s390: update defconfigs
[linux-2.6-microblaze.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119
120         raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122         struct sh_cmt_channel *channels;
123         unsigned int num_channels;
124         unsigned int hw_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170         iowrite16(value, base + (offs << 1));
171 }
172
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175         iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179         [SH_CMT_16BIT] = {
180                 .model = SH_CMT_16BIT,
181                 .width = 16,
182                 .overflow_bit = SH_CMT16_CMCSR_CMF,
183                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184                 .read_control = sh_cmt_read16,
185                 .write_control = sh_cmt_write16,
186                 .read_count = sh_cmt_read16,
187                 .write_count = sh_cmt_write16,
188         },
189         [SH_CMT_32BIT] = {
190                 .model = SH_CMT_32BIT,
191                 .width = 32,
192                 .overflow_bit = SH_CMT32_CMCSR_CMF,
193                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194                 .read_control = sh_cmt_read16,
195                 .write_control = sh_cmt_write16,
196                 .read_count = sh_cmt_read32,
197                 .write_count = sh_cmt_write32,
198         },
199         [SH_CMT_48BIT] = {
200                 .model = SH_CMT_48BIT,
201                 .channels_mask = 0x3f,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read32,
206                 .write_control = sh_cmt_write32,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT0_RCAR_GEN2] = {
211                 .model = SH_CMT0_RCAR_GEN2,
212                 .channels_mask = 0x60,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT1_RCAR_GEN2] = {
222                 .model = SH_CMT1_RCAR_GEN2,
223                 .channels_mask = 0xff,
224                 .width = 32,
225                 .overflow_bit = SH_CMT32_CMCSR_CMF,
226                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227                 .read_control = sh_cmt_read32,
228                 .write_control = sh_cmt_write32,
229                 .read_count = sh_cmt_read32,
230                 .write_count = sh_cmt_write32,
231         },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240         if (ch->iostart)
241                 return ch->cmt->info->read_control(ch->iostart, 0);
242         else
243                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248         if (ch->iostart)
249                 ch->cmt->info->write_control(ch->iostart, 0, value);
250         else
251                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281         u32 v1, v2, v3;
282         u32 o1, o2;
283
284         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287         do {
288                 o2 = o1;
289                 v1 = sh_cmt_read_cmcnt(ch);
290                 v2 = sh_cmt_read_cmcnt(ch);
291                 v3 = sh_cmt_read_cmcnt(ch);
292                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296         *has_wrapped = o1;
297         return v2;
298 }
299
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302         unsigned long flags;
303         u32 value;
304
305         /* start stop register shared by multiple timer channels */
306         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307         value = sh_cmt_read_cmstr(ch);
308
309         if (start)
310                 value |= 1 << ch->timer_bit;
311         else
312                 value &= ~(1 << ch->timer_bit);
313
314         sh_cmt_write_cmstr(ch, value);
315         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320         int k, ret;
321
322         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
323
324         /* enable clock */
325         ret = clk_enable(ch->cmt->clk);
326         if (ret) {
327                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
328                         ch->index);
329                 goto err0;
330         }
331
332         /* make sure channel is disabled */
333         sh_cmt_start_stop_ch(ch, 0);
334
335         /* configure channel, periodic mode and maximum timeout */
336         if (ch->cmt->info->width == 16) {
337                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
338                                    SH_CMT16_CMCSR_CKS512);
339         } else {
340                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
341                                    SH_CMT32_CMCSR_CMTOUT_IE |
342                                    SH_CMT32_CMCSR_CMR_IRQ |
343                                    SH_CMT32_CMCSR_CKS_RCLK8);
344         }
345
346         sh_cmt_write_cmcor(ch, 0xffffffff);
347         sh_cmt_write_cmcnt(ch, 0);
348
349         /*
350          * According to the sh73a0 user's manual, as CMCNT can be operated
351          * only by the RCLK (Pseudo 32 kHz), there's one restriction on
352          * modifying CMCNT register; two RCLK cycles are necessary before
353          * this register is either read or any modification of the value
354          * it holds is reflected in the LSI's actual operation.
355          *
356          * While at it, we're supposed to clear out the CMCNT as of this
357          * moment, so make sure it's processed properly here.  This will
358          * take RCLKx2 at maximum.
359          */
360         for (k = 0; k < 100; k++) {
361                 if (!sh_cmt_read_cmcnt(ch))
362                         break;
363                 udelay(1);
364         }
365
366         if (sh_cmt_read_cmcnt(ch)) {
367                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
368                         ch->index);
369                 ret = -ETIMEDOUT;
370                 goto err1;
371         }
372
373         /* enable channel */
374         sh_cmt_start_stop_ch(ch, 1);
375         return 0;
376  err1:
377         /* stop clock */
378         clk_disable(ch->cmt->clk);
379
380  err0:
381         return ret;
382 }
383
384 static void sh_cmt_disable(struct sh_cmt_channel *ch)
385 {
386         /* disable channel */
387         sh_cmt_start_stop_ch(ch, 0);
388
389         /* disable interrupts in CMT block */
390         sh_cmt_write_cmcsr(ch, 0);
391
392         /* stop clock */
393         clk_disable(ch->cmt->clk);
394
395         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
396 }
397
398 /* private flags */
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
404
405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406                                               int absolute)
407 {
408         u32 value = ch->next_match_value;
409         u32 new_match;
410         u32 delay = 0;
411         u32 now = 0;
412         u32 has_wrapped;
413
414         now = sh_cmt_get_counter(ch, &has_wrapped);
415         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416
417         if (has_wrapped) {
418                 /* we're competing with the interrupt handler.
419                  *  -> let the interrupt handler reprogram the timer.
420                  *  -> interrupt number two handles the event.
421                  */
422                 ch->flags |= FLAG_SKIPEVENT;
423                 return;
424         }
425
426         if (absolute)
427                 now = 0;
428
429         do {
430                 /* reprogram the timer hardware,
431                  * but don't save the new match value yet.
432                  */
433                 new_match = now + value + delay;
434                 if (new_match > ch->max_match_value)
435                         new_match = ch->max_match_value;
436
437                 sh_cmt_write_cmcor(ch, new_match);
438
439                 now = sh_cmt_get_counter(ch, &has_wrapped);
440                 if (has_wrapped && (new_match > ch->match_value)) {
441                         /* we are changing to a greater match value,
442                          * so this wrap must be caused by the counter
443                          * matching the old value.
444                          * -> first interrupt reprograms the timer.
445                          * -> interrupt number two handles the event.
446                          */
447                         ch->flags |= FLAG_SKIPEVENT;
448                         break;
449                 }
450
451                 if (has_wrapped) {
452                         /* we are changing to a smaller match value,
453                          * so the wrap must be caused by the counter
454                          * matching the new value.
455                          * -> save programmed match value.
456                          * -> let isr handle the event.
457                          */
458                         ch->match_value = new_match;
459                         break;
460                 }
461
462                 /* be safe: verify hardware settings */
463                 if (now < new_match) {
464                         /* timer value is below match value, all good.
465                          * this makes sure we won't miss any match events.
466                          * -> save programmed match value.
467                          * -> let isr handle the event.
468                          */
469                         ch->match_value = new_match;
470                         break;
471                 }
472
473                 /* the counter has reached a value greater
474                  * than our new match value. and since the
475                  * has_wrapped flag isn't set we must have
476                  * programmed a too close event.
477                  * -> increase delay and retry.
478                  */
479                 if (delay)
480                         delay <<= 1;
481                 else
482                         delay = 1;
483
484                 if (!delay)
485                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486                                  ch->index);
487
488         } while (delay);
489 }
490
491 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492 {
493         if (delta > ch->max_match_value)
494                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495                          ch->index);
496
497         ch->next_match_value = delta;
498         sh_cmt_clock_event_program_verify(ch, 0);
499 }
500
501 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 {
503         unsigned long flags;
504
505         raw_spin_lock_irqsave(&ch->lock, flags);
506         __sh_cmt_set_next(ch, delta);
507         raw_spin_unlock_irqrestore(&ch->lock, flags);
508 }
509
510 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511 {
512         struct sh_cmt_channel *ch = dev_id;
513
514         /* clear flags */
515         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
516                            ch->cmt->info->clear_bits);
517
518         /* update clock source counter to begin with if enabled
519          * the wrap flag should be cleared by the timer specific
520          * isr before we end up here.
521          */
522         if (ch->flags & FLAG_CLOCKSOURCE)
523                 ch->total_cycles += ch->match_value + 1;
524
525         if (!(ch->flags & FLAG_REPROGRAM))
526                 ch->next_match_value = ch->max_match_value;
527
528         ch->flags |= FLAG_IRQCONTEXT;
529
530         if (ch->flags & FLAG_CLOCKEVENT) {
531                 if (!(ch->flags & FLAG_SKIPEVENT)) {
532                         if (clockevent_state_oneshot(&ch->ced)) {
533                                 ch->next_match_value = ch->max_match_value;
534                                 ch->flags |= FLAG_REPROGRAM;
535                         }
536
537                         ch->ced.event_handler(&ch->ced);
538                 }
539         }
540
541         ch->flags &= ~FLAG_SKIPEVENT;
542
543         if (ch->flags & FLAG_REPROGRAM) {
544                 ch->flags &= ~FLAG_REPROGRAM;
545                 sh_cmt_clock_event_program_verify(ch, 1);
546
547                 if (ch->flags & FLAG_CLOCKEVENT)
548                         if ((clockevent_state_shutdown(&ch->ced))
549                             || (ch->match_value == ch->next_match_value))
550                                 ch->flags &= ~FLAG_REPROGRAM;
551         }
552
553         ch->flags &= ~FLAG_IRQCONTEXT;
554
555         return IRQ_HANDLED;
556 }
557
558 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
559 {
560         int ret = 0;
561         unsigned long flags;
562
563         if (flag & FLAG_CLOCKSOURCE)
564                 pm_runtime_get_sync(&ch->cmt->pdev->dev);
565
566         raw_spin_lock_irqsave(&ch->lock, flags);
567
568         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
569                 if (flag & FLAG_CLOCKEVENT)
570                         pm_runtime_get_sync(&ch->cmt->pdev->dev);
571                 ret = sh_cmt_enable(ch);
572         }
573
574         if (ret)
575                 goto out;
576         ch->flags |= flag;
577
578         /* setup timeout if no clockevent */
579         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
580                 __sh_cmt_set_next(ch, ch->max_match_value);
581  out:
582         raw_spin_unlock_irqrestore(&ch->lock, flags);
583
584         return ret;
585 }
586
587 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
588 {
589         unsigned long flags;
590         unsigned long f;
591
592         raw_spin_lock_irqsave(&ch->lock, flags);
593
594         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595         ch->flags &= ~flag;
596
597         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
598                 sh_cmt_disable(ch);
599                 if (flag & FLAG_CLOCKEVENT)
600                         pm_runtime_put(&ch->cmt->pdev->dev);
601         }
602
603         /* adjust the timeout to maximum if only clocksource left */
604         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605                 __sh_cmt_set_next(ch, ch->max_match_value);
606
607         raw_spin_unlock_irqrestore(&ch->lock, flags);
608
609         if (flag & FLAG_CLOCKSOURCE)
610                 pm_runtime_put(&ch->cmt->pdev->dev);
611 }
612
613 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
614 {
615         return container_of(cs, struct sh_cmt_channel, cs);
616 }
617
618 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
619 {
620         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
621         unsigned long flags;
622         u32 has_wrapped;
623         u64 value;
624         u32 raw;
625
626         raw_spin_lock_irqsave(&ch->lock, flags);
627         value = ch->total_cycles;
628         raw = sh_cmt_get_counter(ch, &has_wrapped);
629
630         if (unlikely(has_wrapped))
631                 raw += ch->match_value + 1;
632         raw_spin_unlock_irqrestore(&ch->lock, flags);
633
634         return value + raw;
635 }
636
637 static int sh_cmt_clocksource_enable(struct clocksource *cs)
638 {
639         int ret;
640         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641
642         WARN_ON(ch->cs_enabled);
643
644         ch->total_cycles = 0;
645
646         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
647         if (!ret)
648                 ch->cs_enabled = true;
649
650         return ret;
651 }
652
653 static void sh_cmt_clocksource_disable(struct clocksource *cs)
654 {
655         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657         WARN_ON(!ch->cs_enabled);
658
659         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
660         ch->cs_enabled = false;
661 }
662
663 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
664 {
665         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666
667         if (!ch->cs_enabled)
668                 return;
669
670         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
671         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
672 }
673
674 static void sh_cmt_clocksource_resume(struct clocksource *cs)
675 {
676         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
677
678         if (!ch->cs_enabled)
679                 return;
680
681         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
682         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
683 }
684
685 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
686                                        const char *name)
687 {
688         struct clocksource *cs = &ch->cs;
689
690         cs->name = name;
691         cs->rating = 125;
692         cs->read = sh_cmt_clocksource_read;
693         cs->enable = sh_cmt_clocksource_enable;
694         cs->disable = sh_cmt_clocksource_disable;
695         cs->suspend = sh_cmt_clocksource_suspend;
696         cs->resume = sh_cmt_clocksource_resume;
697         cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
698         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
699
700         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
701                  ch->index);
702
703         clocksource_register_hz(cs, ch->cmt->rate);
704         return 0;
705 }
706
707 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
708 {
709         return container_of(ced, struct sh_cmt_channel, ced);
710 }
711
712 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
713 {
714         sh_cmt_start(ch, FLAG_CLOCKEVENT);
715
716         if (periodic)
717                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
718         else
719                 sh_cmt_set_next(ch, ch->max_match_value);
720 }
721
722 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
723 {
724         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725
726         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
727         return 0;
728 }
729
730 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
731                                         int periodic)
732 {
733         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
734
735         /* deal with old setting first */
736         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
737                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
738
739         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
740                  ch->index, periodic ? "periodic" : "oneshot");
741         sh_cmt_clock_event_start(ch, periodic);
742         return 0;
743 }
744
745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
746 {
747         return sh_cmt_clock_event_set_state(ced, 0);
748 }
749
750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
751 {
752         return sh_cmt_clock_event_set_state(ced, 1);
753 }
754
755 static int sh_cmt_clock_event_next(unsigned long delta,
756                                    struct clock_event_device *ced)
757 {
758         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759
760         BUG_ON(!clockevent_state_oneshot(ced));
761         if (likely(ch->flags & FLAG_IRQCONTEXT))
762                 ch->next_match_value = delta - 1;
763         else
764                 sh_cmt_set_next(ch, delta - 1);
765
766         return 0;
767 }
768
769 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
770 {
771         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
772
773         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
774         clk_unprepare(ch->cmt->clk);
775 }
776
777 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
778 {
779         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
780
781         clk_prepare(ch->cmt->clk);
782         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
783 }
784
785 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
786                                       const char *name)
787 {
788         struct clock_event_device *ced = &ch->ced;
789         int irq;
790         int ret;
791
792         irq = platform_get_irq(ch->cmt->pdev, ch->index);
793         if (irq < 0)
794                 return irq;
795
796         ret = request_irq(irq, sh_cmt_interrupt,
797                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
798                           dev_name(&ch->cmt->pdev->dev), ch);
799         if (ret) {
800                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
801                         ch->index, irq);
802                 return ret;
803         }
804
805         ced->name = name;
806         ced->features = CLOCK_EVT_FEAT_PERIODIC;
807         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
808         ced->rating = 125;
809         ced->cpumask = cpu_possible_mask;
810         ced->set_next_event = sh_cmt_clock_event_next;
811         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
812         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
813         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
814         ced->suspend = sh_cmt_clock_event_suspend;
815         ced->resume = sh_cmt_clock_event_resume;
816
817         /* TODO: calculate good shift from rate and counter bit width */
818         ced->shift = 32;
819         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
820         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
821         ced->max_delta_ticks = ch->max_match_value;
822         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
823         ced->min_delta_ticks = 0x1f;
824
825         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
826                  ch->index);
827         clockevents_register_device(ced);
828
829         return 0;
830 }
831
832 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
833                            bool clockevent, bool clocksource)
834 {
835         int ret;
836
837         if (clockevent) {
838                 ch->cmt->has_clockevent = true;
839                 ret = sh_cmt_register_clockevent(ch, name);
840                 if (ret < 0)
841                         return ret;
842         }
843
844         if (clocksource) {
845                 ch->cmt->has_clocksource = true;
846                 sh_cmt_register_clocksource(ch, name);
847         }
848
849         return 0;
850 }
851
852 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
853                                 unsigned int hwidx, bool clockevent,
854                                 bool clocksource, struct sh_cmt_device *cmt)
855 {
856         int ret;
857
858         /* Skip unused channels. */
859         if (!clockevent && !clocksource)
860                 return 0;
861
862         ch->cmt = cmt;
863         ch->index = index;
864         ch->hwidx = hwidx;
865         ch->timer_bit = hwidx;
866
867         /*
868          * Compute the address of the channel control register block. For the
869          * timers with a per-channel start/stop register, compute its address
870          * as well.
871          */
872         switch (cmt->info->model) {
873         case SH_CMT_16BIT:
874                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
875                 break;
876         case SH_CMT_32BIT:
877         case SH_CMT_48BIT:
878                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
879                 break;
880         case SH_CMT0_RCAR_GEN2:
881         case SH_CMT1_RCAR_GEN2:
882                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
883                 ch->ioctrl = ch->iostart + 0x10;
884                 ch->timer_bit = 0;
885                 break;
886         }
887
888         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
889                 ch->max_match_value = ~0;
890         else
891                 ch->max_match_value = (1 << cmt->info->width) - 1;
892
893         ch->match_value = ch->max_match_value;
894         raw_spin_lock_init(&ch->lock);
895
896         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
897                               clockevent, clocksource);
898         if (ret) {
899                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
900                         ch->index);
901                 return ret;
902         }
903         ch->cs_enabled = false;
904
905         return 0;
906 }
907
908 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
909 {
910         struct resource *mem;
911
912         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
913         if (!mem) {
914                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
915                 return -ENXIO;
916         }
917
918         cmt->mapbase = ioremap(mem->start, resource_size(mem));
919         if (cmt->mapbase == NULL) {
920                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
921                 return -ENXIO;
922         }
923
924         return 0;
925 }
926
927 static const struct platform_device_id sh_cmt_id_table[] = {
928         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
929         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
930         { }
931 };
932 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
933
934 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
935         {
936                 /* deprecated, preserved for backward compatibility */
937                 .compatible = "renesas,cmt-48",
938                 .data = &sh_cmt_info[SH_CMT_48BIT]
939         },
940         {
941                 /* deprecated, preserved for backward compatibility */
942                 .compatible = "renesas,cmt-48-gen2",
943                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
944         },
945         {
946                 .compatible = "renesas,r8a7740-cmt1",
947                 .data = &sh_cmt_info[SH_CMT_48BIT]
948         },
949         {
950                 .compatible = "renesas,sh73a0-cmt1",
951                 .data = &sh_cmt_info[SH_CMT_48BIT]
952         },
953         {
954                 .compatible = "renesas,rcar-gen2-cmt0",
955                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
956         },
957         {
958                 .compatible = "renesas,rcar-gen2-cmt1",
959                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
960         },
961         {
962                 .compatible = "renesas,rcar-gen3-cmt0",
963                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964         },
965         {
966                 .compatible = "renesas,rcar-gen3-cmt1",
967                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
968         },
969         { }
970 };
971 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
972
973 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
974 {
975         unsigned int mask;
976         unsigned int i;
977         int ret;
978
979         cmt->pdev = pdev;
980         raw_spin_lock_init(&cmt->lock);
981
982         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
983                 cmt->info = of_device_get_match_data(&pdev->dev);
984                 cmt->hw_channels = cmt->info->channels_mask;
985         } else if (pdev->dev.platform_data) {
986                 struct sh_timer_config *cfg = pdev->dev.platform_data;
987                 const struct platform_device_id *id = pdev->id_entry;
988
989                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
990                 cmt->hw_channels = cfg->channels_mask;
991         } else {
992                 dev_err(&cmt->pdev->dev, "missing platform data\n");
993                 return -ENXIO;
994         }
995
996         /* Get hold of clock. */
997         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
998         if (IS_ERR(cmt->clk)) {
999                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1000                 return PTR_ERR(cmt->clk);
1001         }
1002
1003         ret = clk_prepare(cmt->clk);
1004         if (ret < 0)
1005                 goto err_clk_put;
1006
1007         /* Determine clock rate. */
1008         ret = clk_enable(cmt->clk);
1009         if (ret < 0)
1010                 goto err_clk_unprepare;
1011
1012         if (cmt->info->width == 16)
1013                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1014         else
1015                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1016
1017         clk_disable(cmt->clk);
1018
1019         /* Map the memory resource(s). */
1020         ret = sh_cmt_map_memory(cmt);
1021         if (ret < 0)
1022                 goto err_clk_unprepare;
1023
1024         /* Allocate and setup the channels. */
1025         cmt->num_channels = hweight8(cmt->hw_channels);
1026         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1027                                 GFP_KERNEL);
1028         if (cmt->channels == NULL) {
1029                 ret = -ENOMEM;
1030                 goto err_unmap;
1031         }
1032
1033         /*
1034          * Use the first channel as a clock event device and the second channel
1035          * as a clock source. If only one channel is available use it for both.
1036          */
1037         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1038                 unsigned int hwidx = ffs(mask) - 1;
1039                 bool clocksource = i == 1 || cmt->num_channels == 1;
1040                 bool clockevent = i == 0;
1041
1042                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1043                                            clockevent, clocksource, cmt);
1044                 if (ret < 0)
1045                         goto err_unmap;
1046
1047                 mask &= ~(1 << hwidx);
1048         }
1049
1050         platform_set_drvdata(pdev, cmt);
1051
1052         return 0;
1053
1054 err_unmap:
1055         kfree(cmt->channels);
1056         iounmap(cmt->mapbase);
1057 err_clk_unprepare:
1058         clk_unprepare(cmt->clk);
1059 err_clk_put:
1060         clk_put(cmt->clk);
1061         return ret;
1062 }
1063
1064 static int sh_cmt_probe(struct platform_device *pdev)
1065 {
1066         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1067         int ret;
1068
1069         if (!is_sh_early_platform_device(pdev)) {
1070                 pm_runtime_set_active(&pdev->dev);
1071                 pm_runtime_enable(&pdev->dev);
1072         }
1073
1074         if (cmt) {
1075                 dev_info(&pdev->dev, "kept as earlytimer\n");
1076                 goto out;
1077         }
1078
1079         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1080         if (cmt == NULL)
1081                 return -ENOMEM;
1082
1083         ret = sh_cmt_setup(cmt, pdev);
1084         if (ret) {
1085                 kfree(cmt);
1086                 pm_runtime_idle(&pdev->dev);
1087                 return ret;
1088         }
1089         if (is_sh_early_platform_device(pdev))
1090                 return 0;
1091
1092  out:
1093         if (cmt->has_clockevent || cmt->has_clocksource)
1094                 pm_runtime_irq_safe(&pdev->dev);
1095         else
1096                 pm_runtime_idle(&pdev->dev);
1097
1098         return 0;
1099 }
1100
1101 static int sh_cmt_remove(struct platform_device *pdev)
1102 {
1103         return -EBUSY; /* cannot unregister clockevent and clocksource */
1104 }
1105
1106 static struct platform_driver sh_cmt_device_driver = {
1107         .probe          = sh_cmt_probe,
1108         .remove         = sh_cmt_remove,
1109         .driver         = {
1110                 .name   = "sh_cmt",
1111                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1112         },
1113         .id_table       = sh_cmt_id_table,
1114 };
1115
1116 static int __init sh_cmt_init(void)
1117 {
1118         return platform_driver_register(&sh_cmt_device_driver);
1119 }
1120
1121 static void __exit sh_cmt_exit(void)
1122 {
1123         platform_driver_unregister(&sh_cmt_device_driver);
1124 }
1125
1126 #ifdef CONFIG_SUPERH
1127 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1128 #endif
1129
1130 subsys_initcall(sh_cmt_init);
1131 module_exit(sh_cmt_exit);
1132
1133 MODULE_AUTHOR("Magnus Damm");
1134 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1135 MODULE_LICENSE("GPL v2");