85ff958e01f108dbe9baac16fb558171edf41a8b
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34
35 static LIST_HEAD(cpufreq_policy_list);
36
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)                     \
39         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40                 if ((__active) == !policy_is_inactive(__policy))
41
42 #define for_each_active_policy(__policy)                \
43         for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)              \
45         for_each_suitable_policy(__policy, false)
46
47 #define for_each_policy(__policy)                       \
48         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
49
50 /* Iterate over governors */
51 static LIST_HEAD(cpufreq_governor_list);
52 #define for_each_governor(__governor)                           \
53         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
54
55 /**
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66
67 static inline bool has_target(void)
68 {
69         return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79
80 /**
81  * Two notifier lists: the "policy" list is involved in the
82  * validation process for a new CPU frequency policy; the
83  * "transition" list for kernel code that needs to handle
84  * changes to devices when the CPU clock speed changes.
85  * The mutex locks both lists.
86  */
87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
88 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
89
90 static int off __read_mostly;
91 static int cpufreq_disabled(void)
92 {
93         return off;
94 }
95 void disable_cpufreq(void)
96 {
97         off = 1;
98 }
99 static DEFINE_MUTEX(cpufreq_governor_mutex);
100
101 bool have_governor_per_policy(void)
102 {
103         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
104 }
105 EXPORT_SYMBOL_GPL(have_governor_per_policy);
106
107 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
108 {
109         if (have_governor_per_policy())
110                 return &policy->kobj;
111         else
112                 return cpufreq_global_kobject;
113 }
114 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
115
116 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
117 {
118         u64 idle_time;
119         u64 cur_wall_time;
120         u64 busy_time;
121
122         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
123
124         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
128         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
129         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
130
131         idle_time = cur_wall_time - busy_time;
132         if (wall)
133                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
134
135         return div_u64(idle_time, NSEC_PER_USEC);
136 }
137
138 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
139 {
140         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
141
142         if (idle_time == -1ULL)
143                 return get_cpu_idle_time_jiffy(cpu, wall);
144         else if (!io_busy)
145                 idle_time += get_cpu_iowait_time_us(cpu, wall);
146
147         return idle_time;
148 }
149 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
150
151 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
152                 unsigned long max_freq)
153 {
154 }
155 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
156
157 /*
158  * This is a generic cpufreq init() routine which can be used by cpufreq
159  * drivers of SMP systems. It will do following:
160  * - validate & show freq table passed
161  * - set policies transition latency
162  * - policy->cpus with all possible CPUs
163  */
164 int cpufreq_generic_init(struct cpufreq_policy *policy,
165                 struct cpufreq_frequency_table *table,
166                 unsigned int transition_latency)
167 {
168         policy->freq_table = table;
169         policy->cpuinfo.transition_latency = transition_latency;
170
171         /*
172          * The driver only supports the SMP configuration where all processors
173          * share the clock and voltage and clock.
174          */
175         cpumask_setall(policy->cpus);
176
177         return 0;
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
180
181 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
182 {
183         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
184
185         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
188
189 unsigned int cpufreq_generic_get(unsigned int cpu)
190 {
191         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
192
193         if (!policy || IS_ERR(policy->clk)) {
194                 pr_err("%s: No %s associated to cpu: %d\n",
195                        __func__, policy ? "clk" : "policy", cpu);
196                 return 0;
197         }
198
199         return clk_get_rate(policy->clk) / 1000;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
202
203 /**
204  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
205  * @cpu: CPU to find the policy for.
206  *
207  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
208  * the kobject reference counter of that policy.  Return a valid policy on
209  * success or NULL on failure.
210  *
211  * The policy returned by this function has to be released with the help of
212  * cpufreq_cpu_put() to balance its kobject reference counter properly.
213  */
214 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
215 {
216         struct cpufreq_policy *policy = NULL;
217         unsigned long flags;
218
219         if (WARN_ON(cpu >= nr_cpu_ids))
220                 return NULL;
221
222         /* get the cpufreq driver */
223         read_lock_irqsave(&cpufreq_driver_lock, flags);
224
225         if (cpufreq_driver) {
226                 /* get the CPU */
227                 policy = cpufreq_cpu_get_raw(cpu);
228                 if (policy)
229                         kobject_get(&policy->kobj);
230         }
231
232         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
233
234         return policy;
235 }
236 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
237
238 /**
239  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
240  * @policy: cpufreq policy returned by cpufreq_cpu_get().
241  */
242 void cpufreq_cpu_put(struct cpufreq_policy *policy)
243 {
244         kobject_put(&policy->kobj);
245 }
246 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
247
248 /**
249  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
250  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
251  */
252 void cpufreq_cpu_release(struct cpufreq_policy *policy)
253 {
254         if (WARN_ON(!policy))
255                 return;
256
257         lockdep_assert_held(&policy->rwsem);
258
259         up_write(&policy->rwsem);
260
261         cpufreq_cpu_put(policy);
262 }
263
264 /**
265  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
266  * @cpu: CPU to find the policy for.
267  *
268  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
269  * if the policy returned by it is not NULL, acquire its rwsem for writing.
270  * Return the policy if it is active or release it and return NULL otherwise.
271  *
272  * The policy returned by this function has to be released with the help of
273  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
274  * counter properly.
275  */
276 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
277 {
278         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
279
280         if (!policy)
281                 return NULL;
282
283         down_write(&policy->rwsem);
284
285         if (policy_is_inactive(policy)) {
286                 cpufreq_cpu_release(policy);
287                 return NULL;
288         }
289
290         return policy;
291 }
292
293 /*********************************************************************
294  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
295  *********************************************************************/
296
297 /**
298  * adjust_jiffies - adjust the system "loops_per_jiffy"
299  *
300  * This function alters the system "loops_per_jiffy" for the clock
301  * speed change. Note that loops_per_jiffy cannot be updated on SMP
302  * systems as each CPU might be scaled differently. So, use the arch
303  * per-CPU loops_per_jiffy value wherever possible.
304  */
305 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
306 {
307 #ifndef CONFIG_SMP
308         static unsigned long l_p_j_ref;
309         static unsigned int l_p_j_ref_freq;
310
311         if (ci->flags & CPUFREQ_CONST_LOOPS)
312                 return;
313
314         if (!l_p_j_ref_freq) {
315                 l_p_j_ref = loops_per_jiffy;
316                 l_p_j_ref_freq = ci->old;
317                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
318                          l_p_j_ref, l_p_j_ref_freq);
319         }
320         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
321                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
322                                                                 ci->new);
323                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
324                          loops_per_jiffy, ci->new);
325         }
326 #endif
327 }
328
329 /**
330  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
331  * @policy: cpufreq policy to enable fast frequency switching for.
332  * @freqs: contain details of the frequency update.
333  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
334  *
335  * This function calls the transition notifiers and the "adjust_jiffies"
336  * function. It is called twice on all CPU frequency changes that have
337  * external effects.
338  */
339 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
340                                       struct cpufreq_freqs *freqs,
341                                       unsigned int state)
342 {
343         int cpu;
344
345         BUG_ON(irqs_disabled());
346
347         if (cpufreq_disabled())
348                 return;
349
350         freqs->policy = policy;
351         freqs->flags = cpufreq_driver->flags;
352         pr_debug("notification %u of frequency transition to %u kHz\n",
353                  state, freqs->new);
354
355         switch (state) {
356         case CPUFREQ_PRECHANGE:
357                 /*
358                  * Detect if the driver reported a value as "old frequency"
359                  * which is not equal to what the cpufreq core thinks is
360                  * "old frequency".
361                  */
362                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
363                         if (policy->cur && (policy->cur != freqs->old)) {
364                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
365                                          freqs->old, policy->cur);
366                                 freqs->old = policy->cur;
367                         }
368                 }
369
370                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
371                                          CPUFREQ_PRECHANGE, freqs);
372
373                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
374                 break;
375
376         case CPUFREQ_POSTCHANGE:
377                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
378                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
379                          cpumask_pr_args(policy->cpus));
380
381                 for_each_cpu(cpu, policy->cpus)
382                         trace_cpu_frequency(freqs->new, cpu);
383
384                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
385                                          CPUFREQ_POSTCHANGE, freqs);
386
387                 cpufreq_stats_record_transition(policy, freqs->new);
388                 policy->cur = freqs->new;
389         }
390 }
391
392 /* Do post notifications when there are chances that transition has failed */
393 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
394                 struct cpufreq_freqs *freqs, int transition_failed)
395 {
396         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397         if (!transition_failed)
398                 return;
399
400         swap(freqs->old, freqs->new);
401         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
402         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
403 }
404
405 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
406                 struct cpufreq_freqs *freqs)
407 {
408
409         /*
410          * Catch double invocations of _begin() which lead to self-deadlock.
411          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
412          * doesn't invoke _begin() on their behalf, and hence the chances of
413          * double invocations are very low. Moreover, there are scenarios
414          * where these checks can emit false-positive warnings in these
415          * drivers; so we avoid that by skipping them altogether.
416          */
417         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
418                                 && current == policy->transition_task);
419
420 wait:
421         wait_event(policy->transition_wait, !policy->transition_ongoing);
422
423         spin_lock(&policy->transition_lock);
424
425         if (unlikely(policy->transition_ongoing)) {
426                 spin_unlock(&policy->transition_lock);
427                 goto wait;
428         }
429
430         policy->transition_ongoing = true;
431         policy->transition_task = current;
432
433         spin_unlock(&policy->transition_lock);
434
435         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
436 }
437 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
438
439 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
440                 struct cpufreq_freqs *freqs, int transition_failed)
441 {
442         if (WARN_ON(!policy->transition_ongoing))
443                 return;
444
445         cpufreq_notify_post_transition(policy, freqs, transition_failed);
446
447         policy->transition_ongoing = false;
448         policy->transition_task = NULL;
449
450         wake_up(&policy->transition_wait);
451 }
452 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
453
454 /*
455  * Fast frequency switching status count.  Positive means "enabled", negative
456  * means "disabled" and 0 means "not decided yet".
457  */
458 static int cpufreq_fast_switch_count;
459 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
460
461 static void cpufreq_list_transition_notifiers(void)
462 {
463         struct notifier_block *nb;
464
465         pr_info("Registered transition notifiers:\n");
466
467         mutex_lock(&cpufreq_transition_notifier_list.mutex);
468
469         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
470                 pr_info("%pS\n", nb->notifier_call);
471
472         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
473 }
474
475 /**
476  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
477  * @policy: cpufreq policy to enable fast frequency switching for.
478  *
479  * Try to enable fast frequency switching for @policy.
480  *
481  * The attempt will fail if there is at least one transition notifier registered
482  * at this point, as fast frequency switching is quite fundamentally at odds
483  * with transition notifiers.  Thus if successful, it will make registration of
484  * transition notifiers fail going forward.
485  */
486 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
487 {
488         lockdep_assert_held(&policy->rwsem);
489
490         if (!policy->fast_switch_possible)
491                 return;
492
493         mutex_lock(&cpufreq_fast_switch_lock);
494         if (cpufreq_fast_switch_count >= 0) {
495                 cpufreq_fast_switch_count++;
496                 policy->fast_switch_enabled = true;
497         } else {
498                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
499                         policy->cpu);
500                 cpufreq_list_transition_notifiers();
501         }
502         mutex_unlock(&cpufreq_fast_switch_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
505
506 /**
507  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
508  * @policy: cpufreq policy to disable fast frequency switching for.
509  */
510 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
511 {
512         mutex_lock(&cpufreq_fast_switch_lock);
513         if (policy->fast_switch_enabled) {
514                 policy->fast_switch_enabled = false;
515                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
516                         cpufreq_fast_switch_count--;
517         }
518         mutex_unlock(&cpufreq_fast_switch_lock);
519 }
520 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
521
522 /**
523  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
524  * one.
525  * @target_freq: target frequency to resolve.
526  *
527  * The target to driver frequency mapping is cached in the policy.
528  *
529  * Return: Lowest driver-supported frequency greater than or equal to the
530  * given target_freq, subject to policy (min/max) and driver limitations.
531  */
532 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
533                                          unsigned int target_freq)
534 {
535         target_freq = clamp_val(target_freq, policy->min, policy->max);
536         policy->cached_target_freq = target_freq;
537
538         if (cpufreq_driver->target_index) {
539                 int idx;
540
541                 idx = cpufreq_frequency_table_target(policy, target_freq,
542                                                      CPUFREQ_RELATION_L);
543                 policy->cached_resolved_idx = idx;
544                 return policy->freq_table[idx].frequency;
545         }
546
547         if (cpufreq_driver->resolve_freq)
548                 return cpufreq_driver->resolve_freq(policy, target_freq);
549
550         return target_freq;
551 }
552 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
553
554 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
555 {
556         unsigned int latency;
557
558         if (policy->transition_delay_us)
559                 return policy->transition_delay_us;
560
561         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
562         if (latency) {
563                 /*
564                  * For platforms that can change the frequency very fast (< 10
565                  * us), the above formula gives a decent transition delay. But
566                  * for platforms where transition_latency is in milliseconds, it
567                  * ends up giving unrealistic values.
568                  *
569                  * Cap the default transition delay to 10 ms, which seems to be
570                  * a reasonable amount of time after which we should reevaluate
571                  * the frequency.
572                  */
573                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
574         }
575
576         return LATENCY_MULTIPLIER;
577 }
578 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
579
580 /*********************************************************************
581  *                          SYSFS INTERFACE                          *
582  *********************************************************************/
583 static ssize_t show_boost(struct kobject *kobj,
584                           struct kobj_attribute *attr, char *buf)
585 {
586         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
587 }
588
589 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
590                            const char *buf, size_t count)
591 {
592         int ret, enable;
593
594         ret = sscanf(buf, "%d", &enable);
595         if (ret != 1 || enable < 0 || enable > 1)
596                 return -EINVAL;
597
598         if (cpufreq_boost_trigger_state(enable)) {
599                 pr_err("%s: Cannot %s BOOST!\n",
600                        __func__, enable ? "enable" : "disable");
601                 return -EINVAL;
602         }
603
604         pr_debug("%s: cpufreq BOOST %s\n",
605                  __func__, enable ? "enabled" : "disabled");
606
607         return count;
608 }
609 define_one_global_rw(boost);
610
611 static struct cpufreq_governor *find_governor(const char *str_governor)
612 {
613         struct cpufreq_governor *t;
614
615         for_each_governor(t)
616                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
617                         return t;
618
619         return NULL;
620 }
621
622 static int cpufreq_parse_policy(char *str_governor,
623                                 struct cpufreq_policy *policy)
624 {
625         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
626                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
627                 return 0;
628         }
629         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
630                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
631                 return 0;
632         }
633         return -EINVAL;
634 }
635
636 /**
637  * cpufreq_parse_governor - parse a governor string only for !setpolicy
638  */
639 static int cpufreq_parse_governor(char *str_governor,
640                                   struct cpufreq_policy *policy)
641 {
642         struct cpufreq_governor *t;
643
644         mutex_lock(&cpufreq_governor_mutex);
645
646         t = find_governor(str_governor);
647         if (!t) {
648                 int ret;
649
650                 mutex_unlock(&cpufreq_governor_mutex);
651
652                 ret = request_module("cpufreq_%s", str_governor);
653                 if (ret)
654                         return -EINVAL;
655
656                 mutex_lock(&cpufreq_governor_mutex);
657
658                 t = find_governor(str_governor);
659         }
660         if (t && !try_module_get(t->owner))
661                 t = NULL;
662
663         mutex_unlock(&cpufreq_governor_mutex);
664
665         if (t) {
666                 policy->governor = t;
667                 return 0;
668         }
669
670         return -EINVAL;
671 }
672
673 /**
674  * cpufreq_per_cpu_attr_read() / show_##file_name() -
675  * print out cpufreq information
676  *
677  * Write out information from cpufreq_driver->policy[cpu]; object must be
678  * "unsigned int".
679  */
680
681 #define show_one(file_name, object)                     \
682 static ssize_t show_##file_name                         \
683 (struct cpufreq_policy *policy, char *buf)              \
684 {                                                       \
685         return sprintf(buf, "%u\n", policy->object);    \
686 }
687
688 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
689 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
690 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
691 show_one(scaling_min_freq, min);
692 show_one(scaling_max_freq, max);
693
694 __weak unsigned int arch_freq_get_on_cpu(int cpu)
695 {
696         return 0;
697 }
698
699 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
700 {
701         ssize_t ret;
702         unsigned int freq;
703
704         freq = arch_freq_get_on_cpu(policy->cpu);
705         if (freq)
706                 ret = sprintf(buf, "%u\n", freq);
707         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
708                         cpufreq_driver->get)
709                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
710         else
711                 ret = sprintf(buf, "%u\n", policy->cur);
712         return ret;
713 }
714
715 /**
716  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
717  */
718 #define store_one(file_name, object)                    \
719 static ssize_t store_##file_name                                        \
720 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
721 {                                                                       \
722         int ret, temp;                                                  \
723         struct cpufreq_policy new_policy;                               \
724                                                                         \
725         memcpy(&new_policy, policy, sizeof(*policy));                   \
726         new_policy.min = policy->user_policy.min;                       \
727         new_policy.max = policy->user_policy.max;                       \
728                                                                         \
729         ret = sscanf(buf, "%u", &new_policy.object);                    \
730         if (ret != 1)                                                   \
731                 return -EINVAL;                                         \
732                                                                         \
733         temp = new_policy.object;                                       \
734         ret = cpufreq_set_policy(policy, &new_policy);          \
735         if (!ret)                                                       \
736                 policy->user_policy.object = temp;                      \
737                                                                         \
738         return ret ? ret : count;                                       \
739 }
740
741 store_one(scaling_min_freq, min);
742 store_one(scaling_max_freq, max);
743
744 /**
745  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
746  */
747 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
748                                         char *buf)
749 {
750         unsigned int cur_freq = __cpufreq_get(policy);
751
752         if (cur_freq)
753                 return sprintf(buf, "%u\n", cur_freq);
754
755         return sprintf(buf, "<unknown>\n");
756 }
757
758 /**
759  * show_scaling_governor - show the current policy for the specified CPU
760  */
761 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
762 {
763         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
764                 return sprintf(buf, "powersave\n");
765         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
766                 return sprintf(buf, "performance\n");
767         else if (policy->governor)
768                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
769                                 policy->governor->name);
770         return -EINVAL;
771 }
772
773 /**
774  * store_scaling_governor - store policy for the specified CPU
775  */
776 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
777                                         const char *buf, size_t count)
778 {
779         int ret;
780         char    str_governor[16];
781         struct cpufreq_policy new_policy;
782
783         memcpy(&new_policy, policy, sizeof(*policy));
784
785         ret = sscanf(buf, "%15s", str_governor);
786         if (ret != 1)
787                 return -EINVAL;
788
789         if (cpufreq_driver->setpolicy) {
790                 if (cpufreq_parse_policy(str_governor, &new_policy))
791                         return -EINVAL;
792         } else {
793                 if (cpufreq_parse_governor(str_governor, &new_policy))
794                         return -EINVAL;
795         }
796
797         ret = cpufreq_set_policy(policy, &new_policy);
798
799         if (new_policy.governor)
800                 module_put(new_policy.governor->owner);
801
802         return ret ? ret : count;
803 }
804
805 /**
806  * show_scaling_driver - show the cpufreq driver currently loaded
807  */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812
813 /**
814  * show_scaling_available_governors - show the available CPUfreq governors
815  */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817                                                 char *buf)
818 {
819         ssize_t i = 0;
820         struct cpufreq_governor *t;
821
822         if (!has_target()) {
823                 i += sprintf(buf, "performance powersave");
824                 goto out;
825         }
826
827         for_each_governor(t) {
828                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829                     - (CPUFREQ_NAME_LEN + 2)))
830                         goto out;
831                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832         }
833 out:
834         i += sprintf(&buf[i], "\n");
835         return i;
836 }
837
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840         ssize_t i = 0;
841         unsigned int cpu;
842
843         for_each_cpu(cpu, mask) {
844                 if (i)
845                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847                 if (i >= (PAGE_SIZE - 5))
848                         break;
849         }
850         i += sprintf(&buf[i], "\n");
851         return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854
855 /**
856  * show_related_cpus - show the CPUs affected by each transition even if
857  * hw coordination is in use
858  */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861         return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863
864 /**
865  * show_affected_cpus - show the CPUs affected by each transition
866  */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869         return cpufreq_show_cpus(policy->cpus, buf);
870 }
871
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873                                         const char *buf, size_t count)
874 {
875         unsigned int freq = 0;
876         unsigned int ret;
877
878         if (!policy->governor || !policy->governor->store_setspeed)
879                 return -EINVAL;
880
881         ret = sscanf(buf, "%u", &freq);
882         if (ret != 1)
883                 return -EINVAL;
884
885         policy->governor->store_setspeed(policy, freq);
886
887         return count;
888 }
889
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892         if (!policy->governor || !policy->governor->show_setspeed)
893                 return sprintf(buf, "<unsupported>\n");
894
895         return policy->governor->show_setspeed(policy, buf);
896 }
897
898 /**
899  * show_bios_limit - show the current cpufreq HW/BIOS limitation
900  */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903         unsigned int limit;
904         int ret;
905         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906         if (!ret)
907                 return sprintf(buf, "%u\n", limit);
908         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925
926 static struct attribute *default_attrs[] = {
927         &cpuinfo_min_freq.attr,
928         &cpuinfo_max_freq.attr,
929         &cpuinfo_transition_latency.attr,
930         &scaling_min_freq.attr,
931         &scaling_max_freq.attr,
932         &affected_cpus.attr,
933         &related_cpus.attr,
934         &scaling_governor.attr,
935         &scaling_driver.attr,
936         &scaling_available_governors.attr,
937         &scaling_setspeed.attr,
938         NULL
939 };
940
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946         struct cpufreq_policy *policy = to_policy(kobj);
947         struct freq_attr *fattr = to_attr(attr);
948         ssize_t ret;
949
950         down_read(&policy->rwsem);
951         ret = fattr->show(policy, buf);
952         up_read(&policy->rwsem);
953
954         return ret;
955 }
956
957 static ssize_t store(struct kobject *kobj, struct attribute *attr,
958                      const char *buf, size_t count)
959 {
960         struct cpufreq_policy *policy = to_policy(kobj);
961         struct freq_attr *fattr = to_attr(attr);
962         ssize_t ret = -EINVAL;
963
964         /*
965          * cpus_read_trylock() is used here to work around a circular lock
966          * dependency problem with respect to the cpufreq_register_driver().
967          */
968         if (!cpus_read_trylock())
969                 return -EBUSY;
970
971         if (cpu_online(policy->cpu)) {
972                 down_write(&policy->rwsem);
973                 ret = fattr->store(policy, buf, count);
974                 up_write(&policy->rwsem);
975         }
976
977         cpus_read_unlock();
978
979         return ret;
980 }
981
982 static void cpufreq_sysfs_release(struct kobject *kobj)
983 {
984         struct cpufreq_policy *policy = to_policy(kobj);
985         pr_debug("last reference is dropped\n");
986         complete(&policy->kobj_unregister);
987 }
988
989 static const struct sysfs_ops sysfs_ops = {
990         .show   = show,
991         .store  = store,
992 };
993
994 static struct kobj_type ktype_cpufreq = {
995         .sysfs_ops      = &sysfs_ops,
996         .default_attrs  = default_attrs,
997         .release        = cpufreq_sysfs_release,
998 };
999
1000 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1001 {
1002         struct device *dev = get_cpu_device(cpu);
1003
1004         if (!dev)
1005                 return;
1006
1007         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1008                 return;
1009
1010         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1011         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1012                 dev_err(dev, "cpufreq symlink creation failed\n");
1013 }
1014
1015 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1016                                    struct device *dev)
1017 {
1018         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1019         sysfs_remove_link(&dev->kobj, "cpufreq");
1020 }
1021
1022 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1023 {
1024         struct freq_attr **drv_attr;
1025         int ret = 0;
1026
1027         /* set up files for this cpu device */
1028         drv_attr = cpufreq_driver->attr;
1029         while (drv_attr && *drv_attr) {
1030                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1031                 if (ret)
1032                         return ret;
1033                 drv_attr++;
1034         }
1035         if (cpufreq_driver->get) {
1036                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1037                 if (ret)
1038                         return ret;
1039         }
1040
1041         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1042         if (ret)
1043                 return ret;
1044
1045         if (cpufreq_driver->bios_limit) {
1046                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1047                 if (ret)
1048                         return ret;
1049         }
1050
1051         return 0;
1052 }
1053
1054 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1055 {
1056         return NULL;
1057 }
1058
1059 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1060 {
1061         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1062         struct cpufreq_policy new_policy;
1063
1064         memcpy(&new_policy, policy, sizeof(*policy));
1065
1066         def_gov = cpufreq_default_governor();
1067
1068         if (has_target()) {
1069                 /*
1070                  * Update governor of new_policy to the governor used before
1071                  * hotplug
1072                  */
1073                 gov = find_governor(policy->last_governor);
1074                 if (gov) {
1075                         pr_debug("Restoring governor %s for cpu %d\n",
1076                                 policy->governor->name, policy->cpu);
1077                 } else {
1078                         if (!def_gov)
1079                                 return -ENODATA;
1080                         gov = def_gov;
1081                 }
1082                 new_policy.governor = gov;
1083         } else {
1084                 /* Use the default policy if there is no last_policy. */
1085                 if (policy->last_policy) {
1086                         new_policy.policy = policy->last_policy;
1087                 } else {
1088                         if (!def_gov)
1089                                 return -ENODATA;
1090                         cpufreq_parse_policy(def_gov->name, &new_policy);
1091                 }
1092         }
1093
1094         return cpufreq_set_policy(policy, &new_policy);
1095 }
1096
1097 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1098 {
1099         int ret = 0;
1100
1101         /* Has this CPU been taken care of already? */
1102         if (cpumask_test_cpu(cpu, policy->cpus))
1103                 return 0;
1104
1105         down_write(&policy->rwsem);
1106         if (has_target())
1107                 cpufreq_stop_governor(policy);
1108
1109         cpumask_set_cpu(cpu, policy->cpus);
1110
1111         if (has_target()) {
1112                 ret = cpufreq_start_governor(policy);
1113                 if (ret)
1114                         pr_err("%s: Failed to start governor\n", __func__);
1115         }
1116         up_write(&policy->rwsem);
1117         return ret;
1118 }
1119
1120 static void handle_update(struct work_struct *work)
1121 {
1122         struct cpufreq_policy *policy =
1123                 container_of(work, struct cpufreq_policy, update);
1124         unsigned int cpu = policy->cpu;
1125         pr_debug("handle_update for cpu %u called\n", cpu);
1126         cpufreq_update_policy(cpu);
1127 }
1128
1129 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1130 {
1131         struct cpufreq_policy *policy;
1132         int ret;
1133
1134         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1135         if (!policy)
1136                 return NULL;
1137
1138         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1139                 goto err_free_policy;
1140
1141         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1142                 goto err_free_cpumask;
1143
1144         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1145                 goto err_free_rcpumask;
1146
1147         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1148                                    cpufreq_global_kobject, "policy%u", cpu);
1149         if (ret) {
1150                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1151                 /*
1152                  * The entire policy object will be freed below, but the extra
1153                  * memory allocated for the kobject name needs to be freed by
1154                  * releasing the kobject.
1155                  */
1156                 kobject_put(&policy->kobj);
1157                 goto err_free_real_cpus;
1158         }
1159
1160         INIT_LIST_HEAD(&policy->policy_list);
1161         init_rwsem(&policy->rwsem);
1162         spin_lock_init(&policy->transition_lock);
1163         init_waitqueue_head(&policy->transition_wait);
1164         init_completion(&policy->kobj_unregister);
1165         INIT_WORK(&policy->update, handle_update);
1166
1167         policy->cpu = cpu;
1168         return policy;
1169
1170 err_free_real_cpus:
1171         free_cpumask_var(policy->real_cpus);
1172 err_free_rcpumask:
1173         free_cpumask_var(policy->related_cpus);
1174 err_free_cpumask:
1175         free_cpumask_var(policy->cpus);
1176 err_free_policy:
1177         kfree(policy);
1178
1179         return NULL;
1180 }
1181
1182 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1183 {
1184         struct kobject *kobj;
1185         struct completion *cmp;
1186
1187         down_write(&policy->rwsem);
1188         cpufreq_stats_free_table(policy);
1189         kobj = &policy->kobj;
1190         cmp = &policy->kobj_unregister;
1191         up_write(&policy->rwsem);
1192         kobject_put(kobj);
1193
1194         /*
1195          * We need to make sure that the underlying kobj is
1196          * actually not referenced anymore by anybody before we
1197          * proceed with unloading.
1198          */
1199         pr_debug("waiting for dropping of refcount\n");
1200         wait_for_completion(cmp);
1201         pr_debug("wait complete\n");
1202 }
1203
1204 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1205 {
1206         unsigned long flags;
1207         int cpu;
1208
1209         /* Remove policy from list */
1210         write_lock_irqsave(&cpufreq_driver_lock, flags);
1211         list_del(&policy->policy_list);
1212
1213         for_each_cpu(cpu, policy->related_cpus)
1214                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1215         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1216
1217         cpufreq_policy_put_kobj(policy);
1218         free_cpumask_var(policy->real_cpus);
1219         free_cpumask_var(policy->related_cpus);
1220         free_cpumask_var(policy->cpus);
1221         kfree(policy);
1222 }
1223
1224 static int cpufreq_online(unsigned int cpu)
1225 {
1226         struct cpufreq_policy *policy;
1227         bool new_policy;
1228         unsigned long flags;
1229         unsigned int j;
1230         int ret;
1231
1232         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1233
1234         /* Check if this CPU already has a policy to manage it */
1235         policy = per_cpu(cpufreq_cpu_data, cpu);
1236         if (policy) {
1237                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1238                 if (!policy_is_inactive(policy))
1239                         return cpufreq_add_policy_cpu(policy, cpu);
1240
1241                 /* This is the only online CPU for the policy.  Start over. */
1242                 new_policy = false;
1243                 down_write(&policy->rwsem);
1244                 policy->cpu = cpu;
1245                 policy->governor = NULL;
1246                 up_write(&policy->rwsem);
1247         } else {
1248                 new_policy = true;
1249                 policy = cpufreq_policy_alloc(cpu);
1250                 if (!policy)
1251                         return -ENOMEM;
1252         }
1253
1254         if (!new_policy && cpufreq_driver->online) {
1255                 ret = cpufreq_driver->online(policy);
1256                 if (ret) {
1257                         pr_debug("%s: %d: initialization failed\n", __func__,
1258                                  __LINE__);
1259                         goto out_exit_policy;
1260                 }
1261
1262                 /* Recover policy->cpus using related_cpus */
1263                 cpumask_copy(policy->cpus, policy->related_cpus);
1264         } else {
1265                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1266
1267                 /*
1268                  * Call driver. From then on the cpufreq must be able
1269                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1270                  */
1271                 ret = cpufreq_driver->init(policy);
1272                 if (ret) {
1273                         pr_debug("%s: %d: initialization failed\n", __func__,
1274                                  __LINE__);
1275                         goto out_free_policy;
1276                 }
1277
1278                 ret = cpufreq_table_validate_and_sort(policy);
1279                 if (ret)
1280                         goto out_exit_policy;
1281
1282                 /* related_cpus should at least include policy->cpus. */
1283                 cpumask_copy(policy->related_cpus, policy->cpus);
1284         }
1285
1286         down_write(&policy->rwsem);
1287         /*
1288          * affected cpus must always be the one, which are online. We aren't
1289          * managing offline cpus here.
1290          */
1291         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1292
1293         if (new_policy) {
1294                 policy->user_policy.min = policy->min;
1295                 policy->user_policy.max = policy->max;
1296
1297                 for_each_cpu(j, policy->related_cpus) {
1298                         per_cpu(cpufreq_cpu_data, j) = policy;
1299                         add_cpu_dev_symlink(policy, j);
1300                 }
1301         } else {
1302                 policy->min = policy->user_policy.min;
1303                 policy->max = policy->user_policy.max;
1304         }
1305
1306         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1307                 policy->cur = cpufreq_driver->get(policy->cpu);
1308                 if (!policy->cur) {
1309                         pr_err("%s: ->get() failed\n", __func__);
1310                         goto out_destroy_policy;
1311                 }
1312         }
1313
1314         /*
1315          * Sometimes boot loaders set CPU frequency to a value outside of
1316          * frequency table present with cpufreq core. In such cases CPU might be
1317          * unstable if it has to run on that frequency for long duration of time
1318          * and so its better to set it to a frequency which is specified in
1319          * freq-table. This also makes cpufreq stats inconsistent as
1320          * cpufreq-stats would fail to register because current frequency of CPU
1321          * isn't found in freq-table.
1322          *
1323          * Because we don't want this change to effect boot process badly, we go
1324          * for the next freq which is >= policy->cur ('cur' must be set by now,
1325          * otherwise we will end up setting freq to lowest of the table as 'cur'
1326          * is initialized to zero).
1327          *
1328          * We are passing target-freq as "policy->cur - 1" otherwise
1329          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1330          * equal to target-freq.
1331          */
1332         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1333             && has_target()) {
1334                 /* Are we running at unknown frequency ? */
1335                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1336                 if (ret == -EINVAL) {
1337                         /* Warn user and fix it */
1338                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1339                                 __func__, policy->cpu, policy->cur);
1340                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1341                                 CPUFREQ_RELATION_L);
1342
1343                         /*
1344                          * Reaching here after boot in a few seconds may not
1345                          * mean that system will remain stable at "unknown"
1346                          * frequency for longer duration. Hence, a BUG_ON().
1347                          */
1348                         BUG_ON(ret);
1349                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1350                                 __func__, policy->cpu, policy->cur);
1351                 }
1352         }
1353
1354         if (new_policy) {
1355                 ret = cpufreq_add_dev_interface(policy);
1356                 if (ret)
1357                         goto out_destroy_policy;
1358
1359                 cpufreq_stats_create_table(policy);
1360
1361                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1362                 list_add(&policy->policy_list, &cpufreq_policy_list);
1363                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1364         }
1365
1366         ret = cpufreq_init_policy(policy);
1367         if (ret) {
1368                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1369                        __func__, cpu, ret);
1370                 goto out_destroy_policy;
1371         }
1372
1373         up_write(&policy->rwsem);
1374
1375         kobject_uevent(&policy->kobj, KOBJ_ADD);
1376
1377         /* Callback for handling stuff after policy is ready */
1378         if (cpufreq_driver->ready)
1379                 cpufreq_driver->ready(policy);
1380
1381         if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1382             cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1383                 policy->cdev = of_cpufreq_cooling_register(policy);
1384
1385         pr_debug("initialization complete\n");
1386
1387         return 0;
1388
1389 out_destroy_policy:
1390         for_each_cpu(j, policy->real_cpus)
1391                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1392
1393         up_write(&policy->rwsem);
1394
1395 out_exit_policy:
1396         if (cpufreq_driver->exit)
1397                 cpufreq_driver->exit(policy);
1398
1399 out_free_policy:
1400         cpufreq_policy_free(policy);
1401         return ret;
1402 }
1403
1404 /**
1405  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1406  * @dev: CPU device.
1407  * @sif: Subsystem interface structure pointer (not used)
1408  */
1409 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1410 {
1411         struct cpufreq_policy *policy;
1412         unsigned cpu = dev->id;
1413         int ret;
1414
1415         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1416
1417         if (cpu_online(cpu)) {
1418                 ret = cpufreq_online(cpu);
1419                 if (ret)
1420                         return ret;
1421         }
1422
1423         /* Create sysfs link on CPU registration */
1424         policy = per_cpu(cpufreq_cpu_data, cpu);
1425         if (policy)
1426                 add_cpu_dev_symlink(policy, cpu);
1427
1428         return 0;
1429 }
1430
1431 static int cpufreq_offline(unsigned int cpu)
1432 {
1433         struct cpufreq_policy *policy;
1434         int ret;
1435
1436         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1437
1438         policy = cpufreq_cpu_get_raw(cpu);
1439         if (!policy) {
1440                 pr_debug("%s: No cpu_data found\n", __func__);
1441                 return 0;
1442         }
1443
1444         down_write(&policy->rwsem);
1445         if (has_target())
1446                 cpufreq_stop_governor(policy);
1447
1448         cpumask_clear_cpu(cpu, policy->cpus);
1449
1450         if (policy_is_inactive(policy)) {
1451                 if (has_target())
1452                         strncpy(policy->last_governor, policy->governor->name,
1453                                 CPUFREQ_NAME_LEN);
1454                 else
1455                         policy->last_policy = policy->policy;
1456         } else if (cpu == policy->cpu) {
1457                 /* Nominate new CPU */
1458                 policy->cpu = cpumask_any(policy->cpus);
1459         }
1460
1461         /* Start governor again for active policy */
1462         if (!policy_is_inactive(policy)) {
1463                 if (has_target()) {
1464                         ret = cpufreq_start_governor(policy);
1465                         if (ret)
1466                                 pr_err("%s: Failed to start governor\n", __func__);
1467                 }
1468
1469                 goto unlock;
1470         }
1471
1472         if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1473             cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1474                 cpufreq_cooling_unregister(policy->cdev);
1475                 policy->cdev = NULL;
1476         }
1477
1478         if (cpufreq_driver->stop_cpu)
1479                 cpufreq_driver->stop_cpu(policy);
1480
1481         if (has_target())
1482                 cpufreq_exit_governor(policy);
1483
1484         /*
1485          * Perform the ->offline() during light-weight tear-down, as
1486          * that allows fast recovery when the CPU comes back.
1487          */
1488         if (cpufreq_driver->offline) {
1489                 cpufreq_driver->offline(policy);
1490         } else if (cpufreq_driver->exit) {
1491                 cpufreq_driver->exit(policy);
1492                 policy->freq_table = NULL;
1493         }
1494
1495 unlock:
1496         up_write(&policy->rwsem);
1497         return 0;
1498 }
1499
1500 /**
1501  * cpufreq_remove_dev - remove a CPU device
1502  *
1503  * Removes the cpufreq interface for a CPU device.
1504  */
1505 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1506 {
1507         unsigned int cpu = dev->id;
1508         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1509
1510         if (!policy)
1511                 return;
1512
1513         if (cpu_online(cpu))
1514                 cpufreq_offline(cpu);
1515
1516         cpumask_clear_cpu(cpu, policy->real_cpus);
1517         remove_cpu_dev_symlink(policy, dev);
1518
1519         if (cpumask_empty(policy->real_cpus)) {
1520                 /* We did light-weight exit earlier, do full tear down now */
1521                 if (cpufreq_driver->offline)
1522                         cpufreq_driver->exit(policy);
1523
1524                 cpufreq_policy_free(policy);
1525         }
1526 }
1527
1528 /**
1529  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1530  *      in deep trouble.
1531  *      @policy: policy managing CPUs
1532  *      @new_freq: CPU frequency the CPU actually runs at
1533  *
1534  *      We adjust to current frequency first, and need to clean up later.
1535  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1536  */
1537 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1538                                 unsigned int new_freq)
1539 {
1540         struct cpufreq_freqs freqs;
1541
1542         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1543                  policy->cur, new_freq);
1544
1545         freqs.old = policy->cur;
1546         freqs.new = new_freq;
1547
1548         cpufreq_freq_transition_begin(policy, &freqs);
1549         cpufreq_freq_transition_end(policy, &freqs, 0);
1550 }
1551
1552 /**
1553  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1554  * @cpu: CPU number
1555  *
1556  * This is the last known freq, without actually getting it from the driver.
1557  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1558  */
1559 unsigned int cpufreq_quick_get(unsigned int cpu)
1560 {
1561         struct cpufreq_policy *policy;
1562         unsigned int ret_freq = 0;
1563         unsigned long flags;
1564
1565         read_lock_irqsave(&cpufreq_driver_lock, flags);
1566
1567         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1568                 ret_freq = cpufreq_driver->get(cpu);
1569                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1570                 return ret_freq;
1571         }
1572
1573         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1574
1575         policy = cpufreq_cpu_get(cpu);
1576         if (policy) {
1577                 ret_freq = policy->cur;
1578                 cpufreq_cpu_put(policy);
1579         }
1580
1581         return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_quick_get);
1584
1585 /**
1586  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1587  * @cpu: CPU number
1588  *
1589  * Just return the max possible frequency for a given CPU.
1590  */
1591 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1592 {
1593         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1594         unsigned int ret_freq = 0;
1595
1596         if (policy) {
1597                 ret_freq = policy->max;
1598                 cpufreq_cpu_put(policy);
1599         }
1600
1601         return ret_freq;
1602 }
1603 EXPORT_SYMBOL(cpufreq_quick_get_max);
1604
1605 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1606 {
1607         unsigned int ret_freq = 0;
1608
1609         if (unlikely(policy_is_inactive(policy)))
1610                 return ret_freq;
1611
1612         ret_freq = cpufreq_driver->get(policy->cpu);
1613
1614         /*
1615          * If fast frequency switching is used with the given policy, the check
1616          * against policy->cur is pointless, so skip it in that case too.
1617          */
1618         if (policy->fast_switch_enabled)
1619                 return ret_freq;
1620
1621         if (ret_freq && policy->cur &&
1622                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1623                 /* verify no discrepancy between actual and
1624                                         saved value exists */
1625                 if (unlikely(ret_freq != policy->cur)) {
1626                         cpufreq_out_of_sync(policy, ret_freq);
1627                         schedule_work(&policy->update);
1628                 }
1629         }
1630
1631         return ret_freq;
1632 }
1633
1634 /**
1635  * cpufreq_get - get the current CPU frequency (in kHz)
1636  * @cpu: CPU number
1637  *
1638  * Get the CPU current (static) CPU frequency
1639  */
1640 unsigned int cpufreq_get(unsigned int cpu)
1641 {
1642         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1643         unsigned int ret_freq = 0;
1644
1645         if (policy) {
1646                 down_read(&policy->rwsem);
1647                 if (cpufreq_driver->get)
1648                         ret_freq = __cpufreq_get(policy);
1649                 up_read(&policy->rwsem);
1650
1651                 cpufreq_cpu_put(policy);
1652         }
1653
1654         return ret_freq;
1655 }
1656 EXPORT_SYMBOL(cpufreq_get);
1657
1658 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1659 {
1660         unsigned int new_freq;
1661
1662         new_freq = cpufreq_driver->get(policy->cpu);
1663         if (!new_freq)
1664                 return 0;
1665
1666         if (!policy->cur) {
1667                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1668                 policy->cur = new_freq;
1669         } else if (policy->cur != new_freq && has_target()) {
1670                 cpufreq_out_of_sync(policy, new_freq);
1671         }
1672
1673         return new_freq;
1674 }
1675
1676 static struct subsys_interface cpufreq_interface = {
1677         .name           = "cpufreq",
1678         .subsys         = &cpu_subsys,
1679         .add_dev        = cpufreq_add_dev,
1680         .remove_dev     = cpufreq_remove_dev,
1681 };
1682
1683 /*
1684  * In case platform wants some specific frequency to be configured
1685  * during suspend..
1686  */
1687 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1688 {
1689         int ret;
1690
1691         if (!policy->suspend_freq) {
1692                 pr_debug("%s: suspend_freq not defined\n", __func__);
1693                 return 0;
1694         }
1695
1696         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1697                         policy->suspend_freq);
1698
1699         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1700                         CPUFREQ_RELATION_H);
1701         if (ret)
1702                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1703                                 __func__, policy->suspend_freq, ret);
1704
1705         return ret;
1706 }
1707 EXPORT_SYMBOL(cpufreq_generic_suspend);
1708
1709 /**
1710  * cpufreq_suspend() - Suspend CPUFreq governors
1711  *
1712  * Called during system wide Suspend/Hibernate cycles for suspending governors
1713  * as some platforms can't change frequency after this point in suspend cycle.
1714  * Because some of the devices (like: i2c, regulators, etc) they use for
1715  * changing frequency are suspended quickly after this point.
1716  */
1717 void cpufreq_suspend(void)
1718 {
1719         struct cpufreq_policy *policy;
1720
1721         if (!cpufreq_driver)
1722                 return;
1723
1724         if (!has_target() && !cpufreq_driver->suspend)
1725                 goto suspend;
1726
1727         pr_debug("%s: Suspending Governors\n", __func__);
1728
1729         for_each_active_policy(policy) {
1730                 if (has_target()) {
1731                         down_write(&policy->rwsem);
1732                         cpufreq_stop_governor(policy);
1733                         up_write(&policy->rwsem);
1734                 }
1735
1736                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1737                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1738                                 policy);
1739         }
1740
1741 suspend:
1742         cpufreq_suspended = true;
1743 }
1744
1745 /**
1746  * cpufreq_resume() - Resume CPUFreq governors
1747  *
1748  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1749  * are suspended with cpufreq_suspend().
1750  */
1751 void cpufreq_resume(void)
1752 {
1753         struct cpufreq_policy *policy;
1754         int ret;
1755
1756         if (!cpufreq_driver)
1757                 return;
1758
1759         if (unlikely(!cpufreq_suspended))
1760                 return;
1761
1762         cpufreq_suspended = false;
1763
1764         if (!has_target() && !cpufreq_driver->resume)
1765                 return;
1766
1767         pr_debug("%s: Resuming Governors\n", __func__);
1768
1769         for_each_active_policy(policy) {
1770                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1771                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1772                                 policy);
1773                 } else if (has_target()) {
1774                         down_write(&policy->rwsem);
1775                         ret = cpufreq_start_governor(policy);
1776                         up_write(&policy->rwsem);
1777
1778                         if (ret)
1779                                 pr_err("%s: Failed to start governor for policy: %p\n",
1780                                        __func__, policy);
1781                 }
1782         }
1783 }
1784
1785 /**
1786  *      cpufreq_get_current_driver - return current driver's name
1787  *
1788  *      Return the name string of the currently loaded cpufreq driver
1789  *      or NULL, if none.
1790  */
1791 const char *cpufreq_get_current_driver(void)
1792 {
1793         if (cpufreq_driver)
1794                 return cpufreq_driver->name;
1795
1796         return NULL;
1797 }
1798 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1799
1800 /**
1801  *      cpufreq_get_driver_data - return current driver data
1802  *
1803  *      Return the private data of the currently loaded cpufreq
1804  *      driver, or NULL if no cpufreq driver is loaded.
1805  */
1806 void *cpufreq_get_driver_data(void)
1807 {
1808         if (cpufreq_driver)
1809                 return cpufreq_driver->driver_data;
1810
1811         return NULL;
1812 }
1813 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1814
1815 /*********************************************************************
1816  *                     NOTIFIER LISTS INTERFACE                      *
1817  *********************************************************************/
1818
1819 /**
1820  *      cpufreq_register_notifier - register a driver with cpufreq
1821  *      @nb: notifier function to register
1822  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1823  *
1824  *      Add a driver to one of two lists: either a list of drivers that
1825  *      are notified about clock rate changes (once before and once after
1826  *      the transition), or a list of drivers that are notified about
1827  *      changes in cpufreq policy.
1828  *
1829  *      This function may sleep, and has the same return conditions as
1830  *      blocking_notifier_chain_register.
1831  */
1832 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1833 {
1834         int ret;
1835
1836         if (cpufreq_disabled())
1837                 return -EINVAL;
1838
1839         switch (list) {
1840         case CPUFREQ_TRANSITION_NOTIFIER:
1841                 mutex_lock(&cpufreq_fast_switch_lock);
1842
1843                 if (cpufreq_fast_switch_count > 0) {
1844                         mutex_unlock(&cpufreq_fast_switch_lock);
1845                         return -EBUSY;
1846                 }
1847                 ret = srcu_notifier_chain_register(
1848                                 &cpufreq_transition_notifier_list, nb);
1849                 if (!ret)
1850                         cpufreq_fast_switch_count--;
1851
1852                 mutex_unlock(&cpufreq_fast_switch_lock);
1853                 break;
1854         case CPUFREQ_POLICY_NOTIFIER:
1855                 ret = blocking_notifier_chain_register(
1856                                 &cpufreq_policy_notifier_list, nb);
1857                 break;
1858         default:
1859                 ret = -EINVAL;
1860         }
1861
1862         return ret;
1863 }
1864 EXPORT_SYMBOL(cpufreq_register_notifier);
1865
1866 /**
1867  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1868  *      @nb: notifier block to be unregistered
1869  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1870  *
1871  *      Remove a driver from the CPU frequency notifier list.
1872  *
1873  *      This function may sleep, and has the same return conditions as
1874  *      blocking_notifier_chain_unregister.
1875  */
1876 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1877 {
1878         int ret;
1879
1880         if (cpufreq_disabled())
1881                 return -EINVAL;
1882
1883         switch (list) {
1884         case CPUFREQ_TRANSITION_NOTIFIER:
1885                 mutex_lock(&cpufreq_fast_switch_lock);
1886
1887                 ret = srcu_notifier_chain_unregister(
1888                                 &cpufreq_transition_notifier_list, nb);
1889                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1890                         cpufreq_fast_switch_count++;
1891
1892                 mutex_unlock(&cpufreq_fast_switch_lock);
1893                 break;
1894         case CPUFREQ_POLICY_NOTIFIER:
1895                 ret = blocking_notifier_chain_unregister(
1896                                 &cpufreq_policy_notifier_list, nb);
1897                 break;
1898         default:
1899                 ret = -EINVAL;
1900         }
1901
1902         return ret;
1903 }
1904 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1905
1906
1907 /*********************************************************************
1908  *                              GOVERNORS                            *
1909  *********************************************************************/
1910
1911 /**
1912  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1913  * @policy: cpufreq policy to switch the frequency for.
1914  * @target_freq: New frequency to set (may be approximate).
1915  *
1916  * Carry out a fast frequency switch without sleeping.
1917  *
1918  * The driver's ->fast_switch() callback invoked by this function must be
1919  * suitable for being called from within RCU-sched read-side critical sections
1920  * and it is expected to select the minimum available frequency greater than or
1921  * equal to @target_freq (CPUFREQ_RELATION_L).
1922  *
1923  * This function must not be called if policy->fast_switch_enabled is unset.
1924  *
1925  * Governors calling this function must guarantee that it will never be invoked
1926  * twice in parallel for the same policy and that it will never be called in
1927  * parallel with either ->target() or ->target_index() for the same policy.
1928  *
1929  * Returns the actual frequency set for the CPU.
1930  *
1931  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1932  * error condition, the hardware configuration must be preserved.
1933  */
1934 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1935                                         unsigned int target_freq)
1936 {
1937         target_freq = clamp_val(target_freq, policy->min, policy->max);
1938
1939         return cpufreq_driver->fast_switch(policy, target_freq);
1940 }
1941 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1942
1943 /* Must set freqs->new to intermediate frequency */
1944 static int __target_intermediate(struct cpufreq_policy *policy,
1945                                  struct cpufreq_freqs *freqs, int index)
1946 {
1947         int ret;
1948
1949         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1950
1951         /* We don't need to switch to intermediate freq */
1952         if (!freqs->new)
1953                 return 0;
1954
1955         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1956                  __func__, policy->cpu, freqs->old, freqs->new);
1957
1958         cpufreq_freq_transition_begin(policy, freqs);
1959         ret = cpufreq_driver->target_intermediate(policy, index);
1960         cpufreq_freq_transition_end(policy, freqs, ret);
1961
1962         if (ret)
1963                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1964                        __func__, ret);
1965
1966         return ret;
1967 }
1968
1969 static int __target_index(struct cpufreq_policy *policy, int index)
1970 {
1971         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1972         unsigned int intermediate_freq = 0;
1973         unsigned int newfreq = policy->freq_table[index].frequency;
1974         int retval = -EINVAL;
1975         bool notify;
1976
1977         if (newfreq == policy->cur)
1978                 return 0;
1979
1980         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1981         if (notify) {
1982                 /* Handle switching to intermediate frequency */
1983                 if (cpufreq_driver->get_intermediate) {
1984                         retval = __target_intermediate(policy, &freqs, index);
1985                         if (retval)
1986                                 return retval;
1987
1988                         intermediate_freq = freqs.new;
1989                         /* Set old freq to intermediate */
1990                         if (intermediate_freq)
1991                                 freqs.old = freqs.new;
1992                 }
1993
1994                 freqs.new = newfreq;
1995                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1996                          __func__, policy->cpu, freqs.old, freqs.new);
1997
1998                 cpufreq_freq_transition_begin(policy, &freqs);
1999         }
2000
2001         retval = cpufreq_driver->target_index(policy, index);
2002         if (retval)
2003                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2004                        retval);
2005
2006         if (notify) {
2007                 cpufreq_freq_transition_end(policy, &freqs, retval);
2008
2009                 /*
2010                  * Failed after setting to intermediate freq? Driver should have
2011                  * reverted back to initial frequency and so should we. Check
2012                  * here for intermediate_freq instead of get_intermediate, in
2013                  * case we haven't switched to intermediate freq at all.
2014                  */
2015                 if (unlikely(retval && intermediate_freq)) {
2016                         freqs.old = intermediate_freq;
2017                         freqs.new = policy->restore_freq;
2018                         cpufreq_freq_transition_begin(policy, &freqs);
2019                         cpufreq_freq_transition_end(policy, &freqs, 0);
2020                 }
2021         }
2022
2023         return retval;
2024 }
2025
2026 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2027                             unsigned int target_freq,
2028                             unsigned int relation)
2029 {
2030         unsigned int old_target_freq = target_freq;
2031         int index;
2032
2033         if (cpufreq_disabled())
2034                 return -ENODEV;
2035
2036         /* Make sure that target_freq is within supported range */
2037         target_freq = clamp_val(target_freq, policy->min, policy->max);
2038
2039         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2040                  policy->cpu, target_freq, relation, old_target_freq);
2041
2042         /*
2043          * This might look like a redundant call as we are checking it again
2044          * after finding index. But it is left intentionally for cases where
2045          * exactly same freq is called again and so we can save on few function
2046          * calls.
2047          */
2048         if (target_freq == policy->cur)
2049                 return 0;
2050
2051         /* Save last value to restore later on errors */
2052         policy->restore_freq = policy->cur;
2053
2054         if (cpufreq_driver->target)
2055                 return cpufreq_driver->target(policy, target_freq, relation);
2056
2057         if (!cpufreq_driver->target_index)
2058                 return -EINVAL;
2059
2060         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2061
2062         return __target_index(policy, index);
2063 }
2064 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2065
2066 int cpufreq_driver_target(struct cpufreq_policy *policy,
2067                           unsigned int target_freq,
2068                           unsigned int relation)
2069 {
2070         int ret = -EINVAL;
2071
2072         down_write(&policy->rwsem);
2073
2074         ret = __cpufreq_driver_target(policy, target_freq, relation);
2075
2076         up_write(&policy->rwsem);
2077
2078         return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2081
2082 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2083 {
2084         return NULL;
2085 }
2086
2087 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2088 {
2089         int ret;
2090
2091         /* Don't start any governor operations if we are entering suspend */
2092         if (cpufreq_suspended)
2093                 return 0;
2094         /*
2095          * Governor might not be initiated here if ACPI _PPC changed
2096          * notification happened, so check it.
2097          */
2098         if (!policy->governor)
2099                 return -EINVAL;
2100
2101         /* Platform doesn't want dynamic frequency switching ? */
2102         if (policy->governor->dynamic_switching &&
2103             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2104                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2105
2106                 if (gov) {
2107                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2108                                 policy->governor->name, gov->name);
2109                         policy->governor = gov;
2110                 } else {
2111                         return -EINVAL;
2112                 }
2113         }
2114
2115         if (!try_module_get(policy->governor->owner))
2116                 return -EINVAL;
2117
2118         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2119
2120         if (policy->governor->init) {
2121                 ret = policy->governor->init(policy);
2122                 if (ret) {
2123                         module_put(policy->governor->owner);
2124                         return ret;
2125                 }
2126         }
2127
2128         return 0;
2129 }
2130
2131 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2132 {
2133         if (cpufreq_suspended || !policy->governor)
2134                 return;
2135
2136         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2137
2138         if (policy->governor->exit)
2139                 policy->governor->exit(policy);
2140
2141         module_put(policy->governor->owner);
2142 }
2143
2144 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2145 {
2146         int ret;
2147
2148         if (cpufreq_suspended)
2149                 return 0;
2150
2151         if (!policy->governor)
2152                 return -EINVAL;
2153
2154         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2155
2156         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2157                 cpufreq_update_current_freq(policy);
2158
2159         if (policy->governor->start) {
2160                 ret = policy->governor->start(policy);
2161                 if (ret)
2162                         return ret;
2163         }
2164
2165         if (policy->governor->limits)
2166                 policy->governor->limits(policy);
2167
2168         return 0;
2169 }
2170
2171 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2172 {
2173         if (cpufreq_suspended || !policy->governor)
2174                 return;
2175
2176         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2177
2178         if (policy->governor->stop)
2179                 policy->governor->stop(policy);
2180 }
2181
2182 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2183 {
2184         if (cpufreq_suspended || !policy->governor)
2185                 return;
2186
2187         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2188
2189         if (policy->governor->limits)
2190                 policy->governor->limits(policy);
2191 }
2192
2193 int cpufreq_register_governor(struct cpufreq_governor *governor)
2194 {
2195         int err;
2196
2197         if (!governor)
2198                 return -EINVAL;
2199
2200         if (cpufreq_disabled())
2201                 return -ENODEV;
2202
2203         mutex_lock(&cpufreq_governor_mutex);
2204
2205         err = -EBUSY;
2206         if (!find_governor(governor->name)) {
2207                 err = 0;
2208                 list_add(&governor->governor_list, &cpufreq_governor_list);
2209         }
2210
2211         mutex_unlock(&cpufreq_governor_mutex);
2212         return err;
2213 }
2214 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2215
2216 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2217 {
2218         struct cpufreq_policy *policy;
2219         unsigned long flags;
2220
2221         if (!governor)
2222                 return;
2223
2224         if (cpufreq_disabled())
2225                 return;
2226
2227         /* clear last_governor for all inactive policies */
2228         read_lock_irqsave(&cpufreq_driver_lock, flags);
2229         for_each_inactive_policy(policy) {
2230                 if (!strcmp(policy->last_governor, governor->name)) {
2231                         policy->governor = NULL;
2232                         strcpy(policy->last_governor, "\0");
2233                 }
2234         }
2235         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2236
2237         mutex_lock(&cpufreq_governor_mutex);
2238         list_del(&governor->governor_list);
2239         mutex_unlock(&cpufreq_governor_mutex);
2240 }
2241 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2242
2243
2244 /*********************************************************************
2245  *                          POLICY INTERFACE                         *
2246  *********************************************************************/
2247
2248 /**
2249  * cpufreq_get_policy - get the current cpufreq_policy
2250  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2251  *      is written
2252  *
2253  * Reads the current cpufreq policy.
2254  */
2255 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2256 {
2257         struct cpufreq_policy *cpu_policy;
2258         if (!policy)
2259                 return -EINVAL;
2260
2261         cpu_policy = cpufreq_cpu_get(cpu);
2262         if (!cpu_policy)
2263                 return -EINVAL;
2264
2265         memcpy(policy, cpu_policy, sizeof(*policy));
2266
2267         cpufreq_cpu_put(cpu_policy);
2268         return 0;
2269 }
2270 EXPORT_SYMBOL(cpufreq_get_policy);
2271
2272 /**
2273  * cpufreq_set_policy - Modify cpufreq policy parameters.
2274  * @policy: Policy object to modify.
2275  * @new_policy: New policy data.
2276  *
2277  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2278  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2279  * the driver's ->verify() callback again and run the notifiers for it again
2280  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2281  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2282  * callback (if present) or carry out a governor update for @policy.  That is,
2283  * run the current governor's ->limits() callback (if the governor field in
2284  * @new_policy points to the same object as the one in @policy) or replace the
2285  * governor for @policy with the new one stored in @new_policy.
2286  *
2287  * The cpuinfo part of @policy is not updated by this function.
2288  */
2289 int cpufreq_set_policy(struct cpufreq_policy *policy,
2290                        struct cpufreq_policy *new_policy)
2291 {
2292         struct cpufreq_governor *old_gov;
2293         int ret;
2294
2295         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2296                  new_policy->cpu, new_policy->min, new_policy->max);
2297
2298         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2299
2300         /*
2301         * This check works well when we store new min/max freq attributes,
2302         * because new_policy is a copy of policy with one field updated.
2303         */
2304         if (new_policy->min > new_policy->max)
2305                 return -EINVAL;
2306
2307         /* verify the cpu speed can be set within this limit */
2308         ret = cpufreq_driver->verify(new_policy);
2309         if (ret)
2310                 return ret;
2311
2312         /* adjust if necessary - all reasons */
2313         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2314                         CPUFREQ_ADJUST, new_policy);
2315
2316         /*
2317          * verify the cpu speed can be set within this limit, which might be
2318          * different to the first one
2319          */
2320         ret = cpufreq_driver->verify(new_policy);
2321         if (ret)
2322                 return ret;
2323
2324         /* notification of the new policy */
2325         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2326                         CPUFREQ_NOTIFY, new_policy);
2327
2328         policy->min = new_policy->min;
2329         policy->max = new_policy->max;
2330         trace_cpu_frequency_limits(policy);
2331
2332         policy->cached_target_freq = UINT_MAX;
2333
2334         pr_debug("new min and max freqs are %u - %u kHz\n",
2335                  policy->min, policy->max);
2336
2337         if (cpufreq_driver->setpolicy) {
2338                 policy->policy = new_policy->policy;
2339                 pr_debug("setting range\n");
2340                 return cpufreq_driver->setpolicy(policy);
2341         }
2342
2343         if (new_policy->governor == policy->governor) {
2344                 pr_debug("governor limits update\n");
2345                 cpufreq_governor_limits(policy);
2346                 return 0;
2347         }
2348
2349         pr_debug("governor switch\n");
2350
2351         /* save old, working values */
2352         old_gov = policy->governor;
2353         /* end old governor */
2354         if (old_gov) {
2355                 cpufreq_stop_governor(policy);
2356                 cpufreq_exit_governor(policy);
2357         }
2358
2359         /* start new governor */
2360         policy->governor = new_policy->governor;
2361         ret = cpufreq_init_governor(policy);
2362         if (!ret) {
2363                 ret = cpufreq_start_governor(policy);
2364                 if (!ret) {
2365                         pr_debug("governor change\n");
2366                         sched_cpufreq_governor_change(policy, old_gov);
2367                         return 0;
2368                 }
2369                 cpufreq_exit_governor(policy);
2370         }
2371
2372         /* new governor failed, so re-start old one */
2373         pr_debug("starting governor %s failed\n", policy->governor->name);
2374         if (old_gov) {
2375                 policy->governor = old_gov;
2376                 if (cpufreq_init_governor(policy))
2377                         policy->governor = NULL;
2378                 else
2379                         cpufreq_start_governor(policy);
2380         }
2381
2382         return ret;
2383 }
2384
2385 /**
2386  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2387  * @cpu: CPU to re-evaluate the policy for.
2388  *
2389  * Update the current frequency for the cpufreq policy of @cpu and use
2390  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2391  * user_policy sub-structure of that policy, which triggers the evaluation
2392  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2393  * policy in question, among other things.
2394  */
2395 void cpufreq_update_policy(unsigned int cpu)
2396 {
2397         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2398         struct cpufreq_policy new_policy;
2399
2400         if (!policy)
2401                 return;
2402
2403         /*
2404          * BIOS might change freq behind our back
2405          * -> ask driver for current freq and notify governors about a change
2406          */
2407         if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2408             (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2409                 goto unlock;
2410
2411         pr_debug("updating policy for CPU %u\n", cpu);
2412         memcpy(&new_policy, policy, sizeof(*policy));
2413         new_policy.min = policy->user_policy.min;
2414         new_policy.max = policy->user_policy.max;
2415
2416         cpufreq_set_policy(policy, &new_policy);
2417
2418 unlock:
2419         cpufreq_cpu_release(policy);
2420 }
2421 EXPORT_SYMBOL(cpufreq_update_policy);
2422
2423 /**
2424  * cpufreq_update_limits - Update policy limits for a given CPU.
2425  * @cpu: CPU to update the policy limits for.
2426  *
2427  * Invoke the driver's ->update_limits callback if present or call
2428  * cpufreq_update_policy() for @cpu.
2429  */
2430 void cpufreq_update_limits(unsigned int cpu)
2431 {
2432         if (cpufreq_driver->update_limits)
2433                 cpufreq_driver->update_limits(cpu);
2434         else
2435                 cpufreq_update_policy(cpu);
2436 }
2437 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2438
2439 /*********************************************************************
2440  *               BOOST                                               *
2441  *********************************************************************/
2442 static int cpufreq_boost_set_sw(int state)
2443 {
2444         struct cpufreq_policy *policy;
2445         int ret = -EINVAL;
2446
2447         for_each_active_policy(policy) {
2448                 if (!policy->freq_table)
2449                         continue;
2450
2451                 ret = cpufreq_frequency_table_cpuinfo(policy,
2452                                                       policy->freq_table);
2453                 if (ret) {
2454                         pr_err("%s: Policy frequency update failed\n",
2455                                __func__);
2456                         break;
2457                 }
2458
2459                 down_write(&policy->rwsem);
2460                 policy->user_policy.max = policy->max;
2461                 cpufreq_governor_limits(policy);
2462                 up_write(&policy->rwsem);
2463         }
2464
2465         return ret;
2466 }
2467
2468 int cpufreq_boost_trigger_state(int state)
2469 {
2470         unsigned long flags;
2471         int ret = 0;
2472
2473         if (cpufreq_driver->boost_enabled == state)
2474                 return 0;
2475
2476         write_lock_irqsave(&cpufreq_driver_lock, flags);
2477         cpufreq_driver->boost_enabled = state;
2478         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2479
2480         ret = cpufreq_driver->set_boost(state);
2481         if (ret) {
2482                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2483                 cpufreq_driver->boost_enabled = !state;
2484                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2485
2486                 pr_err("%s: Cannot %s BOOST\n",
2487                        __func__, state ? "enable" : "disable");
2488         }
2489
2490         return ret;
2491 }
2492
2493 static bool cpufreq_boost_supported(void)
2494 {
2495         return cpufreq_driver->set_boost;
2496 }
2497
2498 static int create_boost_sysfs_file(void)
2499 {
2500         int ret;
2501
2502         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2503         if (ret)
2504                 pr_err("%s: cannot register global BOOST sysfs file\n",
2505                        __func__);
2506
2507         return ret;
2508 }
2509
2510 static void remove_boost_sysfs_file(void)
2511 {
2512         if (cpufreq_boost_supported())
2513                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2514 }
2515
2516 int cpufreq_enable_boost_support(void)
2517 {
2518         if (!cpufreq_driver)
2519                 return -EINVAL;
2520
2521         if (cpufreq_boost_supported())
2522                 return 0;
2523
2524         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2525
2526         /* This will get removed on driver unregister */
2527         return create_boost_sysfs_file();
2528 }
2529 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2530
2531 int cpufreq_boost_enabled(void)
2532 {
2533         return cpufreq_driver->boost_enabled;
2534 }
2535 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2536
2537 /*********************************************************************
2538  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2539  *********************************************************************/
2540 static enum cpuhp_state hp_online;
2541
2542 static int cpuhp_cpufreq_online(unsigned int cpu)
2543 {
2544         cpufreq_online(cpu);
2545
2546         return 0;
2547 }
2548
2549 static int cpuhp_cpufreq_offline(unsigned int cpu)
2550 {
2551         cpufreq_offline(cpu);
2552
2553         return 0;
2554 }
2555
2556 /**
2557  * cpufreq_register_driver - register a CPU Frequency driver
2558  * @driver_data: A struct cpufreq_driver containing the values#
2559  * submitted by the CPU Frequency driver.
2560  *
2561  * Registers a CPU Frequency driver to this core code. This code
2562  * returns zero on success, -EEXIST when another driver got here first
2563  * (and isn't unregistered in the meantime).
2564  *
2565  */
2566 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2567 {
2568         unsigned long flags;
2569         int ret;
2570
2571         if (cpufreq_disabled())
2572                 return -ENODEV;
2573
2574         if (!driver_data || !driver_data->verify || !driver_data->init ||
2575             !(driver_data->setpolicy || driver_data->target_index ||
2576                     driver_data->target) ||
2577              (driver_data->setpolicy && (driver_data->target_index ||
2578                     driver_data->target)) ||
2579              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2580              (!driver_data->online != !driver_data->offline))
2581                 return -EINVAL;
2582
2583         pr_debug("trying to register driver %s\n", driver_data->name);
2584
2585         /* Protect against concurrent CPU online/offline. */
2586         cpus_read_lock();
2587
2588         write_lock_irqsave(&cpufreq_driver_lock, flags);
2589         if (cpufreq_driver) {
2590                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2591                 ret = -EEXIST;
2592                 goto out;
2593         }
2594         cpufreq_driver = driver_data;
2595         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2596
2597         if (driver_data->setpolicy)
2598                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2599
2600         if (cpufreq_boost_supported()) {
2601                 ret = create_boost_sysfs_file();
2602                 if (ret)
2603                         goto err_null_driver;
2604         }
2605
2606         ret = subsys_interface_register(&cpufreq_interface);
2607         if (ret)
2608                 goto err_boost_unreg;
2609
2610         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2611             list_empty(&cpufreq_policy_list)) {
2612                 /* if all ->init() calls failed, unregister */
2613                 ret = -ENODEV;
2614                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2615                          driver_data->name);
2616                 goto err_if_unreg;
2617         }
2618
2619         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2620                                                    "cpufreq:online",
2621                                                    cpuhp_cpufreq_online,
2622                                                    cpuhp_cpufreq_offline);
2623         if (ret < 0)
2624                 goto err_if_unreg;
2625         hp_online = ret;
2626         ret = 0;
2627
2628         pr_debug("driver %s up and running\n", driver_data->name);
2629         goto out;
2630
2631 err_if_unreg:
2632         subsys_interface_unregister(&cpufreq_interface);
2633 err_boost_unreg:
2634         remove_boost_sysfs_file();
2635 err_null_driver:
2636         write_lock_irqsave(&cpufreq_driver_lock, flags);
2637         cpufreq_driver = NULL;
2638         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2639 out:
2640         cpus_read_unlock();
2641         return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2644
2645 /**
2646  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2647  *
2648  * Unregister the current CPUFreq driver. Only call this if you have
2649  * the right to do so, i.e. if you have succeeded in initialising before!
2650  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2651  * currently not initialised.
2652  */
2653 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2654 {
2655         unsigned long flags;
2656
2657         if (!cpufreq_driver || (driver != cpufreq_driver))
2658                 return -EINVAL;
2659
2660         pr_debug("unregistering driver %s\n", driver->name);
2661
2662         /* Protect against concurrent cpu hotplug */
2663         cpus_read_lock();
2664         subsys_interface_unregister(&cpufreq_interface);
2665         remove_boost_sysfs_file();
2666         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2667
2668         write_lock_irqsave(&cpufreq_driver_lock, flags);
2669
2670         cpufreq_driver = NULL;
2671
2672         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673         cpus_read_unlock();
2674
2675         return 0;
2676 }
2677 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2678
2679 /*
2680  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2681  * or mutexes when secondary CPUs are halted.
2682  */
2683 static struct syscore_ops cpufreq_syscore_ops = {
2684         .shutdown = cpufreq_suspend,
2685 };
2686
2687 struct kobject *cpufreq_global_kobject;
2688 EXPORT_SYMBOL(cpufreq_global_kobject);
2689
2690 static int __init cpufreq_core_init(void)
2691 {
2692         if (cpufreq_disabled())
2693                 return -ENODEV;
2694
2695         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2696         BUG_ON(!cpufreq_global_kobject);
2697
2698         register_syscore_ops(&cpufreq_syscore_ops);
2699
2700         return 0;
2701 }
2702 module_param(off, int, 0444);
2703 core_initcall(cpufreq_core_init);