xen/swiotlb: check if the swiotlb has already been initialized
[linux-2.6-microblaze.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119
120         raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122         struct sh_cmt_channel *channels;
123         unsigned int num_channels;
124         unsigned int hw_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170         iowrite16(value, base + (offs << 1));
171 }
172
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175         iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179         [SH_CMT_16BIT] = {
180                 .model = SH_CMT_16BIT,
181                 .width = 16,
182                 .overflow_bit = SH_CMT16_CMCSR_CMF,
183                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184                 .read_control = sh_cmt_read16,
185                 .write_control = sh_cmt_write16,
186                 .read_count = sh_cmt_read16,
187                 .write_count = sh_cmt_write16,
188         },
189         [SH_CMT_32BIT] = {
190                 .model = SH_CMT_32BIT,
191                 .width = 32,
192                 .overflow_bit = SH_CMT32_CMCSR_CMF,
193                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194                 .read_control = sh_cmt_read16,
195                 .write_control = sh_cmt_write16,
196                 .read_count = sh_cmt_read32,
197                 .write_count = sh_cmt_write32,
198         },
199         [SH_CMT_48BIT] = {
200                 .model = SH_CMT_48BIT,
201                 .channels_mask = 0x3f,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read32,
206                 .write_control = sh_cmt_write32,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT0_RCAR_GEN2] = {
211                 .model = SH_CMT0_RCAR_GEN2,
212                 .channels_mask = 0x60,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT1_RCAR_GEN2] = {
222                 .model = SH_CMT1_RCAR_GEN2,
223                 .channels_mask = 0xff,
224                 .width = 32,
225                 .overflow_bit = SH_CMT32_CMCSR_CMF,
226                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227                 .read_control = sh_cmt_read32,
228                 .write_control = sh_cmt_write32,
229                 .read_count = sh_cmt_read32,
230                 .write_count = sh_cmt_write32,
231         },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
238 #define CMCLKE  0x1000  /* CLK Enable Register (R-Car Gen2) */
239
240 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
241 {
242         if (ch->iostart)
243                 return ch->cmt->info->read_control(ch->iostart, 0);
244         else
245                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
246 }
247
248 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
249 {
250         if (ch->iostart)
251                 ch->cmt->info->write_control(ch->iostart, 0, value);
252         else
253                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255
256 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
262 {
263         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
264 }
265
266 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
267 {
268         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
269 }
270
271 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
272 {
273         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
277 {
278         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
279 }
280
281 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
282 {
283         u32 v1, v2, v3;
284         u32 o1, o2;
285
286         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
287
288         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289         do {
290                 o2 = o1;
291                 v1 = sh_cmt_read_cmcnt(ch);
292                 v2 = sh_cmt_read_cmcnt(ch);
293                 v3 = sh_cmt_read_cmcnt(ch);
294                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
295         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
297
298         *has_wrapped = o1;
299         return v2;
300 }
301
302 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
303 {
304         unsigned long flags;
305         u32 value;
306
307         /* start stop register shared by multiple timer channels */
308         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
309         value = sh_cmt_read_cmstr(ch);
310
311         if (start)
312                 value |= 1 << ch->timer_bit;
313         else
314                 value &= ~(1 << ch->timer_bit);
315
316         sh_cmt_write_cmstr(ch, value);
317         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
318 }
319
320 static int sh_cmt_enable(struct sh_cmt_channel *ch)
321 {
322         int k, ret;
323
324         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
325
326         /* enable clock */
327         ret = clk_enable(ch->cmt->clk);
328         if (ret) {
329                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
330                         ch->index);
331                 goto err0;
332         }
333
334         /* make sure channel is disabled */
335         sh_cmt_start_stop_ch(ch, 0);
336
337         /* configure channel, periodic mode and maximum timeout */
338         if (ch->cmt->info->width == 16) {
339                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
340                                    SH_CMT16_CMCSR_CKS512);
341         } else {
342                 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
343                               SH_CMT32_CMCSR_CMTOUT_IE : 0;
344                 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
345                                    SH_CMT32_CMCSR_CMR_IRQ |
346                                    SH_CMT32_CMCSR_CKS_RCLK8);
347         }
348
349         sh_cmt_write_cmcor(ch, 0xffffffff);
350         sh_cmt_write_cmcnt(ch, 0);
351
352         /*
353          * According to the sh73a0 user's manual, as CMCNT can be operated
354          * only by the RCLK (Pseudo 32 kHz), there's one restriction on
355          * modifying CMCNT register; two RCLK cycles are necessary before
356          * this register is either read or any modification of the value
357          * it holds is reflected in the LSI's actual operation.
358          *
359          * While at it, we're supposed to clear out the CMCNT as of this
360          * moment, so make sure it's processed properly here.  This will
361          * take RCLKx2 at maximum.
362          */
363         for (k = 0; k < 100; k++) {
364                 if (!sh_cmt_read_cmcnt(ch))
365                         break;
366                 udelay(1);
367         }
368
369         if (sh_cmt_read_cmcnt(ch)) {
370                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
371                         ch->index);
372                 ret = -ETIMEDOUT;
373                 goto err1;
374         }
375
376         /* enable channel */
377         sh_cmt_start_stop_ch(ch, 1);
378         return 0;
379  err1:
380         /* stop clock */
381         clk_disable(ch->cmt->clk);
382
383  err0:
384         return ret;
385 }
386
387 static void sh_cmt_disable(struct sh_cmt_channel *ch)
388 {
389         /* disable channel */
390         sh_cmt_start_stop_ch(ch, 0);
391
392         /* disable interrupts in CMT block */
393         sh_cmt_write_cmcsr(ch, 0);
394
395         /* stop clock */
396         clk_disable(ch->cmt->clk);
397
398         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
399 }
400
401 /* private flags */
402 #define FLAG_CLOCKEVENT (1 << 0)
403 #define FLAG_CLOCKSOURCE (1 << 1)
404 #define FLAG_REPROGRAM (1 << 2)
405 #define FLAG_SKIPEVENT (1 << 3)
406 #define FLAG_IRQCONTEXT (1 << 4)
407
408 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
409                                               int absolute)
410 {
411         u32 value = ch->next_match_value;
412         u32 new_match;
413         u32 delay = 0;
414         u32 now = 0;
415         u32 has_wrapped;
416
417         now = sh_cmt_get_counter(ch, &has_wrapped);
418         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
419
420         if (has_wrapped) {
421                 /* we're competing with the interrupt handler.
422                  *  -> let the interrupt handler reprogram the timer.
423                  *  -> interrupt number two handles the event.
424                  */
425                 ch->flags |= FLAG_SKIPEVENT;
426                 return;
427         }
428
429         if (absolute)
430                 now = 0;
431
432         do {
433                 /* reprogram the timer hardware,
434                  * but don't save the new match value yet.
435                  */
436                 new_match = now + value + delay;
437                 if (new_match > ch->max_match_value)
438                         new_match = ch->max_match_value;
439
440                 sh_cmt_write_cmcor(ch, new_match);
441
442                 now = sh_cmt_get_counter(ch, &has_wrapped);
443                 if (has_wrapped && (new_match > ch->match_value)) {
444                         /* we are changing to a greater match value,
445                          * so this wrap must be caused by the counter
446                          * matching the old value.
447                          * -> first interrupt reprograms the timer.
448                          * -> interrupt number two handles the event.
449                          */
450                         ch->flags |= FLAG_SKIPEVENT;
451                         break;
452                 }
453
454                 if (has_wrapped) {
455                         /* we are changing to a smaller match value,
456                          * so the wrap must be caused by the counter
457                          * matching the new value.
458                          * -> save programmed match value.
459                          * -> let isr handle the event.
460                          */
461                         ch->match_value = new_match;
462                         break;
463                 }
464
465                 /* be safe: verify hardware settings */
466                 if (now < new_match) {
467                         /* timer value is below match value, all good.
468                          * this makes sure we won't miss any match events.
469                          * -> save programmed match value.
470                          * -> let isr handle the event.
471                          */
472                         ch->match_value = new_match;
473                         break;
474                 }
475
476                 /* the counter has reached a value greater
477                  * than our new match value. and since the
478                  * has_wrapped flag isn't set we must have
479                  * programmed a too close event.
480                  * -> increase delay and retry.
481                  */
482                 if (delay)
483                         delay <<= 1;
484                 else
485                         delay = 1;
486
487                 if (!delay)
488                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
489                                  ch->index);
490
491         } while (delay);
492 }
493
494 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
495 {
496         if (delta > ch->max_match_value)
497                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
498                          ch->index);
499
500         ch->next_match_value = delta;
501         sh_cmt_clock_event_program_verify(ch, 0);
502 }
503
504 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
505 {
506         unsigned long flags;
507
508         raw_spin_lock_irqsave(&ch->lock, flags);
509         __sh_cmt_set_next(ch, delta);
510         raw_spin_unlock_irqrestore(&ch->lock, flags);
511 }
512
513 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
514 {
515         struct sh_cmt_channel *ch = dev_id;
516
517         /* clear flags */
518         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
519                            ch->cmt->info->clear_bits);
520
521         /* update clock source counter to begin with if enabled
522          * the wrap flag should be cleared by the timer specific
523          * isr before we end up here.
524          */
525         if (ch->flags & FLAG_CLOCKSOURCE)
526                 ch->total_cycles += ch->match_value + 1;
527
528         if (!(ch->flags & FLAG_REPROGRAM))
529                 ch->next_match_value = ch->max_match_value;
530
531         ch->flags |= FLAG_IRQCONTEXT;
532
533         if (ch->flags & FLAG_CLOCKEVENT) {
534                 if (!(ch->flags & FLAG_SKIPEVENT)) {
535                         if (clockevent_state_oneshot(&ch->ced)) {
536                                 ch->next_match_value = ch->max_match_value;
537                                 ch->flags |= FLAG_REPROGRAM;
538                         }
539
540                         ch->ced.event_handler(&ch->ced);
541                 }
542         }
543
544         ch->flags &= ~FLAG_SKIPEVENT;
545
546         if (ch->flags & FLAG_REPROGRAM) {
547                 ch->flags &= ~FLAG_REPROGRAM;
548                 sh_cmt_clock_event_program_verify(ch, 1);
549
550                 if (ch->flags & FLAG_CLOCKEVENT)
551                         if ((clockevent_state_shutdown(&ch->ced))
552                             || (ch->match_value == ch->next_match_value))
553                                 ch->flags &= ~FLAG_REPROGRAM;
554         }
555
556         ch->flags &= ~FLAG_IRQCONTEXT;
557
558         return IRQ_HANDLED;
559 }
560
561 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
562 {
563         int ret = 0;
564         unsigned long flags;
565
566         if (flag & FLAG_CLOCKSOURCE)
567                 pm_runtime_get_sync(&ch->cmt->pdev->dev);
568
569         raw_spin_lock_irqsave(&ch->lock, flags);
570
571         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
572                 if (flag & FLAG_CLOCKEVENT)
573                         pm_runtime_get_sync(&ch->cmt->pdev->dev);
574                 ret = sh_cmt_enable(ch);
575         }
576
577         if (ret)
578                 goto out;
579         ch->flags |= flag;
580
581         /* setup timeout if no clockevent */
582         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583                 __sh_cmt_set_next(ch, ch->max_match_value);
584  out:
585         raw_spin_unlock_irqrestore(&ch->lock, flags);
586
587         return ret;
588 }
589
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591 {
592         unsigned long flags;
593         unsigned long f;
594
595         raw_spin_lock_irqsave(&ch->lock, flags);
596
597         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598         ch->flags &= ~flag;
599
600         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
601                 sh_cmt_disable(ch);
602                 if (flag & FLAG_CLOCKEVENT)
603                         pm_runtime_put(&ch->cmt->pdev->dev);
604         }
605
606         /* adjust the timeout to maximum if only clocksource left */
607         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
608                 __sh_cmt_set_next(ch, ch->max_match_value);
609
610         raw_spin_unlock_irqrestore(&ch->lock, flags);
611
612         if (flag & FLAG_CLOCKSOURCE)
613                 pm_runtime_put(&ch->cmt->pdev->dev);
614 }
615
616 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
617 {
618         return container_of(cs, struct sh_cmt_channel, cs);
619 }
620
621 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
622 {
623         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
624         unsigned long flags;
625         u32 has_wrapped;
626         u64 value;
627         u32 raw;
628
629         raw_spin_lock_irqsave(&ch->lock, flags);
630         value = ch->total_cycles;
631         raw = sh_cmt_get_counter(ch, &has_wrapped);
632
633         if (unlikely(has_wrapped))
634                 raw += ch->match_value + 1;
635         raw_spin_unlock_irqrestore(&ch->lock, flags);
636
637         return value + raw;
638 }
639
640 static int sh_cmt_clocksource_enable(struct clocksource *cs)
641 {
642         int ret;
643         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
644
645         WARN_ON(ch->cs_enabled);
646
647         ch->total_cycles = 0;
648
649         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
650         if (!ret)
651                 ch->cs_enabled = true;
652
653         return ret;
654 }
655
656 static void sh_cmt_clocksource_disable(struct clocksource *cs)
657 {
658         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
659
660         WARN_ON(!ch->cs_enabled);
661
662         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
663         ch->cs_enabled = false;
664 }
665
666 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
667 {
668         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
669
670         if (!ch->cs_enabled)
671                 return;
672
673         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
674         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
675 }
676
677 static void sh_cmt_clocksource_resume(struct clocksource *cs)
678 {
679         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680
681         if (!ch->cs_enabled)
682                 return;
683
684         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
685         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
686 }
687
688 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
689                                        const char *name)
690 {
691         struct clocksource *cs = &ch->cs;
692
693         cs->name = name;
694         cs->rating = 125;
695         cs->read = sh_cmt_clocksource_read;
696         cs->enable = sh_cmt_clocksource_enable;
697         cs->disable = sh_cmt_clocksource_disable;
698         cs->suspend = sh_cmt_clocksource_suspend;
699         cs->resume = sh_cmt_clocksource_resume;
700         cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
701         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
702
703         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
704                  ch->index);
705
706         clocksource_register_hz(cs, ch->cmt->rate);
707         return 0;
708 }
709
710 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
711 {
712         return container_of(ced, struct sh_cmt_channel, ced);
713 }
714
715 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
716 {
717         sh_cmt_start(ch, FLAG_CLOCKEVENT);
718
719         if (periodic)
720                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
721         else
722                 sh_cmt_set_next(ch, ch->max_match_value);
723 }
724
725 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
726 {
727         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
730         return 0;
731 }
732
733 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
734                                         int periodic)
735 {
736         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
737
738         /* deal with old setting first */
739         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
740                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
741
742         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
743                  ch->index, periodic ? "periodic" : "oneshot");
744         sh_cmt_clock_event_start(ch, periodic);
745         return 0;
746 }
747
748 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
749 {
750         return sh_cmt_clock_event_set_state(ced, 0);
751 }
752
753 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
754 {
755         return sh_cmt_clock_event_set_state(ced, 1);
756 }
757
758 static int sh_cmt_clock_event_next(unsigned long delta,
759                                    struct clock_event_device *ced)
760 {
761         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763         BUG_ON(!clockevent_state_oneshot(ced));
764         if (likely(ch->flags & FLAG_IRQCONTEXT))
765                 ch->next_match_value = delta - 1;
766         else
767                 sh_cmt_set_next(ch, delta - 1);
768
769         return 0;
770 }
771
772 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773 {
774         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
775
776         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
777         clk_unprepare(ch->cmt->clk);
778 }
779
780 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781 {
782         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783
784         clk_prepare(ch->cmt->clk);
785         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
786 }
787
788 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789                                       const char *name)
790 {
791         struct clock_event_device *ced = &ch->ced;
792         int irq;
793         int ret;
794
795         irq = platform_get_irq(ch->cmt->pdev, ch->index);
796         if (irq < 0)
797                 return irq;
798
799         ret = request_irq(irq, sh_cmt_interrupt,
800                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
801                           dev_name(&ch->cmt->pdev->dev), ch);
802         if (ret) {
803                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
804                         ch->index, irq);
805                 return ret;
806         }
807
808         ced->name = name;
809         ced->features = CLOCK_EVT_FEAT_PERIODIC;
810         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
811         ced->rating = 125;
812         ced->cpumask = cpu_possible_mask;
813         ced->set_next_event = sh_cmt_clock_event_next;
814         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
815         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
816         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
817         ced->suspend = sh_cmt_clock_event_suspend;
818         ced->resume = sh_cmt_clock_event_resume;
819
820         /* TODO: calculate good shift from rate and counter bit width */
821         ced->shift = 32;
822         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
823         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
824         ced->max_delta_ticks = ch->max_match_value;
825         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
826         ced->min_delta_ticks = 0x1f;
827
828         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
829                  ch->index);
830         clockevents_register_device(ced);
831
832         return 0;
833 }
834
835 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
836                            bool clockevent, bool clocksource)
837 {
838         int ret;
839
840         if (clockevent) {
841                 ch->cmt->has_clockevent = true;
842                 ret = sh_cmt_register_clockevent(ch, name);
843                 if (ret < 0)
844                         return ret;
845         }
846
847         if (clocksource) {
848                 ch->cmt->has_clocksource = true;
849                 sh_cmt_register_clocksource(ch, name);
850         }
851
852         return 0;
853 }
854
855 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
856                                 unsigned int hwidx, bool clockevent,
857                                 bool clocksource, struct sh_cmt_device *cmt)
858 {
859         u32 value;
860         int ret;
861
862         /* Skip unused channels. */
863         if (!clockevent && !clocksource)
864                 return 0;
865
866         ch->cmt = cmt;
867         ch->index = index;
868         ch->hwidx = hwidx;
869         ch->timer_bit = hwidx;
870
871         /*
872          * Compute the address of the channel control register block. For the
873          * timers with a per-channel start/stop register, compute its address
874          * as well.
875          */
876         switch (cmt->info->model) {
877         case SH_CMT_16BIT:
878                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
879                 break;
880         case SH_CMT_32BIT:
881         case SH_CMT_48BIT:
882                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
883                 break;
884         case SH_CMT0_RCAR_GEN2:
885         case SH_CMT1_RCAR_GEN2:
886                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
887                 ch->ioctrl = ch->iostart + 0x10;
888                 ch->timer_bit = 0;
889
890                 /* Enable the clock supply to the channel */
891                 value = ioread32(cmt->mapbase + CMCLKE);
892                 value |= BIT(hwidx);
893                 iowrite32(value, cmt->mapbase + CMCLKE);
894                 break;
895         }
896
897         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
898                 ch->max_match_value = ~0;
899         else
900                 ch->max_match_value = (1 << cmt->info->width) - 1;
901
902         ch->match_value = ch->max_match_value;
903         raw_spin_lock_init(&ch->lock);
904
905         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
906                               clockevent, clocksource);
907         if (ret) {
908                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
909                         ch->index);
910                 return ret;
911         }
912         ch->cs_enabled = false;
913
914         return 0;
915 }
916
917 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
918 {
919         struct resource *mem;
920
921         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
922         if (!mem) {
923                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
924                 return -ENXIO;
925         }
926
927         cmt->mapbase = ioremap(mem->start, resource_size(mem));
928         if (cmt->mapbase == NULL) {
929                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
930                 return -ENXIO;
931         }
932
933         return 0;
934 }
935
936 static const struct platform_device_id sh_cmt_id_table[] = {
937         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
938         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
939         { }
940 };
941 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
942
943 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
944         {
945                 /* deprecated, preserved for backward compatibility */
946                 .compatible = "renesas,cmt-48",
947                 .data = &sh_cmt_info[SH_CMT_48BIT]
948         },
949         {
950                 /* deprecated, preserved for backward compatibility */
951                 .compatible = "renesas,cmt-48-gen2",
952                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
953         },
954         {
955                 .compatible = "renesas,r8a7740-cmt1",
956                 .data = &sh_cmt_info[SH_CMT_48BIT]
957         },
958         {
959                 .compatible = "renesas,sh73a0-cmt1",
960                 .data = &sh_cmt_info[SH_CMT_48BIT]
961         },
962         {
963                 .compatible = "renesas,rcar-gen2-cmt0",
964                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
965         },
966         {
967                 .compatible = "renesas,rcar-gen2-cmt1",
968                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
969         },
970         {
971                 .compatible = "renesas,rcar-gen3-cmt0",
972                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
973         },
974         {
975                 .compatible = "renesas,rcar-gen3-cmt1",
976                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
977         },
978         { }
979 };
980 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
981
982 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
983 {
984         unsigned int mask;
985         unsigned int i;
986         int ret;
987
988         cmt->pdev = pdev;
989         raw_spin_lock_init(&cmt->lock);
990
991         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
992                 cmt->info = of_device_get_match_data(&pdev->dev);
993                 cmt->hw_channels = cmt->info->channels_mask;
994         } else if (pdev->dev.platform_data) {
995                 struct sh_timer_config *cfg = pdev->dev.platform_data;
996                 const struct platform_device_id *id = pdev->id_entry;
997
998                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
999                 cmt->hw_channels = cfg->channels_mask;
1000         } else {
1001                 dev_err(&cmt->pdev->dev, "missing platform data\n");
1002                 return -ENXIO;
1003         }
1004
1005         /* Get hold of clock. */
1006         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1007         if (IS_ERR(cmt->clk)) {
1008                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1009                 return PTR_ERR(cmt->clk);
1010         }
1011
1012         ret = clk_prepare(cmt->clk);
1013         if (ret < 0)
1014                 goto err_clk_put;
1015
1016         /* Determine clock rate. */
1017         ret = clk_enable(cmt->clk);
1018         if (ret < 0)
1019                 goto err_clk_unprepare;
1020
1021         if (cmt->info->width == 16)
1022                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1023         else
1024                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1025
1026         /* Map the memory resource(s). */
1027         ret = sh_cmt_map_memory(cmt);
1028         if (ret < 0)
1029                 goto err_clk_disable;
1030
1031         /* Allocate and setup the channels. */
1032         cmt->num_channels = hweight8(cmt->hw_channels);
1033         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1034                                 GFP_KERNEL);
1035         if (cmt->channels == NULL) {
1036                 ret = -ENOMEM;
1037                 goto err_unmap;
1038         }
1039
1040         /*
1041          * Use the first channel as a clock event device and the second channel
1042          * as a clock source. If only one channel is available use it for both.
1043          */
1044         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1045                 unsigned int hwidx = ffs(mask) - 1;
1046                 bool clocksource = i == 1 || cmt->num_channels == 1;
1047                 bool clockevent = i == 0;
1048
1049                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1050                                            clockevent, clocksource, cmt);
1051                 if (ret < 0)
1052                         goto err_unmap;
1053
1054                 mask &= ~(1 << hwidx);
1055         }
1056
1057         clk_disable(cmt->clk);
1058
1059         platform_set_drvdata(pdev, cmt);
1060
1061         return 0;
1062
1063 err_unmap:
1064         kfree(cmt->channels);
1065         iounmap(cmt->mapbase);
1066 err_clk_disable:
1067         clk_disable(cmt->clk);
1068 err_clk_unprepare:
1069         clk_unprepare(cmt->clk);
1070 err_clk_put:
1071         clk_put(cmt->clk);
1072         return ret;
1073 }
1074
1075 static int sh_cmt_probe(struct platform_device *pdev)
1076 {
1077         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1078         int ret;
1079
1080         if (!is_sh_early_platform_device(pdev)) {
1081                 pm_runtime_set_active(&pdev->dev);
1082                 pm_runtime_enable(&pdev->dev);
1083         }
1084
1085         if (cmt) {
1086                 dev_info(&pdev->dev, "kept as earlytimer\n");
1087                 goto out;
1088         }
1089
1090         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1091         if (cmt == NULL)
1092                 return -ENOMEM;
1093
1094         ret = sh_cmt_setup(cmt, pdev);
1095         if (ret) {
1096                 kfree(cmt);
1097                 pm_runtime_idle(&pdev->dev);
1098                 return ret;
1099         }
1100         if (is_sh_early_platform_device(pdev))
1101                 return 0;
1102
1103  out:
1104         if (cmt->has_clockevent || cmt->has_clocksource)
1105                 pm_runtime_irq_safe(&pdev->dev);
1106         else
1107                 pm_runtime_idle(&pdev->dev);
1108
1109         return 0;
1110 }
1111
1112 static int sh_cmt_remove(struct platform_device *pdev)
1113 {
1114         return -EBUSY; /* cannot unregister clockevent and clocksource */
1115 }
1116
1117 static struct platform_driver sh_cmt_device_driver = {
1118         .probe          = sh_cmt_probe,
1119         .remove         = sh_cmt_remove,
1120         .driver         = {
1121                 .name   = "sh_cmt",
1122                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1123         },
1124         .id_table       = sh_cmt_id_table,
1125 };
1126
1127 static int __init sh_cmt_init(void)
1128 {
1129         return platform_driver_register(&sh_cmt_device_driver);
1130 }
1131
1132 static void __exit sh_cmt_exit(void)
1133 {
1134         platform_driver_unregister(&sh_cmt_device_driver);
1135 }
1136
1137 #ifdef CONFIG_SUPERH
1138 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1139 #endif
1140
1141 subsys_initcall(sh_cmt_init);
1142 module_exit(sh_cmt_exit);
1143
1144 MODULE_AUTHOR("Magnus Damm");
1145 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1146 MODULE_LICENSE("GPL v2");