Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTVCT_LO       0x08
48 #define CNTVCT_HI       0x0c
49 #define CNTFRQ          0x10
50 #define CNTP_TVAL       0x28
51 #define CNTP_CTL        0x2c
52 #define CNTV_TVAL       0x38
53 #define CNTV_CTL        0x3c
54
55 static unsigned arch_timers_present __initdata;
56
57 static void __iomem *arch_counter_base __ro_after_init;
58
59 struct arch_timer {
60         void __iomem *base;
61         struct clock_event_device evt;
62 };
63
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65
66 static u32 arch_timer_rate __ro_after_init;
67 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
68
69 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
70         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
71         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
72         [ARCH_TIMER_VIRT_PPI]           = "virt",
73         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
74         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
75 };
76
77 static struct clock_event_device __percpu *arch_timer_evt;
78
79 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
80 static bool arch_timer_c3stop __ro_after_init;
81 static bool arch_timer_mem_use_virtual __ro_after_init;
82 static bool arch_counter_suspend_stop __ro_after_init;
83 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
84 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
85 #else
86 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
87 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
88
89 static cpumask_t evtstrm_available = CPU_MASK_NONE;
90 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
91
92 static int __init early_evtstrm_cfg(char *buf)
93 {
94         return strtobool(buf, &evtstrm_enable);
95 }
96 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
97
98 /*
99  * Architected system timer support.
100  */
101
102 static __always_inline
103 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
104                           struct clock_event_device *clk)
105 {
106         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
107                 struct arch_timer *timer = to_arch_timer(clk);
108                 switch (reg) {
109                 case ARCH_TIMER_REG_CTRL:
110                         writel_relaxed(val, timer->base + CNTP_CTL);
111                         break;
112                 case ARCH_TIMER_REG_TVAL:
113                         writel_relaxed(val, timer->base + CNTP_TVAL);
114                         break;
115                 }
116         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
117                 struct arch_timer *timer = to_arch_timer(clk);
118                 switch (reg) {
119                 case ARCH_TIMER_REG_CTRL:
120                         writel_relaxed(val, timer->base + CNTV_CTL);
121                         break;
122                 case ARCH_TIMER_REG_TVAL:
123                         writel_relaxed(val, timer->base + CNTV_TVAL);
124                         break;
125                 }
126         } else {
127                 arch_timer_reg_write_cp15(access, reg, val);
128         }
129 }
130
131 static __always_inline
132 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
133                         struct clock_event_device *clk)
134 {
135         u32 val;
136
137         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
138                 struct arch_timer *timer = to_arch_timer(clk);
139                 switch (reg) {
140                 case ARCH_TIMER_REG_CTRL:
141                         val = readl_relaxed(timer->base + CNTP_CTL);
142                         break;
143                 case ARCH_TIMER_REG_TVAL:
144                         val = readl_relaxed(timer->base + CNTP_TVAL);
145                         break;
146                 }
147         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
148                 struct arch_timer *timer = to_arch_timer(clk);
149                 switch (reg) {
150                 case ARCH_TIMER_REG_CTRL:
151                         val = readl_relaxed(timer->base + CNTV_CTL);
152                         break;
153                 case ARCH_TIMER_REG_TVAL:
154                         val = readl_relaxed(timer->base + CNTV_TVAL);
155                         break;
156                 }
157         } else {
158                 val = arch_timer_reg_read_cp15(access, reg);
159         }
160
161         return val;
162 }
163
164 static notrace u64 arch_counter_get_cntpct_stable(void)
165 {
166         return __arch_counter_get_cntpct_stable();
167 }
168
169 static notrace u64 arch_counter_get_cntpct(void)
170 {
171         return __arch_counter_get_cntpct();
172 }
173
174 static notrace u64 arch_counter_get_cntvct_stable(void)
175 {
176         return __arch_counter_get_cntvct_stable();
177 }
178
179 static notrace u64 arch_counter_get_cntvct(void)
180 {
181         return __arch_counter_get_cntvct();
182 }
183
184 /*
185  * Default to cp15 based access because arm64 uses this function for
186  * sched_clock() before DT is probed and the cp15 method is guaranteed
187  * to exist on arm64. arm doesn't use this before DT is probed so even
188  * if we don't have the cp15 accessors we won't have a problem.
189  */
190 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
191 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
192
193 static u64 arch_counter_read(struct clocksource *cs)
194 {
195         return arch_timer_read_counter();
196 }
197
198 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
199 {
200         return arch_timer_read_counter();
201 }
202
203 static struct clocksource clocksource_counter = {
204         .name   = "arch_sys_counter",
205         .id     = CSID_ARM_ARCH_COUNTER,
206         .rating = 400,
207         .read   = arch_counter_read,
208         .mask   = CLOCKSOURCE_MASK(56),
209         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211
212 static struct cyclecounter cyclecounter __ro_after_init = {
213         .read   = arch_counter_read_cc,
214         .mask   = CLOCKSOURCE_MASK(56),
215 };
216
217 struct ate_acpi_oem_info {
218         char oem_id[ACPI_OEM_ID_SIZE + 1];
219         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
220         u32 oem_revision;
221 };
222
223 #ifdef CONFIG_FSL_ERRATUM_A008585
224 /*
225  * The number of retries is an arbitrary value well beyond the highest number
226  * of iterations the loop has been observed to take.
227  */
228 #define __fsl_a008585_read_reg(reg) ({                  \
229         u64 _old, _new;                                 \
230         int _retries = 200;                             \
231                                                         \
232         do {                                            \
233                 _old = read_sysreg(reg);                \
234                 _new = read_sysreg(reg);                \
235                 _retries--;                             \
236         } while (unlikely(_old != _new) && _retries);   \
237                                                         \
238         WARN_ON_ONCE(!_retries);                        \
239         _new;                                           \
240 })
241
242 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
243 {
244         return __fsl_a008585_read_reg(cntp_tval_el0);
245 }
246
247 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
248 {
249         return __fsl_a008585_read_reg(cntv_tval_el0);
250 }
251
252 static u64 notrace fsl_a008585_read_cntpct_el0(void)
253 {
254         return __fsl_a008585_read_reg(cntpct_el0);
255 }
256
257 static u64 notrace fsl_a008585_read_cntvct_el0(void)
258 {
259         return __fsl_a008585_read_reg(cntvct_el0);
260 }
261 #endif
262
263 #ifdef CONFIG_HISILICON_ERRATUM_161010101
264 /*
265  * Verify whether the value of the second read is larger than the first by
266  * less than 32 is the only way to confirm the value is correct, so clear the
267  * lower 5 bits to check whether the difference is greater than 32 or not.
268  * Theoretically the erratum should not occur more than twice in succession
269  * when reading the system counter, but it is possible that some interrupts
270  * may lead to more than twice read errors, triggering the warning, so setting
271  * the number of retries far beyond the number of iterations the loop has been
272  * observed to take.
273  */
274 #define __hisi_161010101_read_reg(reg) ({                               \
275         u64 _old, _new;                                         \
276         int _retries = 50;                                      \
277                                                                 \
278         do {                                                    \
279                 _old = read_sysreg(reg);                        \
280                 _new = read_sysreg(reg);                        \
281                 _retries--;                                     \
282         } while (unlikely((_new - _old) >> 5) && _retries);     \
283                                                                 \
284         WARN_ON_ONCE(!_retries);                                \
285         _new;                                                   \
286 })
287
288 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
289 {
290         return __hisi_161010101_read_reg(cntp_tval_el0);
291 }
292
293 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
294 {
295         return __hisi_161010101_read_reg(cntv_tval_el0);
296 }
297
298 static u64 notrace hisi_161010101_read_cntpct_el0(void)
299 {
300         return __hisi_161010101_read_reg(cntpct_el0);
301 }
302
303 static u64 notrace hisi_161010101_read_cntvct_el0(void)
304 {
305         return __hisi_161010101_read_reg(cntvct_el0);
306 }
307
308 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
309         /*
310          * Note that trailing spaces are required to properly match
311          * the OEM table information.
312          */
313         {
314                 .oem_id         = "HISI  ",
315                 .oem_table_id   = "HIP05   ",
316                 .oem_revision   = 0,
317         },
318         {
319                 .oem_id         = "HISI  ",
320                 .oem_table_id   = "HIP06   ",
321                 .oem_revision   = 0,
322         },
323         {
324                 .oem_id         = "HISI  ",
325                 .oem_table_id   = "HIP07   ",
326                 .oem_revision   = 0,
327         },
328         { /* Sentinel indicating the end of the OEM array */ },
329 };
330 #endif
331
332 #ifdef CONFIG_ARM64_ERRATUM_858921
333 static u64 notrace arm64_858921_read_cntpct_el0(void)
334 {
335         u64 old, new;
336
337         old = read_sysreg(cntpct_el0);
338         new = read_sysreg(cntpct_el0);
339         return (((old ^ new) >> 32) & 1) ? old : new;
340 }
341
342 static u64 notrace arm64_858921_read_cntvct_el0(void)
343 {
344         u64 old, new;
345
346         old = read_sysreg(cntvct_el0);
347         new = read_sysreg(cntvct_el0);
348         return (((old ^ new) >> 32) & 1) ? old : new;
349 }
350 #endif
351
352 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
353 /*
354  * The low bits of the counter registers are indeterminate while bit 10 or
355  * greater is rolling over. Since the counter value can jump both backward
356  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
357  * with all ones or all zeros in the low bits. Bound the loop by the maximum
358  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
359  */
360 #define __sun50i_a64_read_reg(reg) ({                                   \
361         u64 _val;                                                       \
362         int _retries = 150;                                             \
363                                                                         \
364         do {                                                            \
365                 _val = read_sysreg(reg);                                \
366                 _retries--;                                             \
367         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
368                                                                         \
369         WARN_ON_ONCE(!_retries);                                        \
370         _val;                                                           \
371 })
372
373 static u64 notrace sun50i_a64_read_cntpct_el0(void)
374 {
375         return __sun50i_a64_read_reg(cntpct_el0);
376 }
377
378 static u64 notrace sun50i_a64_read_cntvct_el0(void)
379 {
380         return __sun50i_a64_read_reg(cntvct_el0);
381 }
382
383 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
384 {
385         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
386 }
387
388 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
389 {
390         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
391 }
392 #endif
393
394 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
395 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
396 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
397
398 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
399
400 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
401                                                 struct clock_event_device *clk)
402 {
403         unsigned long ctrl;
404         u64 cval;
405
406         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
407         ctrl |= ARCH_TIMER_CTRL_ENABLE;
408         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
409
410         if (access == ARCH_TIMER_PHYS_ACCESS) {
411                 cval = evt + arch_counter_get_cntpct_stable();
412                 write_sysreg(cval, cntp_cval_el0);
413         } else {
414                 cval = evt + arch_counter_get_cntvct_stable();
415                 write_sysreg(cval, cntv_cval_el0);
416         }
417
418         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
419 }
420
421 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
422                                             struct clock_event_device *clk)
423 {
424         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
425         return 0;
426 }
427
428 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
429                                             struct clock_event_device *clk)
430 {
431         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
432         return 0;
433 }
434
435 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
436 #ifdef CONFIG_FSL_ERRATUM_A008585
437         {
438                 .match_type = ate_match_dt,
439                 .id = "fsl,erratum-a008585",
440                 .desc = "Freescale erratum a005858",
441                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
442                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
443                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445                 .set_next_event_phys = erratum_set_next_event_tval_phys,
446                 .set_next_event_virt = erratum_set_next_event_tval_virt,
447         },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450         {
451                 .match_type = ate_match_dt,
452                 .id = "hisilicon,erratum-161010101",
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458                 .set_next_event_phys = erratum_set_next_event_tval_phys,
459                 .set_next_event_virt = erratum_set_next_event_tval_virt,
460         },
461         {
462                 .match_type = ate_match_acpi_oem_info,
463                 .id = hisi_161010101_oem_info,
464                 .desc = "HiSilicon erratum 161010101",
465                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
466                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
467                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
468                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
469                 .set_next_event_phys = erratum_set_next_event_tval_phys,
470                 .set_next_event_virt = erratum_set_next_event_tval_virt,
471         },
472 #endif
473 #ifdef CONFIG_ARM64_ERRATUM_858921
474         {
475                 .match_type = ate_match_local_cap_id,
476                 .id = (void *)ARM64_WORKAROUND_858921,
477                 .desc = "ARM erratum 858921",
478                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
479                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
480         },
481 #endif
482 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
483         {
484                 .match_type = ate_match_dt,
485                 .id = "allwinner,erratum-unknown1",
486                 .desc = "Allwinner erratum UNKNOWN1",
487                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
488                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
489                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
490                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
491                 .set_next_event_phys = erratum_set_next_event_tval_phys,
492                 .set_next_event_virt = erratum_set_next_event_tval_virt,
493         },
494 #endif
495 #ifdef CONFIG_ARM64_ERRATUM_1418040
496         {
497                 .match_type = ate_match_local_cap_id,
498                 .id = (void *)ARM64_WORKAROUND_1418040,
499                 .desc = "ARM erratum 1418040",
500                 .disable_compat_vdso = true,
501         },
502 #endif
503 };
504
505 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
506                                const void *);
507
508 static
509 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
510                                  const void *arg)
511 {
512         const struct device_node *np = arg;
513
514         return of_property_read_bool(np, wa->id);
515 }
516
517 static
518 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
519                                         const void *arg)
520 {
521         return this_cpu_has_cap((uintptr_t)wa->id);
522 }
523
524
525 static
526 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
527                                        const void *arg)
528 {
529         static const struct ate_acpi_oem_info empty_oem_info = {};
530         const struct ate_acpi_oem_info *info = wa->id;
531         const struct acpi_table_header *table = arg;
532
533         /* Iterate over the ACPI OEM info array, looking for a match */
534         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
535                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
536                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
537                     info->oem_revision == table->oem_revision)
538                         return true;
539
540                 info++;
541         }
542
543         return false;
544 }
545
546 static const struct arch_timer_erratum_workaround *
547 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
548                           ate_match_fn_t match_fn,
549                           void *arg)
550 {
551         int i;
552
553         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
554                 if (ool_workarounds[i].match_type != type)
555                         continue;
556
557                 if (match_fn(&ool_workarounds[i], arg))
558                         return &ool_workarounds[i];
559         }
560
561         return NULL;
562 }
563
564 static
565 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
566                                   bool local)
567 {
568         int i;
569
570         if (local) {
571                 __this_cpu_write(timer_unstable_counter_workaround, wa);
572         } else {
573                 for_each_possible_cpu(i)
574                         per_cpu(timer_unstable_counter_workaround, i) = wa;
575         }
576
577         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
578                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
579
580         /*
581          * Don't use the vdso fastpath if errata require using the
582          * out-of-line counter accessor. We may change our mind pretty
583          * late in the game (with a per-CPU erratum, for example), so
584          * change both the default value and the vdso itself.
585          */
586         if (wa->read_cntvct_el0) {
587                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
588                 vdso_default = VDSO_CLOCKMODE_NONE;
589         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
590                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
591                 clocksource_counter.vdso_clock_mode = vdso_default;
592         }
593 }
594
595 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
596                                             void *arg)
597 {
598         const struct arch_timer_erratum_workaround *wa, *__wa;
599         ate_match_fn_t match_fn = NULL;
600         bool local = false;
601
602         switch (type) {
603         case ate_match_dt:
604                 match_fn = arch_timer_check_dt_erratum;
605                 break;
606         case ate_match_local_cap_id:
607                 match_fn = arch_timer_check_local_cap_erratum;
608                 local = true;
609                 break;
610         case ate_match_acpi_oem_info:
611                 match_fn = arch_timer_check_acpi_oem_erratum;
612                 break;
613         default:
614                 WARN_ON(1);
615                 return;
616         }
617
618         wa = arch_timer_iterate_errata(type, match_fn, arg);
619         if (!wa)
620                 return;
621
622         __wa = __this_cpu_read(timer_unstable_counter_workaround);
623         if (__wa && wa != __wa)
624                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
625                         wa->desc, __wa->desc);
626
627         if (__wa)
628                 return;
629
630         arch_timer_enable_workaround(wa, local);
631         pr_info("Enabling %s workaround for %s\n",
632                 local ? "local" : "global", wa->desc);
633 }
634
635 static bool arch_timer_this_cpu_has_cntvct_wa(void)
636 {
637         return has_erratum_handler(read_cntvct_el0);
638 }
639
640 static bool arch_timer_counter_has_wa(void)
641 {
642         return atomic_read(&timer_unstable_counter_workaround_in_use);
643 }
644 #else
645 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
646 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
647 #define arch_timer_counter_has_wa()                     ({false;})
648 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
649
650 static __always_inline irqreturn_t timer_handler(const int access,
651                                         struct clock_event_device *evt)
652 {
653         unsigned long ctrl;
654
655         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
656         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
657                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
658                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
659                 evt->event_handler(evt);
660                 return IRQ_HANDLED;
661         }
662
663         return IRQ_NONE;
664 }
665
666 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
667 {
668         struct clock_event_device *evt = dev_id;
669
670         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
671 }
672
673 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
674 {
675         struct clock_event_device *evt = dev_id;
676
677         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
678 }
679
680 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
681 {
682         struct clock_event_device *evt = dev_id;
683
684         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
685 }
686
687 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
688 {
689         struct clock_event_device *evt = dev_id;
690
691         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
692 }
693
694 static __always_inline int timer_shutdown(const int access,
695                                           struct clock_event_device *clk)
696 {
697         unsigned long ctrl;
698
699         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
700         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
701         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
702
703         return 0;
704 }
705
706 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
707 {
708         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
709 }
710
711 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
712 {
713         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
714 }
715
716 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
717 {
718         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
719 }
720
721 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
722 {
723         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
724 }
725
726 static __always_inline void set_next_event(const int access, unsigned long evt,
727                                            struct clock_event_device *clk)
728 {
729         unsigned long ctrl;
730         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
731         ctrl |= ARCH_TIMER_CTRL_ENABLE;
732         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
733         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
734         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
735 }
736
737 static int arch_timer_set_next_event_virt(unsigned long evt,
738                                           struct clock_event_device *clk)
739 {
740         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
741         return 0;
742 }
743
744 static int arch_timer_set_next_event_phys(unsigned long evt,
745                                           struct clock_event_device *clk)
746 {
747         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
748         return 0;
749 }
750
751 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
752                                               struct clock_event_device *clk)
753 {
754         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
755         return 0;
756 }
757
758 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
759                                               struct clock_event_device *clk)
760 {
761         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
762         return 0;
763 }
764
765 static void __arch_timer_setup(unsigned type,
766                                struct clock_event_device *clk)
767 {
768         clk->features = CLOCK_EVT_FEAT_ONESHOT;
769
770         if (type == ARCH_TIMER_TYPE_CP15) {
771                 typeof(clk->set_next_event) sne;
772
773                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
774
775                 if (arch_timer_c3stop)
776                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
777                 clk->name = "arch_sys_timer";
778                 clk->rating = 450;
779                 clk->cpumask = cpumask_of(smp_processor_id());
780                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
781                 switch (arch_timer_uses_ppi) {
782                 case ARCH_TIMER_VIRT_PPI:
783                         clk->set_state_shutdown = arch_timer_shutdown_virt;
784                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
785                         sne = erratum_handler(set_next_event_virt);
786                         break;
787                 case ARCH_TIMER_PHYS_SECURE_PPI:
788                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
789                 case ARCH_TIMER_HYP_PPI:
790                         clk->set_state_shutdown = arch_timer_shutdown_phys;
791                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
792                         sne = erratum_handler(set_next_event_phys);
793                         break;
794                 default:
795                         BUG();
796                 }
797
798                 clk->set_next_event = sne;
799         } else {
800                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
801                 clk->name = "arch_mem_timer";
802                 clk->rating = 400;
803                 clk->cpumask = cpu_possible_mask;
804                 if (arch_timer_mem_use_virtual) {
805                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
806                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
807                         clk->set_next_event =
808                                 arch_timer_set_next_event_virt_mem;
809                 } else {
810                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
811                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
812                         clk->set_next_event =
813                                 arch_timer_set_next_event_phys_mem;
814                 }
815         }
816
817         clk->set_state_shutdown(clk);
818
819         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
820 }
821
822 static void arch_timer_evtstrm_enable(int divider)
823 {
824         u32 cntkctl = arch_timer_get_cntkctl();
825
826         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
827         /* Set the divider and enable virtual event stream */
828         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
829                         | ARCH_TIMER_VIRT_EVT_EN;
830         arch_timer_set_cntkctl(cntkctl);
831         arch_timer_set_evtstrm_feature();
832         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
833 }
834
835 static void arch_timer_configure_evtstream(void)
836 {
837         int evt_stream_div, lsb;
838
839         /*
840          * As the event stream can at most be generated at half the frequency
841          * of the counter, use half the frequency when computing the divider.
842          */
843         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
844
845         /*
846          * Find the closest power of two to the divisor. If the adjacent bit
847          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
848          */
849         lsb = fls(evt_stream_div) - 1;
850         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
851                 lsb++;
852
853         /* enable event stream */
854         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
855 }
856
857 static void arch_counter_set_user_access(void)
858 {
859         u32 cntkctl = arch_timer_get_cntkctl();
860
861         /* Disable user access to the timers and both counters */
862         /* Also disable virtual event stream */
863         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
864                         | ARCH_TIMER_USR_VT_ACCESS_EN
865                         | ARCH_TIMER_USR_VCT_ACCESS_EN
866                         | ARCH_TIMER_VIRT_EVT_EN
867                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
868
869         /*
870          * Enable user access to the virtual counter if it doesn't
871          * need to be workaround. The vdso may have been already
872          * disabled though.
873          */
874         if (arch_timer_this_cpu_has_cntvct_wa())
875                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
876         else
877                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
878
879         arch_timer_set_cntkctl(cntkctl);
880 }
881
882 static bool arch_timer_has_nonsecure_ppi(void)
883 {
884         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
885                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
886 }
887
888 static u32 check_ppi_trigger(int irq)
889 {
890         u32 flags = irq_get_trigger_type(irq);
891
892         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
893                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
894                 pr_warn("WARNING: Please fix your firmware\n");
895                 flags = IRQF_TRIGGER_LOW;
896         }
897
898         return flags;
899 }
900
901 static int arch_timer_starting_cpu(unsigned int cpu)
902 {
903         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
904         u32 flags;
905
906         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
907
908         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
909         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
910
911         if (arch_timer_has_nonsecure_ppi()) {
912                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
913                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
914                                   flags);
915         }
916
917         arch_counter_set_user_access();
918         if (evtstrm_enable)
919                 arch_timer_configure_evtstream();
920
921         return 0;
922 }
923
924 static int validate_timer_rate(void)
925 {
926         if (!arch_timer_rate)
927                 return -EINVAL;
928
929         /* Arch timer frequency < 1MHz can cause trouble */
930         WARN_ON(arch_timer_rate < 1000000);
931
932         return 0;
933 }
934
935 /*
936  * For historical reasons, when probing with DT we use whichever (non-zero)
937  * rate was probed first, and don't verify that others match. If the first node
938  * probed has a clock-frequency property, this overrides the HW register.
939  */
940 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
941 {
942         /* Who has more than one independent system counter? */
943         if (arch_timer_rate)
944                 return;
945
946         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
947                 arch_timer_rate = rate;
948
949         /* Check the timer frequency. */
950         if (validate_timer_rate())
951                 pr_warn("frequency not available\n");
952 }
953
954 static void __init arch_timer_banner(unsigned type)
955 {
956         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
957                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
958                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
959                         " and " : "",
960                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
961                 (unsigned long)arch_timer_rate / 1000000,
962                 (unsigned long)(arch_timer_rate / 10000) % 100,
963                 type & ARCH_TIMER_TYPE_CP15 ?
964                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
965                         "",
966                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
967                 type & ARCH_TIMER_TYPE_MEM ?
968                         arch_timer_mem_use_virtual ? "virt" : "phys" :
969                         "");
970 }
971
972 u32 arch_timer_get_rate(void)
973 {
974         return arch_timer_rate;
975 }
976
977 bool arch_timer_evtstrm_available(void)
978 {
979         /*
980          * We might get called from a preemptible context. This is fine
981          * because availability of the event stream should be always the same
982          * for a preemptible context and context where we might resume a task.
983          */
984         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
985 }
986
987 static u64 arch_counter_get_cntvct_mem(void)
988 {
989         u32 vct_lo, vct_hi, tmp_hi;
990
991         do {
992                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
993                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
994                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
995         } while (vct_hi != tmp_hi);
996
997         return ((u64) vct_hi << 32) | vct_lo;
998 }
999
1000 static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003 {
1004         return &arch_timer_kvm_info;
1005 }
1006
1007 static void __init arch_counter_register(unsigned type)
1008 {
1009         u64 start_count;
1010
1011         /* Register the CP15 based counter if we have one */
1012         if (type & ARCH_TIMER_TYPE_CP15) {
1013                 u64 (*rd)(void);
1014
1015                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017                         if (arch_timer_counter_has_wa())
1018                                 rd = arch_counter_get_cntvct_stable;
1019                         else
1020                                 rd = arch_counter_get_cntvct;
1021                 } else {
1022                         if (arch_timer_counter_has_wa())
1023                                 rd = arch_counter_get_cntpct_stable;
1024                         else
1025                                 rd = arch_counter_get_cntpct;
1026                 }
1027
1028                 arch_timer_read_counter = rd;
1029                 clocksource_counter.vdso_clock_mode = vdso_default;
1030         } else {
1031                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032         }
1033
1034         if (!arch_counter_suspend_stop)
1035                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036         start_count = arch_timer_read_counter();
1037         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038         cyclecounter.mult = clocksource_counter.mult;
1039         cyclecounter.shift = clocksource_counter.shift;
1040         timecounter_init(&arch_timer_kvm_info.timecounter,
1041                          &cyclecounter, start_count);
1042
1043         /* 56 bits minimum, so we assume worst case rollover */
1044         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045 }
1046
1047 static void arch_timer_stop(struct clock_event_device *clk)
1048 {
1049         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052         if (arch_timer_has_nonsecure_ppi())
1053                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055         clk->set_state_shutdown(clk);
1056 }
1057
1058 static int arch_timer_dying_cpu(unsigned int cpu)
1059 {
1060         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064         arch_timer_stop(clk);
1065         return 0;
1066 }
1067
1068 #ifdef CONFIG_CPU_PM
1069 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071                                     unsigned long action, void *hcpu)
1072 {
1073         if (action == CPU_PM_ENTER) {
1074                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080                 if (arch_timer_have_evtstrm_feature())
1081                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082         }
1083         return NOTIFY_OK;
1084 }
1085
1086 static struct notifier_block arch_timer_cpu_pm_notifier = {
1087         .notifier_call = arch_timer_cpu_pm_notify,
1088 };
1089
1090 static int __init arch_timer_cpu_pm_init(void)
1091 {
1092         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093 }
1094
1095 static void __init arch_timer_cpu_pm_deinit(void)
1096 {
1097         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098 }
1099
1100 #else
1101 static int __init arch_timer_cpu_pm_init(void)
1102 {
1103         return 0;
1104 }
1105
1106 static void __init arch_timer_cpu_pm_deinit(void)
1107 {
1108 }
1109 #endif
1110
1111 static int __init arch_timer_register(void)
1112 {
1113         int err;
1114         int ppi;
1115
1116         arch_timer_evt = alloc_percpu(struct clock_event_device);
1117         if (!arch_timer_evt) {
1118                 err = -ENOMEM;
1119                 goto out;
1120         }
1121
1122         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123         switch (arch_timer_uses_ppi) {
1124         case ARCH_TIMER_VIRT_PPI:
1125                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126                                          "arch_timer", arch_timer_evt);
1127                 break;
1128         case ARCH_TIMER_PHYS_SECURE_PPI:
1129         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131                                          "arch_timer", arch_timer_evt);
1132                 if (!err && arch_timer_has_nonsecure_ppi()) {
1133                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135                                                  "arch_timer", arch_timer_evt);
1136                         if (err)
1137                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138                                                 arch_timer_evt);
1139                 }
1140                 break;
1141         case ARCH_TIMER_HYP_PPI:
1142                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143                                          "arch_timer", arch_timer_evt);
1144                 break;
1145         default:
1146                 BUG();
1147         }
1148
1149         if (err) {
1150                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151                 goto out_free;
1152         }
1153
1154         err = arch_timer_cpu_pm_init();
1155         if (err)
1156                 goto out_unreg_notify;
1157
1158         /* Register and immediately configure the timer on the boot CPU */
1159         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160                                 "clockevents/arm/arch_timer:starting",
1161                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1162         if (err)
1163                 goto out_unreg_cpupm;
1164         return 0;
1165
1166 out_unreg_cpupm:
1167         arch_timer_cpu_pm_deinit();
1168
1169 out_unreg_notify:
1170         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171         if (arch_timer_has_nonsecure_ppi())
1172                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173                                 arch_timer_evt);
1174
1175 out_free:
1176         free_percpu(arch_timer_evt);
1177 out:
1178         return err;
1179 }
1180
1181 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182 {
1183         int ret;
1184         irq_handler_t func;
1185         struct arch_timer *t;
1186
1187         t = kzalloc(sizeof(*t), GFP_KERNEL);
1188         if (!t)
1189                 return -ENOMEM;
1190
1191         t->base = base;
1192         t->evt.irq = irq;
1193         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195         if (arch_timer_mem_use_virtual)
1196                 func = arch_timer_handler_virt_mem;
1197         else
1198                 func = arch_timer_handler_phys_mem;
1199
1200         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201         if (ret) {
1202                 pr_err("Failed to request mem timer irq\n");
1203                 kfree(t);
1204         }
1205
1206         return ret;
1207 }
1208
1209 static const struct of_device_id arch_timer_of_match[] __initconst = {
1210         { .compatible   = "arm,armv7-timer",    },
1211         { .compatible   = "arm,armv8-timer",    },
1212         {},
1213 };
1214
1215 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216         { .compatible   = "arm,armv7-timer-mem", },
1217         {},
1218 };
1219
1220 static bool __init arch_timer_needs_of_probing(void)
1221 {
1222         struct device_node *dn;
1223         bool needs_probing = false;
1224         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226         /* We have two timers, and both device-tree nodes are probed. */
1227         if ((arch_timers_present & mask) == mask)
1228                 return false;
1229
1230         /*
1231          * Only one type of timer is probed,
1232          * check if we have another type of timer node in device-tree.
1233          */
1234         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236         else
1237                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239         if (dn && of_device_is_available(dn))
1240                 needs_probing = true;
1241
1242         of_node_put(dn);
1243
1244         return needs_probing;
1245 }
1246
1247 static int __init arch_timer_common_init(void)
1248 {
1249         arch_timer_banner(arch_timers_present);
1250         arch_counter_register(arch_timers_present);
1251         return arch_timer_arch_init();
1252 }
1253
1254 /**
1255  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256  *
1257  * If HYP mode is available, we know that the physical timer
1258  * has been configured to be accessible from PL1. Use it, so
1259  * that a guest can use the virtual timer instead.
1260  *
1261  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262  * accesses to CNTP_*_EL1 registers are silently redirected to
1263  * their CNTHP_*_EL2 counterparts, and use a different PPI
1264  * number.
1265  *
1266  * If no interrupt provided for virtual timer, we'll have to
1267  * stick to the physical timer. It'd better be accessible...
1268  * For arm64 we never use the secure interrupt.
1269  *
1270  * Return: a suitable PPI type for the current system.
1271  */
1272 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273 {
1274         if (is_kernel_in_hyp_mode())
1275                 return ARCH_TIMER_HYP_PPI;
1276
1277         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278                 return ARCH_TIMER_VIRT_PPI;
1279
1280         if (IS_ENABLED(CONFIG_ARM64))
1281                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283         return ARCH_TIMER_PHYS_SECURE_PPI;
1284 }
1285
1286 static void __init arch_timer_populate_kvm_info(void)
1287 {
1288         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289         if (is_kernel_in_hyp_mode())
1290                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291 }
1292
1293 static int __init arch_timer_of_init(struct device_node *np)
1294 {
1295         int i, irq, ret;
1296         u32 rate;
1297         bool has_names;
1298
1299         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300                 pr_warn("multiple nodes in dt, skipping\n");
1301                 return 0;
1302         }
1303
1304         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306         has_names = of_property_read_bool(np, "interrupt-names");
1307
1308         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309                 if (has_names)
1310                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311                 else
1312                         irq = of_irq_get(np, i);
1313                 if (irq > 0)
1314                         arch_timer_ppi[i] = irq;
1315         }
1316
1317         arch_timer_populate_kvm_info();
1318
1319         rate = arch_timer_get_cntfrq();
1320         arch_timer_of_configure_rate(rate, np);
1321
1322         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324         /* Check for globally applicable workarounds */
1325         arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327         /*
1328          * If we cannot rely on firmware initializing the timer registers then
1329          * we should use the physical timers instead.
1330          */
1331         if (IS_ENABLED(CONFIG_ARM) &&
1332             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334         else
1335                 arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338                 pr_err("No interrupt available, giving up\n");
1339                 return -EINVAL;
1340         }
1341
1342         /* On some systems, the counter stops ticking when in suspend. */
1343         arch_counter_suspend_stop = of_property_read_bool(np,
1344                                                          "arm,no-tick-in-suspend");
1345
1346         ret = arch_timer_register();
1347         if (ret)
1348                 return ret;
1349
1350         if (arch_timer_needs_of_probing())
1351                 return 0;
1352
1353         return arch_timer_common_init();
1354 }
1355 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358 static u32 __init
1359 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360 {
1361         void __iomem *base;
1362         u32 rate;
1363
1364         base = ioremap(frame->cntbase, frame->size);
1365         if (!base) {
1366                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367                 return 0;
1368         }
1369
1370         rate = readl_relaxed(base + CNTFRQ);
1371
1372         iounmap(base);
1373
1374         return rate;
1375 }
1376
1377 static struct arch_timer_mem_frame * __init
1378 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379 {
1380         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381         void __iomem *cntctlbase;
1382         u32 cnttidr;
1383         int i;
1384
1385         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386         if (!cntctlbase) {
1387                 pr_err("Can't map CNTCTLBase @ %pa\n",
1388                         &timer_mem->cntctlbase);
1389                 return NULL;
1390         }
1391
1392         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394         /*
1395          * Try to find a virtual capable frame. Otherwise fall back to a
1396          * physical capable frame.
1397          */
1398         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402                 frame = &timer_mem->frame[i];
1403                 if (!frame->valid)
1404                         continue;
1405
1406                 /* Try enabling everything, and see what sticks */
1407                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412                         best_frame = frame;
1413                         arch_timer_mem_use_virtual = true;
1414                         break;
1415                 }
1416
1417                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418                         continue;
1419
1420                 best_frame = frame;
1421         }
1422
1423         iounmap(cntctlbase);
1424
1425         return best_frame;
1426 }
1427
1428 static int __init
1429 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430 {
1431         void __iomem *base;
1432         int ret, irq = 0;
1433
1434         if (arch_timer_mem_use_virtual)
1435                 irq = frame->virt_irq;
1436         else
1437                 irq = frame->phys_irq;
1438
1439         if (!irq) {
1440                 pr_err("Frame missing %s irq.\n",
1441                        arch_timer_mem_use_virtual ? "virt" : "phys");
1442                 return -EINVAL;
1443         }
1444
1445         if (!request_mem_region(frame->cntbase, frame->size,
1446                                 "arch_mem_timer"))
1447                 return -EBUSY;
1448
1449         base = ioremap(frame->cntbase, frame->size);
1450         if (!base) {
1451                 pr_err("Can't map frame's registers\n");
1452                 return -ENXIO;
1453         }
1454
1455         ret = arch_timer_mem_register(base, irq);
1456         if (ret) {
1457                 iounmap(base);
1458                 return ret;
1459         }
1460
1461         arch_counter_base = base;
1462         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464         return 0;
1465 }
1466
1467 static int __init arch_timer_mem_of_init(struct device_node *np)
1468 {
1469         struct arch_timer_mem *timer_mem;
1470         struct arch_timer_mem_frame *frame;
1471         struct device_node *frame_node;
1472         struct resource res;
1473         int ret = -EINVAL;
1474         u32 rate;
1475
1476         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477         if (!timer_mem)
1478                 return -ENOMEM;
1479
1480         if (of_address_to_resource(np, 0, &res))
1481                 goto out;
1482         timer_mem->cntctlbase = res.start;
1483         timer_mem->size = resource_size(&res);
1484
1485         for_each_available_child_of_node(np, frame_node) {
1486                 u32 n;
1487                 struct arch_timer_mem_frame *frame;
1488
1489                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490                         pr_err(FW_BUG "Missing frame-number.\n");
1491                         of_node_put(frame_node);
1492                         goto out;
1493                 }
1494                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497                         of_node_put(frame_node);
1498                         goto out;
1499                 }
1500                 frame = &timer_mem->frame[n];
1501
1502                 if (frame->valid) {
1503                         pr_err(FW_BUG "Duplicated frame-number.\n");
1504                         of_node_put(frame_node);
1505                         goto out;
1506                 }
1507
1508                 if (of_address_to_resource(frame_node, 0, &res)) {
1509                         of_node_put(frame_node);
1510                         goto out;
1511                 }
1512                 frame->cntbase = res.start;
1513                 frame->size = resource_size(&res);
1514
1515                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1516                                                        ARCH_TIMER_VIRT_SPI);
1517                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1518                                                        ARCH_TIMER_PHYS_SPI);
1519
1520                 frame->valid = true;
1521         }
1522
1523         frame = arch_timer_mem_find_best_frame(timer_mem);
1524         if (!frame) {
1525                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526                         &timer_mem->cntctlbase);
1527                 ret = -EINVAL;
1528                 goto out;
1529         }
1530
1531         rate = arch_timer_mem_frame_get_cntfrq(frame);
1532         arch_timer_of_configure_rate(rate, np);
1533
1534         ret = arch_timer_mem_frame_register(frame);
1535         if (!ret && !arch_timer_needs_of_probing())
1536                 ret = arch_timer_common_init();
1537 out:
1538         kfree(timer_mem);
1539         return ret;
1540 }
1541 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542                        arch_timer_mem_of_init);
1543
1544 #ifdef CONFIG_ACPI_GTDT
1545 static int __init
1546 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547 {
1548         struct arch_timer_mem_frame *frame;
1549         u32 rate;
1550         int i;
1551
1552         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553                 frame = &timer_mem->frame[i];
1554
1555                 if (!frame->valid)
1556                         continue;
1557
1558                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1559                 if (rate == arch_timer_rate)
1560                         continue;
1561
1562                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563                         &frame->cntbase,
1564                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566                 return -EINVAL;
1567         }
1568
1569         return 0;
1570 }
1571
1572 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573 {
1574         struct arch_timer_mem *timers, *timer;
1575         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576         int timer_count, i, ret = 0;
1577
1578         timers = kcalloc(platform_timer_count, sizeof(*timers),
1579                             GFP_KERNEL);
1580         if (!timers)
1581                 return -ENOMEM;
1582
1583         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584         if (ret || !timer_count)
1585                 goto out;
1586
1587         /*
1588          * While unlikely, it's theoretically possible that none of the frames
1589          * in a timer expose the combination of feature we want.
1590          */
1591         for (i = 0; i < timer_count; i++) {
1592                 timer = &timers[i];
1593
1594                 frame = arch_timer_mem_find_best_frame(timer);
1595                 if (!best_frame)
1596                         best_frame = frame;
1597
1598                 ret = arch_timer_mem_verify_cntfrq(timer);
1599                 if (ret) {
1600                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601                         goto out;
1602                 }
1603
1604                 if (!best_frame) /* implies !frame */
1605                         /*
1606                          * Only complain about missing suitable frames if we
1607                          * haven't already found one in a previous iteration.
1608                          */
1609                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610                                 &timer->cntctlbase);
1611         }
1612
1613         if (best_frame)
1614                 ret = arch_timer_mem_frame_register(best_frame);
1615 out:
1616         kfree(timers);
1617         return ret;
1618 }
1619
1620 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622 {
1623         int ret, platform_timer_count;
1624
1625         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626                 pr_warn("already initialized, skipping\n");
1627                 return -EINVAL;
1628         }
1629
1630         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632         ret = acpi_gtdt_init(table, &platform_timer_count);
1633         if (ret)
1634                 return ret;
1635
1636         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645         arch_timer_populate_kvm_info();
1646
1647         /*
1648          * When probing via ACPI, we have no mechanism to override the sysreg
1649          * CNTFRQ value. This *must* be correct.
1650          */
1651         arch_timer_rate = arch_timer_get_cntfrq();
1652         ret = validate_timer_rate();
1653         if (ret) {
1654                 pr_err(FW_BUG "frequency not available.\n");
1655                 return ret;
1656         }
1657
1658         arch_timer_uses_ppi = arch_timer_select_ppi();
1659         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660                 pr_err("No interrupt available, giving up\n");
1661                 return -EINVAL;
1662         }
1663
1664         /* Always-on capability */
1665         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667         /* Check for globally applicable workarounds */
1668         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670         ret = arch_timer_register();
1671         if (ret)
1672                 return ret;
1673
1674         if (platform_timer_count &&
1675             arch_timer_mem_acpi_init(platform_timer_count))
1676                 pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678         return arch_timer_common_init();
1679 }
1680 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681 #endif
1682
1683 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684                                  struct clocksource **cs)
1685 {
1686         struct arm_smccc_res hvc_res;
1687         u32 ptp_counter;
1688         ktime_t ktime;
1689
1690         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691                 return -EOPNOTSUPP;
1692
1693         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1695         else
1696                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699                              ptp_counter, &hvc_res);
1700
1701         if ((int)(hvc_res.a0) < 0)
1702                 return -EOPNOTSUPP;
1703
1704         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705         *ts = ktime_to_timespec64(ktime);
1706         if (cycle)
1707                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708         if (cs)
1709                 *cs = &clocksource_counter;
1710
1711         return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);