Merge tag 'for-linus-5.11-1' of git://github.com/cminyard/linux-ipmi
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offset in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED         0x14
31
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40 static bool boost_supported;
41
42 struct cppc_workaround_oem_info {
43         char oem_id[ACPI_OEM_ID_SIZE + 1];
44         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45         u32 oem_revision;
46 };
47
48 static struct cppc_workaround_oem_info wa_info[] = {
49         {
50                 .oem_id         = "HISI  ",
51                 .oem_table_id   = "HIP07   ",
52                 .oem_revision   = 0,
53         }, {
54                 .oem_id         = "HISI  ",
55                 .oem_table_id   = "HIP08   ",
56                 .oem_revision   = 0,
57         }
58 };
59
60 /* Callback function used to retrieve the max frequency from DMI */
61 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
62 {
63         const u8 *dmi_data = (const u8 *)dm;
64         u16 *mhz = (u16 *)private;
65
66         if (dm->type == DMI_ENTRY_PROCESSOR &&
67             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68                 u16 val = (u16)get_unaligned((const u16 *)
69                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70                 *mhz = val > *mhz ? val : *mhz;
71         }
72 }
73
74 /* Look up the max frequency in DMI */
75 static u64 cppc_get_dmi_max_khz(void)
76 {
77         u16 mhz = 0;
78
79         dmi_walk(cppc_find_dmi_mhz, &mhz);
80
81         /*
82          * Real stupid fallback value, just in case there is no
83          * actual value set.
84          */
85         mhz = mhz ? mhz : 1;
86
87         return (1000 * mhz);
88 }
89
90 /*
91  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92  * use them to convert perf to freq and vice versa
93  *
94  * If the perf/freq point lies between Nominal and Lowest, we can treat
95  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96  * and extrapolate the rest
97  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
98  */
99 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
100                                              unsigned int perf)
101 {
102         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
103         static u64 max_khz;
104         u64 mul, div;
105
106         if (caps->lowest_freq && caps->nominal_freq) {
107                 if (perf >= caps->nominal_perf) {
108                         mul = caps->nominal_freq;
109                         div = caps->nominal_perf;
110                 } else {
111                         mul = caps->nominal_freq - caps->lowest_freq;
112                         div = caps->nominal_perf - caps->lowest_perf;
113                 }
114         } else {
115                 if (!max_khz)
116                         max_khz = cppc_get_dmi_max_khz();
117                 mul = max_khz;
118                 div = caps->highest_perf;
119         }
120         return (u64)perf * mul / div;
121 }
122
123 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
124                                              unsigned int freq)
125 {
126         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
127         static u64 max_khz;
128         u64  mul, div;
129
130         if (caps->lowest_freq && caps->nominal_freq) {
131                 if (freq >= caps->nominal_freq) {
132                         mul = caps->nominal_perf;
133                         div = caps->nominal_freq;
134                 } else {
135                         mul = caps->lowest_perf;
136                         div = caps->lowest_freq;
137                 }
138         } else {
139                 if (!max_khz)
140                         max_khz = cppc_get_dmi_max_khz();
141                 mul = caps->highest_perf;
142                 div = max_khz;
143         }
144
145         return (u64)freq * mul / div;
146 }
147
148 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149                                    unsigned int target_freq,
150                                    unsigned int relation)
151 {
152         struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
153         struct cpufreq_freqs freqs;
154         u32 desired_perf;
155         int ret = 0;
156
157         desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
158         /* Return if it is exactly the same perf */
159         if (desired_perf == cpu_data->perf_ctrls.desired_perf)
160                 return ret;
161
162         cpu_data->perf_ctrls.desired_perf = desired_perf;
163         freqs.old = policy->cur;
164         freqs.new = target_freq;
165
166         cpufreq_freq_transition_begin(policy, &freqs);
167         ret = cppc_set_perf(cpu_data->cpu, &cpu_data->perf_ctrls);
168         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
169
170         if (ret)
171                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
172                          cpu_data->cpu, ret);
173
174         return ret;
175 }
176
177 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
178 {
179         cpufreq_verify_within_cpu_limits(policy);
180         return 0;
181 }
182
183 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
184 {
185         struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
186         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
187         unsigned int cpu = policy->cpu;
188         int ret;
189
190         cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
191
192         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
193         if (ret)
194                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
195                          caps->lowest_perf, cpu, ret);
196 }
197
198 /*
199  * The PCC subspace describes the rate at which platform can accept commands
200  * on the shared PCC channel (including READs which do not count towards freq
201  * transition requests), so ideally we need to use the PCC values as a fallback
202  * if we don't have a platform specific transition_delay_us
203  */
204 #ifdef CONFIG_ARM64
205 #include <asm/cputype.h>
206
207 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
208 {
209         unsigned long implementor = read_cpuid_implementor();
210         unsigned long part_num = read_cpuid_part_number();
211         unsigned int delay_us = 0;
212
213         switch (implementor) {
214         case ARM_CPU_IMP_QCOM:
215                 switch (part_num) {
216                 case QCOM_CPU_PART_FALKOR_V1:
217                 case QCOM_CPU_PART_FALKOR:
218                         delay_us = 10000;
219                         break;
220                 default:
221                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
222                         break;
223                 }
224                 break;
225         default:
226                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
227                 break;
228         }
229
230         return delay_us;
231 }
232
233 #else
234
235 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
236 {
237         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
238 }
239 #endif
240
241 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
242 {
243         struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
244         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
245         unsigned int cpu = policy->cpu;
246         int ret = 0;
247
248         cpu_data->cpu = cpu;
249         ret = cppc_get_perf_caps(cpu, caps);
250
251         if (ret) {
252                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
253                          cpu, ret);
254                 return ret;
255         }
256
257         /* Convert the lowest and nominal freq from MHz to KHz */
258         caps->lowest_freq *= 1000;
259         caps->nominal_freq *= 1000;
260
261         /*
262          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
263          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
264          */
265         policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
266                                                caps->lowest_nonlinear_perf);
267         policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
268                                                caps->nominal_perf);
269
270         /*
271          * Set cpuinfo.min_freq to Lowest to make the full range of performance
272          * available if userspace wants to use any perf between lowest & lowest
273          * nonlinear perf
274          */
275         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
276                                                             caps->lowest_perf);
277         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
278                                                             caps->nominal_perf);
279
280         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
281         policy->shared_type = cpu_data->shared_type;
282
283         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
284                 int i;
285
286                 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
287
288                 for_each_cpu(i, policy->cpus) {
289                         if (unlikely(i == cpu))
290                                 continue;
291
292                         memcpy(&all_cpu_data[i]->perf_caps, caps,
293                                sizeof(cpu_data->perf_caps));
294                 }
295         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
296                 /* Support only SW_ANY for now. */
297                 pr_debug("Unsupported CPU co-ord type\n");
298                 return -EFAULT;
299         }
300
301         cpu_data->cur_policy = policy;
302
303         /*
304          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
305          * is supported.
306          */
307         if (caps->highest_perf > caps->nominal_perf)
308                 boost_supported = true;
309
310         /* Set policy->cur to max now. The governors will adjust later. */
311         policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
312         cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
313
314         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
315         if (ret)
316                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
317                          caps->highest_perf, cpu, ret);
318
319         return ret;
320 }
321
322 static inline u64 get_delta(u64 t1, u64 t0)
323 {
324         if (t1 > t0 || t0 > ~(u32)0)
325                 return t1 - t0;
326
327         return (u32)t1 - (u32)t0;
328 }
329
330 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
331                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
332                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
333 {
334         u64 delta_reference, delta_delivered;
335         u64 reference_perf, delivered_perf;
336
337         reference_perf = fb_ctrs_t0.reference_perf;
338
339         delta_reference = get_delta(fb_ctrs_t1.reference,
340                                     fb_ctrs_t0.reference);
341         delta_delivered = get_delta(fb_ctrs_t1.delivered,
342                                     fb_ctrs_t0.delivered);
343
344         /* Check to avoid divide-by zero */
345         if (delta_reference || delta_delivered)
346                 delivered_perf = (reference_perf * delta_delivered) /
347                                         delta_reference;
348         else
349                 delivered_perf = cpu_data->perf_ctrls.desired_perf;
350
351         return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
352 }
353
354 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
355 {
356         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
357         struct cppc_cpudata *cpu_data = all_cpu_data[cpu];
358         int ret;
359
360         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
361         if (ret)
362                 return ret;
363
364         udelay(2); /* 2usec delay between sampling */
365
366         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
367         if (ret)
368                 return ret;
369
370         return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
371 }
372
373 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
374 {
375         struct cppc_cpudata *cpu_data = all_cpu_data[policy->cpu];
376         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
377         int ret;
378
379         if (!boost_supported) {
380                 pr_err("BOOST not supported by CPU or firmware\n");
381                 return -EINVAL;
382         }
383
384         if (state)
385                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
386                                                        caps->highest_perf);
387         else
388                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
389                                                        caps->nominal_perf);
390         policy->cpuinfo.max_freq = policy->max;
391
392         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
393         if (ret < 0)
394                 return ret;
395
396         return 0;
397 }
398
399 static struct cpufreq_driver cppc_cpufreq_driver = {
400         .flags = CPUFREQ_CONST_LOOPS,
401         .verify = cppc_verify_policy,
402         .target = cppc_cpufreq_set_target,
403         .get = cppc_cpufreq_get_rate,
404         .init = cppc_cpufreq_cpu_init,
405         .stop_cpu = cppc_cpufreq_stop_cpu,
406         .set_boost = cppc_cpufreq_set_boost,
407         .name = "cppc_cpufreq",
408 };
409
410 /*
411  * HISI platform does not support delivered performance counter and
412  * reference performance counter. It can calculate the performance using the
413  * platform specific mechanism. We reuse the desired performance register to
414  * store the real performance calculated by the platform.
415  */
416 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
417 {
418         struct cppc_cpudata *cpu_data = all_cpu_data[cpu];
419         u64 desired_perf;
420         int ret;
421
422         ret = cppc_get_desired_perf(cpu, &desired_perf);
423         if (ret < 0)
424                 return -EIO;
425
426         return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
427 }
428
429 static void cppc_check_hisi_workaround(void)
430 {
431         struct acpi_table_header *tbl;
432         acpi_status status = AE_OK;
433         int i;
434
435         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
436         if (ACPI_FAILURE(status) || !tbl)
437                 return;
438
439         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
440                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
441                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
442                     wa_info[i].oem_revision == tbl->oem_revision) {
443                         /* Overwrite the get() callback */
444                         cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
445                         break;
446                 }
447         }
448
449         acpi_put_table(tbl);
450 }
451
452 static int __init cppc_cpufreq_init(void)
453 {
454         struct cppc_cpudata *cpu_data;
455         int i, ret = 0;
456
457         if (acpi_disabled)
458                 return -ENODEV;
459
460         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
461                                GFP_KERNEL);
462         if (!all_cpu_data)
463                 return -ENOMEM;
464
465         for_each_possible_cpu(i) {
466                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
467                 if (!all_cpu_data[i])
468                         goto out;
469
470                 cpu_data = all_cpu_data[i];
471                 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
472                         goto out;
473         }
474
475         ret = acpi_get_psd_map(all_cpu_data);
476         if (ret) {
477                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
478                 goto out;
479         }
480
481         cppc_check_hisi_workaround();
482
483         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
484         if (ret)
485                 goto out;
486
487         return ret;
488
489 out:
490         for_each_possible_cpu(i) {
491                 cpu_data = all_cpu_data[i];
492                 if (!cpu_data)
493                         break;
494                 free_cpumask_var(cpu_data->shared_cpu_map);
495                 kfree(cpu_data);
496         }
497
498         kfree(all_cpu_data);
499         return -ENODEV;
500 }
501
502 static void __exit cppc_cpufreq_exit(void)
503 {
504         struct cppc_cpudata *cpu_data;
505         int i;
506
507         cpufreq_unregister_driver(&cppc_cpufreq_driver);
508
509         for_each_possible_cpu(i) {
510                 cpu_data = all_cpu_data[i];
511                 free_cpumask_var(cpu_data->shared_cpu_map);
512                 kfree(cpu_data);
513         }
514
515         kfree(all_cpu_data);
516 }
517
518 module_exit(cppc_cpufreq_exit);
519 MODULE_AUTHOR("Ashwin Chaugule");
520 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
521 MODULE_LICENSE("GPL");
522
523 late_initcall(cppc_cpufreq_init);
524
525 static const struct acpi_device_id cppc_acpi_ids[] __used = {
526         {ACPI_PROCESSOR_DEVICE_HID, },
527         {}
528 };
529
530 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);