Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / drivers / clk / tegra / clk-dfll.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * clk-dfll.c - Tegra DFLL clock source common code
4  *
5  * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6  *
7  * Aleksandr Frid <afrid@nvidia.com>
8  * Paul Walmsley <pwalmsley@nvidia.com>
9  *
10  * This library is for the DVCO and DFLL IP blocks on the Tegra124
11  * SoC. These IP blocks together are also known at NVIDIA as
12  * "CL-DVFS". To try to avoid confusion, this code refers to them
13  * collectively as the "DFLL."
14  *
15  * The DFLL is a root clocksource which tolerates some amount of
16  * supply voltage noise. Tegra124 uses it to clock the fast CPU
17  * complex when the target CPU speed is above a particular rate. The
18  * DFLL can be operated in either open-loop mode or closed-loop mode.
19  * In open-loop mode, the DFLL generates an output clock appropriate
20  * to the supply voltage. In closed-loop mode, when configured with a
21  * target frequency, the DFLL minimizes supply voltage while
22  * delivering an average frequency equal to the target.
23  *
24  * Devices clocked by the DFLL must be able to tolerate frequency
25  * variation. In the case of the CPU, it's important to note that the
26  * CPU cycle time will vary. This has implications for
27  * performance-measurement code and any code that relies on the CPU
28  * cycle time to delay for a certain length of time.
29  */
30
31 #include <linux/clk.h>
32 #include <linux/clk-provider.h>
33 #include <linux/debugfs.h>
34 #include <linux/device.h>
35 #include <linux/err.h>
36 #include <linux/i2c.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_opp.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/regmap.h>
45 #include <linux/regulator/consumer.h>
46 #include <linux/reset.h>
47 #include <linux/seq_file.h>
48
49 #include "clk-dfll.h"
50 #include "cvb.h"
51
52 /*
53  * DFLL control registers - access via dfll_{readl,writel}
54  */
55
56 /* DFLL_CTRL: DFLL control register */
57 #define DFLL_CTRL                       0x00
58 #define DFLL_CTRL_MODE_MASK             0x03
59
60 /* DFLL_CONFIG: DFLL sample rate control */
61 #define DFLL_CONFIG                     0x04
62 #define DFLL_CONFIG_DIV_MASK            0xff
63 #define DFLL_CONFIG_DIV_PRESCALE        32
64
65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66 #define DFLL_PARAMS                     0x08
67 #define DFLL_PARAMS_CG_SCALE            (0x1 << 24)
68 #define DFLL_PARAMS_FORCE_MODE_SHIFT    22
69 #define DFLL_PARAMS_FORCE_MODE_MASK     (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70 #define DFLL_PARAMS_CF_PARAM_SHIFT      16
71 #define DFLL_PARAMS_CF_PARAM_MASK       (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72 #define DFLL_PARAMS_CI_PARAM_SHIFT      8
73 #define DFLL_PARAMS_CI_PARAM_MASK       (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74 #define DFLL_PARAMS_CG_PARAM_SHIFT      0
75 #define DFLL_PARAMS_CG_PARAM_MASK       (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76
77 /* DFLL_TUNE0: delay line configuration register 0 */
78 #define DFLL_TUNE0                      0x0c
79
80 /* DFLL_TUNE1: delay line configuration register 1 */
81 #define DFLL_TUNE1                      0x10
82
83 /* DFLL_FREQ_REQ: target DFLL frequency control */
84 #define DFLL_FREQ_REQ                   0x14
85 #define DFLL_FREQ_REQ_FORCE_ENABLE      (0x1 << 28)
86 #define DFLL_FREQ_REQ_FORCE_SHIFT       16
87 #define DFLL_FREQ_REQ_FORCE_MASK        (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88 #define FORCE_MAX                       2047
89 #define FORCE_MIN                       -2048
90 #define DFLL_FREQ_REQ_SCALE_SHIFT       8
91 #define DFLL_FREQ_REQ_SCALE_MASK        (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92 #define DFLL_FREQ_REQ_SCALE_MAX         256
93 #define DFLL_FREQ_REQ_FREQ_VALID        (0x1 << 7)
94 #define DFLL_FREQ_REQ_MULT_SHIFT        0
95 #define DFLL_FREQ_REG_MULT_MASK         (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96 #define FREQ_MAX                        127
97
98 /* DFLL_DROOP_CTRL: droop prevention control */
99 #define DFLL_DROOP_CTRL                 0x1c
100
101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
102 /* NOTE: access via dfll_i2c_{readl,writel} */
103 #define DFLL_OUTPUT_CFG                 0x20
104 #define DFLL_OUTPUT_CFG_I2C_ENABLE      (0x1 << 30)
105 #define OUT_MASK                        0x3f
106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT      24
107 #define DFLL_OUTPUT_CFG_SAFE_MASK       \
108                 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109 #define DFLL_OUTPUT_CFG_MAX_SHIFT       16
110 #define DFLL_OUTPUT_CFG_MAX_MASK        \
111                 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112 #define DFLL_OUTPUT_CFG_MIN_SHIFT       8
113 #define DFLL_OUTPUT_CFG_MIN_MASK        \
114                 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115 #define DFLL_OUTPUT_CFG_PWM_DELTA       (0x1 << 7)
116 #define DFLL_OUTPUT_CFG_PWM_ENABLE      (0x1 << 6)
117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT   0
118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK    \
119                 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120
121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122 #define DFLL_OUTPUT_FORCE               0x24
123 #define DFLL_OUTPUT_FORCE_ENABLE        (0x1 << 6)
124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT   0
125 #define DFLL_OUTPUT_FORCE_VALUE_MASK    \
126                 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127
128 /* DFLL_MONITOR_CTRL: internal monitor data source control */
129 #define DFLL_MONITOR_CTRL               0x28
130 #define DFLL_MONITOR_CTRL_FREQ          6
131
132 /* DFLL_MONITOR_DATA: internal monitor data output */
133 #define DFLL_MONITOR_DATA               0x2c
134 #define DFLL_MONITOR_DATA_NEW_MASK      (0x1 << 16)
135 #define DFLL_MONITOR_DATA_VAL_SHIFT     0
136 #define DFLL_MONITOR_DATA_VAL_MASK      (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137
138 /*
139  * I2C output control registers - access via dfll_i2c_{readl,writel}
140  */
141
142 /* DFLL_I2C_CFG: I2C controller configuration register */
143 #define DFLL_I2C_CFG                    0x40
144 #define DFLL_I2C_CFG_ARB_ENABLE         (0x1 << 20)
145 #define DFLL_I2C_CFG_HS_CODE_SHIFT      16
146 #define DFLL_I2C_CFG_HS_CODE_MASK       (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147 #define DFLL_I2C_CFG_PACKET_ENABLE      (0x1 << 15)
148 #define DFLL_I2C_CFG_SIZE_SHIFT         12
149 #define DFLL_I2C_CFG_SIZE_MASK          (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150 #define DFLL_I2C_CFG_SLAVE_ADDR_10      (0x1 << 10)
151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT      1
152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT     0
153
154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155 #define DFLL_I2C_VDD_REG_ADDR           0x44
156
157 /* DFLL_I2C_STS: I2C controller status */
158 #define DFLL_I2C_STS                    0x48
159 #define DFLL_I2C_STS_I2C_LAST_SHIFT     1
160 #define DFLL_I2C_STS_I2C_REQ_PENDING    0x1
161
162 /* DFLL_INTR_STS: DFLL interrupt status register */
163 #define DFLL_INTR_STS                   0x5c
164
165 /* DFLL_INTR_EN: DFLL interrupt enable register */
166 #define DFLL_INTR_EN                    0x60
167 #define DFLL_INTR_MIN_MASK              0x1
168 #define DFLL_INTR_MAX_MASK              0x2
169
170 /*
171  * Integrated I2C controller registers - relative to td->i2c_controller_base
172  */
173
174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175 #define DFLL_I2C_CLK_DIVISOR            0x6c
176 #define DFLL_I2C_CLK_DIVISOR_MASK       0xffff
177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT   16
178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT   0
179 #define DFLL_I2C_CLK_DIVISOR_PREDIV     8
180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV      12
181
182 /*
183  * Other constants
184  */
185
186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187 #define MAX_DFLL_VOLTAGES               33
188
189 /*
190  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191  *    integrates the DVCO counter over - used for debug rate monitoring and
192  *    droop control
193  */
194 #define REF_CLK_CYC_PER_DVCO_SAMPLE     4
195
196 /*
197  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198  * driver, in Hz
199  */
200 #define REF_CLOCK_RATE                  51000000UL
201
202 #define DVCO_RATE_TO_MULT(rate, ref_rate)       ((rate) / ((ref_rate) / 2))
203 #define MULT_TO_DVCO_RATE(mult, ref_rate)       ((mult) * ((ref_rate) / 2))
204
205 /**
206  * enum dfll_ctrl_mode - DFLL hardware operating mode
207  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208  * @DFLL_DISABLED: DFLL not generating an output clock
209  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211  *                    the requested rate
212  *
213  * The integer corresponding to the last two states, minus one, is
214  * written to the DFLL hardware to change operating modes.
215  */
216 enum dfll_ctrl_mode {
217         DFLL_UNINITIALIZED = 0,
218         DFLL_DISABLED = 1,
219         DFLL_OPEN_LOOP = 2,
220         DFLL_CLOSED_LOOP = 3,
221 };
222
223 /**
224  * enum dfll_tune_range - voltage range that the driver believes it's in
225  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227  *
228  * Some DFLL tuning parameters may need to change depending on the
229  * DVCO's voltage; these states represent the ranges that the driver
230  * supports. These are software states; these values are never
231  * written into registers.
232  */
233 enum dfll_tune_range {
234         DFLL_TUNE_UNINITIALIZED = 0,
235         DFLL_TUNE_LOW = 1,
236 };
237
238
239 enum tegra_dfll_pmu_if {
240         TEGRA_DFLL_PMU_I2C = 0,
241         TEGRA_DFLL_PMU_PWM = 1,
242 };
243
244 /**
245  * struct dfll_rate_req - target DFLL rate request data
246  * @rate: target frequency, after the postscaling
247  * @dvco_target_rate: target frequency, after the postscaling
248  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251  */
252 struct dfll_rate_req {
253         unsigned long rate;
254         unsigned long dvco_target_rate;
255         int lut_index;
256         u8 mult_bits;
257         u8 scale_bits;
258 };
259
260 struct tegra_dfll {
261         struct device                   *dev;
262         struct tegra_dfll_soc_data      *soc;
263
264         void __iomem                    *base;
265         void __iomem                    *i2c_base;
266         void __iomem                    *i2c_controller_base;
267         void __iomem                    *lut_base;
268
269         struct regulator                *vdd_reg;
270         struct clk                      *soc_clk;
271         struct clk                      *ref_clk;
272         struct clk                      *i2c_clk;
273         struct clk                      *dfll_clk;
274         struct reset_control            *dvco_rst;
275         unsigned long                   ref_rate;
276         unsigned long                   i2c_clk_rate;
277         unsigned long                   dvco_rate_min;
278
279         enum dfll_ctrl_mode             mode;
280         enum dfll_tune_range            tune_range;
281         struct dentry                   *debugfs_dir;
282         struct clk_hw                   dfll_clk_hw;
283         const char                      *output_clock_name;
284         struct dfll_rate_req            last_req;
285         unsigned long                   last_unrounded_rate;
286
287         /* Parameters from DT */
288         u32                             droop_ctrl;
289         u32                             sample_rate;
290         u32                             force_mode;
291         u32                             cf;
292         u32                             ci;
293         u32                             cg;
294         bool                            cg_scale;
295
296         /* I2C interface parameters */
297         u32                             i2c_fs_rate;
298         u32                             i2c_reg;
299         u32                             i2c_slave_addr;
300
301         /* lut array entries are regulator framework selectors or PWM values*/
302         unsigned                        lut[MAX_DFLL_VOLTAGES];
303         unsigned long                   lut_uv[MAX_DFLL_VOLTAGES];
304         int                             lut_size;
305         u8                              lut_bottom, lut_min, lut_max, lut_safe;
306
307         /* PWM interface */
308         enum tegra_dfll_pmu_if          pmu_if;
309         unsigned long                   pwm_rate;
310         struct pinctrl                  *pwm_pin;
311         struct pinctrl_state            *pwm_enable_state;
312         struct pinctrl_state            *pwm_disable_state;
313         u32                             reg_init_uV;
314 };
315
316 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
317
318 /* mode_name: map numeric DFLL modes to names for friendly console messages */
319 static const char * const mode_name[] = {
320         [DFLL_UNINITIALIZED] = "uninitialized",
321         [DFLL_DISABLED] = "disabled",
322         [DFLL_OPEN_LOOP] = "open_loop",
323         [DFLL_CLOSED_LOOP] = "closed_loop",
324 };
325
326 /*
327  * Register accessors
328  */
329
330 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
331 {
332         return __raw_readl(td->base + offs);
333 }
334
335 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
336 {
337         WARN_ON(offs >= DFLL_I2C_CFG);
338         __raw_writel(val, td->base + offs);
339 }
340
341 static inline void dfll_wmb(struct tegra_dfll *td)
342 {
343         dfll_readl(td, DFLL_CTRL);
344 }
345
346 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
347
348 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
349 {
350         return __raw_readl(td->i2c_base + offs);
351 }
352
353 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
354 {
355         __raw_writel(val, td->i2c_base + offs);
356 }
357
358 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
359 {
360         dfll_i2c_readl(td, DFLL_I2C_CFG);
361 }
362
363 /**
364  * dfll_is_running - is the DFLL currently generating a clock?
365  * @td: DFLL instance
366  *
367  * If the DFLL is currently generating an output clock signal, return
368  * true; otherwise return false.
369  */
370 static bool dfll_is_running(struct tegra_dfll *td)
371 {
372         return td->mode >= DFLL_OPEN_LOOP;
373 }
374
375 /*
376  * Runtime PM suspend/resume callbacks
377  */
378
379 /**
380  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
381  * @dev: DFLL device *
382  *
383  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
384  * has already been called on all the clocks.
385  *
386  * XXX Should also handle context restore when returning from off.
387  */
388 int tegra_dfll_runtime_resume(struct device *dev)
389 {
390         struct tegra_dfll *td = dev_get_drvdata(dev);
391         int ret;
392
393         ret = clk_enable(td->ref_clk);
394         if (ret) {
395                 dev_err(dev, "could not enable ref clock: %d\n", ret);
396                 return ret;
397         }
398
399         ret = clk_enable(td->soc_clk);
400         if (ret) {
401                 dev_err(dev, "could not enable register clock: %d\n", ret);
402                 clk_disable(td->ref_clk);
403                 return ret;
404         }
405
406         ret = clk_enable(td->i2c_clk);
407         if (ret) {
408                 dev_err(dev, "could not enable i2c clock: %d\n", ret);
409                 clk_disable(td->soc_clk);
410                 clk_disable(td->ref_clk);
411                 return ret;
412         }
413
414         return 0;
415 }
416 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
417
418 /**
419  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
420  * @dev: DFLL device *
421  *
422  * Disable all clocks needed by the DFLL. Assumes that other code
423  * will later call clk_unprepare().
424  */
425 int tegra_dfll_runtime_suspend(struct device *dev)
426 {
427         struct tegra_dfll *td = dev_get_drvdata(dev);
428
429         clk_disable(td->ref_clk);
430         clk_disable(td->soc_clk);
431         clk_disable(td->i2c_clk);
432
433         return 0;
434 }
435 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
436
437 /*
438  * DFLL tuning operations (per-voltage-range tuning settings)
439  */
440
441 /**
442  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
443  * @td: DFLL instance
444  *
445  * Tune the DFLL oscillator parameters and the CPU clock shaper for
446  * the low-voltage range. These settings are valid for any voltage,
447  * but may not be optimal.
448  */
449 static void dfll_tune_low(struct tegra_dfll *td)
450 {
451         td->tune_range = DFLL_TUNE_LOW;
452
453         dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
454         dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
455         dfll_wmb(td);
456
457         if (td->soc->set_clock_trimmers_low)
458                 td->soc->set_clock_trimmers_low();
459 }
460
461 /*
462  * Output clock scaler helpers
463  */
464
465 /**
466  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
467  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
468  * @dvco_rate: the DVCO rate
469  *
470  * Apply the same scaling formula that the DFLL hardware uses to scale
471  * the DVCO rate.
472  */
473 static unsigned long dfll_scale_dvco_rate(int scale_bits,
474                                           unsigned long dvco_rate)
475 {
476         return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
477 }
478
479 /*
480  * DFLL mode switching
481  */
482
483 /**
484  * dfll_set_mode - change the DFLL control mode
485  * @td: DFLL instance
486  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
487  *
488  * Change the DFLL's operating mode between disabled, open-loop mode,
489  * and closed-loop mode, or vice versa.
490  */
491 static void dfll_set_mode(struct tegra_dfll *td,
492                           enum dfll_ctrl_mode mode)
493 {
494         td->mode = mode;
495         dfll_writel(td, mode - 1, DFLL_CTRL);
496         dfll_wmb(td);
497 }
498
499 /*
500  * DVCO rate control
501  */
502
503 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
504 {
505         struct dev_pm_opp *opp;
506         unsigned long rate, prev_rate;
507         unsigned long uv, min_uv;
508
509         min_uv = td->lut_uv[out_min];
510         for (rate = 0, prev_rate = 0; ; rate++) {
511                 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
512                 if (IS_ERR(opp))
513                         break;
514
515                 uv = dev_pm_opp_get_voltage(opp);
516                 dev_pm_opp_put(opp);
517
518                 if (uv && uv > min_uv)
519                         return prev_rate;
520
521                 prev_rate = rate;
522         }
523
524         return prev_rate;
525 }
526
527 /*
528  * DFLL-to-I2C controller interface
529  */
530
531 /**
532  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
533  * @td: DFLL instance
534  * @enable: whether to enable or disable the I2C voltage requests
535  *
536  * Set the master enable control for I2C control value updates. If disabled,
537  * then I2C control messages are inhibited, regardless of the DFLL mode.
538  */
539 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
540 {
541         u32 val;
542
543         val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
544
545         if (enable)
546                 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
547         else
548                 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
549
550         dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
551         dfll_i2c_wmb(td);
552
553         return 0;
554 }
555
556
557 /*
558  * DFLL-to-PWM controller interface
559  */
560
561 /**
562  * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
563  * @td: DFLL instance
564  * @enable: whether to enable or disable the PWM voltage requests
565  *
566  * Set the master enable control for PWM control value updates. If disabled,
567  * then the PWM signal is not driven. Also configure the PWM output pad
568  * to the appropriate state.
569  */
570 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
571 {
572         int ret;
573         u32 val, div;
574
575         if (enable) {
576                 ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
577                 if (ret < 0) {
578                         dev_err(td->dev, "setting enable state failed\n");
579                         return -EINVAL;
580                 }
581                 val = dfll_readl(td, DFLL_OUTPUT_CFG);
582                 val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
583                 div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
584                 val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
585                                 & DFLL_OUTPUT_CFG_PWM_DIV_MASK;
586                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
587                 dfll_wmb(td);
588
589                 val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
590                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
591                 dfll_wmb(td);
592         } else {
593                 ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
594                 if (ret < 0)
595                         dev_warn(td->dev, "setting disable state failed\n");
596
597                 val = dfll_readl(td, DFLL_OUTPUT_CFG);
598                 val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
599                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
600                 dfll_wmb(td);
601         }
602
603         return 0;
604 }
605
606 /**
607  * dfll_set_force_output_value - set fixed value for force output
608  * @td: DFLL instance
609  * @out_val: value to force output
610  *
611  * Set the fixed value for force output, DFLL will output this value when
612  * force output is enabled.
613  */
614 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
615 {
616         u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
617
618         val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
619         dfll_writel(td, val, DFLL_OUTPUT_FORCE);
620         dfll_wmb(td);
621
622         return dfll_readl(td, DFLL_OUTPUT_FORCE);
623 }
624
625 /**
626  * dfll_set_force_output_enabled - enable/disable force output
627  * @td: DFLL instance
628  * @enable: whether to enable or disable the force output
629  *
630  * Set the enable control for fouce output with fixed value.
631  */
632 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
633 {
634         u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
635
636         if (enable)
637                 val |= DFLL_OUTPUT_FORCE_ENABLE;
638         else
639                 val &= ~DFLL_OUTPUT_FORCE_ENABLE;
640
641         dfll_writel(td, val, DFLL_OUTPUT_FORCE);
642         dfll_wmb(td);
643 }
644
645 /**
646  * dfll_force_output - force output a fixed value
647  * @td: DFLL instance
648  * @out_sel: value to force output
649  *
650  * Set the fixed value for force output, DFLL will output this value.
651  */
652 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
653 {
654         u32 val;
655
656         if (out_sel > OUT_MASK)
657                 return -EINVAL;
658
659         val = dfll_set_force_output_value(td, out_sel);
660         if ((td->mode < DFLL_CLOSED_LOOP) &&
661             !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
662                 dfll_set_force_output_enabled(td, true);
663         }
664
665         return 0;
666 }
667
668 /**
669  * dfll_load_lut - load the voltage lookup table
670  * @td: struct tegra_dfll *
671  *
672  * Load the voltage-to-PMIC register value lookup table into the DFLL
673  * IP block memory. Look-up tables can be loaded at any time.
674  */
675 static void dfll_load_i2c_lut(struct tegra_dfll *td)
676 {
677         int i, lut_index;
678         u32 val;
679
680         for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
681                 if (i < td->lut_min)
682                         lut_index = td->lut_min;
683                 else if (i > td->lut_max)
684                         lut_index = td->lut_max;
685                 else
686                         lut_index = i;
687
688                 val = regulator_list_hardware_vsel(td->vdd_reg,
689                                                      td->lut[lut_index]);
690                 __raw_writel(val, td->lut_base + i * 4);
691         }
692
693         dfll_i2c_wmb(td);
694 }
695
696 /**
697  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
698  * @td: DFLL instance
699  *
700  * During DFLL driver initialization, program the DFLL-I2C interface
701  * with the PMU slave address, vdd register offset, and transfer mode.
702  * This data is used by the DFLL to automatically construct I2C
703  * voltage-set commands, which are then passed to the DFLL's internal
704  * I2C controller.
705  */
706 static void dfll_init_i2c_if(struct tegra_dfll *td)
707 {
708         u32 val;
709
710         if (td->i2c_slave_addr > 0x7f) {
711                 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
712                 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
713         } else {
714                 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
715         }
716         val |= DFLL_I2C_CFG_SIZE_MASK;
717         val |= DFLL_I2C_CFG_ARB_ENABLE;
718         dfll_i2c_writel(td, val, DFLL_I2C_CFG);
719
720         dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
721
722         val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
723         BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
724         val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
725
726         /* default hs divisor just in case */
727         val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
728         __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
729         dfll_i2c_wmb(td);
730 }
731
732 /**
733  * dfll_init_out_if - prepare DFLL-to-PMIC interface
734  * @td: DFLL instance
735  *
736  * During DFLL driver initialization or resume from context loss,
737  * disable the I2C command output to the PMIC, set safe voltage and
738  * output limits, and disable and clear limit interrupts.
739  */
740 static void dfll_init_out_if(struct tegra_dfll *td)
741 {
742         u32 val;
743
744         td->lut_min = td->lut_bottom;
745         td->lut_max = td->lut_size - 1;
746         td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
747
748         /* clear DFLL_OUTPUT_CFG before setting new value */
749         dfll_writel(td, 0, DFLL_OUTPUT_CFG);
750         dfll_wmb(td);
751
752         val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
753               (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
754               (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
755         dfll_writel(td, val, DFLL_OUTPUT_CFG);
756         dfll_wmb(td);
757
758         dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
759         dfll_i2c_writel(td, 0, DFLL_INTR_EN);
760         dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
761                         DFLL_INTR_STS);
762
763         if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
764                 u32 vinit = td->reg_init_uV;
765                 int vstep = td->soc->alignment.step_uv;
766                 unsigned long vmin = td->lut_uv[0];
767
768                 /* set initial voltage */
769                 if ((vinit >= vmin) && vstep) {
770                         unsigned int vsel;
771
772                         vsel = DIV_ROUND_UP((vinit - vmin), vstep);
773                         dfll_force_output(td, vsel);
774                 }
775         } else {
776                 dfll_load_i2c_lut(td);
777                 dfll_init_i2c_if(td);
778         }
779 }
780
781 /*
782  * Set/get the DFLL's targeted output clock rate
783  */
784
785 /**
786  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
787  * @td: DFLL instance
788  * @rate: clock rate
789  *
790  * Determines the index of a I2C LUT entry for a voltage that approximately
791  * produces the given DFLL clock rate. This is used when forcing a value
792  * to the integrator during rate changes. Returns -ENOENT if a suitable
793  * LUT index is not found.
794  */
795 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
796 {
797         struct dev_pm_opp *opp;
798         int i, align_step;
799
800         opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
801         if (IS_ERR(opp))
802                 return PTR_ERR(opp);
803
804         align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
805         dev_pm_opp_put(opp);
806
807         for (i = td->lut_bottom; i < td->lut_size; i++) {
808                 if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
809                         return i;
810         }
811
812         return -ENOENT;
813 }
814
815 /**
816  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
817  * @td: DFLL instance
818  * @req: DFLL-rate-request structure
819  * @rate: the desired DFLL rate
820  *
821  * Populate the DFLL-rate-request record @req fields with the scale_bits
822  * and mult_bits fields, based on the target input rate. Returns 0 upon
823  * success, or -EINVAL if the requested rate in req->rate is too high
824  * or low for the DFLL to generate.
825  */
826 static int dfll_calculate_rate_request(struct tegra_dfll *td,
827                                        struct dfll_rate_req *req,
828                                        unsigned long rate)
829 {
830         u32 val;
831
832         /*
833          * If requested rate is below the minimum DVCO rate, active the scaler.
834          * In the future the DVCO minimum voltage should be selected based on
835          * chip temperature and the actual minimum rate should be calibrated
836          * at runtime.
837          */
838         req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
839         if (rate < td->dvco_rate_min) {
840                 int scale;
841
842                 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
843                                           td->dvco_rate_min / 1000);
844                 if (!scale) {
845                         dev_err(td->dev, "%s: Rate %lu is too low\n",
846                                 __func__, rate);
847                         return -EINVAL;
848                 }
849                 req->scale_bits = scale - 1;
850                 rate = td->dvco_rate_min;
851         }
852
853         /* Convert requested rate into frequency request and scale settings */
854         val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
855         if (val > FREQ_MAX) {
856                 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
857                         __func__, rate);
858                 return -EINVAL;
859         }
860         req->mult_bits = val;
861         req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
862         req->rate = dfll_scale_dvco_rate(req->scale_bits,
863                                          req->dvco_target_rate);
864         req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
865         if (req->lut_index < 0)
866                 return req->lut_index;
867
868         return 0;
869 }
870
871 /**
872  * dfll_set_frequency_request - start the frequency change operation
873  * @td: DFLL instance
874  * @req: rate request structure
875  *
876  * Tell the DFLL to try to change its output frequency to the
877  * frequency represented by @req. DFLL must be in closed-loop mode.
878  */
879 static void dfll_set_frequency_request(struct tegra_dfll *td,
880                                        struct dfll_rate_req *req)
881 {
882         u32 val = 0;
883         int force_val;
884         int coef = 128; /* FIXME: td->cg_scale? */;
885
886         force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
887         force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
888
889         val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
890         val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
891         val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
892                 DFLL_FREQ_REQ_FORCE_MASK;
893         val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
894
895         dfll_writel(td, val, DFLL_FREQ_REQ);
896         dfll_wmb(td);
897 }
898
899 /**
900  * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
901  * @td: DFLL instance
902  * @rate: clock rate to target
903  *
904  * Convert the requested clock rate @rate into the DFLL control logic
905  * settings. In closed-loop mode, update new settings immediately to
906  * adjust DFLL output rate accordingly. Otherwise, just save them
907  * until the next switch to closed loop. Returns 0 upon success,
908  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
909  * if @rate is outside the DFLL's tunable range.
910  */
911 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
912 {
913         int ret;
914         struct dfll_rate_req req;
915
916         if (td->mode == DFLL_UNINITIALIZED) {
917                 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
918                         __func__, mode_name[td->mode]);
919                 return -EPERM;
920         }
921
922         ret = dfll_calculate_rate_request(td, &req, rate);
923         if (ret)
924                 return ret;
925
926         td->last_unrounded_rate = rate;
927         td->last_req = req;
928
929         if (td->mode == DFLL_CLOSED_LOOP)
930                 dfll_set_frequency_request(td, &td->last_req);
931
932         return 0;
933 }
934
935 /*
936  * DFLL enable/disable & open-loop <-> closed-loop transitions
937  */
938
939 /**
940  * dfll_disable - switch from open-loop mode to disabled mode
941  * @td: DFLL instance
942  *
943  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
944  * or -EPERM if the DFLL is not currently in open-loop mode.
945  */
946 static int dfll_disable(struct tegra_dfll *td)
947 {
948         if (td->mode != DFLL_OPEN_LOOP) {
949                 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
950                         mode_name[td->mode]);
951                 return -EINVAL;
952         }
953
954         dfll_set_mode(td, DFLL_DISABLED);
955         pm_runtime_put_sync(td->dev);
956
957         return 0;
958 }
959
960 /**
961  * dfll_enable - switch a disabled DFLL to open-loop mode
962  * @td: DFLL instance
963  *
964  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
965  * or -EPERM if the DFLL is not currently disabled.
966  */
967 static int dfll_enable(struct tegra_dfll *td)
968 {
969         if (td->mode != DFLL_DISABLED) {
970                 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
971                         mode_name[td->mode]);
972                 return -EPERM;
973         }
974
975         pm_runtime_get_sync(td->dev);
976         dfll_set_mode(td, DFLL_OPEN_LOOP);
977
978         return 0;
979 }
980
981 /**
982  * dfll_set_open_loop_config - prepare to switch to open-loop mode
983  * @td: DFLL instance
984  *
985  * Prepare to switch the DFLL to open-loop mode. This switches the
986  * DFLL to the low-voltage tuning range, ensures that I2C output
987  * forcing is disabled, and disables the output clock rate scaler.
988  * The DFLL's low-voltage tuning range parameters must be
989  * characterized to keep the downstream device stable at any DVCO
990  * input voltage. No return value.
991  */
992 static void dfll_set_open_loop_config(struct tegra_dfll *td)
993 {
994         u32 val;
995
996         /* always tune low (safe) in open loop */
997         if (td->tune_range != DFLL_TUNE_LOW)
998                 dfll_tune_low(td);
999
1000         val = dfll_readl(td, DFLL_FREQ_REQ);
1001         val |= DFLL_FREQ_REQ_SCALE_MASK;
1002         val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1003         dfll_writel(td, val, DFLL_FREQ_REQ);
1004         dfll_wmb(td);
1005 }
1006
1007 /**
1008  * tegra_dfll_lock - switch from open-loop to closed-loop mode
1009  * @td: DFLL instance
1010  *
1011  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1012  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1013  * DFLL is not currently in open-loop mode.
1014  */
1015 static int dfll_lock(struct tegra_dfll *td)
1016 {
1017         struct dfll_rate_req *req = &td->last_req;
1018
1019         switch (td->mode) {
1020         case DFLL_CLOSED_LOOP:
1021                 return 0;
1022
1023         case DFLL_OPEN_LOOP:
1024                 if (req->rate == 0) {
1025                         dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1026                                 __func__);
1027                         return -EINVAL;
1028                 }
1029
1030                 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1031                         dfll_pwm_set_output_enabled(td, true);
1032                 else
1033                         dfll_i2c_set_output_enabled(td, true);
1034
1035                 dfll_set_mode(td, DFLL_CLOSED_LOOP);
1036                 dfll_set_frequency_request(td, req);
1037                 dfll_set_force_output_enabled(td, false);
1038                 return 0;
1039
1040         default:
1041                 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1042                 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1043                         __func__, mode_name[td->mode]);
1044                 return -EPERM;
1045         }
1046 }
1047
1048 /**
1049  * tegra_dfll_unlock - switch from closed-loop to open-loop mode
1050  * @td: DFLL instance
1051  *
1052  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1053  * or -EPERM if the DFLL is not currently in open-loop mode.
1054  */
1055 static int dfll_unlock(struct tegra_dfll *td)
1056 {
1057         switch (td->mode) {
1058         case DFLL_CLOSED_LOOP:
1059                 dfll_set_open_loop_config(td);
1060                 dfll_set_mode(td, DFLL_OPEN_LOOP);
1061                 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1062                         dfll_pwm_set_output_enabled(td, false);
1063                 else
1064                         dfll_i2c_set_output_enabled(td, false);
1065                 return 0;
1066
1067         case DFLL_OPEN_LOOP:
1068                 return 0;
1069
1070         default:
1071                 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1072                 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1073                         __func__, mode_name[td->mode]);
1074                 return -EPERM;
1075         }
1076 }
1077
1078 /*
1079  * Clock framework integration
1080  *
1081  * When the DFLL is being controlled by the CCF, always enter closed loop
1082  * mode when the clk is enabled. This requires that a DFLL rate request
1083  * has been set beforehand, which implies that a clk_set_rate() call is
1084  * always required before a clk_enable().
1085  */
1086
1087 static int dfll_clk_is_enabled(struct clk_hw *hw)
1088 {
1089         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1090
1091         return dfll_is_running(td);
1092 }
1093
1094 static int dfll_clk_enable(struct clk_hw *hw)
1095 {
1096         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1097         int ret;
1098
1099         ret = dfll_enable(td);
1100         if (ret)
1101                 return ret;
1102
1103         ret = dfll_lock(td);
1104         if (ret)
1105                 dfll_disable(td);
1106
1107         return ret;
1108 }
1109
1110 static void dfll_clk_disable(struct clk_hw *hw)
1111 {
1112         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1113         int ret;
1114
1115         ret = dfll_unlock(td);
1116         if (!ret)
1117                 dfll_disable(td);
1118 }
1119
1120 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1121                                           unsigned long parent_rate)
1122 {
1123         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1124
1125         return td->last_unrounded_rate;
1126 }
1127
1128 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1129 static int dfll_clk_determine_rate(struct clk_hw *hw,
1130                                    struct clk_rate_request *clk_req)
1131 {
1132         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1133         struct dfll_rate_req req;
1134         int ret;
1135
1136         ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1137         if (ret)
1138                 return ret;
1139
1140         /*
1141          * Don't set the rounded rate, since it doesn't really matter as
1142          * the output rate will be voltage controlled anyway, and cpufreq
1143          * freaks out if any rounding happens.
1144          */
1145
1146         return 0;
1147 }
1148
1149 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1150                              unsigned long parent_rate)
1151 {
1152         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1153
1154         return dfll_request_rate(td, rate);
1155 }
1156
1157 static const struct clk_ops dfll_clk_ops = {
1158         .is_enabled     = dfll_clk_is_enabled,
1159         .enable         = dfll_clk_enable,
1160         .disable        = dfll_clk_disable,
1161         .recalc_rate    = dfll_clk_recalc_rate,
1162         .determine_rate = dfll_clk_determine_rate,
1163         .set_rate       = dfll_clk_set_rate,
1164 };
1165
1166 static struct clk_init_data dfll_clk_init_data = {
1167         .ops            = &dfll_clk_ops,
1168         .num_parents    = 0,
1169 };
1170
1171 /**
1172  * dfll_register_clk - register the DFLL output clock with the clock framework
1173  * @td: DFLL instance
1174  *
1175  * Register the DFLL's output clock with the Linux clock framework and register
1176  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1177  * or -ENOMEM upon failure.
1178  */
1179 static int dfll_register_clk(struct tegra_dfll *td)
1180 {
1181         int ret;
1182
1183         dfll_clk_init_data.name = td->output_clock_name;
1184         td->dfll_clk_hw.init = &dfll_clk_init_data;
1185
1186         td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1187         if (IS_ERR(td->dfll_clk)) {
1188                 dev_err(td->dev, "DFLL clock registration error\n");
1189                 return -EINVAL;
1190         }
1191
1192         ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1193                                   td->dfll_clk);
1194         if (ret) {
1195                 dev_err(td->dev, "of_clk_add_provider() failed\n");
1196
1197                 clk_unregister(td->dfll_clk);
1198                 return ret;
1199         }
1200
1201         return 0;
1202 }
1203
1204 /**
1205  * dfll_unregister_clk - unregister the DFLL output clock
1206  * @td: DFLL instance
1207  *
1208  * Unregister the DFLL's output clock from the Linux clock framework
1209  * and from clkdev. No return value.
1210  */
1211 static void dfll_unregister_clk(struct tegra_dfll *td)
1212 {
1213         of_clk_del_provider(td->dev->of_node);
1214         clk_unregister(td->dfll_clk);
1215         td->dfll_clk = NULL;
1216 }
1217
1218 /*
1219  * Debugfs interface
1220  */
1221
1222 #ifdef CONFIG_DEBUG_FS
1223 /*
1224  * Monitor control
1225  */
1226
1227 /**
1228  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1229  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1230  * @ref_rate: DFLL reference clock rate
1231  *
1232  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1233  * per second. Returns the converted value.
1234  */
1235 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1236                                     unsigned long ref_rate)
1237 {
1238         return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1239 }
1240
1241 /**
1242  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1243  * @td: DFLL instance
1244  *
1245  * If the DFLL is enabled, return the last rate reported by the DFLL's
1246  * internal monitoring hardware. This works in both open-loop and
1247  * closed-loop mode, and takes the output scaler setting into account.
1248  * Assumes that the monitor was programmed to monitor frequency before
1249  * the sample period started. If the driver believes that the DFLL is
1250  * currently uninitialized or disabled, it will return 0, since
1251  * otherwise the DFLL monitor data register will return the last
1252  * measured rate from when the DFLL was active.
1253  */
1254 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1255 {
1256         u32 v, s;
1257         u64 pre_scaler_rate, post_scaler_rate;
1258
1259         if (!dfll_is_running(td))
1260                 return 0;
1261
1262         v = dfll_readl(td, DFLL_MONITOR_DATA);
1263         v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1264         pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1265
1266         s = dfll_readl(td, DFLL_FREQ_REQ);
1267         s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1268         post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1269
1270         return post_scaler_rate;
1271 }
1272
1273 static int attr_enable_get(void *data, u64 *val)
1274 {
1275         struct tegra_dfll *td = data;
1276
1277         *val = dfll_is_running(td);
1278
1279         return 0;
1280 }
1281 static int attr_enable_set(void *data, u64 val)
1282 {
1283         struct tegra_dfll *td = data;
1284
1285         return val ? dfll_enable(td) : dfll_disable(td);
1286 }
1287 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1288                          "%llu\n");
1289
1290 static int attr_lock_get(void *data, u64 *val)
1291 {
1292         struct tegra_dfll *td = data;
1293
1294         *val = (td->mode == DFLL_CLOSED_LOOP);
1295
1296         return 0;
1297 }
1298 static int attr_lock_set(void *data, u64 val)
1299 {
1300         struct tegra_dfll *td = data;
1301
1302         return val ? dfll_lock(td) :  dfll_unlock(td);
1303 }
1304 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1305
1306 static int attr_rate_get(void *data, u64 *val)
1307 {
1308         struct tegra_dfll *td = data;
1309
1310         *val = dfll_read_monitor_rate(td);
1311
1312         return 0;
1313 }
1314
1315 static int attr_rate_set(void *data, u64 val)
1316 {
1317         struct tegra_dfll *td = data;
1318
1319         return dfll_request_rate(td, val);
1320 }
1321 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1322
1323 static int attr_registers_show(struct seq_file *s, void *data)
1324 {
1325         u32 val, offs;
1326         struct tegra_dfll *td = s->private;
1327
1328         seq_puts(s, "CONTROL REGISTERS:\n");
1329         for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1330                 if (offs == DFLL_OUTPUT_CFG)
1331                         val = dfll_i2c_readl(td, offs);
1332                 else
1333                         val = dfll_readl(td, offs);
1334                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1335         }
1336
1337         seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1338         for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1339                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1340                            dfll_i2c_readl(td, offs));
1341         for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1342                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1343                            dfll_i2c_readl(td, offs));
1344
1345         if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1346                 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1347                 offs = DFLL_I2C_CLK_DIVISOR;
1348                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1349                            __raw_readl(td->i2c_controller_base + offs));
1350
1351                 seq_puts(s, "\nLUT:\n");
1352                 for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1353                         seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1354                                    __raw_readl(td->lut_base + offs));
1355         }
1356
1357         return 0;
1358 }
1359
1360 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1361
1362 static void dfll_debug_init(struct tegra_dfll *td)
1363 {
1364         struct dentry *root;
1365
1366         if (!td || (td->mode == DFLL_UNINITIALIZED))
1367                 return;
1368
1369         root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1370         td->debugfs_dir = root;
1371
1372         debugfs_create_file_unsafe("enable", 0644, root, td,
1373                                    &enable_fops);
1374         debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1375         debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1376         debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1377 }
1378
1379 #else
1380 static inline void dfll_debug_init(struct tegra_dfll *td) { }
1381 #endif /* CONFIG_DEBUG_FS */
1382
1383 /*
1384  * DFLL initialization
1385  */
1386
1387 /**
1388  * dfll_set_default_params - program non-output related DFLL parameters
1389  * @td: DFLL instance
1390  *
1391  * During DFLL driver initialization or resume from context loss,
1392  * program parameters for the closed loop integrator, DVCO tuning,
1393  * voltage droop control and monitor control.
1394  */
1395 static void dfll_set_default_params(struct tegra_dfll *td)
1396 {
1397         u32 val;
1398
1399         val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1400         BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1401         dfll_writel(td, val, DFLL_CONFIG);
1402
1403         val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1404                 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1405                 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1406                 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1407                 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1408         dfll_writel(td, val, DFLL_PARAMS);
1409
1410         dfll_tune_low(td);
1411         dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1412         dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1413 }
1414
1415 /**
1416  * dfll_init_clks - clk_get() the DFLL source clocks
1417  * @td: DFLL instance
1418  *
1419  * Call clk_get() on the DFLL source clocks and save the pointers for later
1420  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1421  * of the clocks couldn't be looked up.
1422  */
1423 static int dfll_init_clks(struct tegra_dfll *td)
1424 {
1425         td->ref_clk = devm_clk_get(td->dev, "ref");
1426         if (IS_ERR(td->ref_clk)) {
1427                 dev_err(td->dev, "missing ref clock\n");
1428                 return PTR_ERR(td->ref_clk);
1429         }
1430
1431         td->soc_clk = devm_clk_get(td->dev, "soc");
1432         if (IS_ERR(td->soc_clk)) {
1433                 dev_err(td->dev, "missing soc clock\n");
1434                 return PTR_ERR(td->soc_clk);
1435         }
1436
1437         td->i2c_clk = devm_clk_get(td->dev, "i2c");
1438         if (IS_ERR(td->i2c_clk)) {
1439                 dev_err(td->dev, "missing i2c clock\n");
1440                 return PTR_ERR(td->i2c_clk);
1441         }
1442         td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1443
1444         return 0;
1445 }
1446
1447 /**
1448  * dfll_init - Prepare the DFLL IP block for use
1449  * @td: DFLL instance
1450  *
1451  * Do everything necessary to prepare the DFLL IP block for use. The
1452  * DFLL will be left in DISABLED state. Called by dfll_probe().
1453  * Returns 0 upon success, or passes along the error from whatever
1454  * function returned it.
1455  */
1456 static int dfll_init(struct tegra_dfll *td)
1457 {
1458         int ret;
1459
1460         td->ref_rate = clk_get_rate(td->ref_clk);
1461         if (td->ref_rate != REF_CLOCK_RATE) {
1462                 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1463                         td->ref_rate, REF_CLOCK_RATE);
1464                 return -EINVAL;
1465         }
1466
1467         reset_control_deassert(td->dvco_rst);
1468
1469         ret = clk_prepare(td->ref_clk);
1470         if (ret) {
1471                 dev_err(td->dev, "failed to prepare ref_clk\n");
1472                 return ret;
1473         }
1474
1475         ret = clk_prepare(td->soc_clk);
1476         if (ret) {
1477                 dev_err(td->dev, "failed to prepare soc_clk\n");
1478                 goto di_err1;
1479         }
1480
1481         ret = clk_prepare(td->i2c_clk);
1482         if (ret) {
1483                 dev_err(td->dev, "failed to prepare i2c_clk\n");
1484                 goto di_err2;
1485         }
1486
1487         td->last_unrounded_rate = 0;
1488
1489         pm_runtime_enable(td->dev);
1490         pm_runtime_get_sync(td->dev);
1491
1492         dfll_set_mode(td, DFLL_DISABLED);
1493         dfll_set_default_params(td);
1494
1495         if (td->soc->init_clock_trimmers)
1496                 td->soc->init_clock_trimmers();
1497
1498         dfll_set_open_loop_config(td);
1499
1500         dfll_init_out_if(td);
1501
1502         pm_runtime_put_sync(td->dev);
1503
1504         return 0;
1505
1506 di_err2:
1507         clk_unprepare(td->soc_clk);
1508 di_err1:
1509         clk_unprepare(td->ref_clk);
1510
1511         reset_control_assert(td->dvco_rst);
1512
1513         return ret;
1514 }
1515
1516 /**
1517  * tegra_dfll_suspend - check DFLL is disabled
1518  * @dev: DFLL instance
1519  *
1520  * DFLL clock should be disabled by the CPUFreq driver. So, make
1521  * sure it is disabled and disable all clocks needed by the DFLL.
1522  */
1523 int tegra_dfll_suspend(struct device *dev)
1524 {
1525         struct tegra_dfll *td = dev_get_drvdata(dev);
1526
1527         if (dfll_is_running(td)) {
1528                 dev_err(td->dev, "DFLL still enabled while suspending\n");
1529                 return -EBUSY;
1530         }
1531
1532         reset_control_assert(td->dvco_rst);
1533
1534         return 0;
1535 }
1536 EXPORT_SYMBOL(tegra_dfll_suspend);
1537
1538 /**
1539  * tegra_dfll_resume - reinitialize DFLL on resume
1540  * @dev: DFLL instance
1541  *
1542  * DFLL is disabled and reset during suspend and resume.
1543  * So, reinitialize the DFLL IP block back for use.
1544  * DFLL clock is enabled later in closed loop mode by CPUFreq
1545  * driver before switching its clock source to DFLL output.
1546  */
1547 int tegra_dfll_resume(struct device *dev)
1548 {
1549         struct tegra_dfll *td = dev_get_drvdata(dev);
1550
1551         reset_control_deassert(td->dvco_rst);
1552
1553         pm_runtime_get_sync(td->dev);
1554
1555         dfll_set_mode(td, DFLL_DISABLED);
1556         dfll_set_default_params(td);
1557
1558         if (td->soc->init_clock_trimmers)
1559                 td->soc->init_clock_trimmers();
1560
1561         dfll_set_open_loop_config(td);
1562
1563         dfll_init_out_if(td);
1564
1565         pm_runtime_put_sync(td->dev);
1566
1567         return 0;
1568 }
1569 EXPORT_SYMBOL(tegra_dfll_resume);
1570
1571 /*
1572  * DT data fetch
1573  */
1574
1575 /*
1576  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1577  * An exact voltage match is required.
1578  */
1579 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1580 {
1581         int i, n_voltages, reg_uV,reg_volt_id, align_step;
1582
1583         if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1584                 return -EINVAL;
1585
1586         align_step = uV / td->soc->alignment.step_uv;
1587         n_voltages = regulator_count_voltages(td->vdd_reg);
1588         for (i = 0; i < n_voltages; i++) {
1589                 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1590                 if (reg_uV < 0)
1591                         break;
1592
1593                 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1594
1595                 if (align_step == reg_volt_id)
1596                         return i;
1597         }
1598
1599         dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1600         return -EINVAL;
1601 }
1602
1603 /*
1604  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1605  * rounding up to the closest supported voltage.
1606  * */
1607 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1608 {
1609         int i, n_voltages, reg_uV, reg_volt_id, align_step;
1610
1611         if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1612                 return -EINVAL;
1613
1614         align_step = uV / td->soc->alignment.step_uv;
1615         n_voltages = regulator_count_voltages(td->vdd_reg);
1616         for (i = 0; i < n_voltages; i++) {
1617                 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1618                 if (reg_uV < 0)
1619                         break;
1620
1621                 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1622
1623                 if (align_step <= reg_volt_id)
1624                         return i;
1625         }
1626
1627         dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1628         return -EINVAL;
1629 }
1630
1631 /*
1632  * dfll_build_pwm_lut - build the PWM regulator lookup table
1633  * @td: DFLL instance
1634  * @v_max: Vmax from OPP table
1635  *
1636  * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1637  * In this case closed loop output is controlling duty cycle directly. The s/w
1638  * look-up that maps PWM duty cycle to voltage is still built by this function.
1639  */
1640 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1641 {
1642         int i;
1643         unsigned long rate, reg_volt;
1644         u8 lut_bottom = MAX_DFLL_VOLTAGES;
1645         int v_min = td->soc->cvb->min_millivolts * 1000;
1646
1647         for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1648                 reg_volt = td->lut_uv[i];
1649
1650                 /* since opp voltage is exact mv */
1651                 reg_volt = (reg_volt / 1000) * 1000;
1652                 if (reg_volt > v_max)
1653                         break;
1654
1655                 td->lut[i] = i;
1656                 if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1657                         lut_bottom = i;
1658         }
1659
1660         /* determine voltage boundaries */
1661         td->lut_size = i;
1662         if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1663             (lut_bottom + 1 >= td->lut_size)) {
1664                 dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1665                         td->soc->cvb->min_millivolts);
1666                 return -EINVAL;
1667         }
1668         td->lut_bottom = lut_bottom;
1669
1670         /* determine rate boundaries */
1671         rate = get_dvco_rate_below(td, td->lut_bottom);
1672         if (!rate) {
1673                 dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1674                         td->soc->cvb->min_millivolts);
1675                 return -EINVAL;
1676         }
1677         td->dvco_rate_min = rate;
1678
1679         return 0;
1680 }
1681
1682 /**
1683  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1684  * @td: DFLL instance
1685  * @v_max: Vmax from OPP table
1686  *
1687  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1688  * PMIC voltage register values that span the entire DFLL operating range.
1689  * This function builds the look-up table based on the OPP table provided by
1690  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1691  * register-to-voltage mapping queried from the regulator framework.
1692  *
1693  * On success, fills in td->lut and returns 0, or -err on failure.
1694  */
1695 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1696 {
1697         unsigned long rate, v, v_opp;
1698         int ret = -EINVAL;
1699         int j, selector, lut;
1700
1701         v = td->soc->cvb->min_millivolts * 1000;
1702         lut = find_vdd_map_entry_exact(td, v);
1703         if (lut < 0)
1704                 goto out;
1705         td->lut[0] = lut;
1706         td->lut_bottom = 0;
1707
1708         for (j = 1, rate = 0; ; rate++) {
1709                 struct dev_pm_opp *opp;
1710
1711                 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1712                 if (IS_ERR(opp))
1713                         break;
1714                 v_opp = dev_pm_opp_get_voltage(opp);
1715
1716                 if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1717                         td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1718
1719                 dev_pm_opp_put(opp);
1720
1721                 for (;;) {
1722                         v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1723                         if (v >= v_opp)
1724                                 break;
1725
1726                         selector = find_vdd_map_entry_min(td, v);
1727                         if (selector < 0)
1728                                 goto out;
1729                         if (selector != td->lut[j - 1])
1730                                 td->lut[j++] = selector;
1731                 }
1732
1733                 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1734                 selector = find_vdd_map_entry_exact(td, v);
1735                 if (selector < 0)
1736                         goto out;
1737                 if (selector != td->lut[j - 1])
1738                         td->lut[j++] = selector;
1739
1740                 if (v >= v_max)
1741                         break;
1742         }
1743         td->lut_size = j;
1744
1745         if (!td->dvco_rate_min)
1746                 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1747                         td->soc->cvb->min_millivolts);
1748         else {
1749                 ret = 0;
1750                 for (j = 0; j < td->lut_size; j++)
1751                         td->lut_uv[j] =
1752                                 regulator_list_voltage(td->vdd_reg,
1753                                                        td->lut[j]);
1754         }
1755
1756 out:
1757         return ret;
1758 }
1759
1760 static int dfll_build_lut(struct tegra_dfll *td)
1761 {
1762         unsigned long rate, v_max;
1763         struct dev_pm_opp *opp;
1764
1765         rate = ULONG_MAX;
1766         opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1767         if (IS_ERR(opp)) {
1768                 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1769                 return -EINVAL;
1770         }
1771         v_max = dev_pm_opp_get_voltage(opp);
1772         dev_pm_opp_put(opp);
1773
1774         if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1775                 return dfll_build_pwm_lut(td, v_max);
1776         else
1777                 return dfll_build_i2c_lut(td, v_max);
1778 }
1779
1780 /**
1781  * read_dt_param - helper function for reading required parameters from the DT
1782  * @td: DFLL instance
1783  * @param: DT property name
1784  * @dest: output pointer for the value read
1785  *
1786  * Read a required numeric parameter from the DFLL device node, or complain
1787  * if the property doesn't exist. Returns a boolean indicating success for
1788  * easy chaining of multiple calls to this function.
1789  */
1790 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1791 {
1792         int err = of_property_read_u32(td->dev->of_node, param, dest);
1793
1794         if (err < 0) {
1795                 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1796                         param, err);
1797                 return false;
1798         }
1799
1800         return true;
1801 }
1802
1803 /**
1804  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1805  * @td: DFLL instance
1806  *
1807  * Read all the parameters required for operation in I2C mode. The parameters
1808  * can originate from the device tree or the regulator subsystem.
1809  * Returns 0 on success or -err on failure.
1810  */
1811 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1812 {
1813         struct regmap *regmap;
1814         struct device *i2c_dev;
1815         struct i2c_client *i2c_client;
1816         int vsel_reg, vsel_mask;
1817         int ret;
1818
1819         if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1820                 return -EINVAL;
1821
1822         regmap = regulator_get_regmap(td->vdd_reg);
1823         i2c_dev = regmap_get_device(regmap);
1824         i2c_client = to_i2c_client(i2c_dev);
1825
1826         td->i2c_slave_addr = i2c_client->addr;
1827
1828         ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1829                                                    &vsel_reg,
1830                                                    &vsel_mask);
1831         if (ret < 0) {
1832                 dev_err(td->dev,
1833                         "regulator unsuitable for DFLL I2C operation\n");
1834                 return -EINVAL;
1835         }
1836         td->i2c_reg = vsel_reg;
1837
1838         return 0;
1839 }
1840
1841 static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1842 {
1843         int ret, i;
1844         u32 pwm_period;
1845
1846         if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1847                 dev_err(td->dev,
1848                         "Missing step or alignment info for PWM regulator");
1849                 return -EINVAL;
1850         }
1851         for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1852                 td->lut_uv[i] = td->soc->alignment.offset_uv +
1853                                 i * td->soc->alignment.step_uv;
1854
1855         ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1856                             &td->reg_init_uV);
1857         if (!ret) {
1858                 dev_err(td->dev, "couldn't get initialized voltage\n");
1859                 return -EINVAL;
1860         }
1861
1862         ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1863         if (!ret) {
1864                 dev_err(td->dev, "couldn't get PWM period\n");
1865                 return -EINVAL;
1866         }
1867         td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1868
1869         td->pwm_pin = devm_pinctrl_get(td->dev);
1870         if (IS_ERR(td->pwm_pin)) {
1871                 dev_err(td->dev, "DT: missing pinctrl device\n");
1872                 return PTR_ERR(td->pwm_pin);
1873         }
1874
1875         td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1876                                                     "dvfs_pwm_enable");
1877         if (IS_ERR(td->pwm_enable_state)) {
1878                 dev_err(td->dev, "DT: missing pwm enabled state\n");
1879                 return PTR_ERR(td->pwm_enable_state);
1880         }
1881
1882         td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1883                                                      "dvfs_pwm_disable");
1884         if (IS_ERR(td->pwm_disable_state)) {
1885                 dev_err(td->dev, "DT: missing pwm disabled state\n");
1886                 return PTR_ERR(td->pwm_disable_state);
1887         }
1888
1889         return 0;
1890 }
1891
1892 /**
1893  * dfll_fetch_common_params - read DFLL parameters from the device tree
1894  * @td: DFLL instance
1895  *
1896  * Read all the DT parameters that are common to both I2C and PWM operation.
1897  * Returns 0 on success or -EINVAL on any failure.
1898  */
1899 static int dfll_fetch_common_params(struct tegra_dfll *td)
1900 {
1901         bool ok = true;
1902
1903         ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1904         ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1905         ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1906         ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1907         ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1908         ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1909         td->cg_scale = of_property_read_bool(td->dev->of_node,
1910                                              "nvidia,cg-scale");
1911
1912         if (of_property_read_string(td->dev->of_node, "clock-output-names",
1913                                     &td->output_clock_name)) {
1914                 dev_err(td->dev, "missing clock-output-names property\n");
1915                 ok = false;
1916         }
1917
1918         return ok ? 0 : -EINVAL;
1919 }
1920
1921 /*
1922  * API exported to per-SoC platform drivers
1923  */
1924
1925 /**
1926  * tegra_dfll_register - probe a Tegra DFLL device
1927  * @pdev: DFLL platform_device *
1928  * @soc: Per-SoC integration and characterization data for this DFLL instance
1929  *
1930  * Probe and initialize a DFLL device instance. Intended to be called
1931  * by a SoC-specific shim driver that passes in per-SoC integration
1932  * and configuration data via @soc. Returns 0 on success or -err on failure.
1933  */
1934 int tegra_dfll_register(struct platform_device *pdev,
1935                         struct tegra_dfll_soc_data *soc)
1936 {
1937         struct resource *mem;
1938         struct tegra_dfll *td;
1939         int ret;
1940
1941         if (!soc) {
1942                 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1943                 return -EINVAL;
1944         }
1945
1946         td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1947         if (!td)
1948                 return -ENOMEM;
1949         td->dev = &pdev->dev;
1950         platform_set_drvdata(pdev, td);
1951
1952         td->soc = soc;
1953
1954         td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1955         if (IS_ERR(td->dvco_rst)) {
1956                 dev_err(td->dev, "couldn't get dvco reset\n");
1957                 return PTR_ERR(td->dvco_rst);
1958         }
1959
1960         ret = dfll_fetch_common_params(td);
1961         if (ret) {
1962                 dev_err(td->dev, "couldn't parse device tree parameters\n");
1963                 return ret;
1964         }
1965
1966         if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1967                 td->pmu_if = TEGRA_DFLL_PMU_PWM;
1968                 ret = dfll_fetch_pwm_params(td);
1969         } else  {
1970                 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1971                 if (IS_ERR(td->vdd_reg)) {
1972                         dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1973                         return PTR_ERR(td->vdd_reg);
1974                 }
1975                 td->pmu_if = TEGRA_DFLL_PMU_I2C;
1976                 ret = dfll_fetch_i2c_params(td);
1977         }
1978         if (ret)
1979                 return ret;
1980
1981         ret = dfll_build_lut(td);
1982         if (ret) {
1983                 dev_err(td->dev, "couldn't build LUT\n");
1984                 return ret;
1985         }
1986
1987         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1988         if (!mem) {
1989                 dev_err(td->dev, "no control register resource\n");
1990                 return -ENODEV;
1991         }
1992
1993         td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1994         if (!td->base) {
1995                 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1996                 return -ENODEV;
1997         }
1998
1999         mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2000         if (!mem) {
2001                 dev_err(td->dev, "no i2c_base resource\n");
2002                 return -ENODEV;
2003         }
2004
2005         td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2006         if (!td->i2c_base) {
2007                 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2008                 return -ENODEV;
2009         }
2010
2011         mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2012         if (!mem) {
2013                 dev_err(td->dev, "no i2c_controller_base resource\n");
2014                 return -ENODEV;
2015         }
2016
2017         td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2018                                                resource_size(mem));
2019         if (!td->i2c_controller_base) {
2020                 dev_err(td->dev,
2021                         "couldn't ioremap i2c_controller_base resource\n");
2022                 return -ENODEV;
2023         }
2024
2025         mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2026         if (!mem) {
2027                 dev_err(td->dev, "no lut_base resource\n");
2028                 return -ENODEV;
2029         }
2030
2031         td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2032         if (!td->lut_base) {
2033                 dev_err(td->dev,
2034                         "couldn't ioremap lut_base resource\n");
2035                 return -ENODEV;
2036         }
2037
2038         ret = dfll_init_clks(td);
2039         if (ret) {
2040                 dev_err(&pdev->dev, "DFLL clock init error\n");
2041                 return ret;
2042         }
2043
2044         /* Enable the clocks and set the device up */
2045         ret = dfll_init(td);
2046         if (ret)
2047                 return ret;
2048
2049         ret = dfll_register_clk(td);
2050         if (ret) {
2051                 dev_err(&pdev->dev, "DFLL clk registration failed\n");
2052                 return ret;
2053         }
2054
2055         dfll_debug_init(td);
2056
2057         return 0;
2058 }
2059 EXPORT_SYMBOL(tegra_dfll_register);
2060
2061 /**
2062  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2063  * @pdev: DFLL platform_device *
2064  *
2065  * Unbind this driver from the DFLL hardware device represented by
2066  * @pdev. The DFLL must be disabled for this to succeed. Returns a
2067  * soc pointer upon success or -EBUSY if the DFLL is still active.
2068  */
2069 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2070 {
2071         struct tegra_dfll *td = platform_get_drvdata(pdev);
2072
2073         /* Try to prevent removal while the DFLL is active */
2074         if (td->mode != DFLL_DISABLED) {
2075                 dev_err(&pdev->dev,
2076                         "must disable DFLL before removing driver\n");
2077                 return ERR_PTR(-EBUSY);
2078         }
2079
2080         debugfs_remove_recursive(td->debugfs_dir);
2081
2082         dfll_unregister_clk(td);
2083         pm_runtime_disable(&pdev->dev);
2084
2085         clk_unprepare(td->ref_clk);
2086         clk_unprepare(td->soc_clk);
2087         clk_unprepare(td->i2c_clk);
2088
2089         reset_control_assert(td->dvco_rst);
2090
2091         return td->soc;
2092 }
2093 EXPORT_SYMBOL(tegra_dfll_unregister);