tools headers UAPI: Sync kvm.h headers with the kernel sources
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offset in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED         0x14
31
32 /*
33  * This list contains information parsed from per CPU ACPI _CPC and _PSD
34  * structures: e.g. the highest and lowest supported performance, capabilities,
35  * desired performance, level requested etc. Depending on the share_type, not
36  * all CPUs will have an entry in the list.
37  */
38 static LIST_HEAD(cpu_data_list);
39
40 static bool boost_supported;
41
42 struct cppc_workaround_oem_info {
43         char oem_id[ACPI_OEM_ID_SIZE + 1];
44         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45         u32 oem_revision;
46 };
47
48 static struct cppc_workaround_oem_info wa_info[] = {
49         {
50                 .oem_id         = "HISI  ",
51                 .oem_table_id   = "HIP07   ",
52                 .oem_revision   = 0,
53         }, {
54                 .oem_id         = "HISI  ",
55                 .oem_table_id   = "HIP08   ",
56                 .oem_revision   = 0,
57         }
58 };
59
60 /* Callback function used to retrieve the max frequency from DMI */
61 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
62 {
63         const u8 *dmi_data = (const u8 *)dm;
64         u16 *mhz = (u16 *)private;
65
66         if (dm->type == DMI_ENTRY_PROCESSOR &&
67             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68                 u16 val = (u16)get_unaligned((const u16 *)
69                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70                 *mhz = val > *mhz ? val : *mhz;
71         }
72 }
73
74 /* Look up the max frequency in DMI */
75 static u64 cppc_get_dmi_max_khz(void)
76 {
77         u16 mhz = 0;
78
79         dmi_walk(cppc_find_dmi_mhz, &mhz);
80
81         /*
82          * Real stupid fallback value, just in case there is no
83          * actual value set.
84          */
85         mhz = mhz ? mhz : 1;
86
87         return (1000 * mhz);
88 }
89
90 /*
91  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92  * use them to convert perf to freq and vice versa
93  *
94  * If the perf/freq point lies between Nominal and Lowest, we can treat
95  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96  * and extrapolate the rest
97  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
98  */
99 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
100                                              unsigned int perf)
101 {
102         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
103         static u64 max_khz;
104         u64 mul, div;
105
106         if (caps->lowest_freq && caps->nominal_freq) {
107                 if (perf >= caps->nominal_perf) {
108                         mul = caps->nominal_freq;
109                         div = caps->nominal_perf;
110                 } else {
111                         mul = caps->nominal_freq - caps->lowest_freq;
112                         div = caps->nominal_perf - caps->lowest_perf;
113                 }
114         } else {
115                 if (!max_khz)
116                         max_khz = cppc_get_dmi_max_khz();
117                 mul = max_khz;
118                 div = caps->highest_perf;
119         }
120         return (u64)perf * mul / div;
121 }
122
123 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
124                                              unsigned int freq)
125 {
126         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
127         static u64 max_khz;
128         u64  mul, div;
129
130         if (caps->lowest_freq && caps->nominal_freq) {
131                 if (freq >= caps->nominal_freq) {
132                         mul = caps->nominal_perf;
133                         div = caps->nominal_freq;
134                 } else {
135                         mul = caps->lowest_perf;
136                         div = caps->lowest_freq;
137                 }
138         } else {
139                 if (!max_khz)
140                         max_khz = cppc_get_dmi_max_khz();
141                 mul = caps->highest_perf;
142                 div = max_khz;
143         }
144
145         return (u64)freq * mul / div;
146 }
147
148 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149                                    unsigned int target_freq,
150                                    unsigned int relation)
151
152 {
153         struct cppc_cpudata *cpu_data = policy->driver_data;
154         unsigned int cpu = policy->cpu;
155         struct cpufreq_freqs freqs;
156         u32 desired_perf;
157         int ret = 0;
158
159         desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
160         /* Return if it is exactly the same perf */
161         if (desired_perf == cpu_data->perf_ctrls.desired_perf)
162                 return ret;
163
164         cpu_data->perf_ctrls.desired_perf = desired_perf;
165         freqs.old = policy->cur;
166         freqs.new = target_freq;
167
168         cpufreq_freq_transition_begin(policy, &freqs);
169         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
170         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
171
172         if (ret)
173                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
174                          cpu, ret);
175
176         return ret;
177 }
178
179 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
180 {
181         cpufreq_verify_within_cpu_limits(policy);
182         return 0;
183 }
184
185 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
186 {
187         struct cppc_cpudata *cpu_data = policy->driver_data;
188         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
189         unsigned int cpu = policy->cpu;
190         int ret;
191
192         cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
193
194         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
195         if (ret)
196                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
197                          caps->lowest_perf, cpu, ret);
198
199         /* Remove CPU node from list and free driver data for policy */
200         free_cpumask_var(cpu_data->shared_cpu_map);
201         list_del(&cpu_data->node);
202         kfree(policy->driver_data);
203         policy->driver_data = NULL;
204 }
205
206 /*
207  * The PCC subspace describes the rate at which platform can accept commands
208  * on the shared PCC channel (including READs which do not count towards freq
209  * transition requests), so ideally we need to use the PCC values as a fallback
210  * if we don't have a platform specific transition_delay_us
211  */
212 #ifdef CONFIG_ARM64
213 #include <asm/cputype.h>
214
215 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
216 {
217         unsigned long implementor = read_cpuid_implementor();
218         unsigned long part_num = read_cpuid_part_number();
219         unsigned int delay_us = 0;
220
221         switch (implementor) {
222         case ARM_CPU_IMP_QCOM:
223                 switch (part_num) {
224                 case QCOM_CPU_PART_FALKOR_V1:
225                 case QCOM_CPU_PART_FALKOR:
226                         delay_us = 10000;
227                         break;
228                 default:
229                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
230                         break;
231                 }
232                 break;
233         default:
234                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
235                 break;
236         }
237
238         return delay_us;
239 }
240
241 #else
242
243 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
244 {
245         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
246 }
247 #endif
248
249
250 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
251 {
252         struct cppc_cpudata *cpu_data;
253         int ret;
254
255         cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
256         if (!cpu_data)
257                 goto out;
258
259         if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
260                 goto free_cpu;
261
262         ret = acpi_get_psd_map(cpu, cpu_data);
263         if (ret) {
264                 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
265                 goto free_mask;
266         }
267
268         ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
269         if (ret) {
270                 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
271                 goto free_mask;
272         }
273
274         /* Convert the lowest and nominal freq from MHz to KHz */
275         cpu_data->perf_caps.lowest_freq *= 1000;
276         cpu_data->perf_caps.nominal_freq *= 1000;
277
278         list_add(&cpu_data->node, &cpu_data_list);
279
280         return cpu_data;
281
282 free_mask:
283         free_cpumask_var(cpu_data->shared_cpu_map);
284 free_cpu:
285         kfree(cpu_data);
286 out:
287         return NULL;
288 }
289
290 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
291 {
292         unsigned int cpu = policy->cpu;
293         struct cppc_cpudata *cpu_data;
294         struct cppc_perf_caps *caps;
295         int ret;
296
297         cpu_data = cppc_cpufreq_get_cpu_data(cpu);
298         if (!cpu_data) {
299                 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
300                 return -ENODEV;
301         }
302         caps = &cpu_data->perf_caps;
303         policy->driver_data = cpu_data;
304
305         /*
306          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
307          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
308          */
309         policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
310                                                caps->lowest_nonlinear_perf);
311         policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
312                                                caps->nominal_perf);
313
314         /*
315          * Set cpuinfo.min_freq to Lowest to make the full range of performance
316          * available if userspace wants to use any perf between lowest & lowest
317          * nonlinear perf
318          */
319         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
320                                                             caps->lowest_perf);
321         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
322                                                             caps->nominal_perf);
323
324         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
325         policy->shared_type = cpu_data->shared_type;
326
327         switch (policy->shared_type) {
328         case CPUFREQ_SHARED_TYPE_HW:
329         case CPUFREQ_SHARED_TYPE_NONE:
330                 /* Nothing to be done - we'll have a policy for each CPU */
331                 break;
332         case CPUFREQ_SHARED_TYPE_ANY:
333                 /*
334                  * All CPUs in the domain will share a policy and all cpufreq
335                  * operations will use a single cppc_cpudata structure stored
336                  * in policy->driver_data.
337                  */
338                 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
339                 break;
340         default:
341                 pr_debug("Unsupported CPU co-ord type: %d\n",
342                          policy->shared_type);
343                 return -EFAULT;
344         }
345
346         /*
347          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
348          * is supported.
349          */
350         if (caps->highest_perf > caps->nominal_perf)
351                 boost_supported = true;
352
353         /* Set policy->cur to max now. The governors will adjust later. */
354         policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
355         cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
356
357         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
358         if (ret)
359                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
360                          caps->highest_perf, cpu, ret);
361
362         return ret;
363 }
364
365 static inline u64 get_delta(u64 t1, u64 t0)
366 {
367         if (t1 > t0 || t0 > ~(u32)0)
368                 return t1 - t0;
369
370         return (u32)t1 - (u32)t0;
371 }
372
373 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
374                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
375                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
376 {
377         u64 delta_reference, delta_delivered;
378         u64 reference_perf, delivered_perf;
379
380         reference_perf = fb_ctrs_t0.reference_perf;
381
382         delta_reference = get_delta(fb_ctrs_t1.reference,
383                                     fb_ctrs_t0.reference);
384         delta_delivered = get_delta(fb_ctrs_t1.delivered,
385                                     fb_ctrs_t0.delivered);
386
387         /* Check to avoid divide-by zero */
388         if (delta_reference || delta_delivered)
389                 delivered_perf = (reference_perf * delta_delivered) /
390                                         delta_reference;
391         else
392                 delivered_perf = cpu_data->perf_ctrls.desired_perf;
393
394         return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
395 }
396
397 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
398 {
399         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
400         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
401         struct cppc_cpudata *cpu_data = policy->driver_data;
402         int ret;
403
404         cpufreq_cpu_put(policy);
405
406         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
407         if (ret)
408                 return ret;
409
410         udelay(2); /* 2usec delay between sampling */
411
412         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
413         if (ret)
414                 return ret;
415
416         return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
417 }
418
419 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
420 {
421         struct cppc_cpudata *cpu_data = policy->driver_data;
422         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
423         int ret;
424
425         if (!boost_supported) {
426                 pr_err("BOOST not supported by CPU or firmware\n");
427                 return -EINVAL;
428         }
429
430         if (state)
431                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
432                                                        caps->highest_perf);
433         else
434                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
435                                                        caps->nominal_perf);
436         policy->cpuinfo.max_freq = policy->max;
437
438         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
439         if (ret < 0)
440                 return ret;
441
442         return 0;
443 }
444
445 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
446 {
447         struct cppc_cpudata *cpu_data = policy->driver_data;
448
449         return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
450 }
451 cpufreq_freq_attr_ro(freqdomain_cpus);
452
453 static struct freq_attr *cppc_cpufreq_attr[] = {
454         &freqdomain_cpus,
455         NULL,
456 };
457
458 static struct cpufreq_driver cppc_cpufreq_driver = {
459         .flags = CPUFREQ_CONST_LOOPS,
460         .verify = cppc_verify_policy,
461         .target = cppc_cpufreq_set_target,
462         .get = cppc_cpufreq_get_rate,
463         .init = cppc_cpufreq_cpu_init,
464         .stop_cpu = cppc_cpufreq_stop_cpu,
465         .set_boost = cppc_cpufreq_set_boost,
466         .attr = cppc_cpufreq_attr,
467         .name = "cppc_cpufreq",
468 };
469
470 /*
471  * HISI platform does not support delivered performance counter and
472  * reference performance counter. It can calculate the performance using the
473  * platform specific mechanism. We reuse the desired performance register to
474  * store the real performance calculated by the platform.
475  */
476 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
477 {
478         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
479         struct cppc_cpudata *cpu_data = policy->driver_data;
480         u64 desired_perf;
481         int ret;
482
483         cpufreq_cpu_put(policy);
484
485         ret = cppc_get_desired_perf(cpu, &desired_perf);
486         if (ret < 0)
487                 return -EIO;
488
489         return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
490 }
491
492 static void cppc_check_hisi_workaround(void)
493 {
494         struct acpi_table_header *tbl;
495         acpi_status status = AE_OK;
496         int i;
497
498         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
499         if (ACPI_FAILURE(status) || !tbl)
500                 return;
501
502         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
503                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
504                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
505                     wa_info[i].oem_revision == tbl->oem_revision) {
506                         /* Overwrite the get() callback */
507                         cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
508                         break;
509                 }
510         }
511
512         acpi_put_table(tbl);
513 }
514
515 static int __init cppc_cpufreq_init(void)
516 {
517         if ((acpi_disabled) || !acpi_cpc_valid())
518                 return -ENODEV;
519
520         INIT_LIST_HEAD(&cpu_data_list);
521
522         cppc_check_hisi_workaround();
523
524         return cpufreq_register_driver(&cppc_cpufreq_driver);
525 }
526
527 static inline void free_cpu_data(void)
528 {
529         struct cppc_cpudata *iter, *tmp;
530
531         list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
532                 free_cpumask_var(iter->shared_cpu_map);
533                 list_del(&iter->node);
534                 kfree(iter);
535         }
536
537 }
538
539 static void __exit cppc_cpufreq_exit(void)
540 {
541         cpufreq_unregister_driver(&cppc_cpufreq_driver);
542
543         free_cpu_data();
544 }
545
546 module_exit(cppc_cpufreq_exit);
547 MODULE_AUTHOR("Ashwin Chaugule");
548 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
549 MODULE_LICENSE("GPL");
550
551 late_initcall(cppc_cpufreq_init);
552
553 static const struct acpi_device_id cppc_acpi_ids[] __used = {
554         {ACPI_PROCESSOR_DEVICE_HID, },
555         {}
556 };
557
558 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);