Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offset in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED         0x14
31
32 /*
33  * This list contains information parsed from per CPU ACPI _CPC and _PSD
34  * structures: e.g. the highest and lowest supported performance, capabilities,
35  * desired performance, level requested etc. Depending on the share_type, not
36  * all CPUs will have an entry in the list.
37  */
38 static LIST_HEAD(cpu_data_list);
39
40 static bool boost_supported;
41
42 struct cppc_workaround_oem_info {
43         char oem_id[ACPI_OEM_ID_SIZE + 1];
44         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45         u32 oem_revision;
46 };
47
48 static struct cppc_workaround_oem_info wa_info[] = {
49         {
50                 .oem_id         = "HISI  ",
51                 .oem_table_id   = "HIP07   ",
52                 .oem_revision   = 0,
53         }, {
54                 .oem_id         = "HISI  ",
55                 .oem_table_id   = "HIP08   ",
56                 .oem_revision   = 0,
57         }
58 };
59
60 /* Callback function used to retrieve the max frequency from DMI */
61 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
62 {
63         const u8 *dmi_data = (const u8 *)dm;
64         u16 *mhz = (u16 *)private;
65
66         if (dm->type == DMI_ENTRY_PROCESSOR &&
67             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68                 u16 val = (u16)get_unaligned((const u16 *)
69                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70                 *mhz = val > *mhz ? val : *mhz;
71         }
72 }
73
74 /* Look up the max frequency in DMI */
75 static u64 cppc_get_dmi_max_khz(void)
76 {
77         u16 mhz = 0;
78
79         dmi_walk(cppc_find_dmi_mhz, &mhz);
80
81         /*
82          * Real stupid fallback value, just in case there is no
83          * actual value set.
84          */
85         mhz = mhz ? mhz : 1;
86
87         return (1000 * mhz);
88 }
89
90 /*
91  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92  * use them to convert perf to freq and vice versa
93  *
94  * If the perf/freq point lies between Nominal and Lowest, we can treat
95  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96  * and extrapolate the rest
97  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
98  */
99 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
100                                              unsigned int perf)
101 {
102         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
103         static u64 max_khz;
104         u64 mul, div;
105
106         if (caps->lowest_freq && caps->nominal_freq) {
107                 if (perf >= caps->nominal_perf) {
108                         mul = caps->nominal_freq;
109                         div = caps->nominal_perf;
110                 } else {
111                         mul = caps->nominal_freq - caps->lowest_freq;
112                         div = caps->nominal_perf - caps->lowest_perf;
113                 }
114         } else {
115                 if (!max_khz)
116                         max_khz = cppc_get_dmi_max_khz();
117                 mul = max_khz;
118                 div = caps->highest_perf;
119         }
120         return (u64)perf * mul / div;
121 }
122
123 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
124                                              unsigned int freq)
125 {
126         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
127         static u64 max_khz;
128         u64  mul, div;
129
130         if (caps->lowest_freq && caps->nominal_freq) {
131                 if (freq >= caps->nominal_freq) {
132                         mul = caps->nominal_perf;
133                         div = caps->nominal_freq;
134                 } else {
135                         mul = caps->lowest_perf;
136                         div = caps->lowest_freq;
137                 }
138         } else {
139                 if (!max_khz)
140                         max_khz = cppc_get_dmi_max_khz();
141                 mul = caps->highest_perf;
142                 div = max_khz;
143         }
144
145         return (u64)freq * mul / div;
146 }
147
148 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149                                    unsigned int target_freq,
150                                    unsigned int relation)
151
152 {
153         struct cppc_cpudata *cpu_data = policy->driver_data;
154         unsigned int cpu = policy->cpu;
155         struct cpufreq_freqs freqs;
156         u32 desired_perf;
157         int ret = 0;
158
159         desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
160         /* Return if it is exactly the same perf */
161         if (desired_perf == cpu_data->perf_ctrls.desired_perf)
162                 return ret;
163
164         cpu_data->perf_ctrls.desired_perf = desired_perf;
165         freqs.old = policy->cur;
166         freqs.new = target_freq;
167
168         cpufreq_freq_transition_begin(policy, &freqs);
169         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
170         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
171
172         if (ret)
173                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
174                          cpu, ret);
175
176         return ret;
177 }
178
179 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
180 {
181         cpufreq_verify_within_cpu_limits(policy);
182         return 0;
183 }
184
185 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
186 {
187         struct cppc_cpudata *cpu_data = policy->driver_data;
188         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
189         unsigned int cpu = policy->cpu;
190         int ret;
191
192         cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
193
194         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
195         if (ret)
196                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
197                          caps->lowest_perf, cpu, ret);
198
199         /* Remove CPU node from list and free driver data for policy */
200         free_cpumask_var(cpu_data->shared_cpu_map);
201         list_del(&cpu_data->node);
202         kfree(policy->driver_data);
203         policy->driver_data = NULL;
204 }
205
206 /*
207  * The PCC subspace describes the rate at which platform can accept commands
208  * on the shared PCC channel (including READs which do not count towards freq
209  * transition requests), so ideally we need to use the PCC values as a fallback
210  * if we don't have a platform specific transition_delay_us
211  */
212 #ifdef CONFIG_ARM64
213 #include <asm/cputype.h>
214
215 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
216 {
217         unsigned long implementor = read_cpuid_implementor();
218         unsigned long part_num = read_cpuid_part_number();
219
220         switch (implementor) {
221         case ARM_CPU_IMP_QCOM:
222                 switch (part_num) {
223                 case QCOM_CPU_PART_FALKOR_V1:
224                 case QCOM_CPU_PART_FALKOR:
225                         return 10000;
226                 }
227         }
228         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
229 }
230
231 #else
232
233 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
234 {
235         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
236 }
237 #endif
238
239
240 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
241 {
242         struct cppc_cpudata *cpu_data;
243         int ret;
244
245         cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
246         if (!cpu_data)
247                 goto out;
248
249         if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
250                 goto free_cpu;
251
252         ret = acpi_get_psd_map(cpu, cpu_data);
253         if (ret) {
254                 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
255                 goto free_mask;
256         }
257
258         ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
259         if (ret) {
260                 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
261                 goto free_mask;
262         }
263
264         /* Convert the lowest and nominal freq from MHz to KHz */
265         cpu_data->perf_caps.lowest_freq *= 1000;
266         cpu_data->perf_caps.nominal_freq *= 1000;
267
268         list_add(&cpu_data->node, &cpu_data_list);
269
270         return cpu_data;
271
272 free_mask:
273         free_cpumask_var(cpu_data->shared_cpu_map);
274 free_cpu:
275         kfree(cpu_data);
276 out:
277         return NULL;
278 }
279
280 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
281 {
282         unsigned int cpu = policy->cpu;
283         struct cppc_cpudata *cpu_data;
284         struct cppc_perf_caps *caps;
285         int ret;
286
287         cpu_data = cppc_cpufreq_get_cpu_data(cpu);
288         if (!cpu_data) {
289                 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
290                 return -ENODEV;
291         }
292         caps = &cpu_data->perf_caps;
293         policy->driver_data = cpu_data;
294
295         /*
296          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
297          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
298          */
299         policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
300                                                caps->lowest_nonlinear_perf);
301         policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
302                                                caps->nominal_perf);
303
304         /*
305          * Set cpuinfo.min_freq to Lowest to make the full range of performance
306          * available if userspace wants to use any perf between lowest & lowest
307          * nonlinear perf
308          */
309         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
310                                                             caps->lowest_perf);
311         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
312                                                             caps->nominal_perf);
313
314         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
315         policy->shared_type = cpu_data->shared_type;
316
317         switch (policy->shared_type) {
318         case CPUFREQ_SHARED_TYPE_HW:
319         case CPUFREQ_SHARED_TYPE_NONE:
320                 /* Nothing to be done - we'll have a policy for each CPU */
321                 break;
322         case CPUFREQ_SHARED_TYPE_ANY:
323                 /*
324                  * All CPUs in the domain will share a policy and all cpufreq
325                  * operations will use a single cppc_cpudata structure stored
326                  * in policy->driver_data.
327                  */
328                 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
329                 break;
330         default:
331                 pr_debug("Unsupported CPU co-ord type: %d\n",
332                          policy->shared_type);
333                 return -EFAULT;
334         }
335
336         /*
337          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
338          * is supported.
339          */
340         if (caps->highest_perf > caps->nominal_perf)
341                 boost_supported = true;
342
343         /* Set policy->cur to max now. The governors will adjust later. */
344         policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
345         cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
346
347         ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
348         if (ret)
349                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350                          caps->highest_perf, cpu, ret);
351
352         return ret;
353 }
354
355 static inline u64 get_delta(u64 t1, u64 t0)
356 {
357         if (t1 > t0 || t0 > ~(u32)0)
358                 return t1 - t0;
359
360         return (u32)t1 - (u32)t0;
361 }
362
363 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
364                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
365                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
366 {
367         u64 delta_reference, delta_delivered;
368         u64 reference_perf, delivered_perf;
369
370         reference_perf = fb_ctrs_t0.reference_perf;
371
372         delta_reference = get_delta(fb_ctrs_t1.reference,
373                                     fb_ctrs_t0.reference);
374         delta_delivered = get_delta(fb_ctrs_t1.delivered,
375                                     fb_ctrs_t0.delivered);
376
377         /* Check to avoid divide-by zero */
378         if (delta_reference || delta_delivered)
379                 delivered_perf = (reference_perf * delta_delivered) /
380                                         delta_reference;
381         else
382                 delivered_perf = cpu_data->perf_ctrls.desired_perf;
383
384         return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
385 }
386
387 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
388 {
389         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
391         struct cppc_cpudata *cpu_data = policy->driver_data;
392         int ret;
393
394         cpufreq_cpu_put(policy);
395
396         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
397         if (ret)
398                 return ret;
399
400         udelay(2); /* 2usec delay between sampling */
401
402         ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
403         if (ret)
404                 return ret;
405
406         return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
407 }
408
409 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
410 {
411         struct cppc_cpudata *cpu_data = policy->driver_data;
412         struct cppc_perf_caps *caps = &cpu_data->perf_caps;
413         int ret;
414
415         if (!boost_supported) {
416                 pr_err("BOOST not supported by CPU or firmware\n");
417                 return -EINVAL;
418         }
419
420         if (state)
421                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
422                                                        caps->highest_perf);
423         else
424                 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
425                                                        caps->nominal_perf);
426         policy->cpuinfo.max_freq = policy->max;
427
428         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
429         if (ret < 0)
430                 return ret;
431
432         return 0;
433 }
434
435 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
436 {
437         struct cppc_cpudata *cpu_data = policy->driver_data;
438
439         return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
440 }
441 cpufreq_freq_attr_ro(freqdomain_cpus);
442
443 static struct freq_attr *cppc_cpufreq_attr[] = {
444         &freqdomain_cpus,
445         NULL,
446 };
447
448 static struct cpufreq_driver cppc_cpufreq_driver = {
449         .flags = CPUFREQ_CONST_LOOPS,
450         .verify = cppc_verify_policy,
451         .target = cppc_cpufreq_set_target,
452         .get = cppc_cpufreq_get_rate,
453         .init = cppc_cpufreq_cpu_init,
454         .stop_cpu = cppc_cpufreq_stop_cpu,
455         .set_boost = cppc_cpufreq_set_boost,
456         .attr = cppc_cpufreq_attr,
457         .name = "cppc_cpufreq",
458 };
459
460 /*
461  * HISI platform does not support delivered performance counter and
462  * reference performance counter. It can calculate the performance using the
463  * platform specific mechanism. We reuse the desired performance register to
464  * store the real performance calculated by the platform.
465  */
466 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
467 {
468         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
469         struct cppc_cpudata *cpu_data = policy->driver_data;
470         u64 desired_perf;
471         int ret;
472
473         cpufreq_cpu_put(policy);
474
475         ret = cppc_get_desired_perf(cpu, &desired_perf);
476         if (ret < 0)
477                 return -EIO;
478
479         return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
480 }
481
482 static void cppc_check_hisi_workaround(void)
483 {
484         struct acpi_table_header *tbl;
485         acpi_status status = AE_OK;
486         int i;
487
488         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
489         if (ACPI_FAILURE(status) || !tbl)
490                 return;
491
492         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
493                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
494                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
495                     wa_info[i].oem_revision == tbl->oem_revision) {
496                         /* Overwrite the get() callback */
497                         cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
498                         break;
499                 }
500         }
501
502         acpi_put_table(tbl);
503 }
504
505 static int __init cppc_cpufreq_init(void)
506 {
507         if ((acpi_disabled) || !acpi_cpc_valid())
508                 return -ENODEV;
509
510         INIT_LIST_HEAD(&cpu_data_list);
511
512         cppc_check_hisi_workaround();
513
514         return cpufreq_register_driver(&cppc_cpufreq_driver);
515 }
516
517 static inline void free_cpu_data(void)
518 {
519         struct cppc_cpudata *iter, *tmp;
520
521         list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
522                 free_cpumask_var(iter->shared_cpu_map);
523                 list_del(&iter->node);
524                 kfree(iter);
525         }
526
527 }
528
529 static void __exit cppc_cpufreq_exit(void)
530 {
531         cpufreq_unregister_driver(&cppc_cpufreq_driver);
532
533         free_cpu_data();
534 }
535
536 module_exit(cppc_cpufreq_exit);
537 MODULE_AUTHOR("Ashwin Chaugule");
538 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
539 MODULE_LICENSE("GPL");
540
541 late_initcall(cppc_cpufreq_init);
542
543 static const struct acpi_device_id cppc_acpi_ids[] __used = {
544         {ACPI_PROCESSOR_DEVICE_HID, },
545         {}
546 };
547
548 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);