Merge branch 'i2c/for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-microblaze.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND       0xFE
44 #define HCI_IBS_WAKE_IND        0xFD
45 #define HCI_IBS_WAKE_ACK        0xFC
46 #define HCI_MAX_IBS_SIZE        10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
51 #define CMD_TRANS_TIMEOUT_MS            100
52 #define MEMDUMP_TIMEOUT_MS              8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54         (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS          3000
56
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ       32768
59
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE        0x2EDC
62
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE             0x0108
68 #define QCA_DUMP_PACKET_SIZE            255
69 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN        1096
71 #define QCA_MEMDUMP_BYTE                0xFB
72
73 enum qca_flags {
74         QCA_IBS_DISABLED,
75         QCA_DROP_VENDOR_EVENT,
76         QCA_SUSPENDING,
77         QCA_MEMDUMP_COLLECTION,
78         QCA_HW_ERROR_EVENT,
79         QCA_SSR_TRIGGERED,
80         QCA_BT_OFF,
81         QCA_ROM_FW
82 };
83
84 enum qca_capabilities {
85         QCA_CAP_WIDEBAND_SPEECH = BIT(0),
86         QCA_CAP_VALID_LE_STATES = BIT(1),
87 };
88
89 /* HCI_IBS transmit side sleep protocol states */
90 enum tx_ibs_states {
91         HCI_IBS_TX_ASLEEP,
92         HCI_IBS_TX_WAKING,
93         HCI_IBS_TX_AWAKE,
94 };
95
96 /* HCI_IBS receive side sleep protocol states */
97 enum rx_states {
98         HCI_IBS_RX_ASLEEP,
99         HCI_IBS_RX_AWAKE,
100 };
101
102 /* HCI_IBS transmit and receive side clock state vote */
103 enum hci_ibs_clock_state_vote {
104         HCI_IBS_VOTE_STATS_UPDATE,
105         HCI_IBS_TX_VOTE_CLOCK_ON,
106         HCI_IBS_TX_VOTE_CLOCK_OFF,
107         HCI_IBS_RX_VOTE_CLOCK_ON,
108         HCI_IBS_RX_VOTE_CLOCK_OFF,
109 };
110
111 /* Controller memory dump states */
112 enum qca_memdump_states {
113         QCA_MEMDUMP_IDLE,
114         QCA_MEMDUMP_COLLECTING,
115         QCA_MEMDUMP_COLLECTED,
116         QCA_MEMDUMP_TIMEOUT,
117 };
118
119 struct qca_memdump_data {
120         char *memdump_buf_head;
121         char *memdump_buf_tail;
122         u32 current_seq_no;
123         u32 received_dump;
124         u32 ram_dump_size;
125 };
126
127 struct qca_memdump_event_hdr {
128         __u8    evt;
129         __u8    plen;
130         __u16   opcode;
131         __u16   seq_no;
132         __u8    reserved;
133 } __packed;
134
135
136 struct qca_dump_size {
137         u32 dump_size;
138 } __packed;
139
140 struct qca_data {
141         struct hci_uart *hu;
142         struct sk_buff *rx_skb;
143         struct sk_buff_head txq;
144         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
145         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
146         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
147         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
148         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
149         bool tx_vote;           /* Clock must be on for TX */
150         bool rx_vote;           /* Clock must be on for RX */
151         struct timer_list tx_idle_timer;
152         u32 tx_idle_delay;
153         struct timer_list wake_retrans_timer;
154         u32 wake_retrans;
155         struct workqueue_struct *workqueue;
156         struct work_struct ws_awake_rx;
157         struct work_struct ws_awake_device;
158         struct work_struct ws_rx_vote_off;
159         struct work_struct ws_tx_vote_off;
160         struct work_struct ctrl_memdump_evt;
161         struct delayed_work ctrl_memdump_timeout;
162         struct qca_memdump_data *qca_memdump;
163         unsigned long flags;
164         struct completion drop_ev_comp;
165         wait_queue_head_t suspend_wait_q;
166         enum qca_memdump_states memdump_state;
167         struct mutex hci_memdump_lock;
168
169         /* For debugging purpose */
170         u64 ibs_sent_wacks;
171         u64 ibs_sent_slps;
172         u64 ibs_sent_wakes;
173         u64 ibs_recv_wacks;
174         u64 ibs_recv_slps;
175         u64 ibs_recv_wakes;
176         u64 vote_last_jif;
177         u32 vote_on_ms;
178         u32 vote_off_ms;
179         u64 tx_votes_on;
180         u64 rx_votes_on;
181         u64 tx_votes_off;
182         u64 rx_votes_off;
183         u64 votes_on;
184         u64 votes_off;
185 };
186
187 enum qca_speed_type {
188         QCA_INIT_SPEED = 1,
189         QCA_OPER_SPEED
190 };
191
192 /*
193  * Voltage regulator information required for configuring the
194  * QCA Bluetooth chipset
195  */
196 struct qca_vreg {
197         const char *name;
198         unsigned int load_uA;
199 };
200
201 struct qca_device_data {
202         enum qca_btsoc_type soc_type;
203         struct qca_vreg *vregs;
204         size_t num_vregs;
205         uint32_t capabilities;
206 };
207
208 /*
209  * Platform data for the QCA Bluetooth power driver.
210  */
211 struct qca_power {
212         struct device *dev;
213         struct regulator_bulk_data *vreg_bulk;
214         int num_vregs;
215         bool vregs_on;
216 };
217
218 struct qca_serdev {
219         struct hci_uart  serdev_hu;
220         struct gpio_desc *bt_en;
221         struct clk       *susclk;
222         enum qca_btsoc_type btsoc_type;
223         struct qca_power *bt_power;
224         u32 init_speed;
225         u32 oper_speed;
226         const char *firmware_name;
227 };
228
229 static int qca_regulator_enable(struct qca_serdev *qcadev);
230 static void qca_regulator_disable(struct qca_serdev *qcadev);
231 static void qca_power_shutdown(struct hci_uart *hu);
232 static int qca_power_off(struct hci_dev *hdev);
233 static void qca_controller_memdump(struct work_struct *work);
234
235 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
236 {
237         enum qca_btsoc_type soc_type;
238
239         if (hu->serdev) {
240                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
241
242                 soc_type = qsd->btsoc_type;
243         } else {
244                 soc_type = QCA_ROME;
245         }
246
247         return soc_type;
248 }
249
250 static const char *qca_get_firmware_name(struct hci_uart *hu)
251 {
252         if (hu->serdev) {
253                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
254
255                 return qsd->firmware_name;
256         } else {
257                 return NULL;
258         }
259 }
260
261 static void __serial_clock_on(struct tty_struct *tty)
262 {
263         /* TODO: Some chipset requires to enable UART clock on client
264          * side to save power consumption or manual work is required.
265          * Please put your code to control UART clock here if needed
266          */
267 }
268
269 static void __serial_clock_off(struct tty_struct *tty)
270 {
271         /* TODO: Some chipset requires to disable UART clock on client
272          * side to save power consumption or manual work is required.
273          * Please put your code to control UART clock off here if needed
274          */
275 }
276
277 /* serial_clock_vote needs to be called with the ibs lock held */
278 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
279 {
280         struct qca_data *qca = hu->priv;
281         unsigned int diff;
282
283         bool old_vote = (qca->tx_vote | qca->rx_vote);
284         bool new_vote;
285
286         switch (vote) {
287         case HCI_IBS_VOTE_STATS_UPDATE:
288                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
289
290                 if (old_vote)
291                         qca->vote_off_ms += diff;
292                 else
293                         qca->vote_on_ms += diff;
294                 return;
295
296         case HCI_IBS_TX_VOTE_CLOCK_ON:
297                 qca->tx_vote = true;
298                 qca->tx_votes_on++;
299                 break;
300
301         case HCI_IBS_RX_VOTE_CLOCK_ON:
302                 qca->rx_vote = true;
303                 qca->rx_votes_on++;
304                 break;
305
306         case HCI_IBS_TX_VOTE_CLOCK_OFF:
307                 qca->tx_vote = false;
308                 qca->tx_votes_off++;
309                 break;
310
311         case HCI_IBS_RX_VOTE_CLOCK_OFF:
312                 qca->rx_vote = false;
313                 qca->rx_votes_off++;
314                 break;
315
316         default:
317                 BT_ERR("Voting irregularity");
318                 return;
319         }
320
321         new_vote = qca->rx_vote | qca->tx_vote;
322
323         if (new_vote != old_vote) {
324                 if (new_vote)
325                         __serial_clock_on(hu->tty);
326                 else
327                         __serial_clock_off(hu->tty);
328
329                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
330                        vote ? "true" : "false");
331
332                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
333
334                 if (new_vote) {
335                         qca->votes_on++;
336                         qca->vote_off_ms += diff;
337                 } else {
338                         qca->votes_off++;
339                         qca->vote_on_ms += diff;
340                 }
341                 qca->vote_last_jif = jiffies;
342         }
343 }
344
345 /* Builds and sends an HCI_IBS command packet.
346  * These are very simple packets with only 1 cmd byte.
347  */
348 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
349 {
350         int err = 0;
351         struct sk_buff *skb = NULL;
352         struct qca_data *qca = hu->priv;
353
354         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
355
356         skb = bt_skb_alloc(1, GFP_ATOMIC);
357         if (!skb) {
358                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
359                 return -ENOMEM;
360         }
361
362         /* Assign HCI_IBS type */
363         skb_put_u8(skb, cmd);
364
365         skb_queue_tail(&qca->txq, skb);
366
367         return err;
368 }
369
370 static void qca_wq_awake_device(struct work_struct *work)
371 {
372         struct qca_data *qca = container_of(work, struct qca_data,
373                                             ws_awake_device);
374         struct hci_uart *hu = qca->hu;
375         unsigned long retrans_delay;
376         unsigned long flags;
377
378         BT_DBG("hu %p wq awake device", hu);
379
380         /* Vote for serial clock */
381         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
382
383         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
384
385         /* Send wake indication to device */
386         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
387                 BT_ERR("Failed to send WAKE to device");
388
389         qca->ibs_sent_wakes++;
390
391         /* Start retransmit timer */
392         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
393         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
394
395         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
396
397         /* Actually send the packets */
398         hci_uart_tx_wakeup(hu);
399 }
400
401 static void qca_wq_awake_rx(struct work_struct *work)
402 {
403         struct qca_data *qca = container_of(work, struct qca_data,
404                                             ws_awake_rx);
405         struct hci_uart *hu = qca->hu;
406         unsigned long flags;
407
408         BT_DBG("hu %p wq awake rx", hu);
409
410         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
411
412         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
413         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
414
415         /* Always acknowledge device wake up,
416          * sending IBS message doesn't count as TX ON.
417          */
418         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
419                 BT_ERR("Failed to acknowledge device wake up");
420
421         qca->ibs_sent_wacks++;
422
423         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
424
425         /* Actually send the packets */
426         hci_uart_tx_wakeup(hu);
427 }
428
429 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
430 {
431         struct qca_data *qca = container_of(work, struct qca_data,
432                                             ws_rx_vote_off);
433         struct hci_uart *hu = qca->hu;
434
435         BT_DBG("hu %p rx clock vote off", hu);
436
437         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
438 }
439
440 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
441 {
442         struct qca_data *qca = container_of(work, struct qca_data,
443                                             ws_tx_vote_off);
444         struct hci_uart *hu = qca->hu;
445
446         BT_DBG("hu %p tx clock vote off", hu);
447
448         /* Run HCI tx handling unlocked */
449         hci_uart_tx_wakeup(hu);
450
451         /* Now that message queued to tty driver, vote for tty clocks off.
452          * It is up to the tty driver to pend the clocks off until tx done.
453          */
454         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
455 }
456
457 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
458 {
459         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
460         struct hci_uart *hu = qca->hu;
461         unsigned long flags;
462
463         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
464
465         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
466                                  flags, SINGLE_DEPTH_NESTING);
467
468         switch (qca->tx_ibs_state) {
469         case HCI_IBS_TX_AWAKE:
470                 /* TX_IDLE, go to SLEEP */
471                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
472                         BT_ERR("Failed to send SLEEP to device");
473                         break;
474                 }
475                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
476                 qca->ibs_sent_slps++;
477                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
478                 break;
479
480         case HCI_IBS_TX_ASLEEP:
481         case HCI_IBS_TX_WAKING:
482         default:
483                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
484                 break;
485         }
486
487         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
488 }
489
490 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
491 {
492         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
493         struct hci_uart *hu = qca->hu;
494         unsigned long flags, retrans_delay;
495         bool retransmit = false;
496
497         BT_DBG("hu %p wake retransmit timeout in %d state",
498                 hu, qca->tx_ibs_state);
499
500         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
501                                  flags, SINGLE_DEPTH_NESTING);
502
503         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
504         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
505                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
506                 return;
507         }
508
509         switch (qca->tx_ibs_state) {
510         case HCI_IBS_TX_WAKING:
511                 /* No WAKE_ACK, retransmit WAKE */
512                 retransmit = true;
513                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
514                         BT_ERR("Failed to acknowledge device wake up");
515                         break;
516                 }
517                 qca->ibs_sent_wakes++;
518                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
519                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
520                 break;
521
522         case HCI_IBS_TX_ASLEEP:
523         case HCI_IBS_TX_AWAKE:
524         default:
525                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
526                 break;
527         }
528
529         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
530
531         if (retransmit)
532                 hci_uart_tx_wakeup(hu);
533 }
534
535
536 static void qca_controller_memdump_timeout(struct work_struct *work)
537 {
538         struct qca_data *qca = container_of(work, struct qca_data,
539                                         ctrl_memdump_timeout.work);
540         struct hci_uart *hu = qca->hu;
541
542         mutex_lock(&qca->hci_memdump_lock);
543         if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
544                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
545                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
546                         /* Inject hw error event to reset the device
547                          * and driver.
548                          */
549                         hci_reset_dev(hu->hdev);
550                 }
551         }
552
553         mutex_unlock(&qca->hci_memdump_lock);
554 }
555
556
557 /* Initialize protocol */
558 static int qca_open(struct hci_uart *hu)
559 {
560         struct qca_serdev *qcadev;
561         struct qca_data *qca;
562
563         BT_DBG("hu %p qca_open", hu);
564
565         if (!hci_uart_has_flow_control(hu))
566                 return -EOPNOTSUPP;
567
568         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
569         if (!qca)
570                 return -ENOMEM;
571
572         skb_queue_head_init(&qca->txq);
573         skb_queue_head_init(&qca->tx_wait_q);
574         skb_queue_head_init(&qca->rx_memdump_q);
575         spin_lock_init(&qca->hci_ibs_lock);
576         mutex_init(&qca->hci_memdump_lock);
577         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
578         if (!qca->workqueue) {
579                 BT_ERR("QCA Workqueue not initialized properly");
580                 kfree(qca);
581                 return -ENOMEM;
582         }
583
584         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
585         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
586         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
587         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
588         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
589         INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
590                           qca_controller_memdump_timeout);
591         init_waitqueue_head(&qca->suspend_wait_q);
592
593         qca->hu = hu;
594         init_completion(&qca->drop_ev_comp);
595
596         /* Assume we start with both sides asleep -- extra wakes OK */
597         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
598         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
599
600         qca->vote_last_jif = jiffies;
601
602         hu->priv = qca;
603
604         if (hu->serdev) {
605                 qcadev = serdev_device_get_drvdata(hu->serdev);
606
607                 if (qca_is_wcn399x(qcadev->btsoc_type))
608                         hu->init_speed = qcadev->init_speed;
609
610                 if (qcadev->oper_speed)
611                         hu->oper_speed = qcadev->oper_speed;
612         }
613
614         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
615         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
616
617         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
618         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
619
620         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
621                qca->tx_idle_delay, qca->wake_retrans);
622
623         return 0;
624 }
625
626 static void qca_debugfs_init(struct hci_dev *hdev)
627 {
628         struct hci_uart *hu = hci_get_drvdata(hdev);
629         struct qca_data *qca = hu->priv;
630         struct dentry *ibs_dir;
631         umode_t mode;
632
633         if (!hdev->debugfs)
634                 return;
635
636         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
637
638         /* read only */
639         mode = 0444;
640         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
641         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
642         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
643                            &qca->ibs_sent_slps);
644         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
645                            &qca->ibs_sent_wakes);
646         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
647                            &qca->ibs_sent_wacks);
648         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
649                            &qca->ibs_recv_slps);
650         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
651                            &qca->ibs_recv_wakes);
652         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
653                            &qca->ibs_recv_wacks);
654         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
655         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
656         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
657         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
658         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
659         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
660         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
661         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
662         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
663         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
664
665         /* read/write */
666         mode = 0644;
667         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
668         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
669                            &qca->tx_idle_delay);
670 }
671
672 /* Flush protocol data */
673 static int qca_flush(struct hci_uart *hu)
674 {
675         struct qca_data *qca = hu->priv;
676
677         BT_DBG("hu %p qca flush", hu);
678
679         skb_queue_purge(&qca->tx_wait_q);
680         skb_queue_purge(&qca->txq);
681
682         return 0;
683 }
684
685 /* Close protocol */
686 static int qca_close(struct hci_uart *hu)
687 {
688         struct qca_data *qca = hu->priv;
689
690         BT_DBG("hu %p qca close", hu);
691
692         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
693
694         skb_queue_purge(&qca->tx_wait_q);
695         skb_queue_purge(&qca->txq);
696         skb_queue_purge(&qca->rx_memdump_q);
697         del_timer(&qca->tx_idle_timer);
698         del_timer(&qca->wake_retrans_timer);
699         destroy_workqueue(qca->workqueue);
700         qca->hu = NULL;
701
702         kfree_skb(qca->rx_skb);
703
704         hu->priv = NULL;
705
706         kfree(qca);
707
708         return 0;
709 }
710
711 /* Called upon a wake-up-indication from the device.
712  */
713 static void device_want_to_wakeup(struct hci_uart *hu)
714 {
715         unsigned long flags;
716         struct qca_data *qca = hu->priv;
717
718         BT_DBG("hu %p want to wake up", hu);
719
720         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
721
722         qca->ibs_recv_wakes++;
723
724         /* Don't wake the rx up when suspending. */
725         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
726                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
727                 return;
728         }
729
730         switch (qca->rx_ibs_state) {
731         case HCI_IBS_RX_ASLEEP:
732                 /* Make sure clock is on - we may have turned clock off since
733                  * receiving the wake up indicator awake rx clock.
734                  */
735                 queue_work(qca->workqueue, &qca->ws_awake_rx);
736                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
737                 return;
738
739         case HCI_IBS_RX_AWAKE:
740                 /* Always acknowledge device wake up,
741                  * sending IBS message doesn't count as TX ON.
742                  */
743                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
744                         BT_ERR("Failed to acknowledge device wake up");
745                         break;
746                 }
747                 qca->ibs_sent_wacks++;
748                 break;
749
750         default:
751                 /* Any other state is illegal */
752                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
753                        qca->rx_ibs_state);
754                 break;
755         }
756
757         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
758
759         /* Actually send the packets */
760         hci_uart_tx_wakeup(hu);
761 }
762
763 /* Called upon a sleep-indication from the device.
764  */
765 static void device_want_to_sleep(struct hci_uart *hu)
766 {
767         unsigned long flags;
768         struct qca_data *qca = hu->priv;
769
770         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
771
772         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
773
774         qca->ibs_recv_slps++;
775
776         switch (qca->rx_ibs_state) {
777         case HCI_IBS_RX_AWAKE:
778                 /* Update state */
779                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
780                 /* Vote off rx clock under workqueue */
781                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
782                 break;
783
784         case HCI_IBS_RX_ASLEEP:
785                 break;
786
787         default:
788                 /* Any other state is illegal */
789                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
790                        qca->rx_ibs_state);
791                 break;
792         }
793
794         wake_up_interruptible(&qca->suspend_wait_q);
795
796         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
797 }
798
799 /* Called upon wake-up-acknowledgement from the device
800  */
801 static void device_woke_up(struct hci_uart *hu)
802 {
803         unsigned long flags, idle_delay;
804         struct qca_data *qca = hu->priv;
805         struct sk_buff *skb = NULL;
806
807         BT_DBG("hu %p woke up", hu);
808
809         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
810
811         qca->ibs_recv_wacks++;
812
813         /* Don't react to the wake-up-acknowledgment when suspending. */
814         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
815                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
816                 return;
817         }
818
819         switch (qca->tx_ibs_state) {
820         case HCI_IBS_TX_AWAKE:
821                 /* Expect one if we send 2 WAKEs */
822                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
823                        qca->tx_ibs_state);
824                 break;
825
826         case HCI_IBS_TX_WAKING:
827                 /* Send pending packets */
828                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
829                         skb_queue_tail(&qca->txq, skb);
830
831                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
832                 del_timer(&qca->wake_retrans_timer);
833                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
834                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
835                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
836                 break;
837
838         case HCI_IBS_TX_ASLEEP:
839         default:
840                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
841                        qca->tx_ibs_state);
842                 break;
843         }
844
845         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
846
847         /* Actually send the packets */
848         hci_uart_tx_wakeup(hu);
849 }
850
851 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
852  * two simultaneous tasklets.
853  */
854 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
855 {
856         unsigned long flags = 0, idle_delay;
857         struct qca_data *qca = hu->priv;
858
859         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
860                qca->tx_ibs_state);
861
862         if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
863                 /* As SSR is in progress, ignore the packets */
864                 bt_dev_dbg(hu->hdev, "SSR is in progress");
865                 kfree_skb(skb);
866                 return 0;
867         }
868
869         /* Prepend skb with frame type */
870         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
871
872         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
873
874         /* Don't go to sleep in middle of patch download or
875          * Out-Of-Band(GPIOs control) sleep is selected.
876          * Don't wake the device up when suspending.
877          */
878         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
879             test_bit(QCA_SUSPENDING, &qca->flags)) {
880                 skb_queue_tail(&qca->txq, skb);
881                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
882                 return 0;
883         }
884
885         /* Act according to current state */
886         switch (qca->tx_ibs_state) {
887         case HCI_IBS_TX_AWAKE:
888                 BT_DBG("Device awake, sending normally");
889                 skb_queue_tail(&qca->txq, skb);
890                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
891                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
892                 break;
893
894         case HCI_IBS_TX_ASLEEP:
895                 BT_DBG("Device asleep, waking up and queueing packet");
896                 /* Save packet for later */
897                 skb_queue_tail(&qca->tx_wait_q, skb);
898
899                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
900                 /* Schedule a work queue to wake up device */
901                 queue_work(qca->workqueue, &qca->ws_awake_device);
902                 break;
903
904         case HCI_IBS_TX_WAKING:
905                 BT_DBG("Device waking up, queueing packet");
906                 /* Transient state; just keep packet for later */
907                 skb_queue_tail(&qca->tx_wait_q, skb);
908                 break;
909
910         default:
911                 BT_ERR("Illegal tx state: %d (losing packet)",
912                        qca->tx_ibs_state);
913                 kfree_skb(skb);
914                 break;
915         }
916
917         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
918
919         return 0;
920 }
921
922 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
923 {
924         struct hci_uart *hu = hci_get_drvdata(hdev);
925
926         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
927
928         device_want_to_sleep(hu);
929
930         kfree_skb(skb);
931         return 0;
932 }
933
934 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
935 {
936         struct hci_uart *hu = hci_get_drvdata(hdev);
937
938         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
939
940         device_want_to_wakeup(hu);
941
942         kfree_skb(skb);
943         return 0;
944 }
945
946 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
947 {
948         struct hci_uart *hu = hci_get_drvdata(hdev);
949
950         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
951
952         device_woke_up(hu);
953
954         kfree_skb(skb);
955         return 0;
956 }
957
958 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
959 {
960         /* We receive debug logs from chip as an ACL packets.
961          * Instead of sending the data to ACL to decode the
962          * received data, we are pushing them to the above layers
963          * as a diagnostic packet.
964          */
965         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
966                 return hci_recv_diag(hdev, skb);
967
968         return hci_recv_frame(hdev, skb);
969 }
970
971 static void qca_controller_memdump(struct work_struct *work)
972 {
973         struct qca_data *qca = container_of(work, struct qca_data,
974                                             ctrl_memdump_evt);
975         struct hci_uart *hu = qca->hu;
976         struct sk_buff *skb;
977         struct qca_memdump_event_hdr *cmd_hdr;
978         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
979         struct qca_dump_size *dump;
980         char *memdump_buf;
981         char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
982         u16 seq_no;
983         u32 dump_size;
984         u32 rx_size;
985         enum qca_btsoc_type soc_type = qca_soc_type(hu);
986
987         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
988
989                 mutex_lock(&qca->hci_memdump_lock);
990                 /* Skip processing the received packets if timeout detected
991                  * or memdump collection completed.
992                  */
993                 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
994                     qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
995                         mutex_unlock(&qca->hci_memdump_lock);
996                         return;
997                 }
998
999                 if (!qca_memdump) {
1000                         qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1001                                               GFP_ATOMIC);
1002                         if (!qca_memdump) {
1003                                 mutex_unlock(&qca->hci_memdump_lock);
1004                                 return;
1005                         }
1006
1007                         qca->qca_memdump = qca_memdump;
1008                 }
1009
1010                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1011                 cmd_hdr = (void *) skb->data;
1012                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1013                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1014
1015                 if (!seq_no) {
1016
1017                         /* This is the first frame of memdump packet from
1018                          * the controller, Disable IBS to recevie dump
1019                          * with out any interruption, ideally time required for
1020                          * the controller to send the dump is 8 seconds. let us
1021                          * start timer to handle this asynchronous activity.
1022                          */
1023                         set_bit(QCA_IBS_DISABLED, &qca->flags);
1024                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1025                         dump = (void *) skb->data;
1026                         dump_size = __le32_to_cpu(dump->dump_size);
1027                         if (!(dump_size)) {
1028                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1029                                 kfree(qca_memdump);
1030                                 kfree_skb(skb);
1031                                 qca->qca_memdump = NULL;
1032                                 mutex_unlock(&qca->hci_memdump_lock);
1033                                 return;
1034                         }
1035
1036                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1037                                     dump_size);
1038                         queue_delayed_work(qca->workqueue,
1039                                            &qca->ctrl_memdump_timeout,
1040                                            msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1041                                           );
1042
1043                         skb_pull(skb, sizeof(dump_size));
1044                         memdump_buf = vmalloc(dump_size);
1045                         qca_memdump->ram_dump_size = dump_size;
1046                         qca_memdump->memdump_buf_head = memdump_buf;
1047                         qca_memdump->memdump_buf_tail = memdump_buf;
1048                 }
1049
1050                 memdump_buf = qca_memdump->memdump_buf_tail;
1051
1052                 /* If sequence no 0 is missed then there is no point in
1053                  * accepting the other sequences.
1054                  */
1055                 if (!memdump_buf) {
1056                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1057                         kfree(qca_memdump);
1058                         kfree_skb(skb);
1059                         qca->qca_memdump = NULL;
1060                         mutex_unlock(&qca->hci_memdump_lock);
1061                         return;
1062                 }
1063
1064                 /* There could be chance of missing some packets from
1065                  * the controller. In such cases let us store the dummy
1066                  * packets in the buffer.
1067                  */
1068                 /* For QCA6390, controller does not lost packets but
1069                  * sequence number field of packet sometimes has error
1070                  * bits, so skip this checking for missing packet.
1071                  */
1072                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1073                        (soc_type != QCA_QCA6390) &&
1074                        seq_no != QCA_LAST_SEQUENCE_NUM) {
1075                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1076                                    qca_memdump->current_seq_no);
1077                         rx_size = qca_memdump->received_dump;
1078                         rx_size += QCA_DUMP_PACKET_SIZE;
1079                         if (rx_size > qca_memdump->ram_dump_size) {
1080                                 bt_dev_err(hu->hdev,
1081                                            "QCA memdump received %d, no space for missed packet",
1082                                            qca_memdump->received_dump);
1083                                 break;
1084                         }
1085                         memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1086                         memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1087                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1088                         qca_memdump->current_seq_no++;
1089                 }
1090
1091                 rx_size = qca_memdump->received_dump + skb->len;
1092                 if (rx_size <= qca_memdump->ram_dump_size) {
1093                         if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1094                             (seq_no != qca_memdump->current_seq_no))
1095                                 bt_dev_err(hu->hdev,
1096                                            "QCA memdump unexpected packet %d",
1097                                            seq_no);
1098                         bt_dev_dbg(hu->hdev,
1099                                    "QCA memdump packet %d with length %d",
1100                                    seq_no, skb->len);
1101                         memcpy(memdump_buf, (unsigned char *)skb->data,
1102                                skb->len);
1103                         memdump_buf = memdump_buf + skb->len;
1104                         qca_memdump->memdump_buf_tail = memdump_buf;
1105                         qca_memdump->current_seq_no = seq_no + 1;
1106                         qca_memdump->received_dump += skb->len;
1107                 } else {
1108                         bt_dev_err(hu->hdev,
1109                                    "QCA memdump received %d, no space for packet %d",
1110                                    qca_memdump->received_dump, seq_no);
1111                 }
1112                 qca->qca_memdump = qca_memdump;
1113                 kfree_skb(skb);
1114                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1115                         bt_dev_info(hu->hdev,
1116                                     "QCA memdump Done, received %d, total %d",
1117                                     qca_memdump->received_dump,
1118                                     qca_memdump->ram_dump_size);
1119                         memdump_buf = qca_memdump->memdump_buf_head;
1120                         dev_coredumpv(&hu->serdev->dev, memdump_buf,
1121                                       qca_memdump->received_dump, GFP_KERNEL);
1122                         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1123                         kfree(qca->qca_memdump);
1124                         qca->qca_memdump = NULL;
1125                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1126                         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1127                 }
1128
1129                 mutex_unlock(&qca->hci_memdump_lock);
1130         }
1131
1132 }
1133
1134 static int qca_controller_memdump_event(struct hci_dev *hdev,
1135                                         struct sk_buff *skb)
1136 {
1137         struct hci_uart *hu = hci_get_drvdata(hdev);
1138         struct qca_data *qca = hu->priv;
1139
1140         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1141         skb_queue_tail(&qca->rx_memdump_q, skb);
1142         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1143
1144         return 0;
1145 }
1146
1147 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1148 {
1149         struct hci_uart *hu = hci_get_drvdata(hdev);
1150         struct qca_data *qca = hu->priv;
1151
1152         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1153                 struct hci_event_hdr *hdr = (void *)skb->data;
1154
1155                 /* For the WCN3990 the vendor command for a baudrate change
1156                  * isn't sent as synchronous HCI command, because the
1157                  * controller sends the corresponding vendor event with the
1158                  * new baudrate. The event is received and properly decoded
1159                  * after changing the baudrate of the host port. It needs to
1160                  * be dropped, otherwise it can be misinterpreted as
1161                  * response to a later firmware download command (also a
1162                  * vendor command).
1163                  */
1164
1165                 if (hdr->evt == HCI_EV_VENDOR)
1166                         complete(&qca->drop_ev_comp);
1167
1168                 kfree_skb(skb);
1169
1170                 return 0;
1171         }
1172         /* We receive chip memory dump as an event packet, With a dedicated
1173          * handler followed by a hardware error event. When this event is
1174          * received we store dump into a file before closing hci. This
1175          * dump will help in triaging the issues.
1176          */
1177         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1178             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1179                 return qca_controller_memdump_event(hdev, skb);
1180
1181         return hci_recv_frame(hdev, skb);
1182 }
1183
1184 #define QCA_IBS_SLEEP_IND_EVENT \
1185         .type = HCI_IBS_SLEEP_IND, \
1186         .hlen = 0, \
1187         .loff = 0, \
1188         .lsize = 0, \
1189         .maxlen = HCI_MAX_IBS_SIZE
1190
1191 #define QCA_IBS_WAKE_IND_EVENT \
1192         .type = HCI_IBS_WAKE_IND, \
1193         .hlen = 0, \
1194         .loff = 0, \
1195         .lsize = 0, \
1196         .maxlen = HCI_MAX_IBS_SIZE
1197
1198 #define QCA_IBS_WAKE_ACK_EVENT \
1199         .type = HCI_IBS_WAKE_ACK, \
1200         .hlen = 0, \
1201         .loff = 0, \
1202         .lsize = 0, \
1203         .maxlen = HCI_MAX_IBS_SIZE
1204
1205 static const struct h4_recv_pkt qca_recv_pkts[] = {
1206         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1207         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1208         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1209         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1210         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1211         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1212 };
1213
1214 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1215 {
1216         struct qca_data *qca = hu->priv;
1217
1218         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1219                 return -EUNATCH;
1220
1221         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1222                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1223         if (IS_ERR(qca->rx_skb)) {
1224                 int err = PTR_ERR(qca->rx_skb);
1225                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1226                 qca->rx_skb = NULL;
1227                 return err;
1228         }
1229
1230         return count;
1231 }
1232
1233 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1234 {
1235         struct qca_data *qca = hu->priv;
1236
1237         return skb_dequeue(&qca->txq);
1238 }
1239
1240 static uint8_t qca_get_baudrate_value(int speed)
1241 {
1242         switch (speed) {
1243         case 9600:
1244                 return QCA_BAUDRATE_9600;
1245         case 19200:
1246                 return QCA_BAUDRATE_19200;
1247         case 38400:
1248                 return QCA_BAUDRATE_38400;
1249         case 57600:
1250                 return QCA_BAUDRATE_57600;
1251         case 115200:
1252                 return QCA_BAUDRATE_115200;
1253         case 230400:
1254                 return QCA_BAUDRATE_230400;
1255         case 460800:
1256                 return QCA_BAUDRATE_460800;
1257         case 500000:
1258                 return QCA_BAUDRATE_500000;
1259         case 921600:
1260                 return QCA_BAUDRATE_921600;
1261         case 1000000:
1262                 return QCA_BAUDRATE_1000000;
1263         case 2000000:
1264                 return QCA_BAUDRATE_2000000;
1265         case 3000000:
1266                 return QCA_BAUDRATE_3000000;
1267         case 3200000:
1268                 return QCA_BAUDRATE_3200000;
1269         case 3500000:
1270                 return QCA_BAUDRATE_3500000;
1271         default:
1272                 return QCA_BAUDRATE_115200;
1273         }
1274 }
1275
1276 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1277 {
1278         struct hci_uart *hu = hci_get_drvdata(hdev);
1279         struct qca_data *qca = hu->priv;
1280         struct sk_buff *skb;
1281         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1282
1283         if (baudrate > QCA_BAUDRATE_3200000)
1284                 return -EINVAL;
1285
1286         cmd[4] = baudrate;
1287
1288         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1289         if (!skb) {
1290                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1291                 return -ENOMEM;
1292         }
1293
1294         /* Assign commands to change baudrate and packet type. */
1295         skb_put_data(skb, cmd, sizeof(cmd));
1296         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1297
1298         skb_queue_tail(&qca->txq, skb);
1299         hci_uart_tx_wakeup(hu);
1300
1301         /* Wait for the baudrate change request to be sent */
1302
1303         while (!skb_queue_empty(&qca->txq))
1304                 usleep_range(100, 200);
1305
1306         if (hu->serdev)
1307                 serdev_device_wait_until_sent(hu->serdev,
1308                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1309
1310         /* Give the controller time to process the request */
1311         if (qca_is_wcn399x(qca_soc_type(hu)))
1312                 usleep_range(1000, 10000);
1313         else
1314                 msleep(300);
1315
1316         return 0;
1317 }
1318
1319 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1320 {
1321         if (hu->serdev)
1322                 serdev_device_set_baudrate(hu->serdev, speed);
1323         else
1324                 hci_uart_set_baudrate(hu, speed);
1325 }
1326
1327 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1328 {
1329         int ret;
1330         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1331         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1332
1333         /* These power pulses are single byte command which are sent
1334          * at required baudrate to wcn3990. On wcn3990, we have an external
1335          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1336          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1337          * and also we use the same power inputs to turn on and off for
1338          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1339          * we send a power on pulse at 115200 bps. This algorithm will help to
1340          * save power. Disabling hardware flow control is mandatory while
1341          * sending power pulses to SoC.
1342          */
1343         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1344
1345         serdev_device_write_flush(hu->serdev);
1346         hci_uart_set_flow_control(hu, true);
1347         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1348         if (ret < 0) {
1349                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1350                 return ret;
1351         }
1352
1353         serdev_device_wait_until_sent(hu->serdev, timeout);
1354         hci_uart_set_flow_control(hu, false);
1355
1356         /* Give to controller time to boot/shutdown */
1357         if (on)
1358                 msleep(100);
1359         else
1360                 usleep_range(1000, 10000);
1361
1362         return 0;
1363 }
1364
1365 static unsigned int qca_get_speed(struct hci_uart *hu,
1366                                   enum qca_speed_type speed_type)
1367 {
1368         unsigned int speed = 0;
1369
1370         if (speed_type == QCA_INIT_SPEED) {
1371                 if (hu->init_speed)
1372                         speed = hu->init_speed;
1373                 else if (hu->proto->init_speed)
1374                         speed = hu->proto->init_speed;
1375         } else {
1376                 if (hu->oper_speed)
1377                         speed = hu->oper_speed;
1378                 else if (hu->proto->oper_speed)
1379                         speed = hu->proto->oper_speed;
1380         }
1381
1382         return speed;
1383 }
1384
1385 static int qca_check_speeds(struct hci_uart *hu)
1386 {
1387         if (qca_is_wcn399x(qca_soc_type(hu))) {
1388                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1389                     !qca_get_speed(hu, QCA_OPER_SPEED))
1390                         return -EINVAL;
1391         } else {
1392                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1393                     !qca_get_speed(hu, QCA_OPER_SPEED))
1394                         return -EINVAL;
1395         }
1396
1397         return 0;
1398 }
1399
1400 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1401 {
1402         unsigned int speed, qca_baudrate;
1403         struct qca_data *qca = hu->priv;
1404         int ret = 0;
1405
1406         if (speed_type == QCA_INIT_SPEED) {
1407                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1408                 if (speed)
1409                         host_set_baudrate(hu, speed);
1410         } else {
1411                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1412
1413                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1414                 if (!speed)
1415                         return 0;
1416
1417                 /* Disable flow control for wcn3990 to deassert RTS while
1418                  * changing the baudrate of chip and host.
1419                  */
1420                 if (qca_is_wcn399x(soc_type))
1421                         hci_uart_set_flow_control(hu, true);
1422
1423                 if (soc_type == QCA_WCN3990) {
1424                         reinit_completion(&qca->drop_ev_comp);
1425                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1426                 }
1427
1428                 qca_baudrate = qca_get_baudrate_value(speed);
1429                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1430                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1431                 if (ret)
1432                         goto error;
1433
1434                 host_set_baudrate(hu, speed);
1435
1436 error:
1437                 if (qca_is_wcn399x(soc_type))
1438                         hci_uart_set_flow_control(hu, false);
1439
1440                 if (soc_type == QCA_WCN3990) {
1441                         /* Wait for the controller to send the vendor event
1442                          * for the baudrate change command.
1443                          */
1444                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1445                                                  msecs_to_jiffies(100))) {
1446                                 bt_dev_err(hu->hdev,
1447                                            "Failed to change controller baudrate\n");
1448                                 ret = -ETIMEDOUT;
1449                         }
1450
1451                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1452                 }
1453         }
1454
1455         return ret;
1456 }
1457
1458 static int qca_send_crashbuffer(struct hci_uart *hu)
1459 {
1460         struct qca_data *qca = hu->priv;
1461         struct sk_buff *skb;
1462
1463         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1464         if (!skb) {
1465                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1466                 return -ENOMEM;
1467         }
1468
1469         /* We forcefully crash the controller, by sending 0xfb byte for
1470          * 1024 times. We also might have chance of losing data, To be
1471          * on safer side we send 1096 bytes to the SoC.
1472          */
1473         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1474                QCA_CRASHBYTE_PACKET_LEN);
1475         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1476         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1477         skb_queue_tail(&qca->txq, skb);
1478         hci_uart_tx_wakeup(hu);
1479
1480         return 0;
1481 }
1482
1483 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1484 {
1485         struct hci_uart *hu = hci_get_drvdata(hdev);
1486         struct qca_data *qca = hu->priv;
1487
1488         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1489                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1490
1491         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1492 }
1493
1494 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1495 {
1496         struct hci_uart *hu = hci_get_drvdata(hdev);
1497         struct qca_data *qca = hu->priv;
1498
1499         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1500         set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1501         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1502
1503         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1504                 /* If hardware error event received for other than QCA
1505                  * soc memory dump event, then we need to crash the SOC
1506                  * and wait here for 8 seconds to get the dump packets.
1507                  * This will block main thread to be on hold until we
1508                  * collect dump.
1509                  */
1510                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1511                 qca_send_crashbuffer(hu);
1512                 qca_wait_for_dump_collection(hdev);
1513         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1514                 /* Let us wait here until memory dump collected or
1515                  * memory dump timer expired.
1516                  */
1517                 bt_dev_info(hdev, "waiting for dump to complete");
1518                 qca_wait_for_dump_collection(hdev);
1519         }
1520
1521         mutex_lock(&qca->hci_memdump_lock);
1522         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1523                 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1524                 if (qca->qca_memdump) {
1525                         vfree(qca->qca_memdump->memdump_buf_head);
1526                         kfree(qca->qca_memdump);
1527                         qca->qca_memdump = NULL;
1528                 }
1529                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1530                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1531         }
1532         mutex_unlock(&qca->hci_memdump_lock);
1533
1534         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1535             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1536                 cancel_work_sync(&qca->ctrl_memdump_evt);
1537                 skb_queue_purge(&qca->rx_memdump_q);
1538         }
1539
1540         clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1541 }
1542
1543 static void qca_cmd_timeout(struct hci_dev *hdev)
1544 {
1545         struct hci_uart *hu = hci_get_drvdata(hdev);
1546         struct qca_data *qca = hu->priv;
1547
1548         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1549         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1550                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1551                 qca_send_crashbuffer(hu);
1552                 qca_wait_for_dump_collection(hdev);
1553         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1554                 /* Let us wait here until memory dump collected or
1555                  * memory dump timer expired.
1556                  */
1557                 bt_dev_info(hdev, "waiting for dump to complete");
1558                 qca_wait_for_dump_collection(hdev);
1559         }
1560
1561         mutex_lock(&qca->hci_memdump_lock);
1562         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1563                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1564                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1565                         /* Inject hw error event to reset the device
1566                          * and driver.
1567                          */
1568                         hci_reset_dev(hu->hdev);
1569                 }
1570         }
1571         mutex_unlock(&qca->hci_memdump_lock);
1572 }
1573
1574 static bool qca_prevent_wake(struct hci_dev *hdev)
1575 {
1576         struct hci_uart *hu = hci_get_drvdata(hdev);
1577         bool wakeup;
1578
1579         /* UART driver handles the interrupt from BT SoC.So we need to use
1580          * device handle of UART driver to get the status of device may wakeup.
1581          */
1582         wakeup = device_may_wakeup(hu->serdev->ctrl->dev.parent);
1583         bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1584
1585         return !wakeup;
1586 }
1587
1588 static int qca_wcn3990_init(struct hci_uart *hu)
1589 {
1590         struct qca_serdev *qcadev;
1591         int ret;
1592
1593         /* Check for vregs status, may be hci down has turned
1594          * off the voltage regulator.
1595          */
1596         qcadev = serdev_device_get_drvdata(hu->serdev);
1597         if (!qcadev->bt_power->vregs_on) {
1598                 serdev_device_close(hu->serdev);
1599                 ret = qca_regulator_enable(qcadev);
1600                 if (ret)
1601                         return ret;
1602
1603                 ret = serdev_device_open(hu->serdev);
1604                 if (ret) {
1605                         bt_dev_err(hu->hdev, "failed to open port");
1606                         return ret;
1607                 }
1608         }
1609
1610         /* Forcefully enable wcn3990 to enter in to boot mode. */
1611         host_set_baudrate(hu, 2400);
1612         ret = qca_send_power_pulse(hu, false);
1613         if (ret)
1614                 return ret;
1615
1616         qca_set_speed(hu, QCA_INIT_SPEED);
1617         ret = qca_send_power_pulse(hu, true);
1618         if (ret)
1619                 return ret;
1620
1621         /* Now the device is in ready state to communicate with host.
1622          * To sync host with device we need to reopen port.
1623          * Without this, we will have RTS and CTS synchronization
1624          * issues.
1625          */
1626         serdev_device_close(hu->serdev);
1627         ret = serdev_device_open(hu->serdev);
1628         if (ret) {
1629                 bt_dev_err(hu->hdev, "failed to open port");
1630                 return ret;
1631         }
1632
1633         hci_uart_set_flow_control(hu, false);
1634
1635         return 0;
1636 }
1637
1638 static int qca_power_on(struct hci_dev *hdev)
1639 {
1640         struct hci_uart *hu = hci_get_drvdata(hdev);
1641         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1642         struct qca_serdev *qcadev;
1643         struct qca_data *qca = hu->priv;
1644         int ret = 0;
1645
1646         /* Non-serdev device usually is powered by external power
1647          * and don't need additional action in driver for power on
1648          */
1649         if (!hu->serdev)
1650                 return 0;
1651
1652         if (qca_is_wcn399x(soc_type)) {
1653                 ret = qca_wcn3990_init(hu);
1654         } else {
1655                 qcadev = serdev_device_get_drvdata(hu->serdev);
1656                 if (qcadev->bt_en) {
1657                         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1658                         /* Controller needs time to bootup. */
1659                         msleep(150);
1660                 }
1661         }
1662
1663         clear_bit(QCA_BT_OFF, &qca->flags);
1664         return ret;
1665 }
1666
1667 static int qca_setup(struct hci_uart *hu)
1668 {
1669         struct hci_dev *hdev = hu->hdev;
1670         struct qca_data *qca = hu->priv;
1671         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1672         unsigned int retries = 0;
1673         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1674         const char *firmware_name = qca_get_firmware_name(hu);
1675         int ret;
1676         struct qca_btsoc_version ver;
1677
1678         ret = qca_check_speeds(hu);
1679         if (ret)
1680                 return ret;
1681
1682         clear_bit(QCA_ROM_FW, &qca->flags);
1683         /* Patch downloading has to be done without IBS mode */
1684         set_bit(QCA_IBS_DISABLED, &qca->flags);
1685
1686         /* Enable controller to do both LE scan and BR/EDR inquiry
1687          * simultaneously.
1688          */
1689         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1690
1691         bt_dev_info(hdev, "setting up %s",
1692                 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1693
1694         qca->memdump_state = QCA_MEMDUMP_IDLE;
1695
1696 retry:
1697         ret = qca_power_on(hdev);
1698         if (ret)
1699                 goto out;
1700
1701         clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1702
1703         if (qca_is_wcn399x(soc_type)) {
1704                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1705
1706                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1707                 if (ret)
1708                         goto out;
1709         } else {
1710                 qca_set_speed(hu, QCA_INIT_SPEED);
1711         }
1712
1713         /* Setup user speed if needed */
1714         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1715         if (speed) {
1716                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1717                 if (ret)
1718                         goto out;
1719
1720                 qca_baudrate = qca_get_baudrate_value(speed);
1721         }
1722
1723         if (!qca_is_wcn399x(soc_type)) {
1724                 /* Get QCA version information */
1725                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1726                 if (ret)
1727                         goto out;
1728         }
1729
1730         /* Setup patch / NVM configurations */
1731         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1732                         firmware_name);
1733         if (!ret) {
1734                 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1735                 qca_debugfs_init(hdev);
1736                 hu->hdev->hw_error = qca_hw_error;
1737                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1738                 hu->hdev->prevent_wake = qca_prevent_wake;
1739         } else if (ret == -ENOENT) {
1740                 /* No patch/nvm-config found, run with original fw/config */
1741                 set_bit(QCA_ROM_FW, &qca->flags);
1742                 ret = 0;
1743         } else if (ret == -EAGAIN) {
1744                 /*
1745                  * Userspace firmware loader will return -EAGAIN in case no
1746                  * patch/nvm-config is found, so run with original fw/config.
1747                  */
1748                 set_bit(QCA_ROM_FW, &qca->flags);
1749                 ret = 0;
1750         }
1751
1752 out:
1753         if (ret && retries < MAX_INIT_RETRIES) {
1754                 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1755                 qca_power_shutdown(hu);
1756                 if (hu->serdev) {
1757                         serdev_device_close(hu->serdev);
1758                         ret = serdev_device_open(hu->serdev);
1759                         if (ret) {
1760                                 bt_dev_err(hdev, "failed to open port");
1761                                 return ret;
1762                         }
1763                 }
1764                 retries++;
1765                 goto retry;
1766         }
1767
1768         /* Setup bdaddr */
1769         if (soc_type == QCA_ROME)
1770                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1771         else
1772                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1773
1774         return ret;
1775 }
1776
1777 static const struct hci_uart_proto qca_proto = {
1778         .id             = HCI_UART_QCA,
1779         .name           = "QCA",
1780         .manufacturer   = 29,
1781         .init_speed     = 115200,
1782         .oper_speed     = 3000000,
1783         .open           = qca_open,
1784         .close          = qca_close,
1785         .flush          = qca_flush,
1786         .setup          = qca_setup,
1787         .recv           = qca_recv,
1788         .enqueue        = qca_enqueue,
1789         .dequeue        = qca_dequeue,
1790 };
1791
1792 static const struct qca_device_data qca_soc_data_wcn3990 = {
1793         .soc_type = QCA_WCN3990,
1794         .vregs = (struct qca_vreg []) {
1795                 { "vddio", 15000  },
1796                 { "vddxo", 80000  },
1797                 { "vddrf", 300000 },
1798                 { "vddch0", 450000 },
1799         },
1800         .num_vregs = 4,
1801 };
1802
1803 static const struct qca_device_data qca_soc_data_wcn3991 = {
1804         .soc_type = QCA_WCN3991,
1805         .vregs = (struct qca_vreg []) {
1806                 { "vddio", 15000  },
1807                 { "vddxo", 80000  },
1808                 { "vddrf", 300000 },
1809                 { "vddch0", 450000 },
1810         },
1811         .num_vregs = 4,
1812         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1813 };
1814
1815 static const struct qca_device_data qca_soc_data_wcn3998 = {
1816         .soc_type = QCA_WCN3998,
1817         .vregs = (struct qca_vreg []) {
1818                 { "vddio", 10000  },
1819                 { "vddxo", 80000  },
1820                 { "vddrf", 300000 },
1821                 { "vddch0", 450000 },
1822         },
1823         .num_vregs = 4,
1824 };
1825
1826 static const struct qca_device_data qca_soc_data_qca6390 = {
1827         .soc_type = QCA_QCA6390,
1828         .num_vregs = 0,
1829 };
1830
1831 static void qca_power_shutdown(struct hci_uart *hu)
1832 {
1833         struct qca_serdev *qcadev;
1834         struct qca_data *qca = hu->priv;
1835         unsigned long flags;
1836         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1837
1838         qcadev = serdev_device_get_drvdata(hu->serdev);
1839
1840         /* From this point we go into power off state. But serial port is
1841          * still open, stop queueing the IBS data and flush all the buffered
1842          * data in skb's.
1843          */
1844         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1845         set_bit(QCA_IBS_DISABLED, &qca->flags);
1846         qca_flush(hu);
1847         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1848
1849         /* Non-serdev device usually is powered by external power
1850          * and don't need additional action in driver for power down
1851          */
1852         if (!hu->serdev)
1853                 return;
1854
1855         if (qca_is_wcn399x(soc_type)) {
1856                 host_set_baudrate(hu, 2400);
1857                 qca_send_power_pulse(hu, false);
1858                 qca_regulator_disable(qcadev);
1859         } else if (qcadev->bt_en) {
1860                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1861         }
1862
1863         set_bit(QCA_BT_OFF, &qca->flags);
1864 }
1865
1866 static int qca_power_off(struct hci_dev *hdev)
1867 {
1868         struct hci_uart *hu = hci_get_drvdata(hdev);
1869         struct qca_data *qca = hu->priv;
1870         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1871
1872         hu->hdev->hw_error = NULL;
1873         hu->hdev->cmd_timeout = NULL;
1874
1875         /* Stop sending shutdown command if soc crashes. */
1876         if (soc_type != QCA_ROME
1877                 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1878                 qca_send_pre_shutdown_cmd(hdev);
1879                 usleep_range(8000, 10000);
1880         }
1881
1882         qca_power_shutdown(hu);
1883         return 0;
1884 }
1885
1886 static int qca_regulator_enable(struct qca_serdev *qcadev)
1887 {
1888         struct qca_power *power = qcadev->bt_power;
1889         int ret;
1890
1891         /* Already enabled */
1892         if (power->vregs_on)
1893                 return 0;
1894
1895         BT_DBG("enabling %d regulators)", power->num_vregs);
1896
1897         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1898         if (ret)
1899                 return ret;
1900
1901         power->vregs_on = true;
1902
1903         ret = clk_prepare_enable(qcadev->susclk);
1904         if (ret)
1905                 qca_regulator_disable(qcadev);
1906
1907         return ret;
1908 }
1909
1910 static void qca_regulator_disable(struct qca_serdev *qcadev)
1911 {
1912         struct qca_power *power;
1913
1914         if (!qcadev)
1915                 return;
1916
1917         power = qcadev->bt_power;
1918
1919         /* Already disabled? */
1920         if (!power->vregs_on)
1921                 return;
1922
1923         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1924         power->vregs_on = false;
1925
1926         clk_disable_unprepare(qcadev->susclk);
1927 }
1928
1929 static int qca_init_regulators(struct qca_power *qca,
1930                                 const struct qca_vreg *vregs, size_t num_vregs)
1931 {
1932         struct regulator_bulk_data *bulk;
1933         int ret;
1934         int i;
1935
1936         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1937         if (!bulk)
1938                 return -ENOMEM;
1939
1940         for (i = 0; i < num_vregs; i++)
1941                 bulk[i].supply = vregs[i].name;
1942
1943         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1944         if (ret < 0)
1945                 return ret;
1946
1947         for (i = 0; i < num_vregs; i++) {
1948                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1949                 if (ret)
1950                         return ret;
1951         }
1952
1953         qca->vreg_bulk = bulk;
1954         qca->num_vregs = num_vregs;
1955
1956         return 0;
1957 }
1958
1959 static int qca_serdev_probe(struct serdev_device *serdev)
1960 {
1961         struct qca_serdev *qcadev;
1962         struct hci_dev *hdev;
1963         const struct qca_device_data *data;
1964         int err;
1965         bool power_ctrl_enabled = true;
1966
1967         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1968         if (!qcadev)
1969                 return -ENOMEM;
1970
1971         qcadev->serdev_hu.serdev = serdev;
1972         data = device_get_match_data(&serdev->dev);
1973         serdev_device_set_drvdata(serdev, qcadev);
1974         device_property_read_string(&serdev->dev, "firmware-name",
1975                                          &qcadev->firmware_name);
1976         device_property_read_u32(&serdev->dev, "max-speed",
1977                                  &qcadev->oper_speed);
1978         if (!qcadev->oper_speed)
1979                 BT_DBG("UART will pick default operating speed");
1980
1981         if (data && qca_is_wcn399x(data->soc_type)) {
1982                 qcadev->btsoc_type = data->soc_type;
1983                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1984                                                 sizeof(struct qca_power),
1985                                                 GFP_KERNEL);
1986                 if (!qcadev->bt_power)
1987                         return -ENOMEM;
1988
1989                 qcadev->bt_power->dev = &serdev->dev;
1990                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1991                                           data->num_vregs);
1992                 if (err) {
1993                         BT_ERR("Failed to init regulators:%d", err);
1994                         return err;
1995                 }
1996
1997                 qcadev->bt_power->vregs_on = false;
1998
1999                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2000                 if (IS_ERR(qcadev->susclk)) {
2001                         dev_err(&serdev->dev, "failed to acquire clk\n");
2002                         return PTR_ERR(qcadev->susclk);
2003                 }
2004
2005                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2006                 if (err) {
2007                         BT_ERR("wcn3990 serdev registration failed");
2008                         return err;
2009                 }
2010         } else {
2011                 if (data)
2012                         qcadev->btsoc_type = data->soc_type;
2013                 else
2014                         qcadev->btsoc_type = QCA_ROME;
2015
2016                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2017                                                GPIOD_OUT_LOW);
2018                 if (!qcadev->bt_en) {
2019                         dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2020                         power_ctrl_enabled = false;
2021                 }
2022
2023                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2024                 if (IS_ERR(qcadev->susclk)) {
2025                         dev_warn(&serdev->dev, "failed to acquire clk\n");
2026                         return PTR_ERR(qcadev->susclk);
2027                 }
2028                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2029                 if (err)
2030                         return err;
2031
2032                 err = clk_prepare_enable(qcadev->susclk);
2033                 if (err)
2034                         return err;
2035
2036                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2037                 if (err) {
2038                         BT_ERR("Rome serdev registration failed");
2039                         clk_disable_unprepare(qcadev->susclk);
2040                         return err;
2041                 }
2042         }
2043
2044         hdev = qcadev->serdev_hu.hdev;
2045
2046         if (power_ctrl_enabled) {
2047                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2048                 hdev->shutdown = qca_power_off;
2049         }
2050
2051         if (data) {
2052                 /* Wideband speech support must be set per driver since it can't
2053                  * be queried via hci. Same with the valid le states quirk.
2054                  */
2055                 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2056                         set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2057                                 &hdev->quirks);
2058
2059                 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2060                         set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2061         }
2062
2063         return 0;
2064 }
2065
2066 static void qca_serdev_remove(struct serdev_device *serdev)
2067 {
2068         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2069         struct qca_power *power = qcadev->bt_power;
2070
2071         if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2072                 qca_power_shutdown(&qcadev->serdev_hu);
2073         else if (qcadev->susclk)
2074                 clk_disable_unprepare(qcadev->susclk);
2075
2076         hci_uart_unregister_device(&qcadev->serdev_hu);
2077 }
2078
2079 static void qca_serdev_shutdown(struct device *dev)
2080 {
2081         int ret;
2082         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2083         struct serdev_device *serdev = to_serdev_device(dev);
2084         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2085         const u8 ibs_wake_cmd[] = { 0xFD };
2086         const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2087
2088         if (qcadev->btsoc_type == QCA_QCA6390) {
2089                 serdev_device_write_flush(serdev);
2090                 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2091                                               sizeof(ibs_wake_cmd));
2092                 if (ret < 0) {
2093                         BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2094                         return;
2095                 }
2096                 serdev_device_wait_until_sent(serdev, timeout);
2097                 usleep_range(8000, 10000);
2098
2099                 serdev_device_write_flush(serdev);
2100                 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2101                                               sizeof(edl_reset_soc_cmd));
2102                 if (ret < 0) {
2103                         BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2104                         return;
2105                 }
2106                 serdev_device_wait_until_sent(serdev, timeout);
2107                 usleep_range(8000, 10000);
2108         }
2109 }
2110
2111 static int __maybe_unused qca_suspend(struct device *dev)
2112 {
2113         struct serdev_device *serdev = to_serdev_device(dev);
2114         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2115         struct hci_uart *hu = &qcadev->serdev_hu;
2116         struct qca_data *qca = hu->priv;
2117         unsigned long flags;
2118         bool tx_pending = false;
2119         int ret = 0;
2120         u8 cmd;
2121         u32 wait_timeout = 0;
2122
2123         set_bit(QCA_SUSPENDING, &qca->flags);
2124
2125         /* if BT SoC is running with default firmware then it does not
2126          * support in-band sleep
2127          */
2128         if (test_bit(QCA_ROM_FW, &qca->flags))
2129                 return 0;
2130
2131         /* During SSR after memory dump collection, controller will be
2132          * powered off and then powered on.If controller is powered off
2133          * during SSR then we should wait until SSR is completed.
2134          */
2135         if (test_bit(QCA_BT_OFF, &qca->flags) &&
2136             !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2137                 return 0;
2138
2139         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2140             test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2141                 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2142                                         IBS_DISABLE_SSR_TIMEOUT_MS :
2143                                         FW_DOWNLOAD_TIMEOUT_MS;
2144
2145                 /* QCA_IBS_DISABLED flag is set to true, During FW download
2146                  * and during memory dump collection. It is reset to false,
2147                  * After FW download complete.
2148                  */
2149                 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2150                             TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2151
2152                 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2153                         bt_dev_err(hu->hdev, "SSR or FW download time out");
2154                         ret = -ETIMEDOUT;
2155                         goto error;
2156                 }
2157         }
2158
2159         cancel_work_sync(&qca->ws_awake_device);
2160         cancel_work_sync(&qca->ws_awake_rx);
2161
2162         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2163                                  flags, SINGLE_DEPTH_NESTING);
2164
2165         switch (qca->tx_ibs_state) {
2166         case HCI_IBS_TX_WAKING:
2167                 del_timer(&qca->wake_retrans_timer);
2168                 fallthrough;
2169         case HCI_IBS_TX_AWAKE:
2170                 del_timer(&qca->tx_idle_timer);
2171
2172                 serdev_device_write_flush(hu->serdev);
2173                 cmd = HCI_IBS_SLEEP_IND;
2174                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2175
2176                 if (ret < 0) {
2177                         BT_ERR("Failed to send SLEEP to device");
2178                         break;
2179                 }
2180
2181                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2182                 qca->ibs_sent_slps++;
2183                 tx_pending = true;
2184                 break;
2185
2186         case HCI_IBS_TX_ASLEEP:
2187                 break;
2188
2189         default:
2190                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2191                 ret = -EINVAL;
2192                 break;
2193         }
2194
2195         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2196
2197         if (ret < 0)
2198                 goto error;
2199
2200         if (tx_pending) {
2201                 serdev_device_wait_until_sent(hu->serdev,
2202                                               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2203                 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2204         }
2205
2206         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2207          * to sleep, so that the packet does not wake the system later.
2208          */
2209         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2210                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2211                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2212         if (ret == 0) {
2213                 ret = -ETIMEDOUT;
2214                 goto error;
2215         }
2216
2217         return 0;
2218
2219 error:
2220         clear_bit(QCA_SUSPENDING, &qca->flags);
2221
2222         return ret;
2223 }
2224
2225 static int __maybe_unused qca_resume(struct device *dev)
2226 {
2227         struct serdev_device *serdev = to_serdev_device(dev);
2228         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2229         struct hci_uart *hu = &qcadev->serdev_hu;
2230         struct qca_data *qca = hu->priv;
2231
2232         clear_bit(QCA_SUSPENDING, &qca->flags);
2233
2234         return 0;
2235 }
2236
2237 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2238
2239 #ifdef CONFIG_OF
2240 static const struct of_device_id qca_bluetooth_of_match[] = {
2241         { .compatible = "qcom,qca6174-bt" },
2242         { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2243         { .compatible = "qcom,qca9377-bt" },
2244         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2245         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2246         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2247         { /* sentinel */ }
2248 };
2249 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2250 #endif
2251
2252 #ifdef CONFIG_ACPI
2253 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2254         { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2255         { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2256         { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2257         { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2258         { },
2259 };
2260 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2261 #endif
2262
2263
2264 static struct serdev_device_driver qca_serdev_driver = {
2265         .probe = qca_serdev_probe,
2266         .remove = qca_serdev_remove,
2267         .driver = {
2268                 .name = "hci_uart_qca",
2269                 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2270                 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2271                 .shutdown = qca_serdev_shutdown,
2272                 .pm = &qca_pm_ops,
2273         },
2274 };
2275
2276 int __init qca_init(void)
2277 {
2278         serdev_device_driver_register(&qca_serdev_driver);
2279
2280         return hci_uart_register_proto(&qca_proto);
2281 }
2282
2283 int __exit qca_deinit(void)
2284 {
2285         serdev_device_driver_unregister(&qca_serdev_driver);
2286
2287         return hci_uart_unregister_proto(&qca_proto);
2288 }