Merge tag '9p-for-5.13-rc1' of git://github.com/martinetd/linux
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/dmi.h>
20 #include <linux/irq_work.h>
21 #include <linux/kthread.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <uapi/linux/sched/types.h>
25
26 #include <asm/unaligned.h>
27
28 #include <acpi/cppc_acpi.h>
29
30 /* Minimum struct length needed for the DMI processor entry we want */
31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
32
33 /* Offset in the DMI processor structure for the max frequency */
34 #define DMI_PROCESSOR_MAX_SPEED         0x14
35
36 /*
37  * This list contains information parsed from per CPU ACPI _CPC and _PSD
38  * structures: e.g. the highest and lowest supported performance, capabilities,
39  * desired performance, level requested etc. Depending on the share_type, not
40  * all CPUs will have an entry in the list.
41  */
42 static LIST_HEAD(cpu_data_list);
43
44 static bool boost_supported;
45
46 struct cppc_workaround_oem_info {
47         char oem_id[ACPI_OEM_ID_SIZE + 1];
48         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
49         u32 oem_revision;
50 };
51
52 static struct cppc_workaround_oem_info wa_info[] = {
53         {
54                 .oem_id         = "HISI  ",
55                 .oem_table_id   = "HIP07   ",
56                 .oem_revision   = 0,
57         }, {
58                 .oem_id         = "HISI  ",
59                 .oem_table_id   = "HIP08   ",
60                 .oem_revision   = 0,
61         }
62 };
63
64 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
65
66 /* Frequency invariance support */
67 struct cppc_freq_invariance {
68         int cpu;
69         struct irq_work irq_work;
70         struct kthread_work work;
71         struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
72         struct cppc_cpudata *cpu_data;
73 };
74
75 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
76 static struct kthread_worker *kworker_fie;
77 static bool fie_disabled;
78
79 static struct cpufreq_driver cppc_cpufreq_driver;
80 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
81 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
82                                  struct cppc_perf_fb_ctrs fb_ctrs_t0,
83                                  struct cppc_perf_fb_ctrs fb_ctrs_t1);
84
85 /**
86  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
87  * @work: The work item.
88  *
89  * The CPPC driver register itself with the topology core to provide its own
90  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
91  * gets called by the scheduler on every tick.
92  *
93  * Note that the arch specific counters have higher priority than CPPC counters,
94  * if available, though the CPPC driver doesn't need to have any special
95  * handling for that.
96  *
97  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
98  * reach here from hard-irq context), which then schedules a normal work item
99  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
100  * based on the counter updates since the last tick.
101  */
102 static void cppc_scale_freq_workfn(struct kthread_work *work)
103 {
104         struct cppc_freq_invariance *cppc_fi;
105         struct cppc_perf_fb_ctrs fb_ctrs = {0};
106         struct cppc_cpudata *cpu_data;
107         unsigned long local_freq_scale;
108         u64 perf;
109
110         cppc_fi = container_of(work, struct cppc_freq_invariance, work);
111         cpu_data = cppc_fi->cpu_data;
112
113         if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
114                 pr_warn("%s: failed to read perf counters\n", __func__);
115                 return;
116         }
117
118         cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
119         perf = cppc_perf_from_fbctrs(cpu_data, cppc_fi->prev_perf_fb_ctrs,
120                                      fb_ctrs);
121
122         perf <<= SCHED_CAPACITY_SHIFT;
123         local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
124         if (WARN_ON(local_freq_scale > 1024))
125                 local_freq_scale = 1024;
126
127         per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
128 }
129
130 static void cppc_irq_work(struct irq_work *irq_work)
131 {
132         struct cppc_freq_invariance *cppc_fi;
133
134         cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
135         kthread_queue_work(kworker_fie, &cppc_fi->work);
136 }
137
138 static void cppc_scale_freq_tick(void)
139 {
140         struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
141
142         /*
143          * cppc_get_perf_ctrs() can potentially sleep, call that from the right
144          * context.
145          */
146         irq_work_queue(&cppc_fi->irq_work);
147 }
148
149 static struct scale_freq_data cppc_sftd = {
150         .source = SCALE_FREQ_SOURCE_CPPC,
151         .set_freq_scale = cppc_scale_freq_tick,
152 };
153
154 static void cppc_freq_invariance_policy_init(struct cpufreq_policy *policy,
155                                              struct cppc_cpudata *cpu_data)
156 {
157         struct cppc_perf_fb_ctrs fb_ctrs = {0};
158         struct cppc_freq_invariance *cppc_fi;
159         int i, ret;
160
161         if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
162                 return;
163
164         if (fie_disabled)
165                 return;
166
167         for_each_cpu(i, policy->cpus) {
168                 cppc_fi = &per_cpu(cppc_freq_inv, i);
169                 cppc_fi->cpu = i;
170                 cppc_fi->cpu_data = cpu_data;
171                 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
172                 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
173
174                 ret = cppc_get_perf_ctrs(i, &fb_ctrs);
175                 if (ret) {
176                         pr_warn("%s: failed to read perf counters: %d\n",
177                                 __func__, ret);
178                         fie_disabled = true;
179                 } else {
180                         cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
181                 }
182         }
183 }
184
185 static void __init cppc_freq_invariance_init(void)
186 {
187         struct sched_attr attr = {
188                 .size           = sizeof(struct sched_attr),
189                 .sched_policy   = SCHED_DEADLINE,
190                 .sched_nice     = 0,
191                 .sched_priority = 0,
192                 /*
193                  * Fake (unused) bandwidth; workaround to "fix"
194                  * priority inheritance.
195                  */
196                 .sched_runtime  = 1000000,
197                 .sched_deadline = 10000000,
198                 .sched_period   = 10000000,
199         };
200         int ret;
201
202         if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
203                 return;
204
205         if (fie_disabled)
206                 return;
207
208         kworker_fie = kthread_create_worker(0, "cppc_fie");
209         if (IS_ERR(kworker_fie))
210                 return;
211
212         ret = sched_setattr_nocheck(kworker_fie->task, &attr);
213         if (ret) {
214                 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
215                         ret);
216                 kthread_destroy_worker(kworker_fie);
217                 return;
218         }
219
220         /* Register for freq-invariance */
221         topology_set_scale_freq_source(&cppc_sftd, cpu_present_mask);
222 }
223
224 static void cppc_freq_invariance_exit(void)
225 {
226         struct cppc_freq_invariance *cppc_fi;
227         int i;
228
229         if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
230                 return;
231
232         if (fie_disabled)
233                 return;
234
235         topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, cpu_present_mask);
236
237         for_each_possible_cpu(i) {
238                 cppc_fi = &per_cpu(cppc_freq_inv, i);
239                 irq_work_sync(&cppc_fi->irq_work);
240         }
241
242         kthread_destroy_worker(kworker_fie);
243         kworker_fie = NULL;
244 }
245
246 #else
247 static inline void
248 cppc_freq_invariance_policy_init(struct cpufreq_policy *policy,
249                                  struct cppc_cpudata *cpu_data)
250 {
251 }
252
253 static inline void cppc_freq_invariance_init(void)
254 {
255 }
256
257 static inline void cppc_freq_invariance_exit(void)
258 {
259 }
260 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
261
262 /* Callback function used to retrieve the max frequency from DMI */
263 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
264 {
265         const u8 *dmi_data = (const u8 *)dm;
266         u16 *mhz = (u16 *)private;
267
268         if (dm->type == DMI_ENTRY_PROCESSOR &&
269             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
270                 u16 val = (u16)get_unaligned((const u16 *)
271                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
272                 *mhz = val > *mhz ? val : *mhz;
273         }
274 }
275
276 /* Look up the max frequency in DMI */
277 static u64 cppc_get_dmi_max_khz(void)
278 {
279         u16 mhz = 0;
280
281         dmi_walk(cppc_find_dmi_mhz, &mhz);
282
283         /*
284          * Real stupid fallback value, just in case there is no
285          * actual value set.
286          */
287         mhz = mhz ? mhz : 1;
288
289         return (1000 * mhz);
290 }
291
292 /*
293  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
294  * use them to convert perf to freq and vice versa
295  *
296  * If the perf/freq point lies between Nominal and Lowest, we can treat
297  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
298  * and extrapolate the rest
299  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
300  */
301 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
302                                              unsigned int perf)
303 {
304         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
305         static u64 max_khz;
306         u64 mul, div;
307
308         if (caps->lowest_freq && caps->nominal_freq) {
309                 if (perf >= caps->nominal_perf) {
310                         mul = caps->nominal_freq;
311                         div = caps->nominal_perf;
312                 } else {
313                         mul = caps->nominal_freq - caps->lowest_freq;
314                         div = caps->nominal_perf - caps->lowest_perf;
315                 }
316         } else {
317                 if (!max_khz)
318                         max_khz = cppc_get_dmi_max_khz();
319                 mul = max_khz;
320                 div = caps->highest_perf;
321         }
322         return (u64)perf * mul / div;
323 }
324
325 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
326                                              unsigned int freq)
327 {
328         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
329         static u64 max_khz;
330         u64  mul, div;
331
332         if (caps->lowest_freq && caps->nominal_freq) {
333                 if (freq >= caps->nominal_freq) {
334                         mul = caps->nominal_perf;
335                         div = caps->nominal_freq;
336                 } else {
337                         mul = caps->lowest_perf;
338                         div = caps->lowest_freq;
339                 }
340         } else {
341                 if (!max_khz)
342                         max_khz = cppc_get_dmi_max_khz();
343                 mul = caps->highest_perf;
344                 div = max_khz;
345         }
346
347         return (u64)freq * mul / div;
348 }
349
350 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
351                                    unsigned int target_freq,
352                                    unsigned int relation)
353
354 {
355         struct cppc_cpudata *cpu_data = policy->driver_data;
356         unsigned int cpu = policy->cpu;
357         struct cpufreq_freqs freqs;
358         u32 desired_perf;
359         int ret = 0;
360
361         desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
362         /* Return if it is exactly the same perf */
363         if (desired_perf == cpu_data->perf_ctrls.desired_perf)
364                 return ret;
365
366         cpu_data->perf_ctrls.desired_perf = desired_perf;
367         freqs.old = policy->cur;
368         freqs.new = target_freq;
369
370         cpufreq_freq_transition_begin(policy, &freqs);
371         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
372         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
373
374         if (ret)
375                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
376                          cpu, ret);
377
378         return ret;
379 }
380
381 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
382 {
383         cpufreq_verify_within_cpu_limits(policy);
384         return 0;
385 }
386
387 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
388 {
389         struct cppc_cpudata *cpu_data = policy->driver_data;
390         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
391         unsigned int cpu = policy->cpu;
392         int ret;
393
394         cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
395
396         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
397         if (ret)
398                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
399                          caps->lowest_perf, cpu, ret);
400
401         /* Remove CPU node from list and free driver data for policy */
402         free_cpumask_var(cpu_data->shared_cpu_map);
403         list_del(&cpu_data->node);
404         kfree(policy->driver_data);
405         policy->driver_data = NULL;
406 }
407
408 /*
409  * The PCC subspace describes the rate at which platform can accept commands
410  * on the shared PCC channel (including READs which do not count towards freq
411  * transition requests), so ideally we need to use the PCC values as a fallback
412  * if we don't have a platform specific transition_delay_us
413  */
414 #ifdef CONFIG_ARM64
415 #include <asm/cputype.h>
416
417 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
418 {
419         unsigned long implementor = read_cpuid_implementor();
420         unsigned long part_num = read_cpuid_part_number();
421
422         switch (implementor) {
423         case ARM_CPU_IMP_QCOM:
424                 switch (part_num) {
425                 case QCOM_CPU_PART_FALKOR_V1:
426                 case QCOM_CPU_PART_FALKOR:
427                         return 10000;
428                 }
429         }
430         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
431 }
432
433 #else
434
435 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
436 {
437         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
438 }
439 #endif
440
441
442 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
443 {
444         struct cppc_cpudata *cpu_data;
445         int ret;
446
447         cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
448         if (!cpu_data)
449                 goto out;
450
451         if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
452                 goto free_cpu;
453
454         ret = acpi_get_psd_map(cpu, cpu_data);
455         if (ret) {
456                 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
457                 goto free_mask;
458         }
459
460         ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
461         if (ret) {
462                 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
463                 goto free_mask;
464         }
465
466         /* Convert the lowest and nominal freq from MHz to KHz */
467         cpu_data->perf_caps.lowest_freq *= 1000;
468         cpu_data->perf_caps.nominal_freq *= 1000;
469
470         list_add(&cpu_data->node, &cpu_data_list);
471
472         return cpu_data;
473
474 free_mask:
475         free_cpumask_var(cpu_data->shared_cpu_map);
476 free_cpu:
477         kfree(cpu_data);
478 out:
479         return NULL;
480 }
481
482 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
483 {
484         unsigned int cpu = policy->cpu;
485         struct cppc_cpudata *cpu_data;
486         struct cppc_perf_caps *caps;
487         int ret;
488
489         cpu_data = cppc_cpufreq_get_cpu_data(cpu);
490         if (!cpu_data) {
491                 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
492                 return -ENODEV;
493         }
494         caps = &cpu_data->perf_caps;
495         policy->driver_data = cpu_data;
496
497         /*
498          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
499          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
500          */
501         policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
502                                                caps->lowest_nonlinear_perf);
503         policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
504                                                caps->nominal_perf);
505
506         /*
507          * Set cpuinfo.min_freq to Lowest to make the full range of performance
508          * available if userspace wants to use any perf between lowest & lowest
509          * nonlinear perf
510          */
511         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
512                                                             caps->lowest_perf);
513         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
514                                                             caps->nominal_perf);
515
516         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
517         policy->shared_type = cpu_data->shared_type;
518
519         switch (policy->shared_type) {
520         case CPUFREQ_SHARED_TYPE_HW:
521         case CPUFREQ_SHARED_TYPE_NONE:
522                 /* Nothing to be done - we'll have a policy for each CPU */
523                 break;
524         case CPUFREQ_SHARED_TYPE_ANY:
525                 /*
526                  * All CPUs in the domain will share a policy and all cpufreq
527                  * operations will use a single cppc_cpudata structure stored
528                  * in policy->driver_data.
529                  */
530                 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
531                 break;
532         default:
533                 pr_debug("Unsupported CPU co-ord type: %d\n",
534                          policy->shared_type);
535                 return -EFAULT;
536         }
537
538         /*
539          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
540          * is supported.
541          */
542         if (caps->highest_perf > caps->nominal_perf)
543                 boost_supported = true;
544
545         /* Set policy->cur to max now. The governors will adjust later. */
546         policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
547         cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
548
549         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
550         if (ret) {
551                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
552                          caps->highest_perf, cpu, ret);
553         } else {
554                 cppc_freq_invariance_policy_init(policy, cpu_data);
555         }
556
557         return ret;
558 }
559
560 static inline u64 get_delta(u64 t1, u64 t0)
561 {
562         if (t1 > t0 || t0 > ~(u32)0)
563                 return t1 - t0;
564
565         return (u32)t1 - (u32)t0;
566 }
567
568 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
569                                  struct cppc_perf_fb_ctrs fb_ctrs_t0,
570                                  struct cppc_perf_fb_ctrs fb_ctrs_t1)
571 {
572         u64 delta_reference, delta_delivered;
573         u64 reference_perf;
574
575         reference_perf = fb_ctrs_t0.reference_perf;
576
577         delta_reference = get_delta(fb_ctrs_t1.reference,
578                                     fb_ctrs_t0.reference);
579         delta_delivered = get_delta(fb_ctrs_t1.delivered,
580                                     fb_ctrs_t0.delivered);
581
582         /* Check to avoid divide-by zero and invalid delivered_perf */
583         if (!delta_reference || !delta_delivered)
584                 return cpu_data->perf_ctrls.desired_perf;
585
586         return (reference_perf * delta_delivered) / delta_reference;
587 }
588
589 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
590                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
591                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
592 {
593         u64 delivered_perf;
594
595         delivered_perf = cppc_perf_from_fbctrs(cpu_data, fb_ctrs_t0,
596                                                fb_ctrs_t1);
597
598         return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
599 }
600
601 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
602 {
603         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
604         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
605         struct cppc_cpudata *cpu_data = policy->driver_data;
606         int ret;
607
608         cpufreq_cpu_put(policy);
609
610         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
611         if (ret)
612                 return ret;
613
614         udelay(2); /* 2usec delay between sampling */
615
616         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
617         if (ret)
618                 return ret;
619
620         return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
621 }
622
623 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
624 {
625         struct cppc_cpudata *cpu_data = policy->driver_data;
626         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
627         int ret;
628
629         if (!boost_supported) {
630                 pr_err("BOOST not supported by CPU or firmware\n");
631                 return -EINVAL;
632         }
633
634         if (state)
635                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
636                                                        caps->highest_perf);
637         else
638                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
639                                                        caps->nominal_perf);
640         policy->cpuinfo.max_freq = policy->max;
641
642         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
643         if (ret < 0)
644                 return ret;
645
646         return 0;
647 }
648
649 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
650 {
651         struct cppc_cpudata *cpu_data = policy->driver_data;
652
653         return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
654 }
655 cpufreq_freq_attr_ro(freqdomain_cpus);
656
657 static struct freq_attr *cppc_cpufreq_attr[] = {
658         &freqdomain_cpus,
659         NULL,
660 };
661
662 static struct cpufreq_driver cppc_cpufreq_driver = {
663         .flags = CPUFREQ_CONST_LOOPS,
664         .verify = cppc_verify_policy,
665         .target = cppc_cpufreq_set_target,
666         .get = cppc_cpufreq_get_rate,
667         .init = cppc_cpufreq_cpu_init,
668         .stop_cpu = cppc_cpufreq_stop_cpu,
669         .set_boost = cppc_cpufreq_set_boost,
670         .attr = cppc_cpufreq_attr,
671         .name = "cppc_cpufreq",
672 };
673
674 /*
675  * HISI platform does not support delivered performance counter and
676  * reference performance counter. It can calculate the performance using the
677  * platform specific mechanism. We reuse the desired performance register to
678  * store the real performance calculated by the platform.
679  */
680 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
681 {
682         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
683         struct cppc_cpudata *cpu_data = policy->driver_data;
684         u64 desired_perf;
685         int ret;
686
687         cpufreq_cpu_put(policy);
688
689         ret = cppc_get_desired_perf(cpu, &desired_perf);
690         if (ret < 0)
691                 return -EIO;
692
693         return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
694 }
695
696 static void cppc_check_hisi_workaround(void)
697 {
698         struct acpi_table_header *tbl;
699         acpi_status status = AE_OK;
700         int i;
701
702         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
703         if (ACPI_FAILURE(status) || !tbl)
704                 return;
705
706         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
707                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
708                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
709                     wa_info[i].oem_revision == tbl->oem_revision) {
710                         /* Overwrite the get() callback */
711                         cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
712                         break;
713                 }
714         }
715
716         acpi_put_table(tbl);
717 }
718
719 static int __init cppc_cpufreq_init(void)
720 {
721         int ret;
722
723         if ((acpi_disabled) || !acpi_cpc_valid())
724                 return -ENODEV;
725
726         INIT_LIST_HEAD(&cpu_data_list);
727
728         cppc_check_hisi_workaround();
729
730         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
731         if (!ret)
732                 cppc_freq_invariance_init();
733
734         return ret;
735 }
736
737 static inline void free_cpu_data(void)
738 {
739         struct cppc_cpudata *iter, *tmp;
740
741         list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
742                 free_cpumask_var(iter->shared_cpu_map);
743                 list_del(&iter->node);
744                 kfree(iter);
745         }
746
747 }
748
749 static void __exit cppc_cpufreq_exit(void)
750 {
751         cppc_freq_invariance_exit();
752         cpufreq_unregister_driver(&cppc_cpufreq_driver);
753
754         free_cpu_data();
755 }
756
757 module_exit(cppc_cpufreq_exit);
758 MODULE_AUTHOR("Ashwin Chaugule");
759 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
760 MODULE_LICENSE("GPL");
761
762 late_initcall(cppc_cpufreq_init);
763
764 static const struct acpi_device_id cppc_acpi_ids[] __used = {
765         {ACPI_PROCESSOR_DEVICE_HID, },
766         {}
767 };
768
769 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);