RDMA/rxe: Return CQE error if invalid lkey was supplied
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTVCT_LO       0x08
48 #define CNTVCT_HI       0x0c
49 #define CNTFRQ          0x10
50 #define CNTP_TVAL       0x28
51 #define CNTP_CTL        0x2c
52 #define CNTV_TVAL       0x38
53 #define CNTV_CTL        0x3c
54
55 static unsigned arch_timers_present __initdata;
56
57 static void __iomem *arch_counter_base __ro_after_init;
58
59 struct arch_timer {
60         void __iomem *base;
61         struct clock_event_device evt;
62 };
63
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65
66 static u32 arch_timer_rate __ro_after_init;
67 u32 arch_timer_rate1 __ro_after_init;
68 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
69
70 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
71         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
72         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
73         [ARCH_TIMER_VIRT_PPI]           = "virt",
74         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
75         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
76 };
77
78 static struct clock_event_device __percpu *arch_timer_evt;
79
80 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
81 static bool arch_timer_c3stop __ro_after_init;
82 static bool arch_timer_mem_use_virtual __ro_after_init;
83 static bool arch_counter_suspend_stop __ro_after_init;
84 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
85 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
86 #else
87 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
88 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
89
90 static cpumask_t evtstrm_available = CPU_MASK_NONE;
91 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
92
93 static int __init early_evtstrm_cfg(char *buf)
94 {
95         return strtobool(buf, &evtstrm_enable);
96 }
97 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
98
99 /*
100  * Architected system timer support.
101  */
102
103 static __always_inline
104 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
105                           struct clock_event_device *clk)
106 {
107         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
108                 struct arch_timer *timer = to_arch_timer(clk);
109                 switch (reg) {
110                 case ARCH_TIMER_REG_CTRL:
111                         writel_relaxed(val, timer->base + CNTP_CTL);
112                         break;
113                 case ARCH_TIMER_REG_TVAL:
114                         writel_relaxed(val, timer->base + CNTP_TVAL);
115                         break;
116                 }
117         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
118                 struct arch_timer *timer = to_arch_timer(clk);
119                 switch (reg) {
120                 case ARCH_TIMER_REG_CTRL:
121                         writel_relaxed(val, timer->base + CNTV_CTL);
122                         break;
123                 case ARCH_TIMER_REG_TVAL:
124                         writel_relaxed(val, timer->base + CNTV_TVAL);
125                         break;
126                 }
127         } else {
128                 arch_timer_reg_write_cp15(access, reg, val);
129         }
130 }
131
132 static __always_inline
133 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
134                         struct clock_event_device *clk)
135 {
136         u32 val;
137
138         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
139                 struct arch_timer *timer = to_arch_timer(clk);
140                 switch (reg) {
141                 case ARCH_TIMER_REG_CTRL:
142                         val = readl_relaxed(timer->base + CNTP_CTL);
143                         break;
144                 case ARCH_TIMER_REG_TVAL:
145                         val = readl_relaxed(timer->base + CNTP_TVAL);
146                         break;
147                 }
148         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
149                 struct arch_timer *timer = to_arch_timer(clk);
150                 switch (reg) {
151                 case ARCH_TIMER_REG_CTRL:
152                         val = readl_relaxed(timer->base + CNTV_CTL);
153                         break;
154                 case ARCH_TIMER_REG_TVAL:
155                         val = readl_relaxed(timer->base + CNTV_TVAL);
156                         break;
157                 }
158         } else {
159                 val = arch_timer_reg_read_cp15(access, reg);
160         }
161
162         return val;
163 }
164
165 static notrace u64 arch_counter_get_cntpct_stable(void)
166 {
167         return __arch_counter_get_cntpct_stable();
168 }
169
170 static notrace u64 arch_counter_get_cntpct(void)
171 {
172         return __arch_counter_get_cntpct();
173 }
174
175 static notrace u64 arch_counter_get_cntvct_stable(void)
176 {
177         return __arch_counter_get_cntvct_stable();
178 }
179
180 static notrace u64 arch_counter_get_cntvct(void)
181 {
182         return __arch_counter_get_cntvct();
183 }
184
185 /*
186  * Default to cp15 based access because arm64 uses this function for
187  * sched_clock() before DT is probed and the cp15 method is guaranteed
188  * to exist on arm64. arm doesn't use this before DT is probed so even
189  * if we don't have the cp15 accessors we won't have a problem.
190  */
191 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
192 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
193
194 static u64 arch_counter_read(struct clocksource *cs)
195 {
196         return arch_timer_read_counter();
197 }
198
199 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
200 {
201         return arch_timer_read_counter();
202 }
203
204 static struct clocksource clocksource_counter = {
205         .name   = "arch_sys_counter",
206         .id     = CSID_ARM_ARCH_COUNTER,
207         .rating = 400,
208         .read   = arch_counter_read,
209         .mask   = CLOCKSOURCE_MASK(56),
210         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
211 };
212
213 static struct cyclecounter cyclecounter __ro_after_init = {
214         .read   = arch_counter_read_cc,
215         .mask   = CLOCKSOURCE_MASK(56),
216 };
217
218 struct ate_acpi_oem_info {
219         char oem_id[ACPI_OEM_ID_SIZE + 1];
220         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
221         u32 oem_revision;
222 };
223
224 #ifdef CONFIG_FSL_ERRATUM_A008585
225 /*
226  * The number of retries is an arbitrary value well beyond the highest number
227  * of iterations the loop has been observed to take.
228  */
229 #define __fsl_a008585_read_reg(reg) ({                  \
230         u64 _old, _new;                                 \
231         int _retries = 200;                             \
232                                                         \
233         do {                                            \
234                 _old = read_sysreg(reg);                \
235                 _new = read_sysreg(reg);                \
236                 _retries--;                             \
237         } while (unlikely(_old != _new) && _retries);   \
238                                                         \
239         WARN_ON_ONCE(!_retries);                        \
240         _new;                                           \
241 })
242
243 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
244 {
245         return __fsl_a008585_read_reg(cntp_tval_el0);
246 }
247
248 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
249 {
250         return __fsl_a008585_read_reg(cntv_tval_el0);
251 }
252
253 static u64 notrace fsl_a008585_read_cntpct_el0(void)
254 {
255         return __fsl_a008585_read_reg(cntpct_el0);
256 }
257
258 static u64 notrace fsl_a008585_read_cntvct_el0(void)
259 {
260         return __fsl_a008585_read_reg(cntvct_el0);
261 }
262 #endif
263
264 #ifdef CONFIG_HISILICON_ERRATUM_161010101
265 /*
266  * Verify whether the value of the second read is larger than the first by
267  * less than 32 is the only way to confirm the value is correct, so clear the
268  * lower 5 bits to check whether the difference is greater than 32 or not.
269  * Theoretically the erratum should not occur more than twice in succession
270  * when reading the system counter, but it is possible that some interrupts
271  * may lead to more than twice read errors, triggering the warning, so setting
272  * the number of retries far beyond the number of iterations the loop has been
273  * observed to take.
274  */
275 #define __hisi_161010101_read_reg(reg) ({                               \
276         u64 _old, _new;                                         \
277         int _retries = 50;                                      \
278                                                                 \
279         do {                                                    \
280                 _old = read_sysreg(reg);                        \
281                 _new = read_sysreg(reg);                        \
282                 _retries--;                                     \
283         } while (unlikely((_new - _old) >> 5) && _retries);     \
284                                                                 \
285         WARN_ON_ONCE(!_retries);                                \
286         _new;                                                   \
287 })
288
289 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
290 {
291         return __hisi_161010101_read_reg(cntp_tval_el0);
292 }
293
294 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
295 {
296         return __hisi_161010101_read_reg(cntv_tval_el0);
297 }
298
299 static u64 notrace hisi_161010101_read_cntpct_el0(void)
300 {
301         return __hisi_161010101_read_reg(cntpct_el0);
302 }
303
304 static u64 notrace hisi_161010101_read_cntvct_el0(void)
305 {
306         return __hisi_161010101_read_reg(cntvct_el0);
307 }
308
309 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
310         /*
311          * Note that trailing spaces are required to properly match
312          * the OEM table information.
313          */
314         {
315                 .oem_id         = "HISI  ",
316                 .oem_table_id   = "HIP05   ",
317                 .oem_revision   = 0,
318         },
319         {
320                 .oem_id         = "HISI  ",
321                 .oem_table_id   = "HIP06   ",
322                 .oem_revision   = 0,
323         },
324         {
325                 .oem_id         = "HISI  ",
326                 .oem_table_id   = "HIP07   ",
327                 .oem_revision   = 0,
328         },
329         { /* Sentinel indicating the end of the OEM array */ },
330 };
331 #endif
332
333 #ifdef CONFIG_ARM64_ERRATUM_858921
334 static u64 notrace arm64_858921_read_cntpct_el0(void)
335 {
336         u64 old, new;
337
338         old = read_sysreg(cntpct_el0);
339         new = read_sysreg(cntpct_el0);
340         return (((old ^ new) >> 32) & 1) ? old : new;
341 }
342
343 static u64 notrace arm64_858921_read_cntvct_el0(void)
344 {
345         u64 old, new;
346
347         old = read_sysreg(cntvct_el0);
348         new = read_sysreg(cntvct_el0);
349         return (((old ^ new) >> 32) & 1) ? old : new;
350 }
351 #endif
352
353 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
354 /*
355  * The low bits of the counter registers are indeterminate while bit 10 or
356  * greater is rolling over. Since the counter value can jump both backward
357  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
358  * with all ones or all zeros in the low bits. Bound the loop by the maximum
359  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
360  */
361 #define __sun50i_a64_read_reg(reg) ({                                   \
362         u64 _val;                                                       \
363         int _retries = 150;                                             \
364                                                                         \
365         do {                                                            \
366                 _val = read_sysreg(reg);                                \
367                 _retries--;                                             \
368         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
369                                                                         \
370         WARN_ON_ONCE(!_retries);                                        \
371         _val;                                                           \
372 })
373
374 static u64 notrace sun50i_a64_read_cntpct_el0(void)
375 {
376         return __sun50i_a64_read_reg(cntpct_el0);
377 }
378
379 static u64 notrace sun50i_a64_read_cntvct_el0(void)
380 {
381         return __sun50i_a64_read_reg(cntvct_el0);
382 }
383
384 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
385 {
386         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
387 }
388
389 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
390 {
391         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
392 }
393 #endif
394
395 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
396 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
397 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
398
399 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
400
401 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
402                                                 struct clock_event_device *clk)
403 {
404         unsigned long ctrl;
405         u64 cval;
406
407         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
408         ctrl |= ARCH_TIMER_CTRL_ENABLE;
409         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
410
411         if (access == ARCH_TIMER_PHYS_ACCESS) {
412                 cval = evt + arch_counter_get_cntpct_stable();
413                 write_sysreg(cval, cntp_cval_el0);
414         } else {
415                 cval = evt + arch_counter_get_cntvct_stable();
416                 write_sysreg(cval, cntv_cval_el0);
417         }
418
419         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
420 }
421
422 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
423                                             struct clock_event_device *clk)
424 {
425         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
426         return 0;
427 }
428
429 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
430                                             struct clock_event_device *clk)
431 {
432         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
433         return 0;
434 }
435
436 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
437 #ifdef CONFIG_FSL_ERRATUM_A008585
438         {
439                 .match_type = ate_match_dt,
440                 .id = "fsl,erratum-a008585",
441                 .desc = "Freescale erratum a005858",
442                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
443                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
444                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
445                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
446                 .set_next_event_phys = erratum_set_next_event_tval_phys,
447                 .set_next_event_virt = erratum_set_next_event_tval_virt,
448         },
449 #endif
450 #ifdef CONFIG_HISILICON_ERRATUM_161010101
451         {
452                 .match_type = ate_match_dt,
453                 .id = "hisilicon,erratum-161010101",
454                 .desc = "HiSilicon erratum 161010101",
455                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
456                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
457                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
458                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
459                 .set_next_event_phys = erratum_set_next_event_tval_phys,
460                 .set_next_event_virt = erratum_set_next_event_tval_virt,
461         },
462         {
463                 .match_type = ate_match_acpi_oem_info,
464                 .id = hisi_161010101_oem_info,
465                 .desc = "HiSilicon erratum 161010101",
466                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
467                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
468                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
469                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
470                 .set_next_event_phys = erratum_set_next_event_tval_phys,
471                 .set_next_event_virt = erratum_set_next_event_tval_virt,
472         },
473 #endif
474 #ifdef CONFIG_ARM64_ERRATUM_858921
475         {
476                 .match_type = ate_match_local_cap_id,
477                 .id = (void *)ARM64_WORKAROUND_858921,
478                 .desc = "ARM erratum 858921",
479                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
480                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
481         },
482 #endif
483 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
484         {
485                 .match_type = ate_match_dt,
486                 .id = "allwinner,erratum-unknown1",
487                 .desc = "Allwinner erratum UNKNOWN1",
488                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
489                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
490                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
491                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
492                 .set_next_event_phys = erratum_set_next_event_tval_phys,
493                 .set_next_event_virt = erratum_set_next_event_tval_virt,
494         },
495 #endif
496 #ifdef CONFIG_ARM64_ERRATUM_1418040
497         {
498                 .match_type = ate_match_local_cap_id,
499                 .id = (void *)ARM64_WORKAROUND_1418040,
500                 .desc = "ARM erratum 1418040",
501                 .disable_compat_vdso = true,
502         },
503 #endif
504 };
505
506 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
507                                const void *);
508
509 static
510 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
511                                  const void *arg)
512 {
513         const struct device_node *np = arg;
514
515         return of_property_read_bool(np, wa->id);
516 }
517
518 static
519 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
520                                         const void *arg)
521 {
522         return this_cpu_has_cap((uintptr_t)wa->id);
523 }
524
525
526 static
527 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
528                                        const void *arg)
529 {
530         static const struct ate_acpi_oem_info empty_oem_info = {};
531         const struct ate_acpi_oem_info *info = wa->id;
532         const struct acpi_table_header *table = arg;
533
534         /* Iterate over the ACPI OEM info array, looking for a match */
535         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
536                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
537                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
538                     info->oem_revision == table->oem_revision)
539                         return true;
540
541                 info++;
542         }
543
544         return false;
545 }
546
547 static const struct arch_timer_erratum_workaround *
548 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
549                           ate_match_fn_t match_fn,
550                           void *arg)
551 {
552         int i;
553
554         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
555                 if (ool_workarounds[i].match_type != type)
556                         continue;
557
558                 if (match_fn(&ool_workarounds[i], arg))
559                         return &ool_workarounds[i];
560         }
561
562         return NULL;
563 }
564
565 static
566 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
567                                   bool local)
568 {
569         int i;
570
571         if (local) {
572                 __this_cpu_write(timer_unstable_counter_workaround, wa);
573         } else {
574                 for_each_possible_cpu(i)
575                         per_cpu(timer_unstable_counter_workaround, i) = wa;
576         }
577
578         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
579                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
580
581         /*
582          * Don't use the vdso fastpath if errata require using the
583          * out-of-line counter accessor. We may change our mind pretty
584          * late in the game (with a per-CPU erratum, for example), so
585          * change both the default value and the vdso itself.
586          */
587         if (wa->read_cntvct_el0) {
588                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
589                 vdso_default = VDSO_CLOCKMODE_NONE;
590         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
591                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
592                 clocksource_counter.vdso_clock_mode = vdso_default;
593         }
594 }
595
596 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
597                                             void *arg)
598 {
599         const struct arch_timer_erratum_workaround *wa, *__wa;
600         ate_match_fn_t match_fn = NULL;
601         bool local = false;
602
603         switch (type) {
604         case ate_match_dt:
605                 match_fn = arch_timer_check_dt_erratum;
606                 break;
607         case ate_match_local_cap_id:
608                 match_fn = arch_timer_check_local_cap_erratum;
609                 local = true;
610                 break;
611         case ate_match_acpi_oem_info:
612                 match_fn = arch_timer_check_acpi_oem_erratum;
613                 break;
614         default:
615                 WARN_ON(1);
616                 return;
617         }
618
619         wa = arch_timer_iterate_errata(type, match_fn, arg);
620         if (!wa)
621                 return;
622
623         __wa = __this_cpu_read(timer_unstable_counter_workaround);
624         if (__wa && wa != __wa)
625                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
626                         wa->desc, __wa->desc);
627
628         if (__wa)
629                 return;
630
631         arch_timer_enable_workaround(wa, local);
632         pr_info("Enabling %s workaround for %s\n",
633                 local ? "local" : "global", wa->desc);
634 }
635
636 static bool arch_timer_this_cpu_has_cntvct_wa(void)
637 {
638         return has_erratum_handler(read_cntvct_el0);
639 }
640
641 static bool arch_timer_counter_has_wa(void)
642 {
643         return atomic_read(&timer_unstable_counter_workaround_in_use);
644 }
645 #else
646 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
647 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
648 #define arch_timer_counter_has_wa()                     ({false;})
649 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
650
651 static __always_inline irqreturn_t timer_handler(const int access,
652                                         struct clock_event_device *evt)
653 {
654         unsigned long ctrl;
655
656         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
657         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
658                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
659                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
660                 evt->event_handler(evt);
661                 return IRQ_HANDLED;
662         }
663
664         return IRQ_NONE;
665 }
666
667 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
668 {
669         struct clock_event_device *evt = dev_id;
670
671         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
672 }
673
674 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
675 {
676         struct clock_event_device *evt = dev_id;
677
678         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
679 }
680
681 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
682 {
683         struct clock_event_device *evt = dev_id;
684
685         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
686 }
687
688 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
689 {
690         struct clock_event_device *evt = dev_id;
691
692         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
693 }
694
695 static __always_inline int timer_shutdown(const int access,
696                                           struct clock_event_device *clk)
697 {
698         unsigned long ctrl;
699
700         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
701         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
702         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
703
704         return 0;
705 }
706
707 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
708 {
709         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
710 }
711
712 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
713 {
714         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
715 }
716
717 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
718 {
719         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
720 }
721
722 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
723 {
724         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
725 }
726
727 static __always_inline void set_next_event(const int access, unsigned long evt,
728                                            struct clock_event_device *clk)
729 {
730         unsigned long ctrl;
731         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
732         ctrl |= ARCH_TIMER_CTRL_ENABLE;
733         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
734         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
735         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
736 }
737
738 static int arch_timer_set_next_event_virt(unsigned long evt,
739                                           struct clock_event_device *clk)
740 {
741         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
742         return 0;
743 }
744
745 static int arch_timer_set_next_event_phys(unsigned long evt,
746                                           struct clock_event_device *clk)
747 {
748         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
749         return 0;
750 }
751
752 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
753                                               struct clock_event_device *clk)
754 {
755         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
756         return 0;
757 }
758
759 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
760                                               struct clock_event_device *clk)
761 {
762         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
763         return 0;
764 }
765
766 static void __arch_timer_setup(unsigned type,
767                                struct clock_event_device *clk)
768 {
769         clk->features = CLOCK_EVT_FEAT_ONESHOT;
770
771         if (type == ARCH_TIMER_TYPE_CP15) {
772                 typeof(clk->set_next_event) sne;
773
774                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
775
776                 if (arch_timer_c3stop)
777                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
778                 clk->name = "arch_sys_timer";
779                 clk->rating = 450;
780                 clk->cpumask = cpumask_of(smp_processor_id());
781                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
782                 switch (arch_timer_uses_ppi) {
783                 case ARCH_TIMER_VIRT_PPI:
784                         clk->set_state_shutdown = arch_timer_shutdown_virt;
785                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
786                         sne = erratum_handler(set_next_event_virt);
787                         break;
788                 case ARCH_TIMER_PHYS_SECURE_PPI:
789                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
790                 case ARCH_TIMER_HYP_PPI:
791                         clk->set_state_shutdown = arch_timer_shutdown_phys;
792                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
793                         sne = erratum_handler(set_next_event_phys);
794                         break;
795                 default:
796                         BUG();
797                 }
798
799                 clk->set_next_event = sne;
800         } else {
801                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
802                 clk->name = "arch_mem_timer";
803                 clk->rating = 400;
804                 clk->cpumask = cpu_possible_mask;
805                 if (arch_timer_mem_use_virtual) {
806                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
807                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
808                         clk->set_next_event =
809                                 arch_timer_set_next_event_virt_mem;
810                 } else {
811                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
812                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
813                         clk->set_next_event =
814                                 arch_timer_set_next_event_phys_mem;
815                 }
816         }
817
818         clk->set_state_shutdown(clk);
819
820         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
821 }
822
823 static void arch_timer_evtstrm_enable(int divider)
824 {
825         u32 cntkctl = arch_timer_get_cntkctl();
826
827         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
828         /* Set the divider and enable virtual event stream */
829         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
830                         | ARCH_TIMER_VIRT_EVT_EN;
831         arch_timer_set_cntkctl(cntkctl);
832         arch_timer_set_evtstrm_feature();
833         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
834 }
835
836 static void arch_timer_configure_evtstream(void)
837 {
838         int evt_stream_div, lsb;
839
840         /*
841          * As the event stream can at most be generated at half the frequency
842          * of the counter, use half the frequency when computing the divider.
843          */
844         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
845
846         /*
847          * Find the closest power of two to the divisor. If the adjacent bit
848          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
849          */
850         lsb = fls(evt_stream_div) - 1;
851         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
852                 lsb++;
853
854         /* enable event stream */
855         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
856 }
857
858 static void arch_counter_set_user_access(void)
859 {
860         u32 cntkctl = arch_timer_get_cntkctl();
861
862         /* Disable user access to the timers and both counters */
863         /* Also disable virtual event stream */
864         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
865                         | ARCH_TIMER_USR_VT_ACCESS_EN
866                         | ARCH_TIMER_USR_VCT_ACCESS_EN
867                         | ARCH_TIMER_VIRT_EVT_EN
868                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
869
870         /*
871          * Enable user access to the virtual counter if it doesn't
872          * need to be workaround. The vdso may have been already
873          * disabled though.
874          */
875         if (arch_timer_this_cpu_has_cntvct_wa())
876                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
877         else
878                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
879
880         arch_timer_set_cntkctl(cntkctl);
881 }
882
883 static bool arch_timer_has_nonsecure_ppi(void)
884 {
885         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
886                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
887 }
888
889 static u32 check_ppi_trigger(int irq)
890 {
891         u32 flags = irq_get_trigger_type(irq);
892
893         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
894                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
895                 pr_warn("WARNING: Please fix your firmware\n");
896                 flags = IRQF_TRIGGER_LOW;
897         }
898
899         return flags;
900 }
901
902 static int arch_timer_starting_cpu(unsigned int cpu)
903 {
904         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
905         u32 flags;
906
907         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
908
909         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
910         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
911
912         if (arch_timer_has_nonsecure_ppi()) {
913                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
914                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
915                                   flags);
916         }
917
918         arch_counter_set_user_access();
919         if (evtstrm_enable)
920                 arch_timer_configure_evtstream();
921
922         return 0;
923 }
924
925 static int validate_timer_rate(void)
926 {
927         if (!arch_timer_rate)
928                 return -EINVAL;
929
930         /* Arch timer frequency < 1MHz can cause trouble */
931         WARN_ON(arch_timer_rate < 1000000);
932
933         return 0;
934 }
935
936 /*
937  * For historical reasons, when probing with DT we use whichever (non-zero)
938  * rate was probed first, and don't verify that others match. If the first node
939  * probed has a clock-frequency property, this overrides the HW register.
940  */
941 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
942 {
943         /* Who has more than one independent system counter? */
944         if (arch_timer_rate)
945                 return;
946
947         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
948                 arch_timer_rate = rate;
949
950         /* Check the timer frequency. */
951         if (validate_timer_rate())
952                 pr_warn("frequency not available\n");
953 }
954
955 static void __init arch_timer_banner(unsigned type)
956 {
957         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
958                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
959                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
960                         " and " : "",
961                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
962                 (unsigned long)arch_timer_rate / 1000000,
963                 (unsigned long)(arch_timer_rate / 10000) % 100,
964                 type & ARCH_TIMER_TYPE_CP15 ?
965                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
966                         "",
967                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
968                 type & ARCH_TIMER_TYPE_MEM ?
969                         arch_timer_mem_use_virtual ? "virt" : "phys" :
970                         "");
971 }
972
973 u32 arch_timer_get_rate(void)
974 {
975         return arch_timer_rate;
976 }
977
978 bool arch_timer_evtstrm_available(void)
979 {
980         /*
981          * We might get called from a preemptible context. This is fine
982          * because availability of the event stream should be always the same
983          * for a preemptible context and context where we might resume a task.
984          */
985         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
986 }
987
988 static u64 arch_counter_get_cntvct_mem(void)
989 {
990         u32 vct_lo, vct_hi, tmp_hi;
991
992         do {
993                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
994                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
995                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
996         } while (vct_hi != tmp_hi);
997
998         return ((u64) vct_hi << 32) | vct_lo;
999 }
1000
1001 static struct arch_timer_kvm_info arch_timer_kvm_info;
1002
1003 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1004 {
1005         return &arch_timer_kvm_info;
1006 }
1007
1008 static void __init arch_counter_register(unsigned type)
1009 {
1010         u64 start_count;
1011
1012         /* Register the CP15 based counter if we have one */
1013         if (type & ARCH_TIMER_TYPE_CP15) {
1014                 u64 (*rd)(void);
1015
1016                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1017                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1018                         if (arch_timer_counter_has_wa())
1019                                 rd = arch_counter_get_cntvct_stable;
1020                         else
1021                                 rd = arch_counter_get_cntvct;
1022                 } else {
1023                         if (arch_timer_counter_has_wa())
1024                                 rd = arch_counter_get_cntpct_stable;
1025                         else
1026                                 rd = arch_counter_get_cntpct;
1027                 }
1028
1029                 arch_timer_read_counter = rd;
1030                 clocksource_counter.vdso_clock_mode = vdso_default;
1031         } else {
1032                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1033         }
1034
1035         if (!arch_counter_suspend_stop)
1036                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1037         start_count = arch_timer_read_counter();
1038         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1039         cyclecounter.mult = clocksource_counter.mult;
1040         cyclecounter.shift = clocksource_counter.shift;
1041         timecounter_init(&arch_timer_kvm_info.timecounter,
1042                          &cyclecounter, start_count);
1043
1044         /* 56 bits minimum, so we assume worst case rollover */
1045         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1046 }
1047
1048 static void arch_timer_stop(struct clock_event_device *clk)
1049 {
1050         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1051
1052         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1053         if (arch_timer_has_nonsecure_ppi())
1054                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1055
1056         clk->set_state_shutdown(clk);
1057 }
1058
1059 static int arch_timer_dying_cpu(unsigned int cpu)
1060 {
1061         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1062
1063         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1064
1065         arch_timer_stop(clk);
1066         return 0;
1067 }
1068
1069 #ifdef CONFIG_CPU_PM
1070 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1071 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1072                                     unsigned long action, void *hcpu)
1073 {
1074         if (action == CPU_PM_ENTER) {
1075                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1076
1077                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1078         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1079                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1080
1081                 if (arch_timer_have_evtstrm_feature())
1082                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1083         }
1084         return NOTIFY_OK;
1085 }
1086
1087 static struct notifier_block arch_timer_cpu_pm_notifier = {
1088         .notifier_call = arch_timer_cpu_pm_notify,
1089 };
1090
1091 static int __init arch_timer_cpu_pm_init(void)
1092 {
1093         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1094 }
1095
1096 static void __init arch_timer_cpu_pm_deinit(void)
1097 {
1098         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1099 }
1100
1101 #else
1102 static int __init arch_timer_cpu_pm_init(void)
1103 {
1104         return 0;
1105 }
1106
1107 static void __init arch_timer_cpu_pm_deinit(void)
1108 {
1109 }
1110 #endif
1111
1112 static int __init arch_timer_register(void)
1113 {
1114         int err;
1115         int ppi;
1116
1117         arch_timer_evt = alloc_percpu(struct clock_event_device);
1118         if (!arch_timer_evt) {
1119                 err = -ENOMEM;
1120                 goto out;
1121         }
1122
1123         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1124         switch (arch_timer_uses_ppi) {
1125         case ARCH_TIMER_VIRT_PPI:
1126                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1127                                          "arch_timer", arch_timer_evt);
1128                 break;
1129         case ARCH_TIMER_PHYS_SECURE_PPI:
1130         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1131                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1132                                          "arch_timer", arch_timer_evt);
1133                 if (!err && arch_timer_has_nonsecure_ppi()) {
1134                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1135                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1136                                                  "arch_timer", arch_timer_evt);
1137                         if (err)
1138                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1139                                                 arch_timer_evt);
1140                 }
1141                 break;
1142         case ARCH_TIMER_HYP_PPI:
1143                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1144                                          "arch_timer", arch_timer_evt);
1145                 break;
1146         default:
1147                 BUG();
1148         }
1149
1150         if (err) {
1151                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1152                 goto out_free;
1153         }
1154
1155         err = arch_timer_cpu_pm_init();
1156         if (err)
1157                 goto out_unreg_notify;
1158
1159         /* Register and immediately configure the timer on the boot CPU */
1160         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1161                                 "clockevents/arm/arch_timer:starting",
1162                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1163         if (err)
1164                 goto out_unreg_cpupm;
1165         return 0;
1166
1167 out_unreg_cpupm:
1168         arch_timer_cpu_pm_deinit();
1169
1170 out_unreg_notify:
1171         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1172         if (arch_timer_has_nonsecure_ppi())
1173                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1174                                 arch_timer_evt);
1175
1176 out_free:
1177         free_percpu(arch_timer_evt);
1178 out:
1179         return err;
1180 }
1181
1182 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1183 {
1184         int ret;
1185         irq_handler_t func;
1186         struct arch_timer *t;
1187
1188         t = kzalloc(sizeof(*t), GFP_KERNEL);
1189         if (!t)
1190                 return -ENOMEM;
1191
1192         t->base = base;
1193         t->evt.irq = irq;
1194         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1195
1196         if (arch_timer_mem_use_virtual)
1197                 func = arch_timer_handler_virt_mem;
1198         else
1199                 func = arch_timer_handler_phys_mem;
1200
1201         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1202         if (ret) {
1203                 pr_err("Failed to request mem timer irq\n");
1204                 kfree(t);
1205         }
1206
1207         return ret;
1208 }
1209
1210 static const struct of_device_id arch_timer_of_match[] __initconst = {
1211         { .compatible   = "arm,armv7-timer",    },
1212         { .compatible   = "arm,armv8-timer",    },
1213         {},
1214 };
1215
1216 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1217         { .compatible   = "arm,armv7-timer-mem", },
1218         {},
1219 };
1220
1221 static bool __init arch_timer_needs_of_probing(void)
1222 {
1223         struct device_node *dn;
1224         bool needs_probing = false;
1225         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1226
1227         /* We have two timers, and both device-tree nodes are probed. */
1228         if ((arch_timers_present & mask) == mask)
1229                 return false;
1230
1231         /*
1232          * Only one type of timer is probed,
1233          * check if we have another type of timer node in device-tree.
1234          */
1235         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1236                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1237         else
1238                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1239
1240         if (dn && of_device_is_available(dn))
1241                 needs_probing = true;
1242
1243         of_node_put(dn);
1244
1245         return needs_probing;
1246 }
1247
1248 static int __init arch_timer_common_init(void)
1249 {
1250         arch_timer_banner(arch_timers_present);
1251         arch_counter_register(arch_timers_present);
1252         return arch_timer_arch_init();
1253 }
1254
1255 /**
1256  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1257  *
1258  * If HYP mode is available, we know that the physical timer
1259  * has been configured to be accessible from PL1. Use it, so
1260  * that a guest can use the virtual timer instead.
1261  *
1262  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1263  * accesses to CNTP_*_EL1 registers are silently redirected to
1264  * their CNTHP_*_EL2 counterparts, and use a different PPI
1265  * number.
1266  *
1267  * If no interrupt provided for virtual timer, we'll have to
1268  * stick to the physical timer. It'd better be accessible...
1269  * For arm64 we never use the secure interrupt.
1270  *
1271  * Return: a suitable PPI type for the current system.
1272  */
1273 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1274 {
1275         if (is_kernel_in_hyp_mode())
1276                 return ARCH_TIMER_HYP_PPI;
1277
1278         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1279                 return ARCH_TIMER_VIRT_PPI;
1280
1281         if (IS_ENABLED(CONFIG_ARM64))
1282                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1283
1284         return ARCH_TIMER_PHYS_SECURE_PPI;
1285 }
1286
1287 static void __init arch_timer_populate_kvm_info(void)
1288 {
1289         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1290         if (is_kernel_in_hyp_mode())
1291                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1292 }
1293
1294 static int __init arch_timer_of_init(struct device_node *np)
1295 {
1296         int i, irq, ret;
1297         u32 rate;
1298         bool has_names;
1299
1300         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1301                 pr_warn("multiple nodes in dt, skipping\n");
1302                 return 0;
1303         }
1304
1305         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1306
1307         has_names = of_property_read_bool(np, "interrupt-names");
1308
1309         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1310                 if (has_names)
1311                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1312                 else
1313                         irq = of_irq_get(np, i);
1314                 if (irq > 0)
1315                         arch_timer_ppi[i] = irq;
1316         }
1317
1318         arch_timer_populate_kvm_info();
1319
1320         rate = arch_timer_get_cntfrq();
1321         arch_timer_of_configure_rate(rate, np);
1322
1323         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1324
1325         /* Check for globally applicable workarounds */
1326         arch_timer_check_ool_workaround(ate_match_dt, np);
1327
1328         /*
1329          * If we cannot rely on firmware initializing the timer registers then
1330          * we should use the physical timers instead.
1331          */
1332         if (IS_ENABLED(CONFIG_ARM) &&
1333             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1334                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1335         else
1336                 arch_timer_uses_ppi = arch_timer_select_ppi();
1337
1338         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1339                 pr_err("No interrupt available, giving up\n");
1340                 return -EINVAL;
1341         }
1342
1343         /* On some systems, the counter stops ticking when in suspend. */
1344         arch_counter_suspend_stop = of_property_read_bool(np,
1345                                                          "arm,no-tick-in-suspend");
1346
1347         ret = arch_timer_register();
1348         if (ret)
1349                 return ret;
1350
1351         if (arch_timer_needs_of_probing())
1352                 return 0;
1353
1354         return arch_timer_common_init();
1355 }
1356 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1357 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1358
1359 static u32 __init
1360 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1361 {
1362         void __iomem *base;
1363         u32 rate;
1364
1365         base = ioremap(frame->cntbase, frame->size);
1366         if (!base) {
1367                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1368                 return 0;
1369         }
1370
1371         rate = readl_relaxed(base + CNTFRQ);
1372
1373         iounmap(base);
1374
1375         return rate;
1376 }
1377
1378 static struct arch_timer_mem_frame * __init
1379 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1380 {
1381         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1382         void __iomem *cntctlbase;
1383         u32 cnttidr;
1384         int i;
1385
1386         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1387         if (!cntctlbase) {
1388                 pr_err("Can't map CNTCTLBase @ %pa\n",
1389                         &timer_mem->cntctlbase);
1390                 return NULL;
1391         }
1392
1393         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1394
1395         /*
1396          * Try to find a virtual capable frame. Otherwise fall back to a
1397          * physical capable frame.
1398          */
1399         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1400                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1401                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1402
1403                 frame = &timer_mem->frame[i];
1404                 if (!frame->valid)
1405                         continue;
1406
1407                 /* Try enabling everything, and see what sticks */
1408                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1409                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1410
1411                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1412                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1413                         best_frame = frame;
1414                         arch_timer_mem_use_virtual = true;
1415                         break;
1416                 }
1417
1418                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1419                         continue;
1420
1421                 best_frame = frame;
1422         }
1423
1424         iounmap(cntctlbase);
1425
1426         return best_frame;
1427 }
1428
1429 static int __init
1430 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1431 {
1432         void __iomem *base;
1433         int ret, irq = 0;
1434
1435         if (arch_timer_mem_use_virtual)
1436                 irq = frame->virt_irq;
1437         else
1438                 irq = frame->phys_irq;
1439
1440         if (!irq) {
1441                 pr_err("Frame missing %s irq.\n",
1442                        arch_timer_mem_use_virtual ? "virt" : "phys");
1443                 return -EINVAL;
1444         }
1445
1446         if (!request_mem_region(frame->cntbase, frame->size,
1447                                 "arch_mem_timer"))
1448                 return -EBUSY;
1449
1450         base = ioremap(frame->cntbase, frame->size);
1451         if (!base) {
1452                 pr_err("Can't map frame's registers\n");
1453                 return -ENXIO;
1454         }
1455
1456         ret = arch_timer_mem_register(base, irq);
1457         if (ret) {
1458                 iounmap(base);
1459                 return ret;
1460         }
1461
1462         arch_counter_base = base;
1463         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1464
1465         return 0;
1466 }
1467
1468 static int __init arch_timer_mem_of_init(struct device_node *np)
1469 {
1470         struct arch_timer_mem *timer_mem;
1471         struct arch_timer_mem_frame *frame;
1472         struct device_node *frame_node;
1473         struct resource res;
1474         int ret = -EINVAL;
1475         u32 rate;
1476
1477         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1478         if (!timer_mem)
1479                 return -ENOMEM;
1480
1481         if (of_address_to_resource(np, 0, &res))
1482                 goto out;
1483         timer_mem->cntctlbase = res.start;
1484         timer_mem->size = resource_size(&res);
1485
1486         for_each_available_child_of_node(np, frame_node) {
1487                 u32 n;
1488                 struct arch_timer_mem_frame *frame;
1489
1490                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1491                         pr_err(FW_BUG "Missing frame-number.\n");
1492                         of_node_put(frame_node);
1493                         goto out;
1494                 }
1495                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1496                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1497                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1498                         of_node_put(frame_node);
1499                         goto out;
1500                 }
1501                 frame = &timer_mem->frame[n];
1502
1503                 if (frame->valid) {
1504                         pr_err(FW_BUG "Duplicated frame-number.\n");
1505                         of_node_put(frame_node);
1506                         goto out;
1507                 }
1508
1509                 if (of_address_to_resource(frame_node, 0, &res)) {
1510                         of_node_put(frame_node);
1511                         goto out;
1512                 }
1513                 frame->cntbase = res.start;
1514                 frame->size = resource_size(&res);
1515
1516                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1517                                                        ARCH_TIMER_VIRT_SPI);
1518                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1519                                                        ARCH_TIMER_PHYS_SPI);
1520
1521                 frame->valid = true;
1522         }
1523
1524         frame = arch_timer_mem_find_best_frame(timer_mem);
1525         if (!frame) {
1526                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1527                         &timer_mem->cntctlbase);
1528                 ret = -EINVAL;
1529                 goto out;
1530         }
1531
1532         rate = arch_timer_mem_frame_get_cntfrq(frame);
1533         arch_timer_of_configure_rate(rate, np);
1534
1535         ret = arch_timer_mem_frame_register(frame);
1536         if (!ret && !arch_timer_needs_of_probing())
1537                 ret = arch_timer_common_init();
1538 out:
1539         kfree(timer_mem);
1540         return ret;
1541 }
1542 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1543                        arch_timer_mem_of_init);
1544
1545 #ifdef CONFIG_ACPI_GTDT
1546 static int __init
1547 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1548 {
1549         struct arch_timer_mem_frame *frame;
1550         u32 rate;
1551         int i;
1552
1553         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1554                 frame = &timer_mem->frame[i];
1555
1556                 if (!frame->valid)
1557                         continue;
1558
1559                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1560                 if (rate == arch_timer_rate)
1561                         continue;
1562
1563                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1564                         &frame->cntbase,
1565                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1566
1567                 return -EINVAL;
1568         }
1569
1570         return 0;
1571 }
1572
1573 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1574 {
1575         struct arch_timer_mem *timers, *timer;
1576         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1577         int timer_count, i, ret = 0;
1578
1579         timers = kcalloc(platform_timer_count, sizeof(*timers),
1580                             GFP_KERNEL);
1581         if (!timers)
1582                 return -ENOMEM;
1583
1584         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1585         if (ret || !timer_count)
1586                 goto out;
1587
1588         /*
1589          * While unlikely, it's theoretically possible that none of the frames
1590          * in a timer expose the combination of feature we want.
1591          */
1592         for (i = 0; i < timer_count; i++) {
1593                 timer = &timers[i];
1594
1595                 frame = arch_timer_mem_find_best_frame(timer);
1596                 if (!best_frame)
1597                         best_frame = frame;
1598
1599                 ret = arch_timer_mem_verify_cntfrq(timer);
1600                 if (ret) {
1601                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1602                         goto out;
1603                 }
1604
1605                 if (!best_frame) /* implies !frame */
1606                         /*
1607                          * Only complain about missing suitable frames if we
1608                          * haven't already found one in a previous iteration.
1609                          */
1610                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1611                                 &timer->cntctlbase);
1612         }
1613
1614         if (best_frame)
1615                 ret = arch_timer_mem_frame_register(best_frame);
1616 out:
1617         kfree(timers);
1618         return ret;
1619 }
1620
1621 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1622 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1623 {
1624         int ret, platform_timer_count;
1625
1626         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1627                 pr_warn("already initialized, skipping\n");
1628                 return -EINVAL;
1629         }
1630
1631         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1632
1633         ret = acpi_gtdt_init(table, &platform_timer_count);
1634         if (ret)
1635                 return ret;
1636
1637         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1638                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1639
1640         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1641                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1642
1643         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1644                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1645
1646         arch_timer_populate_kvm_info();
1647
1648         /*
1649          * When probing via ACPI, we have no mechanism to override the sysreg
1650          * CNTFRQ value. This *must* be correct.
1651          */
1652         arch_timer_rate = arch_timer_get_cntfrq();
1653         ret = validate_timer_rate();
1654         if (ret) {
1655                 pr_err(FW_BUG "frequency not available.\n");
1656                 return ret;
1657         }
1658
1659         arch_timer_uses_ppi = arch_timer_select_ppi();
1660         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1661                 pr_err("No interrupt available, giving up\n");
1662                 return -EINVAL;
1663         }
1664
1665         /* Always-on capability */
1666         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1667
1668         /* Check for globally applicable workarounds */
1669         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1670
1671         ret = arch_timer_register();
1672         if (ret)
1673                 return ret;
1674
1675         if (platform_timer_count &&
1676             arch_timer_mem_acpi_init(platform_timer_count))
1677                 pr_err("Failed to initialize memory-mapped timer.\n");
1678
1679         return arch_timer_common_init();
1680 }
1681 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1682 #endif
1683
1684 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1685                                  struct clocksource **cs)
1686 {
1687         struct arm_smccc_res hvc_res;
1688         u32 ptp_counter;
1689         ktime_t ktime;
1690
1691         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1692                 return -EOPNOTSUPP;
1693
1694         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1695                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1696         else
1697                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1698
1699         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1700                              ptp_counter, &hvc_res);
1701
1702         if ((int)(hvc_res.a0) < 0)
1703                 return -EOPNOTSUPP;
1704
1705         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1706         *ts = ktime_to_timespec64(ktime);
1707         if (cycle)
1708                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1709         if (cs)
1710                 *cs = &clocksource_counter;
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);