Merge tag 'amd-drm-next-5.8-2020-04-24' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / drivers / clocksource / exynos_mct.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *              http://www.samsung.com
6  *
7  * Exynos4 MCT(Multi-Core Timer) support
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23
24 #define EXYNOS4_MCTREG(x)               (x)
25 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
38
39 #define MCT_L_TCNTB_OFFSET              (0x00)
40 #define MCT_L_ICNTB_OFFSET              (0x08)
41 #define MCT_L_TCON_OFFSET               (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
43 #define MCT_L_INT_ENB_OFFSET            (0x34)
44 #define MCT_L_WSTAT_OFFSET              (0x40)
45 #define MCT_G_TCON_START                (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
49 #define MCT_L_TCON_INT_START            (1 << 1)
50 #define MCT_L_TCON_TIMER_START          (1 << 0)
51
52 #define TICK_BASE_CNT   1
53
54 enum {
55         MCT_INT_SPI,
56         MCT_INT_PPI
57 };
58
59 enum {
60         MCT_G0_IRQ,
61         MCT_G1_IRQ,
62         MCT_G2_IRQ,
63         MCT_G3_IRQ,
64         MCT_L0_IRQ,
65         MCT_L1_IRQ,
66         MCT_L2_IRQ,
67         MCT_L3_IRQ,
68         MCT_L4_IRQ,
69         MCT_L5_IRQ,
70         MCT_L6_IRQ,
71         MCT_L7_IRQ,
72         MCT_NR_IRQS,
73 };
74
75 static void __iomem *reg_base;
76 static unsigned long clk_rate;
77 static unsigned int mct_int_type;
78 static int mct_irqs[MCT_NR_IRQS];
79
80 struct mct_clock_event_device {
81         struct clock_event_device evt;
82         unsigned long base;
83         char name[10];
84 };
85
86 static void exynos4_mct_write(unsigned int value, unsigned long offset)
87 {
88         unsigned long stat_addr;
89         u32 mask;
90         u32 i;
91
92         writel_relaxed(value, reg_base + offset);
93
94         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
95                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
96                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
97                 case MCT_L_TCON_OFFSET:
98                         mask = 1 << 3;          /* L_TCON write status */
99                         break;
100                 case MCT_L_ICNTB_OFFSET:
101                         mask = 1 << 1;          /* L_ICNTB write status */
102                         break;
103                 case MCT_L_TCNTB_OFFSET:
104                         mask = 1 << 0;          /* L_TCNTB write status */
105                         break;
106                 default:
107                         return;
108                 }
109         } else {
110                 switch (offset) {
111                 case EXYNOS4_MCT_G_TCON:
112                         stat_addr = EXYNOS4_MCT_G_WSTAT;
113                         mask = 1 << 16;         /* G_TCON write status */
114                         break;
115                 case EXYNOS4_MCT_G_COMP0_L:
116                         stat_addr = EXYNOS4_MCT_G_WSTAT;
117                         mask = 1 << 0;          /* G_COMP0_L write status */
118                         break;
119                 case EXYNOS4_MCT_G_COMP0_U:
120                         stat_addr = EXYNOS4_MCT_G_WSTAT;
121                         mask = 1 << 1;          /* G_COMP0_U write status */
122                         break;
123                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
124                         stat_addr = EXYNOS4_MCT_G_WSTAT;
125                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
126                         break;
127                 case EXYNOS4_MCT_G_CNT_L:
128                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
129                         mask = 1 << 0;          /* G_CNT_L write status */
130                         break;
131                 case EXYNOS4_MCT_G_CNT_U:
132                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133                         mask = 1 << 1;          /* G_CNT_U write status */
134                         break;
135                 default:
136                         return;
137                 }
138         }
139
140         /* Wait maximum 1 ms until written values are applied */
141         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
142                 if (readl_relaxed(reg_base + stat_addr) & mask) {
143                         writel_relaxed(mask, reg_base + stat_addr);
144                         return;
145                 }
146
147         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
148 }
149
150 /* Clocksource handling */
151 static void exynos4_mct_frc_start(void)
152 {
153         u32 reg;
154
155         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
156         reg |= MCT_G_TCON_START;
157         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
158 }
159
160 /**
161  * exynos4_read_count_64 - Read all 64-bits of the global counter
162  *
163  * This will read all 64-bits of the global counter taking care to make sure
164  * that the upper and lower half match.  Note that reading the MCT can be quite
165  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
166  * only) version when possible.
167  *
168  * Returns the number of cycles in the global counter.
169  */
170 static u64 exynos4_read_count_64(void)
171 {
172         unsigned int lo, hi;
173         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
174
175         do {
176                 hi = hi2;
177                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
178                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179         } while (hi != hi2);
180
181         return ((u64)hi << 32) | lo;
182 }
183
184 /**
185  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
186  *
187  * This will read just the lower 32-bits of the global counter.  This is marked
188  * as notrace so it can be used by the scheduler clock.
189  *
190  * Returns the number of cycles in the global counter (lower 32 bits).
191  */
192 static u32 notrace exynos4_read_count_32(void)
193 {
194         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
195 }
196
197 static u64 exynos4_frc_read(struct clocksource *cs)
198 {
199         return exynos4_read_count_32();
200 }
201
202 static void exynos4_frc_resume(struct clocksource *cs)
203 {
204         exynos4_mct_frc_start();
205 }
206
207 static struct clocksource mct_frc = {
208         .name           = "mct-frc",
209         .rating         = 450,  /* use value higher than ARM arch timer */
210         .read           = exynos4_frc_read,
211         .mask           = CLOCKSOURCE_MASK(32),
212         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
213         .resume         = exynos4_frc_resume,
214 };
215
216 static u64 notrace exynos4_read_sched_clock(void)
217 {
218         return exynos4_read_count_32();
219 }
220
221 #if defined(CONFIG_ARM)
222 static struct delay_timer exynos4_delay_timer;
223
224 static cycles_t exynos4_read_current_timer(void)
225 {
226         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
227                          "cycles_t needs to move to 32-bit for ARM64 usage");
228         return exynos4_read_count_32();
229 }
230 #endif
231
232 static int __init exynos4_clocksource_init(void)
233 {
234         exynos4_mct_frc_start();
235
236 #if defined(CONFIG_ARM)
237         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
238         exynos4_delay_timer.freq = clk_rate;
239         register_current_timer_delay(&exynos4_delay_timer);
240 #endif
241
242         if (clocksource_register_hz(&mct_frc, clk_rate))
243                 panic("%s: can't register clocksource\n", mct_frc.name);
244
245         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
246
247         return 0;
248 }
249
250 static void exynos4_mct_comp0_stop(void)
251 {
252         unsigned int tcon;
253
254         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
255         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
256
257         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
258         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
259 }
260
261 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
262 {
263         unsigned int tcon;
264         u64 comp_cycle;
265
266         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
267
268         if (periodic) {
269                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
270                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
271         }
272
273         comp_cycle = exynos4_read_count_64() + cycles;
274         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
275         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
276
277         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
278
279         tcon |= MCT_G_TCON_COMP0_ENABLE;
280         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
281 }
282
283 static int exynos4_comp_set_next_event(unsigned long cycles,
284                                        struct clock_event_device *evt)
285 {
286         exynos4_mct_comp0_start(false, cycles);
287
288         return 0;
289 }
290
291 static int mct_set_state_shutdown(struct clock_event_device *evt)
292 {
293         exynos4_mct_comp0_stop();
294         return 0;
295 }
296
297 static int mct_set_state_periodic(struct clock_event_device *evt)
298 {
299         unsigned long cycles_per_jiffy;
300
301         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
302                             >> evt->shift);
303         exynos4_mct_comp0_stop();
304         exynos4_mct_comp0_start(true, cycles_per_jiffy);
305         return 0;
306 }
307
308 static struct clock_event_device mct_comp_device = {
309         .name                   = "mct-comp",
310         .features               = CLOCK_EVT_FEAT_PERIODIC |
311                                   CLOCK_EVT_FEAT_ONESHOT,
312         .rating                 = 250,
313         .set_next_event         = exynos4_comp_set_next_event,
314         .set_state_periodic     = mct_set_state_periodic,
315         .set_state_shutdown     = mct_set_state_shutdown,
316         .set_state_oneshot      = mct_set_state_shutdown,
317         .set_state_oneshot_stopped = mct_set_state_shutdown,
318         .tick_resume            = mct_set_state_shutdown,
319 };
320
321 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
322 {
323         struct clock_event_device *evt = dev_id;
324
325         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
326
327         evt->event_handler(evt);
328
329         return IRQ_HANDLED;
330 }
331
332 static int exynos4_clockevent_init(void)
333 {
334         mct_comp_device.cpumask = cpumask_of(0);
335         clockevents_config_and_register(&mct_comp_device, clk_rate,
336                                         0xf, 0xffffffff);
337         if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
338                         IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
339                         &mct_comp_device))
340                 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
341
342         return 0;
343 }
344
345 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
346
347 /* Clock event handling */
348 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
349 {
350         unsigned long tmp;
351         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
352         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
353
354         tmp = readl_relaxed(reg_base + offset);
355         if (tmp & mask) {
356                 tmp &= ~mask;
357                 exynos4_mct_write(tmp, offset);
358         }
359 }
360
361 static void exynos4_mct_tick_start(unsigned long cycles,
362                                    struct mct_clock_event_device *mevt)
363 {
364         unsigned long tmp;
365
366         exynos4_mct_tick_stop(mevt);
367
368         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
369
370         /* update interrupt count buffer */
371         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
372
373         /* enable MCT tick interrupt */
374         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
375
376         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
377         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
378                MCT_L_TCON_INTERVAL_MODE;
379         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
380 }
381
382 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
383 {
384         /* Clear the MCT tick interrupt */
385         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
386                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
387 }
388
389 static int exynos4_tick_set_next_event(unsigned long cycles,
390                                        struct clock_event_device *evt)
391 {
392         struct mct_clock_event_device *mevt;
393
394         mevt = container_of(evt, struct mct_clock_event_device, evt);
395         exynos4_mct_tick_start(cycles, mevt);
396         return 0;
397 }
398
399 static int set_state_shutdown(struct clock_event_device *evt)
400 {
401         struct mct_clock_event_device *mevt;
402
403         mevt = container_of(evt, struct mct_clock_event_device, evt);
404         exynos4_mct_tick_stop(mevt);
405         exynos4_mct_tick_clear(mevt);
406         return 0;
407 }
408
409 static int set_state_periodic(struct clock_event_device *evt)
410 {
411         struct mct_clock_event_device *mevt;
412         unsigned long cycles_per_jiffy;
413
414         mevt = container_of(evt, struct mct_clock_event_device, evt);
415         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
416                             >> evt->shift);
417         exynos4_mct_tick_stop(mevt);
418         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
419         return 0;
420 }
421
422 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
423 {
424         struct mct_clock_event_device *mevt = dev_id;
425         struct clock_event_device *evt = &mevt->evt;
426
427         /*
428          * This is for supporting oneshot mode.
429          * Mct would generate interrupt periodically
430          * without explicit stopping.
431          */
432         if (!clockevent_state_periodic(&mevt->evt))
433                 exynos4_mct_tick_stop(mevt);
434
435         exynos4_mct_tick_clear(mevt);
436
437         evt->event_handler(evt);
438
439         return IRQ_HANDLED;
440 }
441
442 static int exynos4_mct_starting_cpu(unsigned int cpu)
443 {
444         struct mct_clock_event_device *mevt =
445                 per_cpu_ptr(&percpu_mct_tick, cpu);
446         struct clock_event_device *evt = &mevt->evt;
447
448         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
449         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
450
451         evt->name = mevt->name;
452         evt->cpumask = cpumask_of(cpu);
453         evt->set_next_event = exynos4_tick_set_next_event;
454         evt->set_state_periodic = set_state_periodic;
455         evt->set_state_shutdown = set_state_shutdown;
456         evt->set_state_oneshot = set_state_shutdown;
457         evt->set_state_oneshot_stopped = set_state_shutdown;
458         evt->tick_resume = set_state_shutdown;
459         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
460         evt->rating = 500;      /* use value higher than ARM arch timer */
461
462         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
463
464         if (mct_int_type == MCT_INT_SPI) {
465
466                 if (evt->irq == -1)
467                         return -EIO;
468
469                 irq_force_affinity(evt->irq, cpumask_of(cpu));
470                 enable_irq(evt->irq);
471         } else {
472                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
473         }
474         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
475                                         0xf, 0x7fffffff);
476
477         return 0;
478 }
479
480 static int exynos4_mct_dying_cpu(unsigned int cpu)
481 {
482         struct mct_clock_event_device *mevt =
483                 per_cpu_ptr(&percpu_mct_tick, cpu);
484         struct clock_event_device *evt = &mevt->evt;
485
486         evt->set_state_shutdown(evt);
487         if (mct_int_type == MCT_INT_SPI) {
488                 if (evt->irq != -1)
489                         disable_irq_nosync(evt->irq);
490                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
491         } else {
492                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
493         }
494         return 0;
495 }
496
497 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
498 {
499         int err, cpu;
500         struct clk *mct_clk, *tick_clk;
501
502         tick_clk = of_clk_get_by_name(np, "fin_pll");
503         if (IS_ERR(tick_clk))
504                 panic("%s: unable to determine tick clock rate\n", __func__);
505         clk_rate = clk_get_rate(tick_clk);
506
507         mct_clk = of_clk_get_by_name(np, "mct");
508         if (IS_ERR(mct_clk))
509                 panic("%s: unable to retrieve mct clock instance\n", __func__);
510         clk_prepare_enable(mct_clk);
511
512         reg_base = base;
513         if (!reg_base)
514                 panic("%s: unable to ioremap mct address space\n", __func__);
515
516         if (mct_int_type == MCT_INT_PPI) {
517
518                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
519                                          exynos4_mct_tick_isr, "MCT",
520                                          &percpu_mct_tick);
521                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
522                      mct_irqs[MCT_L0_IRQ], err);
523         } else {
524                 for_each_possible_cpu(cpu) {
525                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
526                         struct mct_clock_event_device *pcpu_mevt =
527                                 per_cpu_ptr(&percpu_mct_tick, cpu);
528
529                         pcpu_mevt->evt.irq = -1;
530
531                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
532                         if (request_irq(mct_irq,
533                                         exynos4_mct_tick_isr,
534                                         IRQF_TIMER | IRQF_NOBALANCING,
535                                         pcpu_mevt->name, pcpu_mevt)) {
536                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
537                                                                         cpu);
538
539                                 continue;
540                         }
541                         pcpu_mevt->evt.irq = mct_irq;
542                 }
543         }
544
545         /* Install hotplug callbacks which configure the timer on this CPU */
546         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
547                                 "clockevents/exynos4/mct_timer:starting",
548                                 exynos4_mct_starting_cpu,
549                                 exynos4_mct_dying_cpu);
550         if (err)
551                 goto out_irq;
552
553         return 0;
554
555 out_irq:
556         if (mct_int_type == MCT_INT_PPI) {
557                 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
558         } else {
559                 for_each_possible_cpu(cpu) {
560                         struct mct_clock_event_device *pcpu_mevt =
561                                 per_cpu_ptr(&percpu_mct_tick, cpu);
562
563                         if (pcpu_mevt->evt.irq != -1) {
564                                 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
565                                 pcpu_mevt->evt.irq = -1;
566                         }
567                 }
568         }
569         return err;
570 }
571
572 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
573 {
574         u32 nr_irqs, i;
575         int ret;
576
577         mct_int_type = int_type;
578
579         /* This driver uses only one global timer interrupt */
580         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
581
582         /*
583          * Find out the number of local irqs specified. The local
584          * timer irqs are specified after the four global timer
585          * irqs are specified.
586          */
587         nr_irqs = of_irq_count(np);
588         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
589                 mct_irqs[i] = irq_of_parse_and_map(np, i);
590
591         ret = exynos4_timer_resources(np, of_iomap(np, 0));
592         if (ret)
593                 return ret;
594
595         ret = exynos4_clocksource_init();
596         if (ret)
597                 return ret;
598
599         return exynos4_clockevent_init();
600 }
601
602
603 static int __init mct_init_spi(struct device_node *np)
604 {
605         return mct_init_dt(np, MCT_INT_SPI);
606 }
607
608 static int __init mct_init_ppi(struct device_node *np)
609 {
610         return mct_init_dt(np, MCT_INT_PPI);
611 }
612 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
613 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);