910 cpufreq_freq_attr_ro(cpuinfo_max_freq);
911 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
912 cpufreq_freq_attr_ro(scaling_available_governors);
913 cpufreq_freq_attr_ro(scaling_driver);
914 cpufreq_freq_attr_ro(scaling_cur_freq);
915 cpufreq_freq_attr_ro(bios_limit);
916 cpufreq_freq_attr_ro(related_cpus);
917 cpufreq_freq_attr_ro(affected_cpus);
918 cpufreq_freq_attr_rw(scaling_min_freq);
919 cpufreq_freq_attr_rw(scaling_max_freq);
920 cpufreq_freq_attr_rw(scaling_governor);
921 cpufreq_freq_attr_rw(scaling_setspeed);
922
923 static struct attribute *default_attrs[] = {
924         &cpuinfo_min_freq.attr,
925         &cpuinfo_max_freq.attr,
926         &cpuinfo_transition_latency.attr,
927         &scaling_min_freq.attr,
928         &scaling_max_freq.attr,
929         &affected_cpus.attr,
930         &related_cpus.attr,
931         &scaling_governor.attr,
932         &scaling_driver.attr,
933         &scaling_available_governors.attr,
934         &scaling_setspeed.attr,
935         NULL
936 };
937
938 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
939 #define to_attr(a) container_of(a, struct freq_attr, attr)
940
941 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
942 {
943         struct cpufreq_policy *policy = to_policy(kobj);
944         struct freq_attr *fattr = to_attr(attr);
945         ssize_t ret;
946
947         if (!fattr->show)
948                 return -EIO;
949
950         down_read(&policy->rwsem);
951         ret = fattr->show(policy, buf);
952         up_read(&policy->rwsem);
953
954         return ret;
955 }
956
957 static ssize_t store(struct kobject *kobj, struct attribute *attr,
958                      const char *buf, size_t count)
959 {
960         struct cpufreq_policy *policy = to_policy(kobj);
961         struct freq_attr *fattr = to_attr(attr);
962         ssize_t ret = -EINVAL;
963
964         if (!fattr->store)
965                 return -EIO;
966
967         /*
968          * cpus_read_trylock() is used here to work around a circular lock
969          * dependency problem with respect to the cpufreq_register_driver().
970          */
971         if (!cpus_read_trylock())
972                 return -EBUSY;
973
974         if (cpu_online(policy->cpu)) {
975                 down_write(&policy->rwsem);
976                 ret = fattr->store(policy, buf, count);
977                 up_write(&policy->rwsem);
978         }
979
980         cpus_read_unlock();
981
982         return ret;
983 }
984
985 static void cpufreq_sysfs_release(struct kobject *kobj)
986 {
987         struct cpufreq_policy *policy = to_policy(kobj);
988         pr_debug("last reference is dropped\n");
989         complete(&policy->kobj_unregister);
990 }
991
992 static const struct sysfs_ops sysfs_ops = {
993         .show   = show,
994         .store  = store,
995 };
996
997 static struct kobj_type ktype_cpufreq = {
998         .sysfs_ops      = &sysfs_ops,
999         .default_attrs  = default_attrs,
1000         .release        = cpufreq_sysfs_release,
1001 };
1002
1003 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1004 {
1005         struct device *dev = get_cpu_device(cpu);
1006
1007         if (unlikely(!dev))
1008                 return;
1009
1010         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011                 return;
1012
1013         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015                 dev_err(dev, "cpufreq symlink creation failed\n");
1016 }
1017
1018 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019                                    struct device *dev)
1020 {
1021         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022         sysfs_remove_link(&dev->kobj, "cpufreq");
1023 }
1024
1025 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1026 {
1027         struct freq_attr **drv_attr;
1028         int ret = 0;
1029
1030         /* set up files for this cpu device */
1031         drv_attr = cpufreq_driver->attr;
1032         while (drv_attr && *drv_attr) {
1033                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034                 if (ret)
1035                         return ret;
1036                 drv_attr++;
1037         }
1038         if (cpufreq_driver->get) {
1039                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040                 if (ret)
1041                         return ret;
1042         }
1043
1044         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045         if (ret)
1046                 return ret;
1047
1048         if (cpufreq_driver->bios_limit) {
1049                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050                 if (ret)
1051                         return ret;
1052         }
1053
1054         return 0;
1055 }
1056
1057 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058 {
1059         struct cpufreq_governor *gov = NULL;
1060         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061         int ret;
1062
1063         if (has_target()) {
1064                 /* Update policy governor to the one used before hotplug. */
1065                 gov = get_governor(policy->last_governor);
1066                 if (gov) {
1067                         pr_debug("Restoring governor %s for cpu %d\n",
1068                                  gov->name, policy->cpu);
1069                 } else {
1070                         gov = get_governor(default_governor);
1071                 }
1072
1073                 if (!gov) {
1074                         gov = cpufreq_default_governor();
1075                         __module_get(gov->owner);
1076                 }
1077
1078         } else {
1079
1080                 /* Use the default policy if there is no last_policy. */
1081                 if (policy->last_policy) {
1082                         pol = policy->last_policy;
1083                 } else {
1084                         pol = cpufreq_parse_policy(default_governor);
1085                         /*
1086                          * In case the default governor is neither "performance"
1087                          * nor "powersave", fall back to the initial policy
1088                          * value set by the driver.
1089                          */
1090                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1091                                 pol = policy->policy;
1092                 }
1093                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094                     pol != CPUFREQ_POLICY_POWERSAVE)
1095                         return -ENODATA;
1096         }
1097
1098         ret = cpufreq_set_policy(policy, gov, pol);
1099         if (gov)
1100                 module_put(gov->owner);
1101
1102         return ret;
1103 }
1104
1105 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1106 {
1107         int ret = 0;
1108
1109         /* Has this CPU been taken care of already? */
1110         if (cpumask_test_cpu(cpu, policy->cpus))
1111                 return 0;
1112
1113         down_write(&policy->rwsem);
1114         if (has_target())
1115                 cpufreq_stop_governor(policy);
1116
1117         cpumask_set_cpu(cpu, policy->cpus);
1118
1119         if (has_target()) {
1120                 ret = cpufreq_start_governor(policy);
1121                 if (ret)
1122                         pr_err("%s: Failed to start governor\n", __func__);
1123         }
1124         up_write(&policy->rwsem);
1125         return ret;
1126 }
1127
1128 void refresh_frequency_limits(struct cpufreq_policy *policy)
1129 {
1130         if (!policy_is_inactive(policy)) {
1131                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1134         }
1135 }
1136 EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138 static void handle_update(struct work_struct *work)
1139 {
1140         struct cpufreq_policy *policy =
1141                 container_of(work, struct cpufreq_policy, update);
1142
1143         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144         down_write(&policy->rwsem);
1145         refresh_frequency_limits(policy);
1146         up_write(&policy->rwsem);
1147 }
1148
1149 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150                                 void *data)
1151 {
1152         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153
1154         schedule_work(&policy->update);
1155         return 0;
1156 }
1157
1158 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159                                 void *data)
1160 {
1161         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163         schedule_work(&policy->update);
1164         return 0;
1165 }
1166
1167 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168 {
1169         struct kobject *kobj;
1170         struct completion *cmp;
1171
1172         down_write(&policy->rwsem);
1173         cpufreq_stats_free_table(policy);
1174         kobj = &policy->kobj;
1175         cmp = &policy->kobj_unregister;
1176         up_write(&policy->rwsem);
1177         kobject_put(kobj);
1178
1179         /*
1180          * We need to make sure that the underlying kobj is
1181          * actually not referenced anymore by anybody before we
1182          * proceed with unloading.
1183          */
1184         pr_debug("waiting for dropping of refcount\n");
1185         wait_for_completion(cmp);
1186         pr_debug("wait complete\n");
1187 }
1188
1189 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190 {
1191         struct cpufreq_policy *policy;
1192         struct device *dev = get_cpu_device(cpu);
1193         int ret;
1194
1195         if (!dev)
1196                 return NULL;
1197
1198         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199         if (!policy)
1200                 return NULL;
1201
1202         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203                 goto err_free_policy;
1204
1205         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206                 goto err_free_cpumask;
1207
1208         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209                 goto err_free_rcpumask;
1210
1211         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212                                    cpufreq_global_kobject, "policy%u", cpu);
1213         if (ret) {
1214                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215                 /*
1216                  * The entire policy object will be freed below, but the extra
1217                  * memory allocated for the kobject name needs to be freed by
1218                  * releasing the kobject.
1219                  */
1220                 kobject_put(&policy->kobj);
1221                 goto err_free_real_cpus;
1222         }
1223
1224         freq_constraints_init(&policy->constraints);
1225
1226         policy->nb_min.notifier_call = cpufreq_notifier_min;
1227         policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230                                     &policy->nb_min);
1231         if (ret) {
1232                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233                         ret, cpumask_pr_args(policy->cpus));
1234                 goto err_kobj_remove;
1235         }
1236
1237         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238                                     &policy->nb_max);
1239         if (ret) {
1240                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241                         ret, cpumask_pr_args(policy->cpus));
1242                 goto err_min_qos_notifier;
1243         }
1244
1245         INIT_LIST_HEAD(&policy->policy_list);
1246         init_rwsem(&policy->rwsem);
1247         spin_lock_init(&policy->transition_lock);
1248         init_waitqueue_head(&policy->transition_wait);
1249         init_completion(&policy->kobj_unregister);
1250         INIT_WORK(&policy->update, handle_update);
1251
1252         policy->cpu = cpu;
1253         return policy;
1254
1255 err_min_qos_notifier:
1256         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257                                  &policy->nb_min);
1258 err_kobj_remove:
1259         cpufreq_policy_put_kobj(policy);
1260 err_free_real_cpus:
1261         free_cpumask_var(policy->real_cpus);
1262 err_free_rcpumask:
1263         free_cpumask_var(policy->related_cpus);
1264 err_free_cpumask:
1265         free_cpumask_var(policy->cpus);
1266 err_free_policy:
1267         kfree(policy);
1268
1269         return NULL;
1270 }
1271
1272 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273 {
1274         unsigned long flags;
1275         int cpu;
1276
1277         /* Remove policy from list */
1278         write_lock_irqsave(&cpufreq_driver_lock, flags);
1279         list_del(&policy->policy_list);
1280
1281         for_each_cpu(cpu, policy->related_cpus)
1282                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284
1285         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286                                  &policy->nb_max);
1287         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288                                  &policy->nb_min);
1289
1290         /* Cancel any pending policy->update work before freeing the policy. */
1291         cancel_work_sync(&policy->update);
1292
1293         if (policy->max_freq_req) {
1294                 /*
1295                  * CPUFREQ_CREATE_POLICY notification is sent only after
1296                  * successfully adding max_freq_req request.
1297                  */
1298                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299                                              CPUFREQ_REMOVE_POLICY, policy);
1300                 freq_qos_remove_request(policy->max_freq_req);
1301         }
1302
1303         freq_qos_remove_request(policy->min_freq_req);
1304         kfree(policy->min_freq_req);
1305
1306         cpufreq_policy_put_kobj(policy);
1307         free_cpumask_var(policy->real_cpus);
1308         free_cpumask_var(policy->related_cpus);
1309         free_cpumask_var(policy->cpus);
1310         kfree(policy);
1311 }
1312
1313 static int cpufreq_online(unsigned int cpu)
1314 {
1315         struct cpufreq_policy *policy;
1316         bool new_policy;
1317         unsigned long flags;
1318         unsigned int j;
1319         int ret;
1320
1321         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1322
1323         /* Check if this CPU already has a policy to manage it */
1324         policy = per_cpu(cpufreq_cpu_data, cpu);
1325         if (policy) {
1326                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327                 if (!policy_is_inactive(policy))
1328                         return cpufreq_add_policy_cpu(policy, cpu);
1329
1330                 /* This is the only online CPU for the policy.  Start over. */
1331                 new_policy = false;
1332                 down_write(&policy->rwsem);
1333                 policy->cpu = cpu;
1334                 policy->governor = NULL;
1335                 up_write(&policy->rwsem);
1336         } else {
1337                 new_policy = true;
1338                 policy = cpufreq_policy_alloc(cpu);
1339                 if (!policy)
1340                         return -ENOMEM;
1341         }
1342
1343         if (!new_policy && cpufreq_driver->online) {
1344                 ret = cpufreq_driver->online(policy);
1345                 if (ret) {
1346                         pr_debug("%s: %d: initialization failed\n", __func__,
1347                                  __LINE__);
1348                         goto out_exit_policy;
1349                 }
1350
1351                 /* Recover policy->cpus using related_cpus */
1352                 cpumask_copy(policy->cpus, policy->related_cpus);
1353         } else {
1354                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1355
1356                 /*
1357                  * Call driver. From then on the cpufreq must be able
1358                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1359                  */
1360                 ret = cpufreq_driver->init(policy);
1361                 if (ret) {
1362                         pr_debug("%s: %d: initialization failed\n", __func__,
1363                                  __LINE__);
1364                         goto out_free_policy;
1365                 }
1366
1367                 ret = cpufreq_table_validate_and_sort(policy);
1368                 if (ret)
1369                         goto out_exit_policy;
1370
1371                 /* related_cpus should at least include policy->cpus. */
1372                 cpumask_copy(policy->related_cpus, policy->cpus);
1373         }
1374
1375         down_write(&policy->rwsem);
1376         /*
1377          * affected cpus must always be the one, which are online. We aren't
1378          * managing offline cpus here.
1379          */
1380         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382         if (new_policy) {
1383                 for_each_cpu(j, policy->related_cpus) {
1384                         per_cpu(cpufreq_cpu_data, j) = policy;
1385                         add_cpu_dev_symlink(policy, j);
1386                 }
1387
1388                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389                                                GFP_KERNEL);
1390                 if (!policy->min_freq_req)
1391                         goto out_destroy_policy;
1392
1393                 ret = freq_qos_add_request(&policy->constraints,
1394                                            policy->min_freq_req, FREQ_QOS_MIN,
1395                                            policy->min);
1396                 if (ret < 0) {
1397                         /*
1398                          * So we don't call freq_qos_remove_request() for an
1399                          * uninitialized request.
1400                          */
1401                         kfree(policy->min_freq_req);
1402                         policy->min_freq_req = NULL;
1403                         goto out_destroy_policy;
1404                 }
1405
1406                 /*
1407                  * This must be initialized right here to avoid calling
1408                  * freq_qos_remove_request() on uninitialized request in case
1409                  * of errors.
1410                  */
1411                 policy->max_freq_req = policy->min_freq_req + 1;
1412
1413                 ret = freq_qos_add_request(&policy->constraints,
1414                                            policy->max_freq_req, FREQ_QOS_MAX,
1415                                            policy->max);
1416                 if (ret < 0) {
1417                         policy->max_freq_req = NULL;
1418                         goto out_destroy_policy;
1419                 }
1420
1421                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422                                 CPUFREQ_CREATE_POLICY, policy);
1423         }
1424
1425         if (cpufreq_driver->get && has_target()) {
1426                 policy->cur = cpufreq_driver->get(policy->cpu);
1427                 if (!policy->cur) {
1428                         pr_err("%s: ->get() failed\n", __func__);
1429                         goto out_destroy_policy;
1430                 }
1431         }
1432
1433         /*
1434          * Sometimes boot loaders set CPU frequency to a value outside of
1435          * frequency table present with cpufreq core. In such cases CPU might be
1436          * unstable if it has to run on that frequency for long duration of time
1437          * and so its better to set it to a frequency which is specified in
1438          * freq-table. This also makes cpufreq stats inconsistent as
1439          * cpufreq-stats would fail to register because current frequency of CPU
1440          * isn't found in freq-table.
1441          *
1442          * Because we don't want this change to effect boot process badly, we go
1443          * for the next freq which is >= policy->cur ('cur' must be set by now,
1444          * otherwise we will end up setting freq to lowest of the table as 'cur'
1445          * is initialized to zero).
1446          *
1447          * We are passing target-freq as "policy->cur - 1" otherwise
1448          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449          * equal to target-freq.
1450          */
1451         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452             && has_target()) {
1453                 /* Are we running at unknown frequency ? */
1454                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455                 if (ret == -EINVAL) {
1456                         /* Warn user and fix it */
1457                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458                                 __func__, policy->cpu, policy->cur);
1459                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460                                 CPUFREQ_RELATION_L);
1461
1462                         /*
1463                          * Reaching here after boot in a few seconds may not
1464                          * mean that system will remain stable at "unknown"
1465                          * frequency for longer duration. Hence, a BUG_ON().
1466                          */
1467                         BUG_ON(ret);
1468                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469                                 __func__, policy->cpu, policy->cur);
1470                 }
1471         }
1472
1473         if (new_policy) {
1474                 ret = cpufreq_add_dev_interface(policy);
1475                 if (ret)
1476                         goto out_destroy_policy;
1477
1478                 cpufreq_stats_create_table(policy);
1479
1480                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1481                 list_add(&policy->policy_list, &cpufreq_policy_list);
1482                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483         }
1484
1485         ret = cpufreq_init_policy(policy);
1486         if (ret) {
1487                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488                        __func__, cpu, ret);
1489                 goto out_destroy_policy;
1490         }
1491
1492         up_write(&policy->rwsem);
1493
1494         kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496         /* Callback for handling stuff after policy is ready */
1497         if (cpufreq_driver->ready)
1498                 cpufreq_driver->ready(policy);
1499
1500         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501                 policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503         pr_debug("initialization complete\n");
1504
1505         return 0;
1506
1507 out_destroy_policy:
1508         for_each_cpu(j, policy->real_cpus)
1509                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511         up_write(&policy->rwsem);
1512
1513 out_exit_policy:
1514         if (cpufreq_driver->exit)
1515                 cpufreq_driver->exit(policy);
1516
1517 out_free_policy:
1518         cpufreq_policy_free(policy);
1519         return ret;
1520 }
1521
1522 /**
1523  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524  * @dev: CPU device.
1525  * @sif: Subsystem interface structure pointer (not used)
1526  */
1527 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528 {
1529         struct cpufreq_policy *policy;
1530         unsigned cpu = dev->id;
1531         int ret;
1532
1533         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534
1535         if (cpu_online(cpu)) {
1536                 ret = cpufreq_online(cpu);
1537                 if (ret)
1538                         return ret;
1539         }
1540
1541         /* Create sysfs link on CPU registration */
1542         policy = per_cpu(cpufreq_cpu_data, cpu);
1543         if (policy)
1544                 add_cpu_dev_symlink(policy, cpu);
1545
1546         return 0;
1547 }
1548
1549 static int cpufreq_offline(unsigned int cpu)
1550 {
1551         struct cpufreq_policy *policy;
1552         int ret;
1553
1554         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555
1556         policy = cpufreq_cpu_get_raw(cpu);
1557         if (!policy) {
1558                 pr_debug("%s: No cpu_data found\n", __func__);
1559                 return 0;
1560         }
1561
1562         down_write(&policy->rwsem);
1563         if (has_target())
1564                 cpufreq_stop_governor(policy);
1565
1566         cpumask_clear_cpu(cpu, policy->cpus);
1567
1568         if (policy_is_inactive(policy)) {
1569                 if (has_target())
1570                         strncpy(policy->last_governor, policy->governor->name,
1571                                 CPUFREQ_NAME_LEN);
1572                 else
1573                         policy->last_policy = policy->policy;
1574         } else if (cpu == policy->cpu) {
1575                 /* Nominate new CPU */
1576                 policy->cpu = cpumask_any(policy->cpus);
1577         }
1578
1579         /* Start governor again for active policy */
1580         if (!policy_is_inactive(policy)) {
1581                 if (has_target()) {
1582                         ret = cpufreq_start_governor(policy);
1583                         if (ret)
1584                                 pr_err("%s: Failed to start governor\n", __func__);
1585                 }
1586
1587                 goto unlock;
1588         }
1589
1590         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591                 cpufreq_cooling_unregister(policy->cdev);
1592                 policy->cdev = NULL;
1593         }
1594
1595         if (cpufreq_driver->stop_cpu)
1596                 cpufreq_driver->stop_cpu(policy);
1597
1598         if (has_target())
1599                 cpufreq_exit_governor(policy);
1600
1601         /*
1602          * Perform the ->offline() during light-weight tear-down, as
1603          * that allows fast recovery when the CPU comes back.
1604          */
1605         if (cpufreq_driver->offline) {
1606                 cpufreq_driver->offline(policy);
1607         } else if (cpufreq_driver->exit) {
1608                 cpufreq_driver->exit(policy);
1609                 policy->freq_table = NULL;
1610         }
1611
1612 unlock:
1613         up_write(&policy->rwsem);
1614         return 0;
1615 }
1616
1617 /*
1618  * cpufreq_remove_dev - remove a CPU device
1619  *
1620  * Removes the cpufreq interface for a CPU device.
1621  */
1622 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623 {
1624         unsigned int cpu = dev->id;
1625         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627         if (!policy)
1628                 return;
1629
1630         if (cpu_online(cpu))
1631                 cpufreq_offline(cpu);
1632
1633         cpumask_clear_cpu(cpu, policy->real_cpus);
1634         remove_cpu_dev_symlink(policy, dev);
1635
1636         if (cpumask_empty(policy->real_cpus)) {
1637                 /* We did light-weight exit earlier, do full tear down now */
1638                 if (cpufreq_driver->offline)
1639                         cpufreq_driver->exit(policy);
1640
1641                 cpufreq_policy_free(policy);
1642         }
1643 }
1644
1645 /**
1646  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647  *      in deep trouble.
1648  *      @policy: policy managing CPUs
1649  *      @new_freq: CPU frequency the CPU actually runs at
1650  *
1651  *      We adjust to current frequency first, and need to clean up later.
1652  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1653  */
1654 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655                                 unsigned int new_freq)
1656 {
1657         struct cpufreq_freqs freqs;
1658
1659         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660                  policy->cur, new_freq);
1661
1662         freqs.old = policy->cur;
1663         freqs.new = new_freq;
1664
1665         cpufreq_freq_transition_begin(policy, &freqs);
1666         cpufreq_freq_transition_end(policy, &freqs, 0);
1667 }
1668
1669 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670 {
1671         unsigned int new_freq;
1672
1673         new_freq = cpufreq_driver->get(policy->cpu);
1674         if (!new_freq)
1675                 return 0;
1676
1677         /*
1678          * If fast frequency switching is used with the given policy, the check
1679          * against policy->cur is pointless, so skip it in that case.
1680          */
1681         if (policy->fast_switch_enabled || !has_target())
1682                 return new_freq;
1683
1684         if (policy->cur != new_freq) {
1685                 cpufreq_out_of_sync(policy, new_freq);
1686                 if (update)
1687                         schedule_work(&policy->update);
1688         }
1689
1690         return new_freq;
1691 }
1692
1693 /**
1694  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695  * @cpu: CPU number
1696  *
1697  * This is the last known freq, without actually getting it from the driver.
1698  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699  */
1700 unsigned int cpufreq_quick_get(unsigned int cpu)
1701 {
1702         struct cpufreq_policy *policy;
1703         unsigned int ret_freq = 0;
1704         unsigned long flags;
1705
1706         read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709                 ret_freq = cpufreq_driver->get(cpu);
1710                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711                 return ret_freq;
1712         }
1713
1714         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716         policy = cpufreq_cpu_get(cpu);
1717         if (policy) {
1718                 ret_freq = policy->cur;
1719                 cpufreq_cpu_put(policy);
1720         }
1721
1722         return ret_freq;
1723 }
1724 EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726 /**
1727  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728  * @cpu: CPU number
1729  *
1730  * Just return the max possible frequency for a given CPU.
1731  */
1732 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733 {
1734         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735         unsigned int ret_freq = 0;
1736
1737         if (policy) {
1738                 ret_freq = policy->max;
1739                 cpufreq_cpu_put(policy);
1740         }
1741
1742         return ret_freq;
1743 }
1744 EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746 /**
1747  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748  * @cpu: CPU number
1749  *
1750  * The default return value is the max_freq field of cpuinfo.
1751  */
1752 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753 {
1754         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755         unsigned int ret_freq = 0;
1756
1757         if (policy) {
1758                 ret_freq = policy->cpuinfo.max_freq;
1759                 cpufreq_cpu_put(policy);
1760         }
1761
1762         return ret_freq;
1763 }
1764 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767 {
1768         if (unlikely(policy_is_inactive(policy)))
1769                 return 0;
1770
1771         return cpufreq_verify_current_freq(policy, true);
1772 }
1773
1774 /**
1775  * cpufreq_get - get the current CPU frequency (in kHz)
1776  * @cpu: CPU number
1777  *
1778  * Get the CPU current (static) CPU frequency
1779  */
1780 unsigned int cpufreq_get(unsigned int cpu)
1781 {
1782         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783         unsigned int ret_freq = 0;
1784
1785         if (policy) {
1786                 down_read(&policy->rwsem);
1787                 if (cpufreq_driver->get)
1788                         ret_freq = __cpufreq_get(policy);
1789                 up_read(&policy->rwsem);
1790
1791                 cpufreq_cpu_put(policy);
1792         }
1793
1794         return ret_freq;
1795 }
1796 EXPORT_SYMBOL(cpufreq_get);
1797
1798 static struct subsys_interface cpufreq_interface = {
1799         .name           = "cpufreq",
1800         .subsys         = &cpu_subsys,
1801         .add_dev        = cpufreq_add_dev,
1802         .remove_dev     = cpufreq_remove_dev,
1803 };
1804
1805 /*
1806  * In case platform wants some specific frequency to be configured
1807  * during suspend..
1808  */
1809 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810 {
1811         int ret;
1812
1813         if (!policy->suspend_freq) {
1814                 pr_debug("%s: suspend_freq not defined\n", __func__);
1815                 return 0;
1816         }
1817
1818         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819                         policy->suspend_freq);
1820
1821         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822                         CPUFREQ_RELATION_H);
1823         if (ret)
1824                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825                                 __func__, policy->suspend_freq, ret);
1826
1827         return ret;
1828 }
1829 EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831 /**
1832  * cpufreq_suspend() - Suspend CPUFreq governors
1833  *
1834  * Called during system wide Suspend/Hibernate cycles for suspending governors
1835  * as some platforms can't change frequency after this point in suspend cycle.
1836  * Because some of the devices (like: i2c, regulators, etc) they use for
1837  * changing frequency are suspended quickly after this point.
1838  */
1839 void cpufreq_suspend(void)
1840 {
1841         struct cpufreq_policy *policy;
1842
1843         if (!cpufreq_driver)
1844                 return;
1845
1846         if (!has_target() && !cpufreq_driver->suspend)
1847                 goto suspend;
1848
1849         pr_debug("%s: Suspending Governors\n", __func__);
1850
1851         for_each_active_policy(policy) {
1852                 if (has_target()) {
1853                         down_write(&policy->rwsem);
1854                         cpufreq_stop_governor(policy);
1855                         up_write(&policy->rwsem);
1856                 }
1857
1858                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860                                 cpufreq_driver->name);
1861         }
1862
1863 suspend:
1864         cpufreq_suspended = true;
1865 }
1866
1867 /**
1868  * cpufreq_resume() - Resume CPUFreq governors
1869  *
1870  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871  * are suspended with cpufreq_suspend().
1872  */
1873 void cpufreq_resume(void)
1874 {
1875         struct cpufreq_policy *policy;
1876         int ret;
1877
1878         if (!cpufreq_driver)
1879                 return;
1880
1881         if (unlikely(!cpufreq_suspended))
1882                 return;
1883
1884         cpufreq_suspended = false;
1885
1886         if (!has_target() && !cpufreq_driver->resume)
1887                 return;
1888
1889         pr_debug("%s: Resuming Governors\n", __func__);
1890
1891         for_each_active_policy(policy) {
1892                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1894                                 policy);
1895                 } else if (has_target()) {
1896                         down_write(&policy->rwsem);
1897                         ret = cpufreq_start_governor(policy);
1898                         up_write(&policy->rwsem);
1899
1900                         if (ret)
1901                                 pr_err("%s: Failed to start governor for policy: %p\n",
1902                                        __func__, policy);
1903                 }
1904         }
1905 }
1906
1907 /**
1908  *      cpufreq_get_current_driver - return current driver's name
1909  *
1910  *      Return the name string of the currently loaded cpufreq driver
1911  *      or NULL, if none.
1912  */
1913 const char *cpufreq_get_current_driver(void)
1914 {
1915         if (cpufreq_driver)
1916                 return cpufreq_driver->name;
1917
1918         return NULL;
1919 }
1920 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922 /**
1923  *      cpufreq_get_driver_data - return current driver data
1924  *
1925  *      Return the private data of the currently loaded cpufreq
1926  *      driver, or NULL if no cpufreq driver is loaded.
1927  */
1928 void *cpufreq_get_driver_data(void)
1929 {
1930         if (cpufreq_driver)
1931                 return cpufreq_driver->driver_data;
1932
1933         return NULL;
1934 }
1935 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937 /*********************************************************************
1938  *                     NOTIFIER LISTS INTERFACE                      *
1939  *********************************************************************/
1940
1941 /**
1942  *      cpufreq_register_notifier - register a driver with cpufreq
1943  *      @nb: notifier function to register
1944  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945  *
1946  *      Add a driver to one of two lists: either a list of drivers that
1947  *      are notified about clock rate changes (once before and once after
1948  *      the transition), or a list of drivers that are notified about
1949  *      changes in cpufreq policy.
1950  *
1951  *      This function may sleep, and has the same return conditions as
1952  *      blocking_notifier_chain_register.
1953  */
1954 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955 {
1956         int ret;
1957
1958         if (cpufreq_disabled())
1959                 return -EINVAL;
1960
1961         switch (list) {
1962         case CPUFREQ_TRANSITION_NOTIFIER:
1963                 mutex_lock(&cpufreq_fast_switch_lock);
1964
1965                 if (cpufreq_fast_switch_count > 0) {
1966                         mutex_unlock(&cpufreq_fast_switch_lock);
1967                         return -EBUSY;
1968                 }
1969                 ret = srcu_notifier_chain_register(
1970                                 &cpufreq_transition_notifier_list, nb);
1971                 if (!ret)
1972                         cpufreq_fast_switch_count--;
1973
1974                 mutex_unlock(&cpufreq_fast_switch_lock);
1975                 break;
1976         case CPUFREQ_POLICY_NOTIFIER:
1977                 ret = blocking_notifier_chain_register(
1978                                 &cpufreq_policy_notifier_list, nb);
1979                 break;
1980         default:
1981                 ret = -EINVAL;
1982         }
1983
1984         return ret;
1985 }
1986 EXPORT_SYMBOL(cpufreq_register_notifier);
1987
1988 /**
1989  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1990  *      @nb: notifier block to be unregistered
1991  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992  *
1993  *      Remove a driver from the CPU frequency notifier list.
1994  *
1995  *      This function may sleep, and has the same return conditions as
1996  *      blocking_notifier_chain_unregister.
1997  */
1998 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999 {
2000         int ret;
2001
2002         if (cpufreq_disabled())
2003                 return -EINVAL;
2004
2005         switch (list) {
2006         case CPUFREQ_TRANSITION_NOTIFIER:
2007                 mutex_lock(&cpufreq_fast_switch_lock);
2008
2009                 ret = srcu_notifier_chain_unregister(
2010                                 &cpufreq_transition_notifier_list, nb);
2011                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012                         cpufreq_fast_switch_count++;
2013
2014                 mutex_unlock(&cpufreq_fast_switch_lock);
2015                 break;
2016         case CPUFREQ_POLICY_NOTIFIER:
2017                 ret = blocking_notifier_chain_unregister(
2018                                 &cpufreq_policy_notifier_list, nb);
2019                 break;
2020         default:
2021                 ret = -EINVAL;
2022         }
2023
2024         return ret;
2025 }
2026 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029 /*********************************************************************
2030  *                              GOVERNORS                            *
2031  *********************************************************************/
2032
2033 /**
2034  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035  * @policy: cpufreq policy to switch the frequency for.
2036  * @target_freq: New frequency to set (may be approximate).
2037  *
2038  * Carry out a fast frequency switch without sleeping.
2039  *
2040  * The driver's ->fast_switch() callback invoked by this function must be
2041  * suitable for being called from within RCU-sched read-side critical sections
2042  * and it is expected to select the minimum available frequency greater than or
2043  * equal to @target_freq (CPUFREQ_RELATION_L).
2044  *
2045  * This function must not be called if policy->fast_switch_enabled is unset.
2046  *
2047  * Governors calling this function must guarantee that it will never be invoked
2048  * twice in parallel for the same policy and that it will never be called in
2049  * parallel with either ->target() or ->target_index() for the same policy.
2050  *
2051  * Returns the actual frequency set for the CPU.
2052  *
2053  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054  * error condition, the hardware configuration must be preserved.
2055  */
2056 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057                                         unsigned int target_freq)
2058 {
2059         target_freq = clamp_val(target_freq, policy->min, policy->max);
2060
2061         return cpufreq_driver->fast_switch(policy, target_freq);
2062 }
2063 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
2065 /* Must set freqs->new to intermediate frequency */
2066 static int __target_intermediate(struct cpufreq_policy *policy,
2067                                  struct cpufreq_freqs *freqs, int index)
2068 {
2069         int ret;
2070
2071         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073         /* We don't need to switch to intermediate freq */
2074         if (!freqs->new)
2075                 return 0;
2076
2077         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078                  __func__, policy->cpu, freqs->old, freqs->new);
2079
2080         cpufreq_freq_transition_begin(policy, freqs);
2081         ret = cpufreq_driver->target_intermediate(policy, index);
2082         cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084         if (ret)
2085                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086                        __func__, ret);
2087
2088         return ret;
2089 }
2090
2091 static int __target_index(struct cpufreq_policy *policy, int index)
2092 {
2093         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094         unsigned int intermediate_freq = 0;
2095         unsigned int newfreq = policy->freq_table[index].frequency;
2096         int retval = -EINVAL;
2097         bool notify;
2098
2099         if (newfreq == policy->cur)
2100                 return 0;
2101
2102         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103         if (notify) {
2104                 /* Handle switching to intermediate frequency */
2105                 if (cpufreq_driver->get_intermediate) {
2106                         retval = __target_intermediate(policy, &freqs, index);
2107                         if (retval)
2108                                 return retval;
2109
2110                         intermediate_freq = freqs.new;
2111                         /* Set old freq to intermediate */
2112                         if (intermediate_freq)
2113                                 freqs.old = freqs.new;
2114                 }
2115
2116                 freqs.new = newfreq;
2117                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118                          __func__, policy->cpu, freqs.old, freqs.new);
2119
2120                 cpufreq_freq_transition_begin(policy, &freqs);
2121         }
2122
2123         retval = cpufreq_driver->target_index(policy, index);
2124         if (retval)
2125                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126                        retval);
2127
2128         if (notify) {
2129                 cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131                 /*
2132                  * Failed after setting to intermediate freq? Driver should have
2133                  * reverted back to initial frequency and so should we. Check
2134                  * here for intermediate_freq instead of get_intermediate, in
2135                  * case we haven't switched to intermediate freq at all.
2136                  */
2137                 if (unlikely(retval && intermediate_freq)) {
2138                         freqs.old = intermediate_freq;
2139                         freqs.new = policy->restore_freq;
2140                         cpufreq_freq_transition_begin(policy, &freqs);
2141                         cpufreq_freq_transition_end(policy, &freqs, 0);
2142                 }
2143         }
2144
2145         return retval;
2146 }
2147
2148 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149                             unsigned int target_freq,
2150                             unsigned int relation)
2151 {
2152         unsigned int old_target_freq = target_freq;
2153         int index;
2154
2155         if (cpufreq_disabled())
2156                 return -ENODEV;
2157
2158         /* Make sure that target_freq is within supported range */
2159         target_freq = clamp_val(target_freq, policy->min, policy->max);
2160
2161         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162                  policy->cpu, target_freq, relation, old_target_freq);
2163
2164         /*
2165          * This might look like a redundant call as we are checking it again
2166          * after finding index. But it is left intentionally for cases where
2167          * exactly same freq is called again and so we can save on few function
2168          * calls.
2169          */
2170         if (target_freq == policy->cur)
2171                 return 0;
2172
2173         /* Save last value to restore later on errors */
2174         policy->restore_freq = policy->cur;
2175
2176         if (cpufreq_driver->target)
2177                 return cpufreq_driver->target(policy, target_freq, relation);
2178
2179         if (!cpufreq_driver->target_index)
2180                 return -EINVAL;
2181
2182         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183
2184         return __target_index(policy, index);
2185 }
2186 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188 int cpufreq_driver_target(struct cpufreq_policy *policy,
2189                           unsigned int target_freq,
2190                           unsigned int relation)
2191 {
2192         int ret;
2193
2194         down_write(&policy->rwsem);
2195
2196         ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198         up_write(&policy->rwsem);
2199
2200         return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205 {
2206         return NULL;
2207 }
2208
2209 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210 {
2211         int ret;
2212
2213         /* Don't start any governor operations if we are entering suspend */
2214         if (cpufreq_suspended)
2215                 return 0;
2216         /*
2217          * Governor might not be initiated here if ACPI _PPC changed
2218          * notification happened, so check it.
2219          */
2220         if (!policy->governor)
2221                 return -EINVAL;
2222
2223         /* Platform doesn't want dynamic frequency switching ? */
2224         if (policy->governor->dynamic_switching &&
2225             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228                 if (gov) {
2229                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230                                 policy->governor->name, gov->name);
2231                         policy->governor = gov;
2232                 } else {
2233                         return -EINVAL;
2234                 }
2235         }
2236
2237         if (!try_module_get(policy->governor->owner))
2238                 return -EINVAL;
2239
2240         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242         if (policy->governor->init) {
2243                 ret = policy->governor->init(policy);
2244                 if (ret) {
2245                         module_put(policy->governor->owner);
2246                         return ret;
2247                 }
2248         }
2249
2250         return 0;
2251 }
2252
2253 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254 {
2255         if (cpufreq_suspended || !policy->governor)
2256                 return;
2257
2258         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260         if (policy->governor->exit)
2261                 policy->governor->exit(policy);
2262
2263         module_put(policy->governor->owner);
2264 }
2265
2266 int cpufreq_start_governor(struct cpufreq_policy *policy)
2267 {
2268         int ret;
2269
2270         if (cpufreq_suspended)
2271                 return 0;
2272
2273         if (!policy->governor)
2274                 return -EINVAL;
2275
2276         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278         if (cpufreq_driver->get)
2279                 cpufreq_verify_current_freq(policy, false);
2280
2281         if (policy->governor->start) {
2282                 ret = policy->governor->start(policy);
2283                 if (ret)
2284                         return ret;
2285         }
2286
2287         if (policy->governor->limits)
2288                 policy->governor->limits(policy);
2289
2290         return 0;
2291 }
2292
2293 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294 {
2295         if (cpufreq_suspended || !policy->governor)
2296                 return;
2297
2298         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300         if (policy->governor->stop)
2301                 policy->governor->stop(policy);
2302 }
2303
2304 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305 {
2306         if (cpufreq_suspended || !policy->governor)
2307                 return;
2308
2309         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311         if (policy->governor->limits)
2312                 policy->governor->limits(policy);
2313 }
2314
2315 int cpufreq_register_governor(struct cpufreq_governor *governor)
2316 {
2317         int err;
2318
2319         if (!governor)
2320                 return -EINVAL;
2321
2322         if (cpufreq_disabled())
2323                 return -ENODEV;
2324
2325         mutex_lock(&cpufreq_governor_mutex);
2326
2327         err = -EBUSY;
2328         if (!find_governor(governor->name)) {
2329                 err = 0;
2330                 list_add(&governor->governor_list, &cpufreq_governor_list);
2331         }
2332
2333         mutex_unlock(&cpufreq_governor_mutex);
2334         return err;
2335 }
2336 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
2338 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339 {
2340         struct cpufreq_policy *policy;
2341         unsigned long flags;
2342
2343         if (!governor)
2344                 return;
2345
2346         if (cpufreq_disabled())
2347                 return;
2348
2349         /* clear last_governor for all inactive policies */
2350         read_lock_irqsave(&cpufreq_driver_lock, flags);
2351         for_each_inactive_policy(policy) {
2352                 if (!strcmp(policy->last_governor, governor->name)) {
2353                         policy->governor = NULL;
2354                         strcpy(policy->last_governor, "\0");
2355                 }
2356         }
2357         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359         mutex_lock(&cpufreq_governor_mutex);
2360         list_del(&governor->governor_list);
2361         mutex_unlock(&cpufreq_governor_mutex);
2362 }
2363 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
2366 /*********************************************************************
2367  *                          POLICY INTERFACE                         *
2368  *********************************************************************/
2369
2370 /**
2371  * cpufreq_get_policy - get the current cpufreq_policy
2372  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373  *      is written
2374  * @cpu: CPU to find the policy for
2375  *
2376  * Reads the current cpufreq policy.
2377  */
2378 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379 {
2380         struct cpufreq_policy *cpu_policy;
2381         if (!policy)
2382                 return -EINVAL;
2383
2384         cpu_policy = cpufreq_cpu_get(cpu);
2385         if (!cpu_policy)
2386                 return -EINVAL;
2387
2388         memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390         cpufreq_cpu_put(cpu_policy);
2391         return 0;
2392 }
2393 EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395 /**
2396  * cpufreq_set_policy - Modify cpufreq policy parameters.
2397  * @policy: Policy object to modify.
2398  * @new_gov: Policy governor pointer.
2399  * @new_pol: Policy value (for drivers with built-in governors).
2400  *
2401  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402  * limits to be set for the policy, update @policy with the verified limits
2403  * values and either invoke the driver's ->setpolicy() callback (if present) or
2404  * carry out a governor update for @policy.  That is, run the current governor's
2405  * ->limits() callback (if @new_gov points to the same object as the one in
2406  * @policy) or replace the governor for @policy with @new_gov.
2407  *
2408  * The cpuinfo part of @policy is not updated by this function.
2409  */
2410 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411                               struct cpufreq_governor *new_gov,
2412                               unsigned int new_pol)
2413 {
2414         struct cpufreq_policy_data new_data;
2415         struct cpufreq_governor *old_gov;
2416         int ret;
2417
2418         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419         new_data.freq_table = policy->freq_table;
2420         new_data.cpu = policy->cpu;
2421         /*
2422          * PM QoS framework collects all the requests from users and provide us
2423          * the final aggregated value here.
2424          */
2425         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427
2428         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429                  new_data.cpu, new_data.min, new_data.max);
2430
2431         /*
2432          * Verify that the CPU speed can be set within these limits and make sure
2433          * that min <= max.
2434          */
2435         ret = cpufreq_driver->verify(&new_data);
2436         if (ret)
2437                 return ret;
2438
2439         policy->min = new_data.min;
2440         policy->max = new_data.max;
2441         trace_cpu_frequency_limits(policy);
2442
2443         policy->cached_target_freq = UINT_MAX;
2444
2445         pr_debug("new min and max freqs are %u - %u kHz\n",
2446                  policy->min, policy->max);
2447
2448         if (cpufreq_driver->setpolicy) {
2449                 policy->policy = new_pol;
2450                 pr_debug("setting range\n");
2451                 return cpufreq_driver->setpolicy(policy);
2452         }
2453
2454         if (new_gov == policy->governor) {
2455                 pr_debug("governor limits update\n");
2456                 cpufreq_governor_limits(policy);
2457                 return 0;
2458         }
2459
2460         pr_debug("governor switch\n");
2461
2462         /* save old, working values */
2463         old_gov = policy->governor;
2464         /* end old governor */
2465         if (old_gov) {
2466                 cpufreq_stop_governor(policy);
2467                 cpufreq_exit_governor(policy);
2468         }
2469
2470         /* start new governor */
2471         policy->governor = new_gov;
2472         ret = cpufreq_init_governor(policy);
2473         if (!ret) {
2474                 ret = cpufreq_start_governor(policy);
2475                 if (!ret) {
2476                         pr_debug("governor change\n");
2477                         sched_cpufreq_governor_change(policy, old_gov);
2478                         return 0;
2479                 }
2480                 cpufreq_exit_governor(policy);
2481         }
2482
2483         /* new governor failed, so re-start old one */
2484         pr_debug("starting governor %s failed\n", policy->governor->name);
2485         if (old_gov) {
2486                 policy->governor = old_gov;
2487                 if (cpufreq_init_governor(policy))
2488                         policy->governor = NULL;
2489                 else
2490                         cpufreq_start_governor(policy);
2491         }
2492
2493         return ret;
2494 }
2495
2496 /**
2497  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498  * @cpu: CPU to re-evaluate the policy for.
2499  *
2500  * Update the current frequency for the cpufreq policy of @cpu and use
2501  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503  * for the policy in question, among other things.
2504  */
2505 void cpufreq_update_policy(unsigned int cpu)
2506 {
2507         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508
2509         if (!policy)
2510                 return;
2511
2512         /*
2513          * BIOS might change freq behind our back
2514          * -> ask driver for current freq and notify governors about a change
2515          */
2516         if (cpufreq_driver->get && has_target() &&
2517             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518                 goto unlock;
2519
2520         refresh_frequency_limits(policy);
2521
2522 unlock:
2523         cpufreq_cpu_release(policy);
2524 }
2525 EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527 /**
2528  * cpufreq_update_limits - Update policy limits for a given CPU.
2529  * @cpu: CPU to update the policy limits for.
2530  *
2531  * Invoke the driver's ->update_limits callback if present or call
2532  * cpufreq_update_policy() for @cpu.
2533  */
2534 void cpufreq_update_limits(unsigned int cpu)
2535 {
2536         if (cpufreq_driver->update_limits)
2537                 cpufreq_driver->update_limits(cpu);
2538         else
2539                 cpufreq_update_policy(cpu);
2540 }
2541 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542
2543 /*********************************************************************
2544  *               BOOST                                               *
2545  *********************************************************************/
2546 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547 {
2548         int ret;
2549
2550         if (!policy->freq_table)
2551                 return -ENXIO;
2552
2553         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554         if (ret) {
2555                 pr_err("%s: Policy frequency update failed\n", __func__);
2556                 return ret;
2557         }
2558
2559         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560         if (ret < 0)
2561                 return ret;
2562
2563         return 0;
2564 }
2565
2566 int cpufreq_boost_trigger_state(int state)
2567 {
2568         struct cpufreq_policy *policy;
2569         unsigned long flags;
2570         int ret = 0;
2571
2572         if (cpufreq_driver->boost_enabled == state)
2573                 return 0;
2574
2575         write_lock_irqsave(&cpufreq_driver_lock, flags);
2576         cpufreq_driver->boost_enabled = state;
2577         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579         get_online_cpus();
2580         for_each_active_policy(policy) {
2581                 ret = cpufreq_driver->set_boost(policy, state);
2582                 if (ret)
2583                         goto err_reset_state;
2584         }
2585         put_online_cpus();
2586
2587         return 0;
2588
2589 err_reset_state:
2590         put_online_cpus();
2591
2592         write_lock_irqsave(&cpufreq_driver_lock, flags);
2593         cpufreq_driver->boost_enabled = !state;
2594         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596         pr_err("%s: Cannot %s BOOST\n",
2597                __func__, state ? "enable" : "disable");
2598
2599         return ret;
2600 }
2601
2602 static bool cpufreq_boost_supported(void)
2603 {
2604         return cpufreq_driver->set_boost;
2605 }
2606
2607 static int create_boost_sysfs_file(void)
2608 {
2609         int ret;
2610
2611         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612         if (ret)
2613                 pr_err("%s: cannot register global BOOST sysfs file\n",
2614                        __func__);
2615
2616         return ret;
2617 }
2618
2619 static void remove_boost_sysfs_file(void)
2620 {
2621         if (cpufreq_boost_supported())
2622                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623 }
2624
2625 int cpufreq_enable_boost_support(void)
2626 {
2627         if (!cpufreq_driver)
2628                 return -EINVAL;
2629
2630         if (cpufreq_boost_supported())
2631                 return 0;
2632
2633         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635         /* This will get removed on driver unregister */
2636         return create_boost_sysfs_file();
2637 }
2638 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640 int cpufreq_boost_enabled(void)
2641 {
2642         return cpufreq_driver->boost_enabled;
2643 }
2644 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646 /*********************************************************************
2647  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2648  *********************************************************************/
2649 static enum cpuhp_state hp_online;
2650
2651 static int cpuhp_cpufreq_online(unsigned int cpu)
2652 {
2653         cpufreq_online(cpu);
2654
2655         return 0;
2656 }
2657
2658 static int cpuhp_cpufreq_offline(unsigned int cpu)
2659 {
2660         cpufreq_offline(cpu);
2661
2662         return 0;
2663 }
2664
2665 /**
2666  * cpufreq_register_driver - register a CPU Frequency driver
2667  * @driver_data: A struct cpufreq_driver containing the values#
2668  * submitted by the CPU Frequency driver.
2669  *
2670  * Registers a CPU Frequency driver to this core code. This code
2671  * returns zero on success, -EEXIST when another driver got here first
2672  * (and isn't unregistered in the meantime).
2673  *
2674  */
2675 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676 {
2677         unsigned long flags;
2678         int ret;
2679
2680         if (cpufreq_disabled())
2681                 return -ENODEV;
2682
2683         /*
2684          * The cpufreq core depends heavily on the availability of device
2685          * structure, make sure they are available before proceeding further.
2686          */
2687         if (!get_cpu_device(0))
2688                 return -EPROBE_DEFER;
2689
2690         if (!driver_data || !driver_data->verify || !driver_data->init ||
2691             !(driver_data->setpolicy || driver_data->target_index ||
2692                     driver_data->target) ||
2693              (driver_data->setpolicy && (driver_data->target_index ||
2694                     driver_data->target)) ||
2695              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696              (!driver_data->online != !driver_data->offline))
2697                 return -EINVAL;
2698
2699         pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701         /* Protect against concurrent CPU online/offline. */
2702         cpus_read_lock();
2703
2704         write_lock_irqsave(&cpufreq_driver_lock, flags);
2705         if (cpufreq_driver) {
2706                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707                 ret = -EEXIST;
2708                 goto out;
2709         }
2710         cpufreq_driver = driver_data;
2711         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
2713         if (driver_data->setpolicy)
2714                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2715
2716         if (cpufreq_boost_supported()) {
2717                 ret = create_boost_sysfs_file();
2718                 if (ret)
2719                         goto err_null_driver;
2720         }
2721
2722         ret = subsys_interface_register(&cpufreq_interface);
2723         if (ret)
2724                 goto err_boost_unreg;
2725
2726         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727             list_empty(&cpufreq_policy_list)) {
2728                 /* if all ->init() calls failed, unregister */
2729                 ret = -ENODEV;
2730                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731                          driver_data->name);
2732                 goto err_if_unreg;
2733         }
2734
2735         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736                                                    "cpufreq:online",
2737                                                    cpuhp_cpufreq_online,
2738                                                    cpuhp_cpufreq_offline);
2739         if (ret < 0)
2740                 goto err_if_unreg;
2741         hp_online = ret;
2742         ret = 0;
2743
2744         pr_debug("driver %s up and running\n", driver_data->name);
2745         goto out;
2746
2747 err_if_unreg:
2748         subsys_interface_unregister(&cpufreq_interface);
2749 err_boost_unreg:
2750         remove_boost_sysfs_file();
2751 err_null_driver:
2752         write_lock_irqsave(&cpufreq_driver_lock, flags);
2753         cpufreq_driver = NULL;
2754         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755 out:
2756         cpus_read_unlock();
2757         return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761 /*
2762  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763  *
2764  * Unregister the current CPUFreq driver. Only call this if you have
2765  * the right to do so, i.e. if you have succeeded in initialising before!
2766  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767  * currently not initialised.
2768  */
2769 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770 {
2771         unsigned long flags;
2772
2773         if (!cpufreq_driver || (driver != cpufreq_driver))
2774                 return -EINVAL;
2775
2776         pr_debug("unregistering driver %s\n", driver->name);
2777
2778         /* Protect against concurrent cpu hotplug */
2779         cpus_read_lock();
2780         subsys_interface_unregister(&cpufreq_interface);
2781         remove_boost_sysfs_file();
2782         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
2784         write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
2786         cpufreq_driver = NULL;
2787
2788         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789         cpus_read_unlock();
2790
2791         return 0;
2792 }
2793 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795 static int __init cpufreq_core_init(void)
2796 {
2797         struct cpufreq_governor *gov = cpufreq_default_governor();
2798
2799         if (cpufreq_disabled())
2800                 return -ENODEV;
2801
2802         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2803         BUG_ON(!cpufreq_global_kobject);
2804
2805         if (!strlen(default_governor))
2806                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808         return 0;
2809 }
2810 module_param(off, int, 0444);
2811 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812 core_initcall(cpufreq_core_init);