Merge tag 'linux-watchdog-5.6-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         union {
341                 struct request          *rq;            /* block request */
342                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
343         };
344
345         struct list_head        lock_item;
346         struct list_head        object_extents; /* obj_req.ex structs */
347
348         struct mutex            state_mutex;
349         struct pending_result   pending;
350         struct work_struct      work;
351         int                     work_result;
352         struct kref             kref;
353 };
354
355 #define for_each_obj_request(ireq, oreq) \
356         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
357 #define for_each_obj_request_safe(ireq, oreq, n) \
358         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
359
360 enum rbd_watch_state {
361         RBD_WATCH_STATE_UNREGISTERED,
362         RBD_WATCH_STATE_REGISTERED,
363         RBD_WATCH_STATE_ERROR,
364 };
365
366 enum rbd_lock_state {
367         RBD_LOCK_STATE_UNLOCKED,
368         RBD_LOCK_STATE_LOCKED,
369         RBD_LOCK_STATE_RELEASING,
370 };
371
372 /* WatchNotify::ClientId */
373 struct rbd_client_id {
374         u64 gid;
375         u64 handle;
376 };
377
378 struct rbd_mapping {
379         u64                     size;
380 };
381
382 /*
383  * a single device
384  */
385 struct rbd_device {
386         int                     dev_id;         /* blkdev unique id */
387
388         int                     major;          /* blkdev assigned major */
389         int                     minor;
390         struct gendisk          *disk;          /* blkdev's gendisk and rq */
391
392         u32                     image_format;   /* Either 1 or 2 */
393         struct rbd_client       *rbd_client;
394
395         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
396
397         spinlock_t              lock;           /* queue, flags, open_count */
398
399         struct rbd_image_header header;
400         unsigned long           flags;          /* possibly lock protected */
401         struct rbd_spec         *spec;
402         struct rbd_options      *opts;
403         char                    *config_info;   /* add{,_single_major} string */
404
405         struct ceph_object_id   header_oid;
406         struct ceph_object_locator header_oloc;
407
408         struct ceph_file_layout layout;         /* used for all rbd requests */
409
410         struct mutex            watch_mutex;
411         enum rbd_watch_state    watch_state;
412         struct ceph_osd_linger_request *watch_handle;
413         u64                     watch_cookie;
414         struct delayed_work     watch_dwork;
415
416         struct rw_semaphore     lock_rwsem;
417         enum rbd_lock_state     lock_state;
418         char                    lock_cookie[32];
419         struct rbd_client_id    owner_cid;
420         struct work_struct      acquired_lock_work;
421         struct work_struct      released_lock_work;
422         struct delayed_work     lock_dwork;
423         struct work_struct      unlock_work;
424         spinlock_t              lock_lists_lock;
425         struct list_head        acquiring_list;
426         struct list_head        running_list;
427         struct completion       acquire_wait;
428         int                     acquire_err;
429         struct completion       releasing_wait;
430
431         spinlock_t              object_map_lock;
432         u8                      *object_map;
433         u64                     object_map_size;        /* in objects */
434         u64                     object_map_flags;
435
436         struct workqueue_struct *task_wq;
437
438         struct rbd_spec         *parent_spec;
439         u64                     parent_overlap;
440         atomic_t                parent_ref;
441         struct rbd_device       *parent;
442
443         /* Block layer tags. */
444         struct blk_mq_tag_set   tag_set;
445
446         /* protects updating the header */
447         struct rw_semaphore     header_rwsem;
448
449         struct rbd_mapping      mapping;
450
451         struct list_head        node;
452
453         /* sysfs related */
454         struct device           dev;
455         unsigned long           open_count;     /* protected by lock */
456 };
457
458 /*
459  * Flag bits for rbd_dev->flags:
460  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
461  *   by rbd_dev->lock
462  */
463 enum rbd_dev_flags {
464         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
465         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
466         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
467 };
468
469 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
470
471 static LIST_HEAD(rbd_dev_list);    /* devices */
472 static DEFINE_SPINLOCK(rbd_dev_list_lock);
473
474 static LIST_HEAD(rbd_client_list);              /* clients */
475 static DEFINE_SPINLOCK(rbd_client_list_lock);
476
477 /* Slab caches for frequently-allocated structures */
478
479 static struct kmem_cache        *rbd_img_request_cache;
480 static struct kmem_cache        *rbd_obj_request_cache;
481
482 static int rbd_major;
483 static DEFINE_IDA(rbd_dev_id_ida);
484
485 static struct workqueue_struct *rbd_wq;
486
487 static struct ceph_snap_context rbd_empty_snapc = {
488         .nref = REFCOUNT_INIT(1),
489 };
490
491 /*
492  * single-major requires >= 0.75 version of userspace rbd utility.
493  */
494 static bool single_major = true;
495 module_param(single_major, bool, 0444);
496 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
497
498 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
499 static ssize_t remove_store(struct bus_type *bus, const char *buf,
500                             size_t count);
501 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
502                                       size_t count);
503 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
504                                          size_t count);
505 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
506
507 static int rbd_dev_id_to_minor(int dev_id)
508 {
509         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
510 }
511
512 static int minor_to_rbd_dev_id(int minor)
513 {
514         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
515 }
516
517 static bool rbd_is_ro(struct rbd_device *rbd_dev)
518 {
519         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
520 }
521
522 static bool rbd_is_snap(struct rbd_device *rbd_dev)
523 {
524         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
525 }
526
527 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
528 {
529         lockdep_assert_held(&rbd_dev->lock_rwsem);
530
531         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
532                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
533 }
534
535 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
536 {
537         bool is_lock_owner;
538
539         down_read(&rbd_dev->lock_rwsem);
540         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
541         up_read(&rbd_dev->lock_rwsem);
542         return is_lock_owner;
543 }
544
545 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
546 {
547         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
548 }
549
550 static BUS_ATTR_WO(add);
551 static BUS_ATTR_WO(remove);
552 static BUS_ATTR_WO(add_single_major);
553 static BUS_ATTR_WO(remove_single_major);
554 static BUS_ATTR_RO(supported_features);
555
556 static struct attribute *rbd_bus_attrs[] = {
557         &bus_attr_add.attr,
558         &bus_attr_remove.attr,
559         &bus_attr_add_single_major.attr,
560         &bus_attr_remove_single_major.attr,
561         &bus_attr_supported_features.attr,
562         NULL,
563 };
564
565 static umode_t rbd_bus_is_visible(struct kobject *kobj,
566                                   struct attribute *attr, int index)
567 {
568         if (!single_major &&
569             (attr == &bus_attr_add_single_major.attr ||
570              attr == &bus_attr_remove_single_major.attr))
571                 return 0;
572
573         return attr->mode;
574 }
575
576 static const struct attribute_group rbd_bus_group = {
577         .attrs = rbd_bus_attrs,
578         .is_visible = rbd_bus_is_visible,
579 };
580 __ATTRIBUTE_GROUPS(rbd_bus);
581
582 static struct bus_type rbd_bus_type = {
583         .name           = "rbd",
584         .bus_groups     = rbd_bus_groups,
585 };
586
587 static void rbd_root_dev_release(struct device *dev)
588 {
589 }
590
591 static struct device rbd_root_dev = {
592         .init_name =    "rbd",
593         .release =      rbd_root_dev_release,
594 };
595
596 static __printf(2, 3)
597 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
598 {
599         struct va_format vaf;
600         va_list args;
601
602         va_start(args, fmt);
603         vaf.fmt = fmt;
604         vaf.va = &args;
605
606         if (!rbd_dev)
607                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
608         else if (rbd_dev->disk)
609                 printk(KERN_WARNING "%s: %s: %pV\n",
610                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
611         else if (rbd_dev->spec && rbd_dev->spec->image_name)
612                 printk(KERN_WARNING "%s: image %s: %pV\n",
613                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
614         else if (rbd_dev->spec && rbd_dev->spec->image_id)
615                 printk(KERN_WARNING "%s: id %s: %pV\n",
616                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
617         else    /* punt */
618                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
619                         RBD_DRV_NAME, rbd_dev, &vaf);
620         va_end(args);
621 }
622
623 #ifdef RBD_DEBUG
624 #define rbd_assert(expr)                                                \
625                 if (unlikely(!(expr))) {                                \
626                         printk(KERN_ERR "\nAssertion failure in %s() "  \
627                                                 "at line %d:\n\n"       \
628                                         "\trbd_assert(%s);\n\n",        \
629                                         __func__, __LINE__, #expr);     \
630                         BUG();                                          \
631                 }
632 #else /* !RBD_DEBUG */
633 #  define rbd_assert(expr)      ((void) 0)
634 #endif /* !RBD_DEBUG */
635
636 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
637
638 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
639 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
640 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
641 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
642 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
643                                         u64 snap_id);
644 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
645                                 u8 *order, u64 *snap_size);
646 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
647
648 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
649 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
650
651 /*
652  * Return true if nothing else is pending.
653  */
654 static bool pending_result_dec(struct pending_result *pending, int *result)
655 {
656         rbd_assert(pending->num_pending > 0);
657
658         if (*result && !pending->result)
659                 pending->result = *result;
660         if (--pending->num_pending)
661                 return false;
662
663         *result = pending->result;
664         return true;
665 }
666
667 static int rbd_open(struct block_device *bdev, fmode_t mode)
668 {
669         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
670         bool removing = false;
671
672         spin_lock_irq(&rbd_dev->lock);
673         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
674                 removing = true;
675         else
676                 rbd_dev->open_count++;
677         spin_unlock_irq(&rbd_dev->lock);
678         if (removing)
679                 return -ENOENT;
680
681         (void) get_device(&rbd_dev->dev);
682
683         return 0;
684 }
685
686 static void rbd_release(struct gendisk *disk, fmode_t mode)
687 {
688         struct rbd_device *rbd_dev = disk->private_data;
689         unsigned long open_count_before;
690
691         spin_lock_irq(&rbd_dev->lock);
692         open_count_before = rbd_dev->open_count--;
693         spin_unlock_irq(&rbd_dev->lock);
694         rbd_assert(open_count_before > 0);
695
696         put_device(&rbd_dev->dev);
697 }
698
699 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
700 {
701         int ro;
702
703         if (get_user(ro, (int __user *)arg))
704                 return -EFAULT;
705
706         /*
707          * Both images mapped read-only and snapshots can't be marked
708          * read-write.
709          */
710         if (!ro) {
711                 if (rbd_is_ro(rbd_dev))
712                         return -EROFS;
713
714                 rbd_assert(!rbd_is_snap(rbd_dev));
715         }
716
717         /* Let blkdev_roset() handle it */
718         return -ENOTTY;
719 }
720
721 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
722                         unsigned int cmd, unsigned long arg)
723 {
724         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
725         int ret;
726
727         switch (cmd) {
728         case BLKROSET:
729                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
730                 break;
731         default:
732                 ret = -ENOTTY;
733         }
734
735         return ret;
736 }
737
738 #ifdef CONFIG_COMPAT
739 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
740                                 unsigned int cmd, unsigned long arg)
741 {
742         return rbd_ioctl(bdev, mode, cmd, arg);
743 }
744 #endif /* CONFIG_COMPAT */
745
746 static const struct block_device_operations rbd_bd_ops = {
747         .owner                  = THIS_MODULE,
748         .open                   = rbd_open,
749         .release                = rbd_release,
750         .ioctl                  = rbd_ioctl,
751 #ifdef CONFIG_COMPAT
752         .compat_ioctl           = rbd_compat_ioctl,
753 #endif
754 };
755
756 /*
757  * Initialize an rbd client instance.  Success or not, this function
758  * consumes ceph_opts.  Caller holds client_mutex.
759  */
760 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
761 {
762         struct rbd_client *rbdc;
763         int ret = -ENOMEM;
764
765         dout("%s:\n", __func__);
766         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
767         if (!rbdc)
768                 goto out_opt;
769
770         kref_init(&rbdc->kref);
771         INIT_LIST_HEAD(&rbdc->node);
772
773         rbdc->client = ceph_create_client(ceph_opts, rbdc);
774         if (IS_ERR(rbdc->client))
775                 goto out_rbdc;
776         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
777
778         ret = ceph_open_session(rbdc->client);
779         if (ret < 0)
780                 goto out_client;
781
782         spin_lock(&rbd_client_list_lock);
783         list_add_tail(&rbdc->node, &rbd_client_list);
784         spin_unlock(&rbd_client_list_lock);
785
786         dout("%s: rbdc %p\n", __func__, rbdc);
787
788         return rbdc;
789 out_client:
790         ceph_destroy_client(rbdc->client);
791 out_rbdc:
792         kfree(rbdc);
793 out_opt:
794         if (ceph_opts)
795                 ceph_destroy_options(ceph_opts);
796         dout("%s: error %d\n", __func__, ret);
797
798         return ERR_PTR(ret);
799 }
800
801 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
802 {
803         kref_get(&rbdc->kref);
804
805         return rbdc;
806 }
807
808 /*
809  * Find a ceph client with specific addr and configuration.  If
810  * found, bump its reference count.
811  */
812 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
813 {
814         struct rbd_client *client_node;
815         bool found = false;
816
817         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
818                 return NULL;
819
820         spin_lock(&rbd_client_list_lock);
821         list_for_each_entry(client_node, &rbd_client_list, node) {
822                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
823                         __rbd_get_client(client_node);
824
825                         found = true;
826                         break;
827                 }
828         }
829         spin_unlock(&rbd_client_list_lock);
830
831         return found ? client_node : NULL;
832 }
833
834 /*
835  * (Per device) rbd map options
836  */
837 enum {
838         Opt_queue_depth,
839         Opt_alloc_size,
840         Opt_lock_timeout,
841         /* int args above */
842         Opt_pool_ns,
843         /* string args above */
844         Opt_read_only,
845         Opt_read_write,
846         Opt_lock_on_read,
847         Opt_exclusive,
848         Opt_notrim,
849 };
850
851 static const struct fs_parameter_spec rbd_param_specs[] = {
852         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
853         fsparam_flag    ("exclusive",                   Opt_exclusive),
854         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
855         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
856         fsparam_flag    ("notrim",                      Opt_notrim),
857         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
858         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
859         fsparam_flag    ("read_only",                   Opt_read_only),
860         fsparam_flag    ("read_write",                  Opt_read_write),
861         fsparam_flag    ("ro",                          Opt_read_only),
862         fsparam_flag    ("rw",                          Opt_read_write),
863         {}
864 };
865
866 static const struct fs_parameter_description rbd_parameters = {
867         .name           = "rbd",
868         .specs          = rbd_param_specs,
869 };
870
871 struct rbd_options {
872         int     queue_depth;
873         int     alloc_size;
874         unsigned long   lock_timeout;
875         bool    read_only;
876         bool    lock_on_read;
877         bool    exclusive;
878         bool    trim;
879 };
880
881 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
882 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
883 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
884 #define RBD_READ_ONLY_DEFAULT   false
885 #define RBD_LOCK_ON_READ_DEFAULT false
886 #define RBD_EXCLUSIVE_DEFAULT   false
887 #define RBD_TRIM_DEFAULT        true
888
889 struct rbd_parse_opts_ctx {
890         struct rbd_spec         *spec;
891         struct ceph_options     *copts;
892         struct rbd_options      *opts;
893 };
894
895 static char* obj_op_name(enum obj_operation_type op_type)
896 {
897         switch (op_type) {
898         case OBJ_OP_READ:
899                 return "read";
900         case OBJ_OP_WRITE:
901                 return "write";
902         case OBJ_OP_DISCARD:
903                 return "discard";
904         case OBJ_OP_ZEROOUT:
905                 return "zeroout";
906         default:
907                 return "???";
908         }
909 }
910
911 /*
912  * Destroy ceph client
913  *
914  * Caller must hold rbd_client_list_lock.
915  */
916 static void rbd_client_release(struct kref *kref)
917 {
918         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
919
920         dout("%s: rbdc %p\n", __func__, rbdc);
921         spin_lock(&rbd_client_list_lock);
922         list_del(&rbdc->node);
923         spin_unlock(&rbd_client_list_lock);
924
925         ceph_destroy_client(rbdc->client);
926         kfree(rbdc);
927 }
928
929 /*
930  * Drop reference to ceph client node. If it's not referenced anymore, release
931  * it.
932  */
933 static void rbd_put_client(struct rbd_client *rbdc)
934 {
935         if (rbdc)
936                 kref_put(&rbdc->kref, rbd_client_release);
937 }
938
939 /*
940  * Get a ceph client with specific addr and configuration, if one does
941  * not exist create it.  Either way, ceph_opts is consumed by this
942  * function.
943  */
944 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
945 {
946         struct rbd_client *rbdc;
947         int ret;
948
949         mutex_lock(&client_mutex);
950         rbdc = rbd_client_find(ceph_opts);
951         if (rbdc) {
952                 ceph_destroy_options(ceph_opts);
953
954                 /*
955                  * Using an existing client.  Make sure ->pg_pools is up to
956                  * date before we look up the pool id in do_rbd_add().
957                  */
958                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
959                                         rbdc->client->options->mount_timeout);
960                 if (ret) {
961                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
962                         rbd_put_client(rbdc);
963                         rbdc = ERR_PTR(ret);
964                 }
965         } else {
966                 rbdc = rbd_client_create(ceph_opts);
967         }
968         mutex_unlock(&client_mutex);
969
970         return rbdc;
971 }
972
973 static bool rbd_image_format_valid(u32 image_format)
974 {
975         return image_format == 1 || image_format == 2;
976 }
977
978 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
979 {
980         size_t size;
981         u32 snap_count;
982
983         /* The header has to start with the magic rbd header text */
984         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
985                 return false;
986
987         /* The bio layer requires at least sector-sized I/O */
988
989         if (ondisk->options.order < SECTOR_SHIFT)
990                 return false;
991
992         /* If we use u64 in a few spots we may be able to loosen this */
993
994         if (ondisk->options.order > 8 * sizeof (int) - 1)
995                 return false;
996
997         /*
998          * The size of a snapshot header has to fit in a size_t, and
999          * that limits the number of snapshots.
1000          */
1001         snap_count = le32_to_cpu(ondisk->snap_count);
1002         size = SIZE_MAX - sizeof (struct ceph_snap_context);
1003         if (snap_count > size / sizeof (__le64))
1004                 return false;
1005
1006         /*
1007          * Not only that, but the size of the entire the snapshot
1008          * header must also be representable in a size_t.
1009          */
1010         size -= snap_count * sizeof (__le64);
1011         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1012                 return false;
1013
1014         return true;
1015 }
1016
1017 /*
1018  * returns the size of an object in the image
1019  */
1020 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1021 {
1022         return 1U << header->obj_order;
1023 }
1024
1025 static void rbd_init_layout(struct rbd_device *rbd_dev)
1026 {
1027         if (rbd_dev->header.stripe_unit == 0 ||
1028             rbd_dev->header.stripe_count == 0) {
1029                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1030                 rbd_dev->header.stripe_count = 1;
1031         }
1032
1033         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1034         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1035         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1036         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1037                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1038         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1039 }
1040
1041 /*
1042  * Fill an rbd image header with information from the given format 1
1043  * on-disk header.
1044  */
1045 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1046                                  struct rbd_image_header_ondisk *ondisk)
1047 {
1048         struct rbd_image_header *header = &rbd_dev->header;
1049         bool first_time = header->object_prefix == NULL;
1050         struct ceph_snap_context *snapc;
1051         char *object_prefix = NULL;
1052         char *snap_names = NULL;
1053         u64 *snap_sizes = NULL;
1054         u32 snap_count;
1055         int ret = -ENOMEM;
1056         u32 i;
1057
1058         /* Allocate this now to avoid having to handle failure below */
1059
1060         if (first_time) {
1061                 object_prefix = kstrndup(ondisk->object_prefix,
1062                                          sizeof(ondisk->object_prefix),
1063                                          GFP_KERNEL);
1064                 if (!object_prefix)
1065                         return -ENOMEM;
1066         }
1067
1068         /* Allocate the snapshot context and fill it in */
1069
1070         snap_count = le32_to_cpu(ondisk->snap_count);
1071         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1072         if (!snapc)
1073                 goto out_err;
1074         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1075         if (snap_count) {
1076                 struct rbd_image_snap_ondisk *snaps;
1077                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1078
1079                 /* We'll keep a copy of the snapshot names... */
1080
1081                 if (snap_names_len > (u64)SIZE_MAX)
1082                         goto out_2big;
1083                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1084                 if (!snap_names)
1085                         goto out_err;
1086
1087                 /* ...as well as the array of their sizes. */
1088                 snap_sizes = kmalloc_array(snap_count,
1089                                            sizeof(*header->snap_sizes),
1090                                            GFP_KERNEL);
1091                 if (!snap_sizes)
1092                         goto out_err;
1093
1094                 /*
1095                  * Copy the names, and fill in each snapshot's id
1096                  * and size.
1097                  *
1098                  * Note that rbd_dev_v1_header_info() guarantees the
1099                  * ondisk buffer we're working with has
1100                  * snap_names_len bytes beyond the end of the
1101                  * snapshot id array, this memcpy() is safe.
1102                  */
1103                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1104                 snaps = ondisk->snaps;
1105                 for (i = 0; i < snap_count; i++) {
1106                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1107                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1108                 }
1109         }
1110
1111         /* We won't fail any more, fill in the header */
1112
1113         if (first_time) {
1114                 header->object_prefix = object_prefix;
1115                 header->obj_order = ondisk->options.order;
1116                 rbd_init_layout(rbd_dev);
1117         } else {
1118                 ceph_put_snap_context(header->snapc);
1119                 kfree(header->snap_names);
1120                 kfree(header->snap_sizes);
1121         }
1122
1123         /* The remaining fields always get updated (when we refresh) */
1124
1125         header->image_size = le64_to_cpu(ondisk->image_size);
1126         header->snapc = snapc;
1127         header->snap_names = snap_names;
1128         header->snap_sizes = snap_sizes;
1129
1130         return 0;
1131 out_2big:
1132         ret = -EIO;
1133 out_err:
1134         kfree(snap_sizes);
1135         kfree(snap_names);
1136         ceph_put_snap_context(snapc);
1137         kfree(object_prefix);
1138
1139         return ret;
1140 }
1141
1142 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1143 {
1144         const char *snap_name;
1145
1146         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1147
1148         /* Skip over names until we find the one we are looking for */
1149
1150         snap_name = rbd_dev->header.snap_names;
1151         while (which--)
1152                 snap_name += strlen(snap_name) + 1;
1153
1154         return kstrdup(snap_name, GFP_KERNEL);
1155 }
1156
1157 /*
1158  * Snapshot id comparison function for use with qsort()/bsearch().
1159  * Note that result is for snapshots in *descending* order.
1160  */
1161 static int snapid_compare_reverse(const void *s1, const void *s2)
1162 {
1163         u64 snap_id1 = *(u64 *)s1;
1164         u64 snap_id2 = *(u64 *)s2;
1165
1166         if (snap_id1 < snap_id2)
1167                 return 1;
1168         return snap_id1 == snap_id2 ? 0 : -1;
1169 }
1170
1171 /*
1172  * Search a snapshot context to see if the given snapshot id is
1173  * present.
1174  *
1175  * Returns the position of the snapshot id in the array if it's found,
1176  * or BAD_SNAP_INDEX otherwise.
1177  *
1178  * Note: The snapshot array is in kept sorted (by the osd) in
1179  * reverse order, highest snapshot id first.
1180  */
1181 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1182 {
1183         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1184         u64 *found;
1185
1186         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1187                                 sizeof (snap_id), snapid_compare_reverse);
1188
1189         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1190 }
1191
1192 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1193                                         u64 snap_id)
1194 {
1195         u32 which;
1196         const char *snap_name;
1197
1198         which = rbd_dev_snap_index(rbd_dev, snap_id);
1199         if (which == BAD_SNAP_INDEX)
1200                 return ERR_PTR(-ENOENT);
1201
1202         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1203         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1204 }
1205
1206 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1207 {
1208         if (snap_id == CEPH_NOSNAP)
1209                 return RBD_SNAP_HEAD_NAME;
1210
1211         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1212         if (rbd_dev->image_format == 1)
1213                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1214
1215         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1216 }
1217
1218 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1219                                 u64 *snap_size)
1220 {
1221         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1222         if (snap_id == CEPH_NOSNAP) {
1223                 *snap_size = rbd_dev->header.image_size;
1224         } else if (rbd_dev->image_format == 1) {
1225                 u32 which;
1226
1227                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1228                 if (which == BAD_SNAP_INDEX)
1229                         return -ENOENT;
1230
1231                 *snap_size = rbd_dev->header.snap_sizes[which];
1232         } else {
1233                 u64 size = 0;
1234                 int ret;
1235
1236                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1237                 if (ret)
1238                         return ret;
1239
1240                 *snap_size = size;
1241         }
1242         return 0;
1243 }
1244
1245 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1246 {
1247         u64 snap_id = rbd_dev->spec->snap_id;
1248         u64 size = 0;
1249         int ret;
1250
1251         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1252         if (ret)
1253                 return ret;
1254
1255         rbd_dev->mapping.size = size;
1256         return 0;
1257 }
1258
1259 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1260 {
1261         rbd_dev->mapping.size = 0;
1262 }
1263
1264 static void zero_bvec(struct bio_vec *bv)
1265 {
1266         void *buf;
1267         unsigned long flags;
1268
1269         buf = bvec_kmap_irq(bv, &flags);
1270         memset(buf, 0, bv->bv_len);
1271         flush_dcache_page(bv->bv_page);
1272         bvec_kunmap_irq(buf, &flags);
1273 }
1274
1275 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1276 {
1277         struct ceph_bio_iter it = *bio_pos;
1278
1279         ceph_bio_iter_advance(&it, off);
1280         ceph_bio_iter_advance_step(&it, bytes, ({
1281                 zero_bvec(&bv);
1282         }));
1283 }
1284
1285 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1286 {
1287         struct ceph_bvec_iter it = *bvec_pos;
1288
1289         ceph_bvec_iter_advance(&it, off);
1290         ceph_bvec_iter_advance_step(&it, bytes, ({
1291                 zero_bvec(&bv);
1292         }));
1293 }
1294
1295 /*
1296  * Zero a range in @obj_req data buffer defined by a bio (list) or
1297  * (private) bio_vec array.
1298  *
1299  * @off is relative to the start of the data buffer.
1300  */
1301 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1302                                u32 bytes)
1303 {
1304         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1305
1306         switch (obj_req->img_request->data_type) {
1307         case OBJ_REQUEST_BIO:
1308                 zero_bios(&obj_req->bio_pos, off, bytes);
1309                 break;
1310         case OBJ_REQUEST_BVECS:
1311         case OBJ_REQUEST_OWN_BVECS:
1312                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1313                 break;
1314         default:
1315                 BUG();
1316         }
1317 }
1318
1319 static void rbd_obj_request_destroy(struct kref *kref);
1320 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1321 {
1322         rbd_assert(obj_request != NULL);
1323         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1324                 kref_read(&obj_request->kref));
1325         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1326 }
1327
1328 static void rbd_img_request_destroy(struct kref *kref);
1329 static void rbd_img_request_put(struct rbd_img_request *img_request)
1330 {
1331         rbd_assert(img_request != NULL);
1332         dout("%s: img %p (was %d)\n", __func__, img_request,
1333                 kref_read(&img_request->kref));
1334         kref_put(&img_request->kref, rbd_img_request_destroy);
1335 }
1336
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338                                         struct rbd_obj_request *obj_request)
1339 {
1340         rbd_assert(obj_request->img_request == NULL);
1341
1342         /* Image request now owns object's original reference */
1343         obj_request->img_request = img_request;
1344         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348                                         struct rbd_obj_request *obj_request)
1349 {
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351         list_del(&obj_request->ex.oe_item);
1352         rbd_assert(obj_request->img_request == img_request);
1353         rbd_obj_request_put(obj_request);
1354 }
1355
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358         struct rbd_obj_request *obj_req = osd_req->r_priv;
1359
1360         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362              obj_req->ex.oe_off, obj_req->ex.oe_len);
1363         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374         smp_mb();
1375 }
1376
1377 static void img_request_layered_clear(struct rbd_img_request *img_request)
1378 {
1379         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1380         smp_mb();
1381 }
1382
1383 static bool img_request_layered_test(struct rbd_img_request *img_request)
1384 {
1385         smp_mb();
1386         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1387 }
1388
1389 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1390 {
1391         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392
1393         return !obj_req->ex.oe_off &&
1394                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1395 }
1396
1397 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1398 {
1399         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1400
1401         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1402                                         rbd_dev->layout.object_size;
1403 }
1404
1405 /*
1406  * Must be called after rbd_obj_calc_img_extents().
1407  */
1408 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1409 {
1410         if (!obj_req->num_img_extents ||
1411             (rbd_obj_is_entire(obj_req) &&
1412              !obj_req->img_request->snapc->num_snaps))
1413                 return false;
1414
1415         return true;
1416 }
1417
1418 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1419 {
1420         return ceph_file_extents_bytes(obj_req->img_extents,
1421                                        obj_req->num_img_extents);
1422 }
1423
1424 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1425 {
1426         switch (img_req->op_type) {
1427         case OBJ_OP_READ:
1428                 return false;
1429         case OBJ_OP_WRITE:
1430         case OBJ_OP_DISCARD:
1431         case OBJ_OP_ZEROOUT:
1432                 return true;
1433         default:
1434                 BUG();
1435         }
1436 }
1437
1438 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1439 {
1440         struct rbd_obj_request *obj_req = osd_req->r_priv;
1441         int result;
1442
1443         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1444              osd_req->r_result, obj_req);
1445
1446         /*
1447          * Writes aren't allowed to return a data payload.  In some
1448          * guarded write cases (e.g. stat + zero on an empty object)
1449          * a stat response makes it through, but we don't care.
1450          */
1451         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1452                 result = 0;
1453         else
1454                 result = osd_req->r_result;
1455
1456         rbd_obj_handle_request(obj_req, result);
1457 }
1458
1459 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1460 {
1461         struct rbd_obj_request *obj_request = osd_req->r_priv;
1462
1463         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1464         osd_req->r_snapid = obj_request->img_request->snap_id;
1465 }
1466
1467 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1468 {
1469         struct rbd_obj_request *obj_request = osd_req->r_priv;
1470
1471         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1472         ktime_get_real_ts64(&osd_req->r_mtime);
1473         osd_req->r_data_offset = obj_request->ex.oe_off;
1474 }
1475
1476 static struct ceph_osd_request *
1477 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1478                           struct ceph_snap_context *snapc, int num_ops)
1479 {
1480         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1481         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1482         struct ceph_osd_request *req;
1483         const char *name_format = rbd_dev->image_format == 1 ?
1484                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1485         int ret;
1486
1487         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1488         if (!req)
1489                 return ERR_PTR(-ENOMEM);
1490
1491         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1492         req->r_callback = rbd_osd_req_callback;
1493         req->r_priv = obj_req;
1494
1495         /*
1496          * Data objects may be stored in a separate pool, but always in
1497          * the same namespace in that pool as the header in its pool.
1498          */
1499         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1500         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1501
1502         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1503                                rbd_dev->header.object_prefix,
1504                                obj_req->ex.oe_objno);
1505         if (ret)
1506                 return ERR_PTR(ret);
1507
1508         return req;
1509 }
1510
1511 static struct ceph_osd_request *
1512 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1513 {
1514         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1515                                          num_ops);
1516 }
1517
1518 static struct rbd_obj_request *rbd_obj_request_create(void)
1519 {
1520         struct rbd_obj_request *obj_request;
1521
1522         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1523         if (!obj_request)
1524                 return NULL;
1525
1526         ceph_object_extent_init(&obj_request->ex);
1527         INIT_LIST_HEAD(&obj_request->osd_reqs);
1528         mutex_init(&obj_request->state_mutex);
1529         kref_init(&obj_request->kref);
1530
1531         dout("%s %p\n", __func__, obj_request);
1532         return obj_request;
1533 }
1534
1535 static void rbd_obj_request_destroy(struct kref *kref)
1536 {
1537         struct rbd_obj_request *obj_request;
1538         struct ceph_osd_request *osd_req;
1539         u32 i;
1540
1541         obj_request = container_of(kref, struct rbd_obj_request, kref);
1542
1543         dout("%s: obj %p\n", __func__, obj_request);
1544
1545         while (!list_empty(&obj_request->osd_reqs)) {
1546                 osd_req = list_first_entry(&obj_request->osd_reqs,
1547                                     struct ceph_osd_request, r_private_item);
1548                 list_del_init(&osd_req->r_private_item);
1549                 ceph_osdc_put_request(osd_req);
1550         }
1551
1552         switch (obj_request->img_request->data_type) {
1553         case OBJ_REQUEST_NODATA:
1554         case OBJ_REQUEST_BIO:
1555         case OBJ_REQUEST_BVECS:
1556                 break;          /* Nothing to do */
1557         case OBJ_REQUEST_OWN_BVECS:
1558                 kfree(obj_request->bvec_pos.bvecs);
1559                 break;
1560         default:
1561                 BUG();
1562         }
1563
1564         kfree(obj_request->img_extents);
1565         if (obj_request->copyup_bvecs) {
1566                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1567                         if (obj_request->copyup_bvecs[i].bv_page)
1568                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1569                 }
1570                 kfree(obj_request->copyup_bvecs);
1571         }
1572
1573         kmem_cache_free(rbd_obj_request_cache, obj_request);
1574 }
1575
1576 /* It's OK to call this for a device with no parent */
1577
1578 static void rbd_spec_put(struct rbd_spec *spec);
1579 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1580 {
1581         rbd_dev_remove_parent(rbd_dev);
1582         rbd_spec_put(rbd_dev->parent_spec);
1583         rbd_dev->parent_spec = NULL;
1584         rbd_dev->parent_overlap = 0;
1585 }
1586
1587 /*
1588  * Parent image reference counting is used to determine when an
1589  * image's parent fields can be safely torn down--after there are no
1590  * more in-flight requests to the parent image.  When the last
1591  * reference is dropped, cleaning them up is safe.
1592  */
1593 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1594 {
1595         int counter;
1596
1597         if (!rbd_dev->parent_spec)
1598                 return;
1599
1600         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1601         if (counter > 0)
1602                 return;
1603
1604         /* Last reference; clean up parent data structures */
1605
1606         if (!counter)
1607                 rbd_dev_unparent(rbd_dev);
1608         else
1609                 rbd_warn(rbd_dev, "parent reference underflow");
1610 }
1611
1612 /*
1613  * If an image has a non-zero parent overlap, get a reference to its
1614  * parent.
1615  *
1616  * Returns true if the rbd device has a parent with a non-zero
1617  * overlap and a reference for it was successfully taken, or
1618  * false otherwise.
1619  */
1620 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1621 {
1622         int counter = 0;
1623
1624         if (!rbd_dev->parent_spec)
1625                 return false;
1626
1627         down_read(&rbd_dev->header_rwsem);
1628         if (rbd_dev->parent_overlap)
1629                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1630         up_read(&rbd_dev->header_rwsem);
1631
1632         if (counter < 0)
1633                 rbd_warn(rbd_dev, "parent reference overflow");
1634
1635         return counter > 0;
1636 }
1637
1638 /*
1639  * Caller is responsible for filling in the list of object requests
1640  * that comprises the image request, and the Linux request pointer
1641  * (if there is one).
1642  */
1643 static struct rbd_img_request *rbd_img_request_create(
1644                                         struct rbd_device *rbd_dev,
1645                                         enum obj_operation_type op_type,
1646                                         struct ceph_snap_context *snapc)
1647 {
1648         struct rbd_img_request *img_request;
1649
1650         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1651         if (!img_request)
1652                 return NULL;
1653
1654         img_request->rbd_dev = rbd_dev;
1655         img_request->op_type = op_type;
1656         if (!rbd_img_is_write(img_request))
1657                 img_request->snap_id = rbd_dev->spec->snap_id;
1658         else
1659                 img_request->snapc = snapc;
1660
1661         if (rbd_dev_parent_get(rbd_dev))
1662                 img_request_layered_set(img_request);
1663
1664         INIT_LIST_HEAD(&img_request->lock_item);
1665         INIT_LIST_HEAD(&img_request->object_extents);
1666         mutex_init(&img_request->state_mutex);
1667         kref_init(&img_request->kref);
1668
1669         return img_request;
1670 }
1671
1672 static void rbd_img_request_destroy(struct kref *kref)
1673 {
1674         struct rbd_img_request *img_request;
1675         struct rbd_obj_request *obj_request;
1676         struct rbd_obj_request *next_obj_request;
1677
1678         img_request = container_of(kref, struct rbd_img_request, kref);
1679
1680         dout("%s: img %p\n", __func__, img_request);
1681
1682         WARN_ON(!list_empty(&img_request->lock_item));
1683         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1684                 rbd_img_obj_request_del(img_request, obj_request);
1685
1686         if (img_request_layered_test(img_request)) {
1687                 img_request_layered_clear(img_request);
1688                 rbd_dev_parent_put(img_request->rbd_dev);
1689         }
1690
1691         if (rbd_img_is_write(img_request))
1692                 ceph_put_snap_context(img_request->snapc);
1693
1694         kmem_cache_free(rbd_img_request_cache, img_request);
1695 }
1696
1697 #define BITS_PER_OBJ    2
1698 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1699 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1700
1701 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1702                                    u64 *index, u8 *shift)
1703 {
1704         u32 off;
1705
1706         rbd_assert(objno < rbd_dev->object_map_size);
1707         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1708         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1709 }
1710
1711 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1712 {
1713         u64 index;
1714         u8 shift;
1715
1716         lockdep_assert_held(&rbd_dev->object_map_lock);
1717         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1718         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1719 }
1720
1721 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1722 {
1723         u64 index;
1724         u8 shift;
1725         u8 *p;
1726
1727         lockdep_assert_held(&rbd_dev->object_map_lock);
1728         rbd_assert(!(val & ~OBJ_MASK));
1729
1730         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1731         p = &rbd_dev->object_map[index];
1732         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1733 }
1734
1735 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1736 {
1737         u8 state;
1738
1739         spin_lock(&rbd_dev->object_map_lock);
1740         state = __rbd_object_map_get(rbd_dev, objno);
1741         spin_unlock(&rbd_dev->object_map_lock);
1742         return state;
1743 }
1744
1745 static bool use_object_map(struct rbd_device *rbd_dev)
1746 {
1747         /*
1748          * An image mapped read-only can't use the object map -- it isn't
1749          * loaded because the header lock isn't acquired.  Someone else can
1750          * write to the image and update the object map behind our back.
1751          *
1752          * A snapshot can't be written to, so using the object map is always
1753          * safe.
1754          */
1755         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1756                 return false;
1757
1758         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1759                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1760 }
1761
1762 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1763 {
1764         u8 state;
1765
1766         /* fall back to default logic if object map is disabled or invalid */
1767         if (!use_object_map(rbd_dev))
1768                 return true;
1769
1770         state = rbd_object_map_get(rbd_dev, objno);
1771         return state != OBJECT_NONEXISTENT;
1772 }
1773
1774 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1775                                 struct ceph_object_id *oid)
1776 {
1777         if (snap_id == CEPH_NOSNAP)
1778                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1779                                 rbd_dev->spec->image_id);
1780         else
1781                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1782                                 rbd_dev->spec->image_id, snap_id);
1783 }
1784
1785 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1786 {
1787         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1788         CEPH_DEFINE_OID_ONSTACK(oid);
1789         u8 lock_type;
1790         char *lock_tag;
1791         struct ceph_locker *lockers;
1792         u32 num_lockers;
1793         bool broke_lock = false;
1794         int ret;
1795
1796         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1797
1798 again:
1799         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1800                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1801         if (ret != -EBUSY || broke_lock) {
1802                 if (ret == -EEXIST)
1803                         ret = 0; /* already locked by myself */
1804                 if (ret)
1805                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1806                 return ret;
1807         }
1808
1809         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1810                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1811                                  &lockers, &num_lockers);
1812         if (ret) {
1813                 if (ret == -ENOENT)
1814                         goto again;
1815
1816                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1817                 return ret;
1818         }
1819
1820         kfree(lock_tag);
1821         if (num_lockers == 0)
1822                 goto again;
1823
1824         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1825                  ENTITY_NAME(lockers[0].id.name));
1826
1827         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1828                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1829                                   &lockers[0].id.name);
1830         ceph_free_lockers(lockers, num_lockers);
1831         if (ret) {
1832                 if (ret == -ENOENT)
1833                         goto again;
1834
1835                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1836                 return ret;
1837         }
1838
1839         broke_lock = true;
1840         goto again;
1841 }
1842
1843 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1844 {
1845         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1846         CEPH_DEFINE_OID_ONSTACK(oid);
1847         int ret;
1848
1849         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1850
1851         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1852                               "");
1853         if (ret && ret != -ENOENT)
1854                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1855 }
1856
1857 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1858 {
1859         u8 struct_v;
1860         u32 struct_len;
1861         u32 header_len;
1862         void *header_end;
1863         int ret;
1864
1865         ceph_decode_32_safe(p, end, header_len, e_inval);
1866         header_end = *p + header_len;
1867
1868         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1869                                   &struct_len);
1870         if (ret)
1871                 return ret;
1872
1873         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1874
1875         *p = header_end;
1876         return 0;
1877
1878 e_inval:
1879         return -EINVAL;
1880 }
1881
1882 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1883 {
1884         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1885         CEPH_DEFINE_OID_ONSTACK(oid);
1886         struct page **pages;
1887         void *p, *end;
1888         size_t reply_len;
1889         u64 num_objects;
1890         u64 object_map_bytes;
1891         u64 object_map_size;
1892         int num_pages;
1893         int ret;
1894
1895         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1896
1897         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1898                                            rbd_dev->mapping.size);
1899         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1900                                             BITS_PER_BYTE);
1901         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1902         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1903         if (IS_ERR(pages))
1904                 return PTR_ERR(pages);
1905
1906         reply_len = num_pages * PAGE_SIZE;
1907         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1908         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1909                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1910                              NULL, 0, pages, &reply_len);
1911         if (ret)
1912                 goto out;
1913
1914         p = page_address(pages[0]);
1915         end = p + min(reply_len, (size_t)PAGE_SIZE);
1916         ret = decode_object_map_header(&p, end, &object_map_size);
1917         if (ret)
1918                 goto out;
1919
1920         if (object_map_size != num_objects) {
1921                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1922                          object_map_size, num_objects);
1923                 ret = -EINVAL;
1924                 goto out;
1925         }
1926
1927         if (offset_in_page(p) + object_map_bytes > reply_len) {
1928                 ret = -EINVAL;
1929                 goto out;
1930         }
1931
1932         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1933         if (!rbd_dev->object_map) {
1934                 ret = -ENOMEM;
1935                 goto out;
1936         }
1937
1938         rbd_dev->object_map_size = object_map_size;
1939         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1940                                    offset_in_page(p), object_map_bytes);
1941
1942 out:
1943         ceph_release_page_vector(pages, num_pages);
1944         return ret;
1945 }
1946
1947 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1948 {
1949         kvfree(rbd_dev->object_map);
1950         rbd_dev->object_map = NULL;
1951         rbd_dev->object_map_size = 0;
1952 }
1953
1954 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1955 {
1956         int ret;
1957
1958         ret = __rbd_object_map_load(rbd_dev);
1959         if (ret)
1960                 return ret;
1961
1962         ret = rbd_dev_v2_get_flags(rbd_dev);
1963         if (ret) {
1964                 rbd_object_map_free(rbd_dev);
1965                 return ret;
1966         }
1967
1968         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1969                 rbd_warn(rbd_dev, "object map is invalid");
1970
1971         return 0;
1972 }
1973
1974 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1975 {
1976         int ret;
1977
1978         ret = rbd_object_map_lock(rbd_dev);
1979         if (ret)
1980                 return ret;
1981
1982         ret = rbd_object_map_load(rbd_dev);
1983         if (ret) {
1984                 rbd_object_map_unlock(rbd_dev);
1985                 return ret;
1986         }
1987
1988         return 0;
1989 }
1990
1991 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1992 {
1993         rbd_object_map_free(rbd_dev);
1994         rbd_object_map_unlock(rbd_dev);
1995 }
1996
1997 /*
1998  * This function needs snap_id (or more precisely just something to
1999  * distinguish between HEAD and snapshot object maps), new_state and
2000  * current_state that were passed to rbd_object_map_update().
2001  *
2002  * To avoid allocating and stashing a context we piggyback on the OSD
2003  * request.  A HEAD update has two ops (assert_locked).  For new_state
2004  * and current_state we decode our own object_map_update op, encoded in
2005  * rbd_cls_object_map_update().
2006  */
2007 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2008                                         struct ceph_osd_request *osd_req)
2009 {
2010         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2011         struct ceph_osd_data *osd_data;
2012         u64 objno;
2013         u8 state, new_state, uninitialized_var(current_state);
2014         bool has_current_state;
2015         void *p;
2016
2017         if (osd_req->r_result)
2018                 return osd_req->r_result;
2019
2020         /*
2021          * Nothing to do for a snapshot object map.
2022          */
2023         if (osd_req->r_num_ops == 1)
2024                 return 0;
2025
2026         /*
2027          * Update in-memory HEAD object map.
2028          */
2029         rbd_assert(osd_req->r_num_ops == 2);
2030         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2031         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2032
2033         p = page_address(osd_data->pages[0]);
2034         objno = ceph_decode_64(&p);
2035         rbd_assert(objno == obj_req->ex.oe_objno);
2036         rbd_assert(ceph_decode_64(&p) == objno + 1);
2037         new_state = ceph_decode_8(&p);
2038         has_current_state = ceph_decode_8(&p);
2039         if (has_current_state)
2040                 current_state = ceph_decode_8(&p);
2041
2042         spin_lock(&rbd_dev->object_map_lock);
2043         state = __rbd_object_map_get(rbd_dev, objno);
2044         if (!has_current_state || current_state == state ||
2045             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2046                 __rbd_object_map_set(rbd_dev, objno, new_state);
2047         spin_unlock(&rbd_dev->object_map_lock);
2048
2049         return 0;
2050 }
2051
2052 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2053 {
2054         struct rbd_obj_request *obj_req = osd_req->r_priv;
2055         int result;
2056
2057         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2058              osd_req->r_result, obj_req);
2059
2060         result = rbd_object_map_update_finish(obj_req, osd_req);
2061         rbd_obj_handle_request(obj_req, result);
2062 }
2063
2064 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2065 {
2066         u8 state = rbd_object_map_get(rbd_dev, objno);
2067
2068         if (state == new_state ||
2069             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2070             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2071                 return false;
2072
2073         return true;
2074 }
2075
2076 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2077                                      int which, u64 objno, u8 new_state,
2078                                      const u8 *current_state)
2079 {
2080         struct page **pages;
2081         void *p, *start;
2082         int ret;
2083
2084         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2085         if (ret)
2086                 return ret;
2087
2088         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2089         if (IS_ERR(pages))
2090                 return PTR_ERR(pages);
2091
2092         p = start = page_address(pages[0]);
2093         ceph_encode_64(&p, objno);
2094         ceph_encode_64(&p, objno + 1);
2095         ceph_encode_8(&p, new_state);
2096         if (current_state) {
2097                 ceph_encode_8(&p, 1);
2098                 ceph_encode_8(&p, *current_state);
2099         } else {
2100                 ceph_encode_8(&p, 0);
2101         }
2102
2103         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2104                                           false, true);
2105         return 0;
2106 }
2107
2108 /*
2109  * Return:
2110  *   0 - object map update sent
2111  *   1 - object map update isn't needed
2112  *  <0 - error
2113  */
2114 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2115                                  u8 new_state, const u8 *current_state)
2116 {
2117         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2118         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2119         struct ceph_osd_request *req;
2120         int num_ops = 1;
2121         int which = 0;
2122         int ret;
2123
2124         if (snap_id == CEPH_NOSNAP) {
2125                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2126                         return 1;
2127
2128                 num_ops++; /* assert_locked */
2129         }
2130
2131         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2132         if (!req)
2133                 return -ENOMEM;
2134
2135         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2136         req->r_callback = rbd_object_map_callback;
2137         req->r_priv = obj_req;
2138
2139         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2140         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2141         req->r_flags = CEPH_OSD_FLAG_WRITE;
2142         ktime_get_real_ts64(&req->r_mtime);
2143
2144         if (snap_id == CEPH_NOSNAP) {
2145                 /*
2146                  * Protect against possible race conditions during lock
2147                  * ownership transitions.
2148                  */
2149                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2150                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2151                 if (ret)
2152                         return ret;
2153         }
2154
2155         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2156                                         new_state, current_state);
2157         if (ret)
2158                 return ret;
2159
2160         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2161         if (ret)
2162                 return ret;
2163
2164         ceph_osdc_start_request(osdc, req, false);
2165         return 0;
2166 }
2167
2168 static void prune_extents(struct ceph_file_extent *img_extents,
2169                           u32 *num_img_extents, u64 overlap)
2170 {
2171         u32 cnt = *num_img_extents;
2172
2173         /* drop extents completely beyond the overlap */
2174         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2175                 cnt--;
2176
2177         if (cnt) {
2178                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2179
2180                 /* trim final overlapping extent */
2181                 if (ex->fe_off + ex->fe_len > overlap)
2182                         ex->fe_len = overlap - ex->fe_off;
2183         }
2184
2185         *num_img_extents = cnt;
2186 }
2187
2188 /*
2189  * Determine the byte range(s) covered by either just the object extent
2190  * or the entire object in the parent image.
2191  */
2192 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2193                                     bool entire)
2194 {
2195         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2196         int ret;
2197
2198         if (!rbd_dev->parent_overlap)
2199                 return 0;
2200
2201         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2202                                   entire ? 0 : obj_req->ex.oe_off,
2203                                   entire ? rbd_dev->layout.object_size :
2204                                                         obj_req->ex.oe_len,
2205                                   &obj_req->img_extents,
2206                                   &obj_req->num_img_extents);
2207         if (ret)
2208                 return ret;
2209
2210         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2211                       rbd_dev->parent_overlap);
2212         return 0;
2213 }
2214
2215 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2216 {
2217         struct rbd_obj_request *obj_req = osd_req->r_priv;
2218
2219         switch (obj_req->img_request->data_type) {
2220         case OBJ_REQUEST_BIO:
2221                 osd_req_op_extent_osd_data_bio(osd_req, which,
2222                                                &obj_req->bio_pos,
2223                                                obj_req->ex.oe_len);
2224                 break;
2225         case OBJ_REQUEST_BVECS:
2226         case OBJ_REQUEST_OWN_BVECS:
2227                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2228                                                         obj_req->ex.oe_len);
2229                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2230                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2231                                                     &obj_req->bvec_pos);
2232                 break;
2233         default:
2234                 BUG();
2235         }
2236 }
2237
2238 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2239 {
2240         struct page **pages;
2241
2242         /*
2243          * The response data for a STAT call consists of:
2244          *     le64 length;
2245          *     struct {
2246          *         le32 tv_sec;
2247          *         le32 tv_nsec;
2248          *     } mtime;
2249          */
2250         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2251         if (IS_ERR(pages))
2252                 return PTR_ERR(pages);
2253
2254         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2255         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2256                                      8 + sizeof(struct ceph_timespec),
2257                                      0, false, true);
2258         return 0;
2259 }
2260
2261 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2262                                 u32 bytes)
2263 {
2264         struct rbd_obj_request *obj_req = osd_req->r_priv;
2265         int ret;
2266
2267         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2268         if (ret)
2269                 return ret;
2270
2271         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2272                                           obj_req->copyup_bvec_count, bytes);
2273         return 0;
2274 }
2275
2276 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2277 {
2278         obj_req->read_state = RBD_OBJ_READ_START;
2279         return 0;
2280 }
2281
2282 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2283                                       int which)
2284 {
2285         struct rbd_obj_request *obj_req = osd_req->r_priv;
2286         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2287         u16 opcode;
2288
2289         if (!use_object_map(rbd_dev) ||
2290             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2291                 osd_req_op_alloc_hint_init(osd_req, which++,
2292                                            rbd_dev->layout.object_size,
2293                                            rbd_dev->layout.object_size);
2294         }
2295
2296         if (rbd_obj_is_entire(obj_req))
2297                 opcode = CEPH_OSD_OP_WRITEFULL;
2298         else
2299                 opcode = CEPH_OSD_OP_WRITE;
2300
2301         osd_req_op_extent_init(osd_req, which, opcode,
2302                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2303         rbd_osd_setup_data(osd_req, which);
2304 }
2305
2306 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2307 {
2308         int ret;
2309
2310         /* reverse map the entire object onto the parent */
2311         ret = rbd_obj_calc_img_extents(obj_req, true);
2312         if (ret)
2313                 return ret;
2314
2315         if (rbd_obj_copyup_enabled(obj_req))
2316                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2317
2318         obj_req->write_state = RBD_OBJ_WRITE_START;
2319         return 0;
2320 }
2321
2322 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2323 {
2324         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2325                                           CEPH_OSD_OP_ZERO;
2326 }
2327
2328 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2329                                         int which)
2330 {
2331         struct rbd_obj_request *obj_req = osd_req->r_priv;
2332
2333         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2334                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2335                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2336         } else {
2337                 osd_req_op_extent_init(osd_req, which,
2338                                        truncate_or_zero_opcode(obj_req),
2339                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2340                                        0, 0);
2341         }
2342 }
2343
2344 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2345 {
2346         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2347         u64 off, next_off;
2348         int ret;
2349
2350         /*
2351          * Align the range to alloc_size boundary and punt on discards
2352          * that are too small to free up any space.
2353          *
2354          * alloc_size == object_size && is_tail() is a special case for
2355          * filestore with filestore_punch_hole = false, needed to allow
2356          * truncate (in addition to delete).
2357          */
2358         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2359             !rbd_obj_is_tail(obj_req)) {
2360                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2361                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2362                                       rbd_dev->opts->alloc_size);
2363                 if (off >= next_off)
2364                         return 1;
2365
2366                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2367                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2368                      off, next_off - off);
2369                 obj_req->ex.oe_off = off;
2370                 obj_req->ex.oe_len = next_off - off;
2371         }
2372
2373         /* reverse map the entire object onto the parent */
2374         ret = rbd_obj_calc_img_extents(obj_req, true);
2375         if (ret)
2376                 return ret;
2377
2378         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2379         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2380                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2381
2382         obj_req->write_state = RBD_OBJ_WRITE_START;
2383         return 0;
2384 }
2385
2386 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2387                                         int which)
2388 {
2389         struct rbd_obj_request *obj_req = osd_req->r_priv;
2390         u16 opcode;
2391
2392         if (rbd_obj_is_entire(obj_req)) {
2393                 if (obj_req->num_img_extents) {
2394                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2395                                 osd_req_op_init(osd_req, which++,
2396                                                 CEPH_OSD_OP_CREATE, 0);
2397                         opcode = CEPH_OSD_OP_TRUNCATE;
2398                 } else {
2399                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2400                         osd_req_op_init(osd_req, which++,
2401                                         CEPH_OSD_OP_DELETE, 0);
2402                         opcode = 0;
2403                 }
2404         } else {
2405                 opcode = truncate_or_zero_opcode(obj_req);
2406         }
2407
2408         if (opcode)
2409                 osd_req_op_extent_init(osd_req, which, opcode,
2410                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2411                                        0, 0);
2412 }
2413
2414 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2415 {
2416         int ret;
2417
2418         /* reverse map the entire object onto the parent */
2419         ret = rbd_obj_calc_img_extents(obj_req, true);
2420         if (ret)
2421                 return ret;
2422
2423         if (rbd_obj_copyup_enabled(obj_req))
2424                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2425         if (!obj_req->num_img_extents) {
2426                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2427                 if (rbd_obj_is_entire(obj_req))
2428                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2429         }
2430
2431         obj_req->write_state = RBD_OBJ_WRITE_START;
2432         return 0;
2433 }
2434
2435 static int count_write_ops(struct rbd_obj_request *obj_req)
2436 {
2437         struct rbd_img_request *img_req = obj_req->img_request;
2438
2439         switch (img_req->op_type) {
2440         case OBJ_OP_WRITE:
2441                 if (!use_object_map(img_req->rbd_dev) ||
2442                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2443                         return 2; /* setallochint + write/writefull */
2444
2445                 return 1; /* write/writefull */
2446         case OBJ_OP_DISCARD:
2447                 return 1; /* delete/truncate/zero */
2448         case OBJ_OP_ZEROOUT:
2449                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2450                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2451                         return 2; /* create + truncate */
2452
2453                 return 1; /* delete/truncate/zero */
2454         default:
2455                 BUG();
2456         }
2457 }
2458
2459 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2460                                     int which)
2461 {
2462         struct rbd_obj_request *obj_req = osd_req->r_priv;
2463
2464         switch (obj_req->img_request->op_type) {
2465         case OBJ_OP_WRITE:
2466                 __rbd_osd_setup_write_ops(osd_req, which);
2467                 break;
2468         case OBJ_OP_DISCARD:
2469                 __rbd_osd_setup_discard_ops(osd_req, which);
2470                 break;
2471         case OBJ_OP_ZEROOUT:
2472                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2473                 break;
2474         default:
2475                 BUG();
2476         }
2477 }
2478
2479 /*
2480  * Prune the list of object requests (adjust offset and/or length, drop
2481  * redundant requests).  Prepare object request state machines and image
2482  * request state machine for execution.
2483  */
2484 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2485 {
2486         struct rbd_obj_request *obj_req, *next_obj_req;
2487         int ret;
2488
2489         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2490                 switch (img_req->op_type) {
2491                 case OBJ_OP_READ:
2492                         ret = rbd_obj_init_read(obj_req);
2493                         break;
2494                 case OBJ_OP_WRITE:
2495                         ret = rbd_obj_init_write(obj_req);
2496                         break;
2497                 case OBJ_OP_DISCARD:
2498                         ret = rbd_obj_init_discard(obj_req);
2499                         break;
2500                 case OBJ_OP_ZEROOUT:
2501                         ret = rbd_obj_init_zeroout(obj_req);
2502                         break;
2503                 default:
2504                         BUG();
2505                 }
2506                 if (ret < 0)
2507                         return ret;
2508                 if (ret > 0) {
2509                         rbd_img_obj_request_del(img_req, obj_req);
2510                         continue;
2511                 }
2512         }
2513
2514         img_req->state = RBD_IMG_START;
2515         return 0;
2516 }
2517
2518 union rbd_img_fill_iter {
2519         struct ceph_bio_iter    bio_iter;
2520         struct ceph_bvec_iter   bvec_iter;
2521 };
2522
2523 struct rbd_img_fill_ctx {
2524         enum obj_request_type   pos_type;
2525         union rbd_img_fill_iter *pos;
2526         union rbd_img_fill_iter iter;
2527         ceph_object_extent_fn_t set_pos_fn;
2528         ceph_object_extent_fn_t count_fn;
2529         ceph_object_extent_fn_t copy_fn;
2530 };
2531
2532 static struct ceph_object_extent *alloc_object_extent(void *arg)
2533 {
2534         struct rbd_img_request *img_req = arg;
2535         struct rbd_obj_request *obj_req;
2536
2537         obj_req = rbd_obj_request_create();
2538         if (!obj_req)
2539                 return NULL;
2540
2541         rbd_img_obj_request_add(img_req, obj_req);
2542         return &obj_req->ex;
2543 }
2544
2545 /*
2546  * While su != os && sc == 1 is technically not fancy (it's the same
2547  * layout as su == os && sc == 1), we can't use the nocopy path for it
2548  * because ->set_pos_fn() should be called only once per object.
2549  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2550  * treat su != os && sc == 1 as fancy.
2551  */
2552 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2553 {
2554         return l->stripe_unit != l->object_size;
2555 }
2556
2557 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2558                                        struct ceph_file_extent *img_extents,
2559                                        u32 num_img_extents,
2560                                        struct rbd_img_fill_ctx *fctx)
2561 {
2562         u32 i;
2563         int ret;
2564
2565         img_req->data_type = fctx->pos_type;
2566
2567         /*
2568          * Create object requests and set each object request's starting
2569          * position in the provided bio (list) or bio_vec array.
2570          */
2571         fctx->iter = *fctx->pos;
2572         for (i = 0; i < num_img_extents; i++) {
2573                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2574                                            img_extents[i].fe_off,
2575                                            img_extents[i].fe_len,
2576                                            &img_req->object_extents,
2577                                            alloc_object_extent, img_req,
2578                                            fctx->set_pos_fn, &fctx->iter);
2579                 if (ret)
2580                         return ret;
2581         }
2582
2583         return __rbd_img_fill_request(img_req);
2584 }
2585
2586 /*
2587  * Map a list of image extents to a list of object extents, create the
2588  * corresponding object requests (normally each to a different object,
2589  * but not always) and add them to @img_req.  For each object request,
2590  * set up its data descriptor to point to the corresponding chunk(s) of
2591  * @fctx->pos data buffer.
2592  *
2593  * Because ceph_file_to_extents() will merge adjacent object extents
2594  * together, each object request's data descriptor may point to multiple
2595  * different chunks of @fctx->pos data buffer.
2596  *
2597  * @fctx->pos data buffer is assumed to be large enough.
2598  */
2599 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2600                                 struct ceph_file_extent *img_extents,
2601                                 u32 num_img_extents,
2602                                 struct rbd_img_fill_ctx *fctx)
2603 {
2604         struct rbd_device *rbd_dev = img_req->rbd_dev;
2605         struct rbd_obj_request *obj_req;
2606         u32 i;
2607         int ret;
2608
2609         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2610             !rbd_layout_is_fancy(&rbd_dev->layout))
2611                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2612                                                    num_img_extents, fctx);
2613
2614         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2615
2616         /*
2617          * Create object requests and determine ->bvec_count for each object
2618          * request.  Note that ->bvec_count sum over all object requests may
2619          * be greater than the number of bio_vecs in the provided bio (list)
2620          * or bio_vec array because when mapped, those bio_vecs can straddle
2621          * stripe unit boundaries.
2622          */
2623         fctx->iter = *fctx->pos;
2624         for (i = 0; i < num_img_extents; i++) {
2625                 ret = ceph_file_to_extents(&rbd_dev->layout,
2626                                            img_extents[i].fe_off,
2627                                            img_extents[i].fe_len,
2628                                            &img_req->object_extents,
2629                                            alloc_object_extent, img_req,
2630                                            fctx->count_fn, &fctx->iter);
2631                 if (ret)
2632                         return ret;
2633         }
2634
2635         for_each_obj_request(img_req, obj_req) {
2636                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2637                                               sizeof(*obj_req->bvec_pos.bvecs),
2638                                               GFP_NOIO);
2639                 if (!obj_req->bvec_pos.bvecs)
2640                         return -ENOMEM;
2641         }
2642
2643         /*
2644          * Fill in each object request's private bio_vec array, splitting and
2645          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2646          */
2647         fctx->iter = *fctx->pos;
2648         for (i = 0; i < num_img_extents; i++) {
2649                 ret = ceph_iterate_extents(&rbd_dev->layout,
2650                                            img_extents[i].fe_off,
2651                                            img_extents[i].fe_len,
2652                                            &img_req->object_extents,
2653                                            fctx->copy_fn, &fctx->iter);
2654                 if (ret)
2655                         return ret;
2656         }
2657
2658         return __rbd_img_fill_request(img_req);
2659 }
2660
2661 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2662                                u64 off, u64 len)
2663 {
2664         struct ceph_file_extent ex = { off, len };
2665         union rbd_img_fill_iter dummy = {};
2666         struct rbd_img_fill_ctx fctx = {
2667                 .pos_type = OBJ_REQUEST_NODATA,
2668                 .pos = &dummy,
2669         };
2670
2671         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2672 }
2673
2674 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2675 {
2676         struct rbd_obj_request *obj_req =
2677             container_of(ex, struct rbd_obj_request, ex);
2678         struct ceph_bio_iter *it = arg;
2679
2680         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2681         obj_req->bio_pos = *it;
2682         ceph_bio_iter_advance(it, bytes);
2683 }
2684
2685 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2686 {
2687         struct rbd_obj_request *obj_req =
2688             container_of(ex, struct rbd_obj_request, ex);
2689         struct ceph_bio_iter *it = arg;
2690
2691         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2692         ceph_bio_iter_advance_step(it, bytes, ({
2693                 obj_req->bvec_count++;
2694         }));
2695
2696 }
2697
2698 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700         struct rbd_obj_request *obj_req =
2701             container_of(ex, struct rbd_obj_request, ex);
2702         struct ceph_bio_iter *it = arg;
2703
2704         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2705         ceph_bio_iter_advance_step(it, bytes, ({
2706                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2707                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2708         }));
2709 }
2710
2711 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2712                                    struct ceph_file_extent *img_extents,
2713                                    u32 num_img_extents,
2714                                    struct ceph_bio_iter *bio_pos)
2715 {
2716         struct rbd_img_fill_ctx fctx = {
2717                 .pos_type = OBJ_REQUEST_BIO,
2718                 .pos = (union rbd_img_fill_iter *)bio_pos,
2719                 .set_pos_fn = set_bio_pos,
2720                 .count_fn = count_bio_bvecs,
2721                 .copy_fn = copy_bio_bvecs,
2722         };
2723
2724         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2725                                     &fctx);
2726 }
2727
2728 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2729                                  u64 off, u64 len, struct bio *bio)
2730 {
2731         struct ceph_file_extent ex = { off, len };
2732         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2733
2734         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2735 }
2736
2737 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2738 {
2739         struct rbd_obj_request *obj_req =
2740             container_of(ex, struct rbd_obj_request, ex);
2741         struct ceph_bvec_iter *it = arg;
2742
2743         obj_req->bvec_pos = *it;
2744         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2745         ceph_bvec_iter_advance(it, bytes);
2746 }
2747
2748 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2749 {
2750         struct rbd_obj_request *obj_req =
2751             container_of(ex, struct rbd_obj_request, ex);
2752         struct ceph_bvec_iter *it = arg;
2753
2754         ceph_bvec_iter_advance_step(it, bytes, ({
2755                 obj_req->bvec_count++;
2756         }));
2757 }
2758
2759 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2760 {
2761         struct rbd_obj_request *obj_req =
2762             container_of(ex, struct rbd_obj_request, ex);
2763         struct ceph_bvec_iter *it = arg;
2764
2765         ceph_bvec_iter_advance_step(it, bytes, ({
2766                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2767                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2768         }));
2769 }
2770
2771 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2772                                      struct ceph_file_extent *img_extents,
2773                                      u32 num_img_extents,
2774                                      struct ceph_bvec_iter *bvec_pos)
2775 {
2776         struct rbd_img_fill_ctx fctx = {
2777                 .pos_type = OBJ_REQUEST_BVECS,
2778                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2779                 .set_pos_fn = set_bvec_pos,
2780                 .count_fn = count_bvecs,
2781                 .copy_fn = copy_bvecs,
2782         };
2783
2784         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2785                                     &fctx);
2786 }
2787
2788 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2789                                    struct ceph_file_extent *img_extents,
2790                                    u32 num_img_extents,
2791                                    struct bio_vec *bvecs)
2792 {
2793         struct ceph_bvec_iter it = {
2794                 .bvecs = bvecs,
2795                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2796                                                              num_img_extents) },
2797         };
2798
2799         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2800                                          &it);
2801 }
2802
2803 static void rbd_img_handle_request_work(struct work_struct *work)
2804 {
2805         struct rbd_img_request *img_req =
2806             container_of(work, struct rbd_img_request, work);
2807
2808         rbd_img_handle_request(img_req, img_req->work_result);
2809 }
2810
2811 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2812 {
2813         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2814         img_req->work_result = result;
2815         queue_work(rbd_wq, &img_req->work);
2816 }
2817
2818 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2819 {
2820         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2821
2822         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2823                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2824                 return true;
2825         }
2826
2827         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2828              obj_req->ex.oe_objno);
2829         return false;
2830 }
2831
2832 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2833 {
2834         struct ceph_osd_request *osd_req;
2835         int ret;
2836
2837         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2838         if (IS_ERR(osd_req))
2839                 return PTR_ERR(osd_req);
2840
2841         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2842                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2843         rbd_osd_setup_data(osd_req, 0);
2844         rbd_osd_format_read(osd_req);
2845
2846         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2847         if (ret)
2848                 return ret;
2849
2850         rbd_osd_submit(osd_req);
2851         return 0;
2852 }
2853
2854 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2855 {
2856         struct rbd_img_request *img_req = obj_req->img_request;
2857         struct rbd_img_request *child_img_req;
2858         int ret;
2859
2860         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2861                                                OBJ_OP_READ, NULL);
2862         if (!child_img_req)
2863                 return -ENOMEM;
2864
2865         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2866         child_img_req->obj_request = obj_req;
2867
2868         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2869              obj_req);
2870
2871         if (!rbd_img_is_write(img_req)) {
2872                 switch (img_req->data_type) {
2873                 case OBJ_REQUEST_BIO:
2874                         ret = __rbd_img_fill_from_bio(child_img_req,
2875                                                       obj_req->img_extents,
2876                                                       obj_req->num_img_extents,
2877                                                       &obj_req->bio_pos);
2878                         break;
2879                 case OBJ_REQUEST_BVECS:
2880                 case OBJ_REQUEST_OWN_BVECS:
2881                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2882                                                       obj_req->img_extents,
2883                                                       obj_req->num_img_extents,
2884                                                       &obj_req->bvec_pos);
2885                         break;
2886                 default:
2887                         BUG();
2888                 }
2889         } else {
2890                 ret = rbd_img_fill_from_bvecs(child_img_req,
2891                                               obj_req->img_extents,
2892                                               obj_req->num_img_extents,
2893                                               obj_req->copyup_bvecs);
2894         }
2895         if (ret) {
2896                 rbd_img_request_put(child_img_req);
2897                 return ret;
2898         }
2899
2900         /* avoid parent chain recursion */
2901         rbd_img_schedule(child_img_req, 0);
2902         return 0;
2903 }
2904
2905 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2906 {
2907         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2908         int ret;
2909
2910 again:
2911         switch (obj_req->read_state) {
2912         case RBD_OBJ_READ_START:
2913                 rbd_assert(!*result);
2914
2915                 if (!rbd_obj_may_exist(obj_req)) {
2916                         *result = -ENOENT;
2917                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2918                         goto again;
2919                 }
2920
2921                 ret = rbd_obj_read_object(obj_req);
2922                 if (ret) {
2923                         *result = ret;
2924                         return true;
2925                 }
2926                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2927                 return false;
2928         case RBD_OBJ_READ_OBJECT:
2929                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2930                         /* reverse map this object extent onto the parent */
2931                         ret = rbd_obj_calc_img_extents(obj_req, false);
2932                         if (ret) {
2933                                 *result = ret;
2934                                 return true;
2935                         }
2936                         if (obj_req->num_img_extents) {
2937                                 ret = rbd_obj_read_from_parent(obj_req);
2938                                 if (ret) {
2939                                         *result = ret;
2940                                         return true;
2941                                 }
2942                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2943                                 return false;
2944                         }
2945                 }
2946
2947                 /*
2948                  * -ENOENT means a hole in the image -- zero-fill the entire
2949                  * length of the request.  A short read also implies zero-fill
2950                  * to the end of the request.
2951                  */
2952                 if (*result == -ENOENT) {
2953                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2954                         *result = 0;
2955                 } else if (*result >= 0) {
2956                         if (*result < obj_req->ex.oe_len)
2957                                 rbd_obj_zero_range(obj_req, *result,
2958                                                 obj_req->ex.oe_len - *result);
2959                         else
2960                                 rbd_assert(*result == obj_req->ex.oe_len);
2961                         *result = 0;
2962                 }
2963                 return true;
2964         case RBD_OBJ_READ_PARENT:
2965                 /*
2966                  * The parent image is read only up to the overlap -- zero-fill
2967                  * from the overlap to the end of the request.
2968                  */
2969                 if (!*result) {
2970                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2971
2972                         if (obj_overlap < obj_req->ex.oe_len)
2973                                 rbd_obj_zero_range(obj_req, obj_overlap,
2974                                             obj_req->ex.oe_len - obj_overlap);
2975                 }
2976                 return true;
2977         default:
2978                 BUG();
2979         }
2980 }
2981
2982 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2983 {
2984         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2985
2986         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2987                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2988
2989         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2990             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2991                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2992                 return true;
2993         }
2994
2995         return false;
2996 }
2997
2998 /*
2999  * Return:
3000  *   0 - object map update sent
3001  *   1 - object map update isn't needed
3002  *  <0 - error
3003  */
3004 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3005 {
3006         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3007         u8 new_state;
3008
3009         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3010                 return 1;
3011
3012         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3013                 new_state = OBJECT_PENDING;
3014         else
3015                 new_state = OBJECT_EXISTS;
3016
3017         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3018 }
3019
3020 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3021 {
3022         struct ceph_osd_request *osd_req;
3023         int num_ops = count_write_ops(obj_req);
3024         int which = 0;
3025         int ret;
3026
3027         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3028                 num_ops++; /* stat */
3029
3030         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3031         if (IS_ERR(osd_req))
3032                 return PTR_ERR(osd_req);
3033
3034         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3035                 ret = rbd_osd_setup_stat(osd_req, which++);
3036                 if (ret)
3037                         return ret;
3038         }
3039
3040         rbd_osd_setup_write_ops(osd_req, which);
3041         rbd_osd_format_write(osd_req);
3042
3043         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3044         if (ret)
3045                 return ret;
3046
3047         rbd_osd_submit(osd_req);
3048         return 0;
3049 }
3050
3051 /*
3052  * copyup_bvecs pages are never highmem pages
3053  */
3054 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3055 {
3056         struct ceph_bvec_iter it = {
3057                 .bvecs = bvecs,
3058                 .iter = { .bi_size = bytes },
3059         };
3060
3061         ceph_bvec_iter_advance_step(&it, bytes, ({
3062                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3063                                bv.bv_len))
3064                         return false;
3065         }));
3066         return true;
3067 }
3068
3069 #define MODS_ONLY       U32_MAX
3070
3071 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3072                                       u32 bytes)
3073 {
3074         struct ceph_osd_request *osd_req;
3075         int ret;
3076
3077         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3078         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3079
3080         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3081         if (IS_ERR(osd_req))
3082                 return PTR_ERR(osd_req);
3083
3084         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3085         if (ret)
3086                 return ret;
3087
3088         rbd_osd_format_write(osd_req);
3089
3090         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3091         if (ret)
3092                 return ret;
3093
3094         rbd_osd_submit(osd_req);
3095         return 0;
3096 }
3097
3098 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3099                                         u32 bytes)
3100 {
3101         struct ceph_osd_request *osd_req;
3102         int num_ops = count_write_ops(obj_req);
3103         int which = 0;
3104         int ret;
3105
3106         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3107
3108         if (bytes != MODS_ONLY)
3109                 num_ops++; /* copyup */
3110
3111         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3112         if (IS_ERR(osd_req))
3113                 return PTR_ERR(osd_req);
3114
3115         if (bytes != MODS_ONLY) {
3116                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3117                 if (ret)
3118                         return ret;
3119         }
3120
3121         rbd_osd_setup_write_ops(osd_req, which);
3122         rbd_osd_format_write(osd_req);
3123
3124         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3125         if (ret)
3126                 return ret;
3127
3128         rbd_osd_submit(osd_req);
3129         return 0;
3130 }
3131
3132 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3133 {
3134         u32 i;
3135
3136         rbd_assert(!obj_req->copyup_bvecs);
3137         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3138         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3139                                         sizeof(*obj_req->copyup_bvecs),
3140                                         GFP_NOIO);
3141         if (!obj_req->copyup_bvecs)
3142                 return -ENOMEM;
3143
3144         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3145                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3146
3147                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3148                 if (!obj_req->copyup_bvecs[i].bv_page)
3149                         return -ENOMEM;
3150
3151                 obj_req->copyup_bvecs[i].bv_offset = 0;
3152                 obj_req->copyup_bvecs[i].bv_len = len;
3153                 obj_overlap -= len;
3154         }
3155
3156         rbd_assert(!obj_overlap);
3157         return 0;
3158 }
3159
3160 /*
3161  * The target object doesn't exist.  Read the data for the entire
3162  * target object up to the overlap point (if any) from the parent,
3163  * so we can use it for a copyup.
3164  */
3165 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3166 {
3167         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3168         int ret;
3169
3170         rbd_assert(obj_req->num_img_extents);
3171         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3172                       rbd_dev->parent_overlap);
3173         if (!obj_req->num_img_extents) {
3174                 /*
3175                  * The overlap has become 0 (most likely because the
3176                  * image has been flattened).  Re-submit the original write
3177                  * request -- pass MODS_ONLY since the copyup isn't needed
3178                  * anymore.
3179                  */
3180                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3181         }
3182
3183         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3184         if (ret)
3185                 return ret;
3186
3187         return rbd_obj_read_from_parent(obj_req);
3188 }
3189
3190 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3191 {
3192         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3193         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3194         u8 new_state;
3195         u32 i;
3196         int ret;
3197
3198         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3199
3200         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3201                 return;
3202
3203         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3204                 return;
3205
3206         for (i = 0; i < snapc->num_snaps; i++) {
3207                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3208                     i + 1 < snapc->num_snaps)
3209                         new_state = OBJECT_EXISTS_CLEAN;
3210                 else
3211                         new_state = OBJECT_EXISTS;
3212
3213                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3214                                             new_state, NULL);
3215                 if (ret < 0) {
3216                         obj_req->pending.result = ret;
3217                         return;
3218                 }
3219
3220                 rbd_assert(!ret);
3221                 obj_req->pending.num_pending++;
3222         }
3223 }
3224
3225 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3226 {
3227         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3228         int ret;
3229
3230         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3231
3232         /*
3233          * Only send non-zero copyup data to save some I/O and network
3234          * bandwidth -- zero copyup data is equivalent to the object not
3235          * existing.
3236          */
3237         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3238                 bytes = 0;
3239
3240         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3241                 /*
3242                  * Send a copyup request with an empty snapshot context to
3243                  * deep-copyup the object through all existing snapshots.
3244                  * A second request with the current snapshot context will be
3245                  * sent for the actual modification.
3246                  */
3247                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3248                 if (ret) {
3249                         obj_req->pending.result = ret;
3250                         return;
3251                 }
3252
3253                 obj_req->pending.num_pending++;
3254                 bytes = MODS_ONLY;
3255         }
3256
3257         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3258         if (ret) {
3259                 obj_req->pending.result = ret;
3260                 return;
3261         }
3262
3263         obj_req->pending.num_pending++;
3264 }
3265
3266 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3267 {
3268         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3269         int ret;
3270
3271 again:
3272         switch (obj_req->copyup_state) {
3273         case RBD_OBJ_COPYUP_START:
3274                 rbd_assert(!*result);
3275
3276                 ret = rbd_obj_copyup_read_parent(obj_req);
3277                 if (ret) {
3278                         *result = ret;
3279                         return true;
3280                 }
3281                 if (obj_req->num_img_extents)
3282                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3283                 else
3284                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3285                 return false;
3286         case RBD_OBJ_COPYUP_READ_PARENT:
3287                 if (*result)
3288                         return true;
3289
3290                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3291                                   rbd_obj_img_extents_bytes(obj_req))) {
3292                         dout("%s %p detected zeros\n", __func__, obj_req);
3293                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3294                 }
3295
3296                 rbd_obj_copyup_object_maps(obj_req);
3297                 if (!obj_req->pending.num_pending) {
3298                         *result = obj_req->pending.result;
3299                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3300                         goto again;
3301                 }
3302                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3303                 return false;
3304         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3305                 if (!pending_result_dec(&obj_req->pending, result))
3306                         return false;
3307                 /* fall through */
3308         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3309                 if (*result) {
3310                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3311                                  *result);
3312                         return true;
3313                 }
3314
3315                 rbd_obj_copyup_write_object(obj_req);
3316                 if (!obj_req->pending.num_pending) {
3317                         *result = obj_req->pending.result;
3318                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3319                         goto again;
3320                 }
3321                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3322                 return false;
3323         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3324                 if (!pending_result_dec(&obj_req->pending, result))
3325                         return false;
3326                 /* fall through */
3327         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3328                 return true;
3329         default:
3330                 BUG();
3331         }
3332 }
3333
3334 /*
3335  * Return:
3336  *   0 - object map update sent
3337  *   1 - object map update isn't needed
3338  *  <0 - error
3339  */
3340 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3341 {
3342         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3343         u8 current_state = OBJECT_PENDING;
3344
3345         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3346                 return 1;
3347
3348         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3349                 return 1;
3350
3351         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3352                                      &current_state);
3353 }
3354
3355 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3356 {
3357         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3358         int ret;
3359
3360 again:
3361         switch (obj_req->write_state) {
3362         case RBD_OBJ_WRITE_START:
3363                 rbd_assert(!*result);
3364
3365                 if (rbd_obj_write_is_noop(obj_req))
3366                         return true;
3367
3368                 ret = rbd_obj_write_pre_object_map(obj_req);
3369                 if (ret < 0) {
3370                         *result = ret;
3371                         return true;
3372                 }
3373                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3374                 if (ret > 0)
3375                         goto again;
3376                 return false;
3377         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3378                 if (*result) {
3379                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3380                                  *result);
3381                         return true;
3382                 }
3383                 ret = rbd_obj_write_object(obj_req);
3384                 if (ret) {
3385                         *result = ret;
3386                         return true;
3387                 }
3388                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3389                 return false;
3390         case RBD_OBJ_WRITE_OBJECT:
3391                 if (*result == -ENOENT) {
3392                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3393                                 *result = 0;
3394                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3395                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3396                                 goto again;
3397                         }
3398                         /*
3399                          * On a non-existent object:
3400                          *   delete - -ENOENT, truncate/zero - 0
3401                          */
3402                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3403                                 *result = 0;
3404                 }
3405                 if (*result)
3406                         return true;
3407
3408                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3409                 goto again;
3410         case __RBD_OBJ_WRITE_COPYUP:
3411                 if (!rbd_obj_advance_copyup(obj_req, result))
3412                         return false;
3413                 /* fall through */
3414         case RBD_OBJ_WRITE_COPYUP:
3415                 if (*result) {
3416                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3417                         return true;
3418                 }
3419                 ret = rbd_obj_write_post_object_map(obj_req);
3420                 if (ret < 0) {
3421                         *result = ret;
3422                         return true;
3423                 }
3424                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3425                 if (ret > 0)
3426                         goto again;
3427                 return false;
3428         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3429                 if (*result)
3430                         rbd_warn(rbd_dev, "post object map update failed: %d",
3431                                  *result);
3432                 return true;
3433         default:
3434                 BUG();
3435         }
3436 }
3437
3438 /*
3439  * Return true if @obj_req is completed.
3440  */
3441 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3442                                      int *result)
3443 {
3444         struct rbd_img_request *img_req = obj_req->img_request;
3445         struct rbd_device *rbd_dev = img_req->rbd_dev;
3446         bool done;
3447
3448         mutex_lock(&obj_req->state_mutex);
3449         if (!rbd_img_is_write(img_req))
3450                 done = rbd_obj_advance_read(obj_req, result);
3451         else
3452                 done = rbd_obj_advance_write(obj_req, result);
3453         mutex_unlock(&obj_req->state_mutex);
3454
3455         if (done && *result) {
3456                 rbd_assert(*result < 0);
3457                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3458                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3459                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3460         }
3461         return done;
3462 }
3463
3464 /*
3465  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3466  * recursion.
3467  */
3468 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3469 {
3470         if (__rbd_obj_handle_request(obj_req, &result))
3471                 rbd_img_handle_request(obj_req->img_request, result);
3472 }
3473
3474 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3475 {
3476         struct rbd_device *rbd_dev = img_req->rbd_dev;
3477
3478         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3479                 return false;
3480
3481         if (rbd_is_ro(rbd_dev))
3482                 return false;
3483
3484         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3485         if (rbd_dev->opts->lock_on_read ||
3486             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3487                 return true;
3488
3489         return rbd_img_is_write(img_req);
3490 }
3491
3492 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3493 {
3494         struct rbd_device *rbd_dev = img_req->rbd_dev;
3495         bool locked;
3496
3497         lockdep_assert_held(&rbd_dev->lock_rwsem);
3498         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3499         spin_lock(&rbd_dev->lock_lists_lock);
3500         rbd_assert(list_empty(&img_req->lock_item));
3501         if (!locked)
3502                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3503         else
3504                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3505         spin_unlock(&rbd_dev->lock_lists_lock);
3506         return locked;
3507 }
3508
3509 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3510 {
3511         struct rbd_device *rbd_dev = img_req->rbd_dev;
3512         bool need_wakeup;
3513
3514         lockdep_assert_held(&rbd_dev->lock_rwsem);
3515         spin_lock(&rbd_dev->lock_lists_lock);
3516         rbd_assert(!list_empty(&img_req->lock_item));
3517         list_del_init(&img_req->lock_item);
3518         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3519                        list_empty(&rbd_dev->running_list));
3520         spin_unlock(&rbd_dev->lock_lists_lock);
3521         if (need_wakeup)
3522                 complete(&rbd_dev->releasing_wait);
3523 }
3524
3525 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3526 {
3527         struct rbd_device *rbd_dev = img_req->rbd_dev;
3528
3529         if (!need_exclusive_lock(img_req))
3530                 return 1;
3531
3532         if (rbd_lock_add_request(img_req))
3533                 return 1;
3534
3535         if (rbd_dev->opts->exclusive) {
3536                 WARN_ON(1); /* lock got released? */
3537                 return -EROFS;
3538         }
3539
3540         /*
3541          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3542          * and cancel_delayed_work() in wake_lock_waiters().
3543          */
3544         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3545         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3546         return 0;
3547 }
3548
3549 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3550 {
3551         struct rbd_obj_request *obj_req;
3552
3553         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3554
3555         for_each_obj_request(img_req, obj_req) {
3556                 int result = 0;
3557
3558                 if (__rbd_obj_handle_request(obj_req, &result)) {
3559                         if (result) {
3560                                 img_req->pending.result = result;
3561                                 return;
3562                         }
3563                 } else {
3564                         img_req->pending.num_pending++;
3565                 }
3566         }
3567 }
3568
3569 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3570 {
3571         struct rbd_device *rbd_dev = img_req->rbd_dev;
3572         int ret;
3573
3574 again:
3575         switch (img_req->state) {
3576         case RBD_IMG_START:
3577                 rbd_assert(!*result);
3578
3579                 ret = rbd_img_exclusive_lock(img_req);
3580                 if (ret < 0) {
3581                         *result = ret;
3582                         return true;
3583                 }
3584                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3585                 if (ret > 0)
3586                         goto again;
3587                 return false;
3588         case RBD_IMG_EXCLUSIVE_LOCK:
3589                 if (*result)
3590                         return true;
3591
3592                 rbd_assert(!need_exclusive_lock(img_req) ||
3593                            __rbd_is_lock_owner(rbd_dev));
3594
3595                 rbd_img_object_requests(img_req);
3596                 if (!img_req->pending.num_pending) {
3597                         *result = img_req->pending.result;
3598                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3599                         goto again;
3600                 }
3601                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3602                 return false;
3603         case __RBD_IMG_OBJECT_REQUESTS:
3604                 if (!pending_result_dec(&img_req->pending, result))
3605                         return false;
3606                 /* fall through */
3607         case RBD_IMG_OBJECT_REQUESTS:
3608                 return true;
3609         default:
3610                 BUG();
3611         }
3612 }
3613
3614 /*
3615  * Return true if @img_req is completed.
3616  */
3617 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3618                                      int *result)
3619 {
3620         struct rbd_device *rbd_dev = img_req->rbd_dev;
3621         bool done;
3622
3623         if (need_exclusive_lock(img_req)) {
3624                 down_read(&rbd_dev->lock_rwsem);
3625                 mutex_lock(&img_req->state_mutex);
3626                 done = rbd_img_advance(img_req, result);
3627                 if (done)
3628                         rbd_lock_del_request(img_req);
3629                 mutex_unlock(&img_req->state_mutex);
3630                 up_read(&rbd_dev->lock_rwsem);
3631         } else {
3632                 mutex_lock(&img_req->state_mutex);
3633                 done = rbd_img_advance(img_req, result);
3634                 mutex_unlock(&img_req->state_mutex);
3635         }
3636
3637         if (done && *result) {
3638                 rbd_assert(*result < 0);
3639                 rbd_warn(rbd_dev, "%s%s result %d",
3640                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3641                       obj_op_name(img_req->op_type), *result);
3642         }
3643         return done;
3644 }
3645
3646 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3647 {
3648 again:
3649         if (!__rbd_img_handle_request(img_req, &result))
3650                 return;
3651
3652         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3653                 struct rbd_obj_request *obj_req = img_req->obj_request;
3654
3655                 rbd_img_request_put(img_req);
3656                 if (__rbd_obj_handle_request(obj_req, &result)) {
3657                         img_req = obj_req->img_request;
3658                         goto again;
3659                 }
3660         } else {
3661                 struct request *rq = img_req->rq;
3662
3663                 rbd_img_request_put(img_req);
3664                 blk_mq_end_request(rq, errno_to_blk_status(result));
3665         }
3666 }
3667
3668 static const struct rbd_client_id rbd_empty_cid;
3669
3670 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3671                           const struct rbd_client_id *rhs)
3672 {
3673         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3674 }
3675
3676 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3677 {
3678         struct rbd_client_id cid;
3679
3680         mutex_lock(&rbd_dev->watch_mutex);
3681         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3682         cid.handle = rbd_dev->watch_cookie;
3683         mutex_unlock(&rbd_dev->watch_mutex);
3684         return cid;
3685 }
3686
3687 /*
3688  * lock_rwsem must be held for write
3689  */
3690 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3691                               const struct rbd_client_id *cid)
3692 {
3693         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3694              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3695              cid->gid, cid->handle);
3696         rbd_dev->owner_cid = *cid; /* struct */
3697 }
3698
3699 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3700 {
3701         mutex_lock(&rbd_dev->watch_mutex);
3702         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3703         mutex_unlock(&rbd_dev->watch_mutex);
3704 }
3705
3706 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3707 {
3708         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3709
3710         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3711         strcpy(rbd_dev->lock_cookie, cookie);
3712         rbd_set_owner_cid(rbd_dev, &cid);
3713         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3714 }
3715
3716 /*
3717  * lock_rwsem must be held for write
3718  */
3719 static int rbd_lock(struct rbd_device *rbd_dev)
3720 {
3721         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3722         char cookie[32];
3723         int ret;
3724
3725         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3726                 rbd_dev->lock_cookie[0] != '\0');
3727
3728         format_lock_cookie(rbd_dev, cookie);
3729         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3730                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3731                             RBD_LOCK_TAG, "", 0);
3732         if (ret)
3733                 return ret;
3734
3735         __rbd_lock(rbd_dev, cookie);
3736         return 0;
3737 }
3738
3739 /*
3740  * lock_rwsem must be held for write
3741  */
3742 static void rbd_unlock(struct rbd_device *rbd_dev)
3743 {
3744         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3745         int ret;
3746
3747         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3748                 rbd_dev->lock_cookie[0] == '\0');
3749
3750         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3751                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3752         if (ret && ret != -ENOENT)
3753                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3754
3755         /* treat errors as the image is unlocked */
3756         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3757         rbd_dev->lock_cookie[0] = '\0';
3758         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3759         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3760 }
3761
3762 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3763                                 enum rbd_notify_op notify_op,
3764                                 struct page ***preply_pages,
3765                                 size_t *preply_len)
3766 {
3767         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3768         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3769         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3770         int buf_size = sizeof(buf);
3771         void *p = buf;
3772
3773         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3774
3775         /* encode *LockPayload NotifyMessage (op + ClientId) */
3776         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3777         ceph_encode_32(&p, notify_op);
3778         ceph_encode_64(&p, cid.gid);
3779         ceph_encode_64(&p, cid.handle);
3780
3781         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3782                                 &rbd_dev->header_oloc, buf, buf_size,
3783                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3784 }
3785
3786 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3787                                enum rbd_notify_op notify_op)
3788 {
3789         struct page **reply_pages;
3790         size_t reply_len;
3791
3792         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3793         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3794 }
3795
3796 static void rbd_notify_acquired_lock(struct work_struct *work)
3797 {
3798         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3799                                                   acquired_lock_work);
3800
3801         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3802 }
3803
3804 static void rbd_notify_released_lock(struct work_struct *work)
3805 {
3806         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3807                                                   released_lock_work);
3808
3809         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3810 }
3811
3812 static int rbd_request_lock(struct rbd_device *rbd_dev)
3813 {
3814         struct page **reply_pages;
3815         size_t reply_len;
3816         bool lock_owner_responded = false;
3817         int ret;
3818
3819         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3820
3821         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3822                                    &reply_pages, &reply_len);
3823         if (ret && ret != -ETIMEDOUT) {
3824                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3825                 goto out;
3826         }
3827
3828         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3829                 void *p = page_address(reply_pages[0]);
3830                 void *const end = p + reply_len;
3831                 u32 n;
3832
3833                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3834                 while (n--) {
3835                         u8 struct_v;
3836                         u32 len;
3837
3838                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3839                         p += 8 + 8; /* skip gid and cookie */
3840
3841                         ceph_decode_32_safe(&p, end, len, e_inval);
3842                         if (!len)
3843                                 continue;
3844
3845                         if (lock_owner_responded) {
3846                                 rbd_warn(rbd_dev,
3847                                          "duplicate lock owners detected");
3848                                 ret = -EIO;
3849                                 goto out;
3850                         }
3851
3852                         lock_owner_responded = true;
3853                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3854                                                   &struct_v, &len);
3855                         if (ret) {
3856                                 rbd_warn(rbd_dev,
3857                                          "failed to decode ResponseMessage: %d",
3858                                          ret);
3859                                 goto e_inval;
3860                         }
3861
3862                         ret = ceph_decode_32(&p);
3863                 }
3864         }
3865
3866         if (!lock_owner_responded) {
3867                 rbd_warn(rbd_dev, "no lock owners detected");
3868                 ret = -ETIMEDOUT;
3869         }
3870
3871 out:
3872         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3873         return ret;
3874
3875 e_inval:
3876         ret = -EINVAL;
3877         goto out;
3878 }
3879
3880 /*
3881  * Either image request state machine(s) or rbd_add_acquire_lock()
3882  * (i.e. "rbd map").
3883  */
3884 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3885 {
3886         struct rbd_img_request *img_req;
3887
3888         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3889         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3890
3891         cancel_delayed_work(&rbd_dev->lock_dwork);
3892         if (!completion_done(&rbd_dev->acquire_wait)) {
3893                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3894                            list_empty(&rbd_dev->running_list));
3895                 rbd_dev->acquire_err = result;
3896                 complete_all(&rbd_dev->acquire_wait);
3897                 return;
3898         }
3899
3900         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3901                 mutex_lock(&img_req->state_mutex);
3902                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3903                 rbd_img_schedule(img_req, result);
3904                 mutex_unlock(&img_req->state_mutex);
3905         }
3906
3907         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3908 }
3909
3910 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3911                                struct ceph_locker **lockers, u32 *num_lockers)
3912 {
3913         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3914         u8 lock_type;
3915         char *lock_tag;
3916         int ret;
3917
3918         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3919
3920         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3921                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3922                                  &lock_type, &lock_tag, lockers, num_lockers);
3923         if (ret)
3924                 return ret;
3925
3926         if (*num_lockers == 0) {
3927                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3928                 goto out;
3929         }
3930
3931         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3932                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3933                          lock_tag);
3934                 ret = -EBUSY;
3935                 goto out;
3936         }
3937
3938         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3939                 rbd_warn(rbd_dev, "shared lock type detected");
3940                 ret = -EBUSY;
3941                 goto out;
3942         }
3943
3944         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3945                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3946                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3947                          (*lockers)[0].id.cookie);
3948                 ret = -EBUSY;
3949                 goto out;
3950         }
3951
3952 out:
3953         kfree(lock_tag);
3954         return ret;
3955 }
3956
3957 static int find_watcher(struct rbd_device *rbd_dev,
3958                         const struct ceph_locker *locker)
3959 {
3960         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3961         struct ceph_watch_item *watchers;
3962         u32 num_watchers;
3963         u64 cookie;
3964         int i;
3965         int ret;
3966
3967         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3968                                       &rbd_dev->header_oloc, &watchers,
3969                                       &num_watchers);
3970         if (ret)
3971                 return ret;
3972
3973         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3974         for (i = 0; i < num_watchers; i++) {
3975                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3976                             sizeof(locker->info.addr)) &&
3977                     watchers[i].cookie == cookie) {
3978                         struct rbd_client_id cid = {
3979                                 .gid = le64_to_cpu(watchers[i].name.num),
3980                                 .handle = cookie,
3981                         };
3982
3983                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3984                              rbd_dev, cid.gid, cid.handle);
3985                         rbd_set_owner_cid(rbd_dev, &cid);
3986                         ret = 1;
3987                         goto out;
3988                 }
3989         }
3990
3991         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3992         ret = 0;
3993 out:
3994         kfree(watchers);
3995         return ret;
3996 }
3997
3998 /*
3999  * lock_rwsem must be held for write
4000  */
4001 static int rbd_try_lock(struct rbd_device *rbd_dev)
4002 {
4003         struct ceph_client *client = rbd_dev->rbd_client->client;
4004         struct ceph_locker *lockers;
4005         u32 num_lockers;
4006         int ret;
4007
4008         for (;;) {
4009                 ret = rbd_lock(rbd_dev);
4010                 if (ret != -EBUSY)
4011                         return ret;
4012
4013                 /* determine if the current lock holder is still alive */
4014                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4015                 if (ret)
4016                         return ret;
4017
4018                 if (num_lockers == 0)
4019                         goto again;
4020
4021                 ret = find_watcher(rbd_dev, lockers);
4022                 if (ret)
4023                         goto out; /* request lock or error */
4024
4025                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4026                          ENTITY_NAME(lockers[0].id.name));
4027
4028                 ret = ceph_monc_blacklist_add(&client->monc,
4029                                               &lockers[0].info.addr);
4030                 if (ret) {
4031                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4032                                  ENTITY_NAME(lockers[0].id.name), ret);
4033                         goto out;
4034                 }
4035
4036                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4037                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4038                                           lockers[0].id.cookie,
4039                                           &lockers[0].id.name);
4040                 if (ret && ret != -ENOENT)
4041                         goto out;
4042
4043 again:
4044                 ceph_free_lockers(lockers, num_lockers);
4045         }
4046
4047 out:
4048         ceph_free_lockers(lockers, num_lockers);
4049         return ret;
4050 }
4051
4052 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4053 {
4054         int ret;
4055
4056         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4057                 ret = rbd_object_map_open(rbd_dev);
4058                 if (ret)
4059                         return ret;
4060         }
4061
4062         return 0;
4063 }
4064
4065 /*
4066  * Return:
4067  *   0 - lock acquired
4068  *   1 - caller should call rbd_request_lock()
4069  *  <0 - error
4070  */
4071 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4072 {
4073         int ret;
4074
4075         down_read(&rbd_dev->lock_rwsem);
4076         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4077              rbd_dev->lock_state);
4078         if (__rbd_is_lock_owner(rbd_dev)) {
4079                 up_read(&rbd_dev->lock_rwsem);
4080                 return 0;
4081         }
4082
4083         up_read(&rbd_dev->lock_rwsem);
4084         down_write(&rbd_dev->lock_rwsem);
4085         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4086              rbd_dev->lock_state);
4087         if (__rbd_is_lock_owner(rbd_dev)) {
4088                 up_write(&rbd_dev->lock_rwsem);
4089                 return 0;
4090         }
4091
4092         ret = rbd_try_lock(rbd_dev);
4093         if (ret < 0) {
4094                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4095                 if (ret == -EBLACKLISTED)
4096                         goto out;
4097
4098                 ret = 1; /* request lock anyway */
4099         }
4100         if (ret > 0) {
4101                 up_write(&rbd_dev->lock_rwsem);
4102                 return ret;
4103         }
4104
4105         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4106         rbd_assert(list_empty(&rbd_dev->running_list));
4107
4108         ret = rbd_post_acquire_action(rbd_dev);
4109         if (ret) {
4110                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4111                 /*
4112                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4113                  * rbd_lock_add_request() would let the request through,
4114                  * assuming that e.g. object map is locked and loaded.
4115                  */
4116                 rbd_unlock(rbd_dev);
4117         }
4118
4119 out:
4120         wake_lock_waiters(rbd_dev, ret);
4121         up_write(&rbd_dev->lock_rwsem);
4122         return ret;
4123 }
4124
4125 static void rbd_acquire_lock(struct work_struct *work)
4126 {
4127         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4128                                             struct rbd_device, lock_dwork);
4129         int ret;
4130
4131         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4132 again:
4133         ret = rbd_try_acquire_lock(rbd_dev);
4134         if (ret <= 0) {
4135                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4136                 return;
4137         }
4138
4139         ret = rbd_request_lock(rbd_dev);
4140         if (ret == -ETIMEDOUT) {
4141                 goto again; /* treat this as a dead client */
4142         } else if (ret == -EROFS) {
4143                 rbd_warn(rbd_dev, "peer will not release lock");
4144                 down_write(&rbd_dev->lock_rwsem);
4145                 wake_lock_waiters(rbd_dev, ret);
4146                 up_write(&rbd_dev->lock_rwsem);
4147         } else if (ret < 0) {
4148                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4149                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4150                                  RBD_RETRY_DELAY);
4151         } else {
4152                 /*
4153                  * lock owner acked, but resend if we don't see them
4154                  * release the lock
4155                  */
4156                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4157                      rbd_dev);
4158                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4159                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4160         }
4161 }
4162
4163 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4164 {
4165         bool need_wait;
4166
4167         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4168         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4169
4170         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4171                 return false;
4172
4173         /*
4174          * Ensure that all in-flight IO is flushed.
4175          */
4176         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4177         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4178         need_wait = !list_empty(&rbd_dev->running_list);
4179         downgrade_write(&rbd_dev->lock_rwsem);
4180         if (need_wait)
4181                 wait_for_completion(&rbd_dev->releasing_wait);
4182         up_read(&rbd_dev->lock_rwsem);
4183
4184         down_write(&rbd_dev->lock_rwsem);
4185         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4186                 return false;
4187
4188         rbd_assert(list_empty(&rbd_dev->running_list));
4189         return true;
4190 }
4191
4192 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4193 {
4194         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4195                 rbd_object_map_close(rbd_dev);
4196 }
4197
4198 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4199 {
4200         rbd_assert(list_empty(&rbd_dev->running_list));
4201
4202         rbd_pre_release_action(rbd_dev);
4203         rbd_unlock(rbd_dev);
4204 }
4205
4206 /*
4207  * lock_rwsem must be held for write
4208  */
4209 static void rbd_release_lock(struct rbd_device *rbd_dev)
4210 {
4211         if (!rbd_quiesce_lock(rbd_dev))
4212                 return;
4213
4214         __rbd_release_lock(rbd_dev);
4215
4216         /*
4217          * Give others a chance to grab the lock - we would re-acquire
4218          * almost immediately if we got new IO while draining the running
4219          * list otherwise.  We need to ack our own notifications, so this
4220          * lock_dwork will be requeued from rbd_handle_released_lock() by
4221          * way of maybe_kick_acquire().
4222          */
4223         cancel_delayed_work(&rbd_dev->lock_dwork);
4224 }
4225
4226 static void rbd_release_lock_work(struct work_struct *work)
4227 {
4228         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4229                                                   unlock_work);
4230
4231         down_write(&rbd_dev->lock_rwsem);
4232         rbd_release_lock(rbd_dev);
4233         up_write(&rbd_dev->lock_rwsem);
4234 }
4235
4236 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4237 {
4238         bool have_requests;
4239
4240         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4241         if (__rbd_is_lock_owner(rbd_dev))
4242                 return;
4243
4244         spin_lock(&rbd_dev->lock_lists_lock);
4245         have_requests = !list_empty(&rbd_dev->acquiring_list);
4246         spin_unlock(&rbd_dev->lock_lists_lock);
4247         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4248                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4249                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4250         }
4251 }
4252
4253 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4254                                      void **p)
4255 {
4256         struct rbd_client_id cid = { 0 };
4257
4258         if (struct_v >= 2) {
4259                 cid.gid = ceph_decode_64(p);
4260                 cid.handle = ceph_decode_64(p);
4261         }
4262
4263         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4264              cid.handle);
4265         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4266                 down_write(&rbd_dev->lock_rwsem);
4267                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4268                         /*
4269                          * we already know that the remote client is
4270                          * the owner
4271                          */
4272                         up_write(&rbd_dev->lock_rwsem);
4273                         return;
4274                 }
4275
4276                 rbd_set_owner_cid(rbd_dev, &cid);
4277                 downgrade_write(&rbd_dev->lock_rwsem);
4278         } else {
4279                 down_read(&rbd_dev->lock_rwsem);
4280         }
4281
4282         maybe_kick_acquire(rbd_dev);
4283         up_read(&rbd_dev->lock_rwsem);
4284 }
4285
4286 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4287                                      void **p)
4288 {
4289         struct rbd_client_id cid = { 0 };
4290
4291         if (struct_v >= 2) {
4292                 cid.gid = ceph_decode_64(p);
4293                 cid.handle = ceph_decode_64(p);
4294         }
4295
4296         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4297              cid.handle);
4298         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4299                 down_write(&rbd_dev->lock_rwsem);
4300                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4301                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4302                              __func__, rbd_dev, cid.gid, cid.handle,
4303                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4304                         up_write(&rbd_dev->lock_rwsem);
4305                         return;
4306                 }
4307
4308                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4309                 downgrade_write(&rbd_dev->lock_rwsem);
4310         } else {
4311                 down_read(&rbd_dev->lock_rwsem);
4312         }
4313
4314         maybe_kick_acquire(rbd_dev);
4315         up_read(&rbd_dev->lock_rwsem);
4316 }
4317
4318 /*
4319  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4320  * ResponseMessage is needed.
4321  */
4322 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4323                                    void **p)
4324 {
4325         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4326         struct rbd_client_id cid = { 0 };
4327         int result = 1;
4328
4329         if (struct_v >= 2) {
4330                 cid.gid = ceph_decode_64(p);
4331                 cid.handle = ceph_decode_64(p);
4332         }
4333
4334         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4335              cid.handle);
4336         if (rbd_cid_equal(&cid, &my_cid))
4337                 return result;
4338
4339         down_read(&rbd_dev->lock_rwsem);
4340         if (__rbd_is_lock_owner(rbd_dev)) {
4341                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4342                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4343                         goto out_unlock;
4344
4345                 /*
4346                  * encode ResponseMessage(0) so the peer can detect
4347                  * a missing owner
4348                  */
4349                 result = 0;
4350
4351                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4352                         if (!rbd_dev->opts->exclusive) {
4353                                 dout("%s rbd_dev %p queueing unlock_work\n",
4354                                      __func__, rbd_dev);
4355                                 queue_work(rbd_dev->task_wq,
4356                                            &rbd_dev->unlock_work);
4357                         } else {
4358                                 /* refuse to release the lock */
4359                                 result = -EROFS;
4360                         }
4361                 }
4362         }
4363
4364 out_unlock:
4365         up_read(&rbd_dev->lock_rwsem);
4366         return result;
4367 }
4368
4369 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4370                                      u64 notify_id, u64 cookie, s32 *result)
4371 {
4372         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4373         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4374         int buf_size = sizeof(buf);
4375         int ret;
4376
4377         if (result) {
4378                 void *p = buf;
4379
4380                 /* encode ResponseMessage */
4381                 ceph_start_encoding(&p, 1, 1,
4382                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4383                 ceph_encode_32(&p, *result);
4384         } else {
4385                 buf_size = 0;
4386         }
4387
4388         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4389                                    &rbd_dev->header_oloc, notify_id, cookie,
4390                                    buf, buf_size);
4391         if (ret)
4392                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4393 }
4394
4395 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4396                                    u64 cookie)
4397 {
4398         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4399         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4400 }
4401
4402 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4403                                           u64 notify_id, u64 cookie, s32 result)
4404 {
4405         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4406         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4407 }
4408
4409 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4410                          u64 notifier_id, void *data, size_t data_len)
4411 {
4412         struct rbd_device *rbd_dev = arg;
4413         void *p = data;
4414         void *const end = p + data_len;
4415         u8 struct_v = 0;
4416         u32 len;
4417         u32 notify_op;
4418         int ret;
4419
4420         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4421              __func__, rbd_dev, cookie, notify_id, data_len);
4422         if (data_len) {
4423                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4424                                           &struct_v, &len);
4425                 if (ret) {
4426                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4427                                  ret);
4428                         return;
4429                 }
4430
4431                 notify_op = ceph_decode_32(&p);
4432         } else {
4433                 /* legacy notification for header updates */
4434                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4435                 len = 0;
4436         }
4437
4438         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4439         switch (notify_op) {
4440         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4441                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4442                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4443                 break;
4444         case RBD_NOTIFY_OP_RELEASED_LOCK:
4445                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4446                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4447                 break;
4448         case RBD_NOTIFY_OP_REQUEST_LOCK:
4449                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4450                 if (ret <= 0)
4451                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4452                                                       cookie, ret);
4453                 else
4454                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4455                 break;
4456         case RBD_NOTIFY_OP_HEADER_UPDATE:
4457                 ret = rbd_dev_refresh(rbd_dev);
4458                 if (ret)
4459                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4460
4461                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4462                 break;
4463         default:
4464                 if (rbd_is_lock_owner(rbd_dev))
4465                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4466                                                       cookie, -EOPNOTSUPP);
4467                 else
4468                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4469                 break;
4470         }
4471 }
4472
4473 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4474
4475 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4476 {
4477         struct rbd_device *rbd_dev = arg;
4478
4479         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4480
4481         down_write(&rbd_dev->lock_rwsem);
4482         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4483         up_write(&rbd_dev->lock_rwsem);
4484
4485         mutex_lock(&rbd_dev->watch_mutex);
4486         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4487                 __rbd_unregister_watch(rbd_dev);
4488                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4489
4490                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4491         }
4492         mutex_unlock(&rbd_dev->watch_mutex);
4493 }
4494
4495 /*
4496  * watch_mutex must be locked
4497  */
4498 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4499 {
4500         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4501         struct ceph_osd_linger_request *handle;
4502
4503         rbd_assert(!rbd_dev->watch_handle);
4504         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4505
4506         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4507                                  &rbd_dev->header_oloc, rbd_watch_cb,
4508                                  rbd_watch_errcb, rbd_dev);
4509         if (IS_ERR(handle))
4510                 return PTR_ERR(handle);
4511
4512         rbd_dev->watch_handle = handle;
4513         return 0;
4514 }
4515
4516 /*
4517  * watch_mutex must be locked
4518  */
4519 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4520 {
4521         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4522         int ret;
4523
4524         rbd_assert(rbd_dev->watch_handle);
4525         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4526
4527         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4528         if (ret)
4529                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4530
4531         rbd_dev->watch_handle = NULL;
4532 }
4533
4534 static int rbd_register_watch(struct rbd_device *rbd_dev)
4535 {
4536         int ret;
4537
4538         mutex_lock(&rbd_dev->watch_mutex);
4539         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4540         ret = __rbd_register_watch(rbd_dev);
4541         if (ret)
4542                 goto out;
4543
4544         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4545         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4546
4547 out:
4548         mutex_unlock(&rbd_dev->watch_mutex);
4549         return ret;
4550 }
4551
4552 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4553 {
4554         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4555
4556         cancel_work_sync(&rbd_dev->acquired_lock_work);
4557         cancel_work_sync(&rbd_dev->released_lock_work);
4558         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4559         cancel_work_sync(&rbd_dev->unlock_work);
4560 }
4561
4562 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4563 {
4564         cancel_tasks_sync(rbd_dev);
4565
4566         mutex_lock(&rbd_dev->watch_mutex);
4567         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4568                 __rbd_unregister_watch(rbd_dev);
4569         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4570         mutex_unlock(&rbd_dev->watch_mutex);
4571
4572         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4573         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4574 }
4575
4576 /*
4577  * lock_rwsem must be held for write
4578  */
4579 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4580 {
4581         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4582         char cookie[32];
4583         int ret;
4584
4585         if (!rbd_quiesce_lock(rbd_dev))
4586                 return;
4587
4588         format_lock_cookie(rbd_dev, cookie);
4589         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4590                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4591                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4592                                   RBD_LOCK_TAG, cookie);
4593         if (ret) {
4594                 if (ret != -EOPNOTSUPP)
4595                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4596                                  ret);
4597
4598                 /*
4599                  * Lock cookie cannot be updated on older OSDs, so do
4600                  * a manual release and queue an acquire.
4601                  */
4602                 __rbd_release_lock(rbd_dev);
4603                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4604         } else {
4605                 __rbd_lock(rbd_dev, cookie);
4606                 wake_lock_waiters(rbd_dev, 0);
4607         }
4608 }
4609
4610 static void rbd_reregister_watch(struct work_struct *work)
4611 {
4612         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4613                                             struct rbd_device, watch_dwork);
4614         int ret;
4615
4616         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4617
4618         mutex_lock(&rbd_dev->watch_mutex);
4619         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4620                 mutex_unlock(&rbd_dev->watch_mutex);
4621                 return;
4622         }
4623
4624         ret = __rbd_register_watch(rbd_dev);
4625         if (ret) {
4626                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4627                 if (ret != -EBLACKLISTED && ret != -ENOENT) {
4628                         queue_delayed_work(rbd_dev->task_wq,
4629                                            &rbd_dev->watch_dwork,
4630                                            RBD_RETRY_DELAY);
4631                         mutex_unlock(&rbd_dev->watch_mutex);
4632                         return;
4633                 }
4634
4635                 mutex_unlock(&rbd_dev->watch_mutex);
4636                 down_write(&rbd_dev->lock_rwsem);
4637                 wake_lock_waiters(rbd_dev, ret);
4638                 up_write(&rbd_dev->lock_rwsem);
4639                 return;
4640         }
4641
4642         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4643         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4644         mutex_unlock(&rbd_dev->watch_mutex);
4645
4646         down_write(&rbd_dev->lock_rwsem);
4647         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4648                 rbd_reacquire_lock(rbd_dev);
4649         up_write(&rbd_dev->lock_rwsem);
4650
4651         ret = rbd_dev_refresh(rbd_dev);
4652         if (ret)
4653                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4654 }
4655
4656 /*
4657  * Synchronous osd object method call.  Returns the number of bytes
4658  * returned in the outbound buffer, or a negative error code.
4659  */
4660 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4661                              struct ceph_object_id *oid,
4662                              struct ceph_object_locator *oloc,
4663                              const char *method_name,
4664                              const void *outbound,
4665                              size_t outbound_size,
4666                              void *inbound,
4667                              size_t inbound_size)
4668 {
4669         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4670         struct page *req_page = NULL;
4671         struct page *reply_page;
4672         int ret;
4673
4674         /*
4675          * Method calls are ultimately read operations.  The result
4676          * should placed into the inbound buffer provided.  They
4677          * also supply outbound data--parameters for the object
4678          * method.  Currently if this is present it will be a
4679          * snapshot id.
4680          */
4681         if (outbound) {
4682                 if (outbound_size > PAGE_SIZE)
4683                         return -E2BIG;
4684
4685                 req_page = alloc_page(GFP_KERNEL);
4686                 if (!req_page)
4687                         return -ENOMEM;
4688
4689                 memcpy(page_address(req_page), outbound, outbound_size);
4690         }
4691
4692         reply_page = alloc_page(GFP_KERNEL);
4693         if (!reply_page) {
4694                 if (req_page)
4695                         __free_page(req_page);
4696                 return -ENOMEM;
4697         }
4698
4699         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4700                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4701                              &reply_page, &inbound_size);
4702         if (!ret) {
4703                 memcpy(inbound, page_address(reply_page), inbound_size);
4704                 ret = inbound_size;
4705         }
4706
4707         if (req_page)
4708                 __free_page(req_page);
4709         __free_page(reply_page);
4710         return ret;
4711 }
4712
4713 static void rbd_queue_workfn(struct work_struct *work)
4714 {
4715         struct request *rq = blk_mq_rq_from_pdu(work);
4716         struct rbd_device *rbd_dev = rq->q->queuedata;
4717         struct rbd_img_request *img_request;
4718         struct ceph_snap_context *snapc = NULL;
4719         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4720         u64 length = blk_rq_bytes(rq);
4721         enum obj_operation_type op_type;
4722         u64 mapping_size;
4723         int result;
4724
4725         switch (req_op(rq)) {
4726         case REQ_OP_DISCARD:
4727                 op_type = OBJ_OP_DISCARD;
4728                 break;
4729         case REQ_OP_WRITE_ZEROES:
4730                 op_type = OBJ_OP_ZEROOUT;
4731                 break;
4732         case REQ_OP_WRITE:
4733                 op_type = OBJ_OP_WRITE;
4734                 break;
4735         case REQ_OP_READ:
4736                 op_type = OBJ_OP_READ;
4737                 break;
4738         default:
4739                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4740                 result = -EIO;
4741                 goto err;
4742         }
4743
4744         /* Ignore/skip any zero-length requests */
4745
4746         if (!length) {
4747                 dout("%s: zero-length request\n", __func__);
4748                 result = 0;
4749                 goto err_rq;
4750         }
4751
4752         if (op_type != OBJ_OP_READ) {
4753                 if (rbd_is_ro(rbd_dev)) {
4754                         rbd_warn(rbd_dev, "%s on read-only mapping",
4755                                  obj_op_name(op_type));
4756                         result = -EIO;
4757                         goto err;
4758                 }
4759                 rbd_assert(!rbd_is_snap(rbd_dev));
4760         }
4761
4762         if (offset && length > U64_MAX - offset + 1) {
4763                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4764                          length);
4765                 result = -EINVAL;
4766                 goto err_rq;    /* Shouldn't happen */
4767         }
4768
4769         blk_mq_start_request(rq);
4770
4771         down_read(&rbd_dev->header_rwsem);
4772         mapping_size = rbd_dev->mapping.size;
4773         if (op_type != OBJ_OP_READ) {
4774                 snapc = rbd_dev->header.snapc;
4775                 ceph_get_snap_context(snapc);
4776         }
4777         up_read(&rbd_dev->header_rwsem);
4778
4779         if (offset + length > mapping_size) {
4780                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4781                          length, mapping_size);
4782                 result = -EIO;
4783                 goto err_rq;
4784         }
4785
4786         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
4787         if (!img_request) {
4788                 result = -ENOMEM;
4789                 goto err_rq;
4790         }
4791         img_request->rq = rq;
4792         snapc = NULL; /* img_request consumes a ref */
4793
4794         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4795              img_request, obj_op_name(op_type), offset, length);
4796
4797         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4798                 result = rbd_img_fill_nodata(img_request, offset, length);
4799         else
4800                 result = rbd_img_fill_from_bio(img_request, offset, length,
4801                                                rq->bio);
4802         if (result)
4803                 goto err_img_request;
4804
4805         rbd_img_handle_request(img_request, 0);
4806         return;
4807
4808 err_img_request:
4809         rbd_img_request_put(img_request);
4810 err_rq:
4811         if (result)
4812                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4813                          obj_op_name(op_type), length, offset, result);
4814         ceph_put_snap_context(snapc);
4815 err:
4816         blk_mq_end_request(rq, errno_to_blk_status(result));
4817 }
4818
4819 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4820                 const struct blk_mq_queue_data *bd)
4821 {
4822         struct request *rq = bd->rq;
4823         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4824
4825         queue_work(rbd_wq, work);
4826         return BLK_STS_OK;
4827 }
4828
4829 static void rbd_free_disk(struct rbd_device *rbd_dev)
4830 {
4831         blk_cleanup_queue(rbd_dev->disk->queue);
4832         blk_mq_free_tag_set(&rbd_dev->tag_set);
4833         put_disk(rbd_dev->disk);
4834         rbd_dev->disk = NULL;
4835 }
4836
4837 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4838                              struct ceph_object_id *oid,
4839                              struct ceph_object_locator *oloc,
4840                              void *buf, int buf_len)
4841
4842 {
4843         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4844         struct ceph_osd_request *req;
4845         struct page **pages;
4846         int num_pages = calc_pages_for(0, buf_len);
4847         int ret;
4848
4849         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4850         if (!req)
4851                 return -ENOMEM;
4852
4853         ceph_oid_copy(&req->r_base_oid, oid);
4854         ceph_oloc_copy(&req->r_base_oloc, oloc);
4855         req->r_flags = CEPH_OSD_FLAG_READ;
4856
4857         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4858         if (IS_ERR(pages)) {
4859                 ret = PTR_ERR(pages);
4860                 goto out_req;
4861         }
4862
4863         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4864         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4865                                          true);
4866
4867         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4868         if (ret)
4869                 goto out_req;
4870
4871         ceph_osdc_start_request(osdc, req, false);
4872         ret = ceph_osdc_wait_request(osdc, req);
4873         if (ret >= 0)
4874                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4875
4876 out_req:
4877         ceph_osdc_put_request(req);
4878         return ret;
4879 }
4880
4881 /*
4882  * Read the complete header for the given rbd device.  On successful
4883  * return, the rbd_dev->header field will contain up-to-date
4884  * information about the image.
4885  */
4886 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4887 {
4888         struct rbd_image_header_ondisk *ondisk = NULL;
4889         u32 snap_count = 0;
4890         u64 names_size = 0;
4891         u32 want_count;
4892         int ret;
4893
4894         /*
4895          * The complete header will include an array of its 64-bit
4896          * snapshot ids, followed by the names of those snapshots as
4897          * a contiguous block of NUL-terminated strings.  Note that
4898          * the number of snapshots could change by the time we read
4899          * it in, in which case we re-read it.
4900          */
4901         do {
4902                 size_t size;
4903
4904                 kfree(ondisk);
4905
4906                 size = sizeof (*ondisk);
4907                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4908                 size += names_size;
4909                 ondisk = kmalloc(size, GFP_KERNEL);
4910                 if (!ondisk)
4911                         return -ENOMEM;
4912
4913                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4914                                         &rbd_dev->header_oloc, ondisk, size);
4915                 if (ret < 0)
4916                         goto out;
4917                 if ((size_t)ret < size) {
4918                         ret = -ENXIO;
4919                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4920                                 size, ret);
4921                         goto out;
4922                 }
4923                 if (!rbd_dev_ondisk_valid(ondisk)) {
4924                         ret = -ENXIO;
4925                         rbd_warn(rbd_dev, "invalid header");
4926                         goto out;
4927                 }
4928
4929                 names_size = le64_to_cpu(ondisk->snap_names_len);
4930                 want_count = snap_count;
4931                 snap_count = le32_to_cpu(ondisk->snap_count);
4932         } while (snap_count != want_count);
4933
4934         ret = rbd_header_from_disk(rbd_dev, ondisk);
4935 out:
4936         kfree(ondisk);
4937
4938         return ret;
4939 }
4940
4941 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4942 {
4943         sector_t size;
4944
4945         /*
4946          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4947          * try to update its size.  If REMOVING is set, updating size
4948          * is just useless work since the device can't be opened.
4949          */
4950         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4951             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4952                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4953                 dout("setting size to %llu sectors", (unsigned long long)size);
4954                 set_capacity(rbd_dev->disk, size);
4955                 revalidate_disk(rbd_dev->disk);
4956         }
4957 }
4958
4959 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4960 {
4961         u64 mapping_size;
4962         int ret;
4963
4964         down_write(&rbd_dev->header_rwsem);
4965         mapping_size = rbd_dev->mapping.size;
4966
4967         ret = rbd_dev_header_info(rbd_dev);
4968         if (ret)
4969                 goto out;
4970
4971         /*
4972          * If there is a parent, see if it has disappeared due to the
4973          * mapped image getting flattened.
4974          */
4975         if (rbd_dev->parent) {
4976                 ret = rbd_dev_v2_parent_info(rbd_dev);
4977                 if (ret)
4978                         goto out;
4979         }
4980
4981         rbd_assert(!rbd_is_snap(rbd_dev));
4982         rbd_dev->mapping.size = rbd_dev->header.image_size;
4983
4984 out:
4985         up_write(&rbd_dev->header_rwsem);
4986         if (!ret && mapping_size != rbd_dev->mapping.size)
4987                 rbd_dev_update_size(rbd_dev);
4988
4989         return ret;
4990 }
4991
4992 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4993                 unsigned int hctx_idx, unsigned int numa_node)
4994 {
4995         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4996
4997         INIT_WORK(work, rbd_queue_workfn);
4998         return 0;
4999 }
5000
5001 static const struct blk_mq_ops rbd_mq_ops = {
5002         .queue_rq       = rbd_queue_rq,
5003         .init_request   = rbd_init_request,
5004 };
5005
5006 static int rbd_init_disk(struct rbd_device *rbd_dev)
5007 {
5008         struct gendisk *disk;
5009         struct request_queue *q;
5010         unsigned int objset_bytes =
5011             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5012         int err;
5013
5014         /* create gendisk info */
5015         disk = alloc_disk(single_major ?
5016                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5017                           RBD_MINORS_PER_MAJOR);
5018         if (!disk)
5019                 return -ENOMEM;
5020
5021         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5022                  rbd_dev->dev_id);
5023         disk->major = rbd_dev->major;
5024         disk->first_minor = rbd_dev->minor;
5025         if (single_major)
5026                 disk->flags |= GENHD_FL_EXT_DEVT;
5027         disk->fops = &rbd_bd_ops;
5028         disk->private_data = rbd_dev;
5029
5030         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5031         rbd_dev->tag_set.ops = &rbd_mq_ops;
5032         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5033         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5034         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5035         rbd_dev->tag_set.nr_hw_queues = 1;
5036         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
5037
5038         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5039         if (err)
5040                 goto out_disk;
5041
5042         q = blk_mq_init_queue(&rbd_dev->tag_set);
5043         if (IS_ERR(q)) {
5044                 err = PTR_ERR(q);
5045                 goto out_tag_set;
5046         }
5047
5048         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5049         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5050
5051         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5052         q->limits.max_sectors = queue_max_hw_sectors(q);
5053         blk_queue_max_segments(q, USHRT_MAX);
5054         blk_queue_max_segment_size(q, UINT_MAX);
5055         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5056         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5057
5058         if (rbd_dev->opts->trim) {
5059                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5060                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5061                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5062                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5063         }
5064
5065         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5066                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5067
5068         /*
5069          * disk_release() expects a queue ref from add_disk() and will
5070          * put it.  Hold an extra ref until add_disk() is called.
5071          */
5072         WARN_ON(!blk_get_queue(q));
5073         disk->queue = q;
5074         q->queuedata = rbd_dev;
5075
5076         rbd_dev->disk = disk;
5077
5078         return 0;
5079 out_tag_set:
5080         blk_mq_free_tag_set(&rbd_dev->tag_set);
5081 out_disk:
5082         put_disk(disk);
5083         return err;
5084 }
5085
5086 /*
5087   sysfs
5088 */
5089
5090 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5091 {
5092         return container_of(dev, struct rbd_device, dev);
5093 }
5094
5095 static ssize_t rbd_size_show(struct device *dev,
5096                              struct device_attribute *attr, char *buf)
5097 {
5098         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5099
5100         return sprintf(buf, "%llu\n",
5101                 (unsigned long long)rbd_dev->mapping.size);
5102 }
5103
5104 static ssize_t rbd_features_show(struct device *dev,
5105                              struct device_attribute *attr, char *buf)
5106 {
5107         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5108
5109         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5110 }
5111
5112 static ssize_t rbd_major_show(struct device *dev,
5113                               struct device_attribute *attr, char *buf)
5114 {
5115         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5116
5117         if (rbd_dev->major)
5118                 return sprintf(buf, "%d\n", rbd_dev->major);
5119
5120         return sprintf(buf, "(none)\n");
5121 }
5122
5123 static ssize_t rbd_minor_show(struct device *dev,
5124                               struct device_attribute *attr, char *buf)
5125 {
5126         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127
5128         return sprintf(buf, "%d\n", rbd_dev->minor);
5129 }
5130
5131 static ssize_t rbd_client_addr_show(struct device *dev,
5132                                     struct device_attribute *attr, char *buf)
5133 {
5134         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5135         struct ceph_entity_addr *client_addr =
5136             ceph_client_addr(rbd_dev->rbd_client->client);
5137
5138         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5139                        le32_to_cpu(client_addr->nonce));
5140 }
5141
5142 static ssize_t rbd_client_id_show(struct device *dev,
5143                                   struct device_attribute *attr, char *buf)
5144 {
5145         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5146
5147         return sprintf(buf, "client%lld\n",
5148                        ceph_client_gid(rbd_dev->rbd_client->client));
5149 }
5150
5151 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5152                                      struct device_attribute *attr, char *buf)
5153 {
5154         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5155
5156         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5157 }
5158
5159 static ssize_t rbd_config_info_show(struct device *dev,
5160                                     struct device_attribute *attr, char *buf)
5161 {
5162         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5163
5164         return sprintf(buf, "%s\n", rbd_dev->config_info);
5165 }
5166
5167 static ssize_t rbd_pool_show(struct device *dev,
5168                              struct device_attribute *attr, char *buf)
5169 {
5170         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5171
5172         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5173 }
5174
5175 static ssize_t rbd_pool_id_show(struct device *dev,
5176                              struct device_attribute *attr, char *buf)
5177 {
5178         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5179
5180         return sprintf(buf, "%llu\n",
5181                         (unsigned long long) rbd_dev->spec->pool_id);
5182 }
5183
5184 static ssize_t rbd_pool_ns_show(struct device *dev,
5185                                 struct device_attribute *attr, char *buf)
5186 {
5187         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5188
5189         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5190 }
5191
5192 static ssize_t rbd_name_show(struct device *dev,
5193                              struct device_attribute *attr, char *buf)
5194 {
5195         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5196
5197         if (rbd_dev->spec->image_name)
5198                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5199
5200         return sprintf(buf, "(unknown)\n");
5201 }
5202
5203 static ssize_t rbd_image_id_show(struct device *dev,
5204                              struct device_attribute *attr, char *buf)
5205 {
5206         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5207
5208         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5209 }
5210
5211 /*
5212  * Shows the name of the currently-mapped snapshot (or
5213  * RBD_SNAP_HEAD_NAME for the base image).
5214  */
5215 static ssize_t rbd_snap_show(struct device *dev,
5216                              struct device_attribute *attr,
5217                              char *buf)
5218 {
5219         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5220
5221         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5222 }
5223
5224 static ssize_t rbd_snap_id_show(struct device *dev,
5225                                 struct device_attribute *attr, char *buf)
5226 {
5227         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5228
5229         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5230 }
5231
5232 /*
5233  * For a v2 image, shows the chain of parent images, separated by empty
5234  * lines.  For v1 images or if there is no parent, shows "(no parent
5235  * image)".
5236  */
5237 static ssize_t rbd_parent_show(struct device *dev,
5238                                struct device_attribute *attr,
5239                                char *buf)
5240 {
5241         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5242         ssize_t count = 0;
5243
5244         if (!rbd_dev->parent)
5245                 return sprintf(buf, "(no parent image)\n");
5246
5247         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5248                 struct rbd_spec *spec = rbd_dev->parent_spec;
5249
5250                 count += sprintf(&buf[count], "%s"
5251                             "pool_id %llu\npool_name %s\n"
5252                             "pool_ns %s\n"
5253                             "image_id %s\nimage_name %s\n"
5254                             "snap_id %llu\nsnap_name %s\n"
5255                             "overlap %llu\n",
5256                             !count ? "" : "\n", /* first? */
5257                             spec->pool_id, spec->pool_name,
5258                             spec->pool_ns ?: "",
5259                             spec->image_id, spec->image_name ?: "(unknown)",
5260                             spec->snap_id, spec->snap_name,
5261                             rbd_dev->parent_overlap);
5262         }
5263
5264         return count;
5265 }
5266
5267 static ssize_t rbd_image_refresh(struct device *dev,
5268                                  struct device_attribute *attr,
5269                                  const char *buf,
5270                                  size_t size)
5271 {
5272         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5273         int ret;
5274
5275         ret = rbd_dev_refresh(rbd_dev);
5276         if (ret)
5277                 return ret;
5278
5279         return size;
5280 }
5281
5282 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5283 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5284 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5285 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5286 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5287 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5288 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5289 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5290 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5291 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5292 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5293 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5294 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5295 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5296 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5297 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5298 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5299
5300 static struct attribute *rbd_attrs[] = {
5301         &dev_attr_size.attr,
5302         &dev_attr_features.attr,
5303         &dev_attr_major.attr,
5304         &dev_attr_minor.attr,
5305         &dev_attr_client_addr.attr,
5306         &dev_attr_client_id.attr,
5307         &dev_attr_cluster_fsid.attr,
5308         &dev_attr_config_info.attr,
5309         &dev_attr_pool.attr,
5310         &dev_attr_pool_id.attr,
5311         &dev_attr_pool_ns.attr,
5312         &dev_attr_name.attr,
5313         &dev_attr_image_id.attr,
5314         &dev_attr_current_snap.attr,
5315         &dev_attr_snap_id.attr,
5316         &dev_attr_parent.attr,
5317         &dev_attr_refresh.attr,
5318         NULL
5319 };
5320
5321 static struct attribute_group rbd_attr_group = {
5322         .attrs = rbd_attrs,
5323 };
5324
5325 static const struct attribute_group *rbd_attr_groups[] = {
5326         &rbd_attr_group,
5327         NULL
5328 };
5329
5330 static void rbd_dev_release(struct device *dev);
5331
5332 static const struct device_type rbd_device_type = {
5333         .name           = "rbd",
5334         .groups         = rbd_attr_groups,
5335         .release        = rbd_dev_release,
5336 };
5337
5338 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5339 {
5340         kref_get(&spec->kref);
5341
5342         return spec;
5343 }
5344
5345 static void rbd_spec_free(struct kref *kref);
5346 static void rbd_spec_put(struct rbd_spec *spec)
5347 {
5348         if (spec)
5349                 kref_put(&spec->kref, rbd_spec_free);
5350 }
5351
5352 static struct rbd_spec *rbd_spec_alloc(void)
5353 {
5354         struct rbd_spec *spec;
5355
5356         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5357         if (!spec)
5358                 return NULL;
5359
5360         spec->pool_id = CEPH_NOPOOL;
5361         spec->snap_id = CEPH_NOSNAP;
5362         kref_init(&spec->kref);
5363
5364         return spec;
5365 }
5366
5367 static void rbd_spec_free(struct kref *kref)
5368 {
5369         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5370
5371         kfree(spec->pool_name);
5372         kfree(spec->pool_ns);
5373         kfree(spec->image_id);
5374         kfree(spec->image_name);
5375         kfree(spec->snap_name);
5376         kfree(spec);
5377 }
5378
5379 static void rbd_dev_free(struct rbd_device *rbd_dev)
5380 {
5381         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5382         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5383
5384         ceph_oid_destroy(&rbd_dev->header_oid);
5385         ceph_oloc_destroy(&rbd_dev->header_oloc);
5386         kfree(rbd_dev->config_info);
5387
5388         rbd_put_client(rbd_dev->rbd_client);
5389         rbd_spec_put(rbd_dev->spec);
5390         kfree(rbd_dev->opts);
5391         kfree(rbd_dev);
5392 }
5393
5394 static void rbd_dev_release(struct device *dev)
5395 {
5396         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5397         bool need_put = !!rbd_dev->opts;
5398
5399         if (need_put) {
5400                 destroy_workqueue(rbd_dev->task_wq);
5401                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5402         }
5403
5404         rbd_dev_free(rbd_dev);
5405
5406         /*
5407          * This is racy, but way better than putting module outside of
5408          * the release callback.  The race window is pretty small, so
5409          * doing something similar to dm (dm-builtin.c) is overkill.
5410          */
5411         if (need_put)
5412                 module_put(THIS_MODULE);
5413 }
5414
5415 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5416                                            struct rbd_spec *spec)
5417 {
5418         struct rbd_device *rbd_dev;
5419
5420         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5421         if (!rbd_dev)
5422                 return NULL;
5423
5424         spin_lock_init(&rbd_dev->lock);
5425         INIT_LIST_HEAD(&rbd_dev->node);
5426         init_rwsem(&rbd_dev->header_rwsem);
5427
5428         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5429         ceph_oid_init(&rbd_dev->header_oid);
5430         rbd_dev->header_oloc.pool = spec->pool_id;
5431         if (spec->pool_ns) {
5432                 WARN_ON(!*spec->pool_ns);
5433                 rbd_dev->header_oloc.pool_ns =
5434                     ceph_find_or_create_string(spec->pool_ns,
5435                                                strlen(spec->pool_ns));
5436         }
5437
5438         mutex_init(&rbd_dev->watch_mutex);
5439         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5440         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5441
5442         init_rwsem(&rbd_dev->lock_rwsem);
5443         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5444         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5445         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5446         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5447         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5448         spin_lock_init(&rbd_dev->lock_lists_lock);
5449         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5450         INIT_LIST_HEAD(&rbd_dev->running_list);
5451         init_completion(&rbd_dev->acquire_wait);
5452         init_completion(&rbd_dev->releasing_wait);
5453
5454         spin_lock_init(&rbd_dev->object_map_lock);
5455
5456         rbd_dev->dev.bus = &rbd_bus_type;
5457         rbd_dev->dev.type = &rbd_device_type;
5458         rbd_dev->dev.parent = &rbd_root_dev;
5459         device_initialize(&rbd_dev->dev);
5460
5461         rbd_dev->rbd_client = rbdc;
5462         rbd_dev->spec = spec;
5463
5464         return rbd_dev;
5465 }
5466
5467 /*
5468  * Create a mapping rbd_dev.
5469  */
5470 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5471                                          struct rbd_spec *spec,
5472                                          struct rbd_options *opts)
5473 {
5474         struct rbd_device *rbd_dev;
5475
5476         rbd_dev = __rbd_dev_create(rbdc, spec);
5477         if (!rbd_dev)
5478                 return NULL;
5479
5480         rbd_dev->opts = opts;
5481
5482         /* get an id and fill in device name */
5483         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5484                                          minor_to_rbd_dev_id(1 << MINORBITS),
5485                                          GFP_KERNEL);
5486         if (rbd_dev->dev_id < 0)
5487                 goto fail_rbd_dev;
5488
5489         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5490         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5491                                                    rbd_dev->name);
5492         if (!rbd_dev->task_wq)
5493                 goto fail_dev_id;
5494
5495         /* we have a ref from do_rbd_add() */
5496         __module_get(THIS_MODULE);
5497
5498         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5499         return rbd_dev;
5500
5501 fail_dev_id:
5502         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5503 fail_rbd_dev:
5504         rbd_dev_free(rbd_dev);
5505         return NULL;
5506 }
5507
5508 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5509 {
5510         if (rbd_dev)
5511                 put_device(&rbd_dev->dev);
5512 }
5513
5514 /*
5515  * Get the size and object order for an image snapshot, or if
5516  * snap_id is CEPH_NOSNAP, gets this information for the base
5517  * image.
5518  */
5519 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5520                                 u8 *order, u64 *snap_size)
5521 {
5522         __le64 snapid = cpu_to_le64(snap_id);
5523         int ret;
5524         struct {
5525                 u8 order;
5526                 __le64 size;
5527         } __attribute__ ((packed)) size_buf = { 0 };
5528
5529         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5530                                   &rbd_dev->header_oloc, "get_size",
5531                                   &snapid, sizeof(snapid),
5532                                   &size_buf, sizeof(size_buf));
5533         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5534         if (ret < 0)
5535                 return ret;
5536         if (ret < sizeof (size_buf))
5537                 return -ERANGE;
5538
5539         if (order) {
5540                 *order = size_buf.order;
5541                 dout("  order %u", (unsigned int)*order);
5542         }
5543         *snap_size = le64_to_cpu(size_buf.size);
5544
5545         dout("  snap_id 0x%016llx snap_size = %llu\n",
5546                 (unsigned long long)snap_id,
5547                 (unsigned long long)*snap_size);
5548
5549         return 0;
5550 }
5551
5552 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5553 {
5554         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5555                                         &rbd_dev->header.obj_order,
5556                                         &rbd_dev->header.image_size);
5557 }
5558
5559 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5560 {
5561         size_t size;
5562         void *reply_buf;
5563         int ret;
5564         void *p;
5565
5566         /* Response will be an encoded string, which includes a length */
5567         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5568         reply_buf = kzalloc(size, GFP_KERNEL);
5569         if (!reply_buf)
5570                 return -ENOMEM;
5571
5572         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5573                                   &rbd_dev->header_oloc, "get_object_prefix",
5574                                   NULL, 0, reply_buf, size);
5575         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5576         if (ret < 0)
5577                 goto out;
5578
5579         p = reply_buf;
5580         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5581                                                 p + ret, NULL, GFP_NOIO);
5582         ret = 0;
5583
5584         if (IS_ERR(rbd_dev->header.object_prefix)) {
5585                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5586                 rbd_dev->header.object_prefix = NULL;
5587         } else {
5588                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5589         }
5590 out:
5591         kfree(reply_buf);
5592
5593         return ret;
5594 }
5595
5596 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5597                                      bool read_only, u64 *snap_features)
5598 {
5599         struct {
5600                 __le64 snap_id;
5601                 u8 read_only;
5602         } features_in;
5603         struct {
5604                 __le64 features;
5605                 __le64 incompat;
5606         } __attribute__ ((packed)) features_buf = { 0 };
5607         u64 unsup;
5608         int ret;
5609
5610         features_in.snap_id = cpu_to_le64(snap_id);
5611         features_in.read_only = read_only;
5612
5613         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5614                                   &rbd_dev->header_oloc, "get_features",
5615                                   &features_in, sizeof(features_in),
5616                                   &features_buf, sizeof(features_buf));
5617         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5618         if (ret < 0)
5619                 return ret;
5620         if (ret < sizeof (features_buf))
5621                 return -ERANGE;
5622
5623         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5624         if (unsup) {
5625                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5626                          unsup);
5627                 return -ENXIO;
5628         }
5629
5630         *snap_features = le64_to_cpu(features_buf.features);
5631
5632         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5633                 (unsigned long long)snap_id,
5634                 (unsigned long long)*snap_features,
5635                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5636
5637         return 0;
5638 }
5639
5640 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5641 {
5642         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5643                                          rbd_is_ro(rbd_dev),
5644                                          &rbd_dev->header.features);
5645 }
5646
5647 /*
5648  * These are generic image flags, but since they are used only for
5649  * object map, store them in rbd_dev->object_map_flags.
5650  *
5651  * For the same reason, this function is called only on object map
5652  * (re)load and not on header refresh.
5653  */
5654 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5655 {
5656         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5657         __le64 flags;
5658         int ret;
5659
5660         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5661                                   &rbd_dev->header_oloc, "get_flags",
5662                                   &snapid, sizeof(snapid),
5663                                   &flags, sizeof(flags));
5664         if (ret < 0)
5665                 return ret;
5666         if (ret < sizeof(flags))
5667                 return -EBADMSG;
5668
5669         rbd_dev->object_map_flags = le64_to_cpu(flags);
5670         return 0;
5671 }
5672
5673 struct parent_image_info {
5674         u64             pool_id;
5675         const char      *pool_ns;
5676         const char      *image_id;
5677         u64             snap_id;
5678
5679         bool            has_overlap;
5680         u64             overlap;
5681 };
5682
5683 /*
5684  * The caller is responsible for @pii.
5685  */
5686 static int decode_parent_image_spec(void **p, void *end,
5687                                     struct parent_image_info *pii)
5688 {
5689         u8 struct_v;
5690         u32 struct_len;
5691         int ret;
5692
5693         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5694                                   &struct_v, &struct_len);
5695         if (ret)
5696                 return ret;
5697
5698         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5699         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5700         if (IS_ERR(pii->pool_ns)) {
5701                 ret = PTR_ERR(pii->pool_ns);
5702                 pii->pool_ns = NULL;
5703                 return ret;
5704         }
5705         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5706         if (IS_ERR(pii->image_id)) {
5707                 ret = PTR_ERR(pii->image_id);
5708                 pii->image_id = NULL;
5709                 return ret;
5710         }
5711         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5712         return 0;
5713
5714 e_inval:
5715         return -EINVAL;
5716 }
5717
5718 static int __get_parent_info(struct rbd_device *rbd_dev,
5719                              struct page *req_page,
5720                              struct page *reply_page,
5721                              struct parent_image_info *pii)
5722 {
5723         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5724         size_t reply_len = PAGE_SIZE;
5725         void *p, *end;
5726         int ret;
5727
5728         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5729                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5730                              req_page, sizeof(u64), &reply_page, &reply_len);
5731         if (ret)
5732                 return ret == -EOPNOTSUPP ? 1 : ret;
5733
5734         p = page_address(reply_page);
5735         end = p + reply_len;
5736         ret = decode_parent_image_spec(&p, end, pii);
5737         if (ret)
5738                 return ret;
5739
5740         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5741                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5742                              req_page, sizeof(u64), &reply_page, &reply_len);
5743         if (ret)
5744                 return ret;
5745
5746         p = page_address(reply_page);
5747         end = p + reply_len;
5748         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5749         if (pii->has_overlap)
5750                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5751
5752         return 0;
5753
5754 e_inval:
5755         return -EINVAL;
5756 }
5757
5758 /*
5759  * The caller is responsible for @pii.
5760  */
5761 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5762                                     struct page *req_page,
5763                                     struct page *reply_page,
5764                                     struct parent_image_info *pii)
5765 {
5766         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5767         size_t reply_len = PAGE_SIZE;
5768         void *p, *end;
5769         int ret;
5770
5771         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5772                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5773                              req_page, sizeof(u64), &reply_page, &reply_len);
5774         if (ret)
5775                 return ret;
5776
5777         p = page_address(reply_page);
5778         end = p + reply_len;
5779         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5780         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5781         if (IS_ERR(pii->image_id)) {
5782                 ret = PTR_ERR(pii->image_id);
5783                 pii->image_id = NULL;
5784                 return ret;
5785         }
5786         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5787         pii->has_overlap = true;
5788         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5789
5790         return 0;
5791
5792 e_inval:
5793         return -EINVAL;
5794 }
5795
5796 static int get_parent_info(struct rbd_device *rbd_dev,
5797                            struct parent_image_info *pii)
5798 {
5799         struct page *req_page, *reply_page;
5800         void *p;
5801         int ret;
5802
5803         req_page = alloc_page(GFP_KERNEL);
5804         if (!req_page)
5805                 return -ENOMEM;
5806
5807         reply_page = alloc_page(GFP_KERNEL);
5808         if (!reply_page) {
5809                 __free_page(req_page);
5810                 return -ENOMEM;
5811         }
5812
5813         p = page_address(req_page);
5814         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5815         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5816         if (ret > 0)
5817                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5818                                                pii);
5819
5820         __free_page(req_page);
5821         __free_page(reply_page);
5822         return ret;
5823 }
5824
5825 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5826 {
5827         struct rbd_spec *parent_spec;
5828         struct parent_image_info pii = { 0 };
5829         int ret;
5830
5831         parent_spec = rbd_spec_alloc();
5832         if (!parent_spec)
5833                 return -ENOMEM;
5834
5835         ret = get_parent_info(rbd_dev, &pii);
5836         if (ret)
5837                 goto out_err;
5838
5839         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5840              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5841              pii.has_overlap, pii.overlap);
5842
5843         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5844                 /*
5845                  * Either the parent never existed, or we have
5846                  * record of it but the image got flattened so it no
5847                  * longer has a parent.  When the parent of a
5848                  * layered image disappears we immediately set the
5849                  * overlap to 0.  The effect of this is that all new
5850                  * requests will be treated as if the image had no
5851                  * parent.
5852                  *
5853                  * If !pii.has_overlap, the parent image spec is not
5854                  * applicable.  It's there to avoid duplication in each
5855                  * snapshot record.
5856                  */
5857                 if (rbd_dev->parent_overlap) {
5858                         rbd_dev->parent_overlap = 0;
5859                         rbd_dev_parent_put(rbd_dev);
5860                         pr_info("%s: clone image has been flattened\n",
5861                                 rbd_dev->disk->disk_name);
5862                 }
5863
5864                 goto out;       /* No parent?  No problem. */
5865         }
5866
5867         /* The ceph file layout needs to fit pool id in 32 bits */
5868
5869         ret = -EIO;
5870         if (pii.pool_id > (u64)U32_MAX) {
5871                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5872                         (unsigned long long)pii.pool_id, U32_MAX);
5873                 goto out_err;
5874         }
5875
5876         /*
5877          * The parent won't change (except when the clone is
5878          * flattened, already handled that).  So we only need to
5879          * record the parent spec we have not already done so.
5880          */
5881         if (!rbd_dev->parent_spec) {
5882                 parent_spec->pool_id = pii.pool_id;
5883                 if (pii.pool_ns && *pii.pool_ns) {
5884                         parent_spec->pool_ns = pii.pool_ns;
5885                         pii.pool_ns = NULL;
5886                 }
5887                 parent_spec->image_id = pii.image_id;
5888                 pii.image_id = NULL;
5889                 parent_spec->snap_id = pii.snap_id;
5890
5891                 rbd_dev->parent_spec = parent_spec;
5892                 parent_spec = NULL;     /* rbd_dev now owns this */
5893         }
5894
5895         /*
5896          * We always update the parent overlap.  If it's zero we issue
5897          * a warning, as we will proceed as if there was no parent.
5898          */
5899         if (!pii.overlap) {
5900                 if (parent_spec) {
5901                         /* refresh, careful to warn just once */
5902                         if (rbd_dev->parent_overlap)
5903                                 rbd_warn(rbd_dev,
5904                                     "clone now standalone (overlap became 0)");
5905                 } else {
5906                         /* initial probe */
5907                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5908                 }
5909         }
5910         rbd_dev->parent_overlap = pii.overlap;
5911
5912 out:
5913         ret = 0;
5914 out_err:
5915         kfree(pii.pool_ns);
5916         kfree(pii.image_id);
5917         rbd_spec_put(parent_spec);
5918         return ret;
5919 }
5920
5921 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5922 {
5923         struct {
5924                 __le64 stripe_unit;
5925                 __le64 stripe_count;
5926         } __attribute__ ((packed)) striping_info_buf = { 0 };
5927         size_t size = sizeof (striping_info_buf);
5928         void *p;
5929         int ret;
5930
5931         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5932                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5933                                 NULL, 0, &striping_info_buf, size);
5934         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5935         if (ret < 0)
5936                 return ret;
5937         if (ret < size)
5938                 return -ERANGE;
5939
5940         p = &striping_info_buf;
5941         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5942         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5943         return 0;
5944 }
5945
5946 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5947 {
5948         __le64 data_pool_id;
5949         int ret;
5950
5951         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5952                                   &rbd_dev->header_oloc, "get_data_pool",
5953                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5954         if (ret < 0)
5955                 return ret;
5956         if (ret < sizeof(data_pool_id))
5957                 return -EBADMSG;
5958
5959         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5960         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5961         return 0;
5962 }
5963
5964 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5965 {
5966         CEPH_DEFINE_OID_ONSTACK(oid);
5967         size_t image_id_size;
5968         char *image_id;
5969         void *p;
5970         void *end;
5971         size_t size;
5972         void *reply_buf = NULL;
5973         size_t len = 0;
5974         char *image_name = NULL;
5975         int ret;
5976
5977         rbd_assert(!rbd_dev->spec->image_name);
5978
5979         len = strlen(rbd_dev->spec->image_id);
5980         image_id_size = sizeof (__le32) + len;
5981         image_id = kmalloc(image_id_size, GFP_KERNEL);
5982         if (!image_id)
5983                 return NULL;
5984
5985         p = image_id;
5986         end = image_id + image_id_size;
5987         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5988
5989         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5990         reply_buf = kmalloc(size, GFP_KERNEL);
5991         if (!reply_buf)
5992                 goto out;
5993
5994         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5995         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5996                                   "dir_get_name", image_id, image_id_size,
5997                                   reply_buf, size);
5998         if (ret < 0)
5999                 goto out;
6000         p = reply_buf;
6001         end = reply_buf + ret;
6002
6003         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
6004         if (IS_ERR(image_name))
6005                 image_name = NULL;
6006         else
6007                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
6008 out:
6009         kfree(reply_buf);
6010         kfree(image_id);
6011
6012         return image_name;
6013 }
6014
6015 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6016 {
6017         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6018         const char *snap_name;
6019         u32 which = 0;
6020
6021         /* Skip over names until we find the one we are looking for */
6022
6023         snap_name = rbd_dev->header.snap_names;
6024         while (which < snapc->num_snaps) {
6025                 if (!strcmp(name, snap_name))
6026                         return snapc->snaps[which];
6027                 snap_name += strlen(snap_name) + 1;
6028                 which++;
6029         }
6030         return CEPH_NOSNAP;
6031 }
6032
6033 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6034 {
6035         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6036         u32 which;
6037         bool found = false;
6038         u64 snap_id;
6039
6040         for (which = 0; !found && which < snapc->num_snaps; which++) {
6041                 const char *snap_name;
6042
6043                 snap_id = snapc->snaps[which];
6044                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6045                 if (IS_ERR(snap_name)) {
6046                         /* ignore no-longer existing snapshots */
6047                         if (PTR_ERR(snap_name) == -ENOENT)
6048                                 continue;
6049                         else
6050                                 break;
6051                 }
6052                 found = !strcmp(name, snap_name);
6053                 kfree(snap_name);
6054         }
6055         return found ? snap_id : CEPH_NOSNAP;
6056 }
6057
6058 /*
6059  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6060  * no snapshot by that name is found, or if an error occurs.
6061  */
6062 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6063 {
6064         if (rbd_dev->image_format == 1)
6065                 return rbd_v1_snap_id_by_name(rbd_dev, name);
6066
6067         return rbd_v2_snap_id_by_name(rbd_dev, name);
6068 }
6069
6070 /*
6071  * An image being mapped will have everything but the snap id.
6072  */
6073 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6074 {
6075         struct rbd_spec *spec = rbd_dev->spec;
6076
6077         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6078         rbd_assert(spec->image_id && spec->image_name);
6079         rbd_assert(spec->snap_name);
6080
6081         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6082                 u64 snap_id;
6083
6084                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6085                 if (snap_id == CEPH_NOSNAP)
6086                         return -ENOENT;
6087
6088                 spec->snap_id = snap_id;
6089         } else {
6090                 spec->snap_id = CEPH_NOSNAP;
6091         }
6092
6093         return 0;
6094 }
6095
6096 /*
6097  * A parent image will have all ids but none of the names.
6098  *
6099  * All names in an rbd spec are dynamically allocated.  It's OK if we
6100  * can't figure out the name for an image id.
6101  */
6102 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6103 {
6104         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6105         struct rbd_spec *spec = rbd_dev->spec;
6106         const char *pool_name;
6107         const char *image_name;
6108         const char *snap_name;
6109         int ret;
6110
6111         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6112         rbd_assert(spec->image_id);
6113         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6114
6115         /* Get the pool name; we have to make our own copy of this */
6116
6117         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6118         if (!pool_name) {
6119                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6120                 return -EIO;
6121         }
6122         pool_name = kstrdup(pool_name, GFP_KERNEL);
6123         if (!pool_name)
6124                 return -ENOMEM;
6125
6126         /* Fetch the image name; tolerate failure here */
6127
6128         image_name = rbd_dev_image_name(rbd_dev);
6129         if (!image_name)
6130                 rbd_warn(rbd_dev, "unable to get image name");
6131
6132         /* Fetch the snapshot name */
6133
6134         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6135         if (IS_ERR(snap_name)) {
6136                 ret = PTR_ERR(snap_name);
6137                 goto out_err;
6138         }
6139
6140         spec->pool_name = pool_name;
6141         spec->image_name = image_name;
6142         spec->snap_name = snap_name;
6143
6144         return 0;
6145
6146 out_err:
6147         kfree(image_name);
6148         kfree(pool_name);
6149         return ret;
6150 }
6151
6152 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6153 {
6154         size_t size;
6155         int ret;
6156         void *reply_buf;
6157         void *p;
6158         void *end;
6159         u64 seq;
6160         u32 snap_count;
6161         struct ceph_snap_context *snapc;
6162         u32 i;
6163
6164         /*
6165          * We'll need room for the seq value (maximum snapshot id),
6166          * snapshot count, and array of that many snapshot ids.
6167          * For now we have a fixed upper limit on the number we're
6168          * prepared to receive.
6169          */
6170         size = sizeof (__le64) + sizeof (__le32) +
6171                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6172         reply_buf = kzalloc(size, GFP_KERNEL);
6173         if (!reply_buf)
6174                 return -ENOMEM;
6175
6176         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6177                                   &rbd_dev->header_oloc, "get_snapcontext",
6178                                   NULL, 0, reply_buf, size);
6179         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6180         if (ret < 0)
6181                 goto out;
6182
6183         p = reply_buf;
6184         end = reply_buf + ret;
6185         ret = -ERANGE;
6186         ceph_decode_64_safe(&p, end, seq, out);
6187         ceph_decode_32_safe(&p, end, snap_count, out);
6188
6189         /*
6190          * Make sure the reported number of snapshot ids wouldn't go
6191          * beyond the end of our buffer.  But before checking that,
6192          * make sure the computed size of the snapshot context we
6193          * allocate is representable in a size_t.
6194          */
6195         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6196                                  / sizeof (u64)) {
6197                 ret = -EINVAL;
6198                 goto out;
6199         }
6200         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6201                 goto out;
6202         ret = 0;
6203
6204         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6205         if (!snapc) {
6206                 ret = -ENOMEM;
6207                 goto out;
6208         }
6209         snapc->seq = seq;
6210         for (i = 0; i < snap_count; i++)
6211                 snapc->snaps[i] = ceph_decode_64(&p);
6212
6213         ceph_put_snap_context(rbd_dev->header.snapc);
6214         rbd_dev->header.snapc = snapc;
6215
6216         dout("  snap context seq = %llu, snap_count = %u\n",
6217                 (unsigned long long)seq, (unsigned int)snap_count);
6218 out:
6219         kfree(reply_buf);
6220
6221         return ret;
6222 }
6223
6224 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6225                                         u64 snap_id)
6226 {
6227         size_t size;
6228         void *reply_buf;
6229         __le64 snapid;
6230         int ret;
6231         void *p;
6232         void *end;
6233         char *snap_name;
6234
6235         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6236         reply_buf = kmalloc(size, GFP_KERNEL);
6237         if (!reply_buf)
6238                 return ERR_PTR(-ENOMEM);
6239
6240         snapid = cpu_to_le64(snap_id);
6241         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6242                                   &rbd_dev->header_oloc, "get_snapshot_name",
6243                                   &snapid, sizeof(snapid), reply_buf, size);
6244         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6245         if (ret < 0) {
6246                 snap_name = ERR_PTR(ret);
6247                 goto out;
6248         }
6249
6250         p = reply_buf;
6251         end = reply_buf + ret;
6252         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6253         if (IS_ERR(snap_name))
6254                 goto out;
6255
6256         dout("  snap_id 0x%016llx snap_name = %s\n",
6257                 (unsigned long long)snap_id, snap_name);
6258 out:
6259         kfree(reply_buf);
6260
6261         return snap_name;
6262 }
6263
6264 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6265 {
6266         bool first_time = rbd_dev->header.object_prefix == NULL;
6267         int ret;
6268
6269         ret = rbd_dev_v2_image_size(rbd_dev);
6270         if (ret)
6271                 return ret;
6272
6273         if (first_time) {
6274                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6275                 if (ret)
6276                         return ret;
6277         }
6278
6279         ret = rbd_dev_v2_snap_context(rbd_dev);
6280         if (ret && first_time) {
6281                 kfree(rbd_dev->header.object_prefix);
6282                 rbd_dev->header.object_prefix = NULL;
6283         }
6284
6285         return ret;
6286 }
6287
6288 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6289 {
6290         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6291
6292         if (rbd_dev->image_format == 1)
6293                 return rbd_dev_v1_header_info(rbd_dev);
6294
6295         return rbd_dev_v2_header_info(rbd_dev);
6296 }
6297
6298 /*
6299  * Skips over white space at *buf, and updates *buf to point to the
6300  * first found non-space character (if any). Returns the length of
6301  * the token (string of non-white space characters) found.  Note
6302  * that *buf must be terminated with '\0'.
6303  */
6304 static inline size_t next_token(const char **buf)
6305 {
6306         /*
6307         * These are the characters that produce nonzero for
6308         * isspace() in the "C" and "POSIX" locales.
6309         */
6310         const char *spaces = " \f\n\r\t\v";
6311
6312         *buf += strspn(*buf, spaces);   /* Find start of token */
6313
6314         return strcspn(*buf, spaces);   /* Return token length */
6315 }
6316
6317 /*
6318  * Finds the next token in *buf, dynamically allocates a buffer big
6319  * enough to hold a copy of it, and copies the token into the new
6320  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6321  * that a duplicate buffer is created even for a zero-length token.
6322  *
6323  * Returns a pointer to the newly-allocated duplicate, or a null
6324  * pointer if memory for the duplicate was not available.  If
6325  * the lenp argument is a non-null pointer, the length of the token
6326  * (not including the '\0') is returned in *lenp.
6327  *
6328  * If successful, the *buf pointer will be updated to point beyond
6329  * the end of the found token.
6330  *
6331  * Note: uses GFP_KERNEL for allocation.
6332  */
6333 static inline char *dup_token(const char **buf, size_t *lenp)
6334 {
6335         char *dup;
6336         size_t len;
6337
6338         len = next_token(buf);
6339         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6340         if (!dup)
6341                 return NULL;
6342         *(dup + len) = '\0';
6343         *buf += len;
6344
6345         if (lenp)
6346                 *lenp = len;
6347
6348         return dup;
6349 }
6350
6351 static int rbd_parse_param(struct fs_parameter *param,
6352                             struct rbd_parse_opts_ctx *pctx)
6353 {
6354         struct rbd_options *opt = pctx->opts;
6355         struct fs_parse_result result;
6356         int token, ret;
6357
6358         ret = ceph_parse_param(param, pctx->copts, NULL);
6359         if (ret != -ENOPARAM)
6360                 return ret;
6361
6362         token = fs_parse(NULL, &rbd_parameters, param, &result);
6363         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6364         if (token < 0) {
6365                 if (token == -ENOPARAM) {
6366                         return invalf(NULL, "rbd: Unknown parameter '%s'",
6367                                       param->key);
6368                 }
6369                 return token;
6370         }
6371
6372         switch (token) {
6373         case Opt_queue_depth:
6374                 if (result.uint_32 < 1)
6375                         goto out_of_range;
6376                 opt->queue_depth = result.uint_32;
6377                 break;
6378         case Opt_alloc_size:
6379                 if (result.uint_32 < SECTOR_SIZE)
6380                         goto out_of_range;
6381                 if (!is_power_of_2(result.uint_32)) {
6382                         return invalf(NULL, "rbd: alloc_size must be a power of 2");
6383                 }
6384                 opt->alloc_size = result.uint_32;
6385                 break;
6386         case Opt_lock_timeout:
6387                 /* 0 is "wait forever" (i.e. infinite timeout) */
6388                 if (result.uint_32 > INT_MAX / 1000)
6389                         goto out_of_range;
6390                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6391                 break;
6392         case Opt_pool_ns:
6393                 kfree(pctx->spec->pool_ns);
6394                 pctx->spec->pool_ns = param->string;
6395                 param->string = NULL;
6396                 break;
6397         case Opt_read_only:
6398                 opt->read_only = true;
6399                 break;
6400         case Opt_read_write:
6401                 opt->read_only = false;
6402                 break;
6403         case Opt_lock_on_read:
6404                 opt->lock_on_read = true;
6405                 break;
6406         case Opt_exclusive:
6407                 opt->exclusive = true;
6408                 break;
6409         case Opt_notrim:
6410                 opt->trim = false;
6411                 break;
6412         default:
6413                 BUG();
6414         }
6415
6416         return 0;
6417
6418 out_of_range:
6419         return invalf(NULL, "rbd: %s out of range", param->key);
6420 }
6421
6422 /*
6423  * This duplicates most of generic_parse_monolithic(), untying it from
6424  * fs_context and skipping standard superblock and security options.
6425  */
6426 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6427 {
6428         char *key;
6429         int ret = 0;
6430
6431         dout("%s '%s'\n", __func__, options);
6432         while ((key = strsep(&options, ",")) != NULL) {
6433                 if (*key) {
6434                         struct fs_parameter param = {
6435                                 .key    = key,
6436                                 .type   = fs_value_is_string,
6437                         };
6438                         char *value = strchr(key, '=');
6439                         size_t v_len = 0;
6440
6441                         if (value) {
6442                                 if (value == key)
6443                                         continue;
6444                                 *value++ = 0;
6445                                 v_len = strlen(value);
6446                         }
6447
6448
6449                         if (v_len > 0) {
6450                                 param.string = kmemdup_nul(value, v_len,
6451                                                            GFP_KERNEL);
6452                                 if (!param.string)
6453                                         return -ENOMEM;
6454                         }
6455                         param.size = v_len;
6456
6457                         ret = rbd_parse_param(&param, pctx);
6458                         kfree(param.string);
6459                         if (ret)
6460                                 break;
6461                 }
6462         }
6463
6464         return ret;
6465 }
6466
6467 /*
6468  * Parse the options provided for an "rbd add" (i.e., rbd image
6469  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6470  * and the data written is passed here via a NUL-terminated buffer.
6471  * Returns 0 if successful or an error code otherwise.
6472  *
6473  * The information extracted from these options is recorded in
6474  * the other parameters which return dynamically-allocated
6475  * structures:
6476  *  ceph_opts
6477  *      The address of a pointer that will refer to a ceph options
6478  *      structure.  Caller must release the returned pointer using
6479  *      ceph_destroy_options() when it is no longer needed.
6480  *  rbd_opts
6481  *      Address of an rbd options pointer.  Fully initialized by
6482  *      this function; caller must release with kfree().
6483  *  spec
6484  *      Address of an rbd image specification pointer.  Fully
6485  *      initialized by this function based on parsed options.
6486  *      Caller must release with rbd_spec_put().
6487  *
6488  * The options passed take this form:
6489  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6490  * where:
6491  *  <mon_addrs>
6492  *      A comma-separated list of one or more monitor addresses.
6493  *      A monitor address is an ip address, optionally followed
6494  *      by a port number (separated by a colon).
6495  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6496  *  <options>
6497  *      A comma-separated list of ceph and/or rbd options.
6498  *  <pool_name>
6499  *      The name of the rados pool containing the rbd image.
6500  *  <image_name>
6501  *      The name of the image in that pool to map.
6502  *  <snap_id>
6503  *      An optional snapshot id.  If provided, the mapping will
6504  *      present data from the image at the time that snapshot was
6505  *      created.  The image head is used if no snapshot id is
6506  *      provided.  Snapshot mappings are always read-only.
6507  */
6508 static int rbd_add_parse_args(const char *buf,
6509                                 struct ceph_options **ceph_opts,
6510                                 struct rbd_options **opts,
6511                                 struct rbd_spec **rbd_spec)
6512 {
6513         size_t len;
6514         char *options;
6515         const char *mon_addrs;
6516         char *snap_name;
6517         size_t mon_addrs_size;
6518         struct rbd_parse_opts_ctx pctx = { 0 };
6519         int ret;
6520
6521         /* The first four tokens are required */
6522
6523         len = next_token(&buf);
6524         if (!len) {
6525                 rbd_warn(NULL, "no monitor address(es) provided");
6526                 return -EINVAL;
6527         }
6528         mon_addrs = buf;
6529         mon_addrs_size = len;
6530         buf += len;
6531
6532         ret = -EINVAL;
6533         options = dup_token(&buf, NULL);
6534         if (!options)
6535                 return -ENOMEM;
6536         if (!*options) {
6537                 rbd_warn(NULL, "no options provided");
6538                 goto out_err;
6539         }
6540
6541         pctx.spec = rbd_spec_alloc();
6542         if (!pctx.spec)
6543                 goto out_mem;
6544
6545         pctx.spec->pool_name = dup_token(&buf, NULL);
6546         if (!pctx.spec->pool_name)
6547                 goto out_mem;
6548         if (!*pctx.spec->pool_name) {
6549                 rbd_warn(NULL, "no pool name provided");
6550                 goto out_err;
6551         }
6552
6553         pctx.spec->image_name = dup_token(&buf, NULL);
6554         if (!pctx.spec->image_name)
6555                 goto out_mem;
6556         if (!*pctx.spec->image_name) {
6557                 rbd_warn(NULL, "no image name provided");
6558                 goto out_err;
6559         }
6560
6561         /*
6562          * Snapshot name is optional; default is to use "-"
6563          * (indicating the head/no snapshot).
6564          */
6565         len = next_token(&buf);
6566         if (!len) {
6567                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6568                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6569         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6570                 ret = -ENAMETOOLONG;
6571                 goto out_err;
6572         }
6573         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6574         if (!snap_name)
6575                 goto out_mem;
6576         *(snap_name + len) = '\0';
6577         pctx.spec->snap_name = snap_name;
6578
6579         pctx.copts = ceph_alloc_options();
6580         if (!pctx.copts)
6581                 goto out_mem;
6582
6583         /* Initialize all rbd options to the defaults */
6584
6585         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6586         if (!pctx.opts)
6587                 goto out_mem;
6588
6589         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6590         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6591         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6592         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6593         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6594         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6595         pctx.opts->trim = RBD_TRIM_DEFAULT;
6596
6597         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6598         if (ret)
6599                 goto out_err;
6600
6601         ret = rbd_parse_options(options, &pctx);
6602         if (ret)
6603                 goto out_err;
6604
6605         *ceph_opts = pctx.copts;
6606         *opts = pctx.opts;
6607         *rbd_spec = pctx.spec;
6608         kfree(options);
6609         return 0;
6610
6611 out_mem:
6612         ret = -ENOMEM;
6613 out_err:
6614         kfree(pctx.opts);
6615         ceph_destroy_options(pctx.copts);
6616         rbd_spec_put(pctx.spec);
6617         kfree(options);
6618         return ret;
6619 }
6620
6621 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6622 {
6623         down_write(&rbd_dev->lock_rwsem);
6624         if (__rbd_is_lock_owner(rbd_dev))
6625                 __rbd_release_lock(rbd_dev);
6626         up_write(&rbd_dev->lock_rwsem);
6627 }
6628
6629 /*
6630  * If the wait is interrupted, an error is returned even if the lock
6631  * was successfully acquired.  rbd_dev_image_unlock() will release it
6632  * if needed.
6633  */
6634 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6635 {
6636         long ret;
6637
6638         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6639                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6640                         return 0;
6641
6642                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6643                 return -EINVAL;
6644         }
6645
6646         if (rbd_is_ro(rbd_dev))
6647                 return 0;
6648
6649         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6650         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6651         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6652                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6653         if (ret > 0) {
6654                 ret = rbd_dev->acquire_err;
6655         } else {
6656                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6657                 if (!ret)
6658                         ret = -ETIMEDOUT;
6659         }
6660
6661         if (ret) {
6662                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6663                 return ret;
6664         }
6665
6666         /*
6667          * The lock may have been released by now, unless automatic lock
6668          * transitions are disabled.
6669          */
6670         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6671         return 0;
6672 }
6673
6674 /*
6675  * An rbd format 2 image has a unique identifier, distinct from the
6676  * name given to it by the user.  Internally, that identifier is
6677  * what's used to specify the names of objects related to the image.
6678  *
6679  * A special "rbd id" object is used to map an rbd image name to its
6680  * id.  If that object doesn't exist, then there is no v2 rbd image
6681  * with the supplied name.
6682  *
6683  * This function will record the given rbd_dev's image_id field if
6684  * it can be determined, and in that case will return 0.  If any
6685  * errors occur a negative errno will be returned and the rbd_dev's
6686  * image_id field will be unchanged (and should be NULL).
6687  */
6688 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6689 {
6690         int ret;
6691         size_t size;
6692         CEPH_DEFINE_OID_ONSTACK(oid);
6693         void *response;
6694         char *image_id;
6695
6696         /*
6697          * When probing a parent image, the image id is already
6698          * known (and the image name likely is not).  There's no
6699          * need to fetch the image id again in this case.  We
6700          * do still need to set the image format though.
6701          */
6702         if (rbd_dev->spec->image_id) {
6703                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6704
6705                 return 0;
6706         }
6707
6708         /*
6709          * First, see if the format 2 image id file exists, and if
6710          * so, get the image's persistent id from it.
6711          */
6712         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6713                                rbd_dev->spec->image_name);
6714         if (ret)
6715                 return ret;
6716
6717         dout("rbd id object name is %s\n", oid.name);
6718
6719         /* Response will be an encoded string, which includes a length */
6720         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6721         response = kzalloc(size, GFP_NOIO);
6722         if (!response) {
6723                 ret = -ENOMEM;
6724                 goto out;
6725         }
6726
6727         /* If it doesn't exist we'll assume it's a format 1 image */
6728
6729         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6730                                   "get_id", NULL, 0,
6731                                   response, size);
6732         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6733         if (ret == -ENOENT) {
6734                 image_id = kstrdup("", GFP_KERNEL);
6735                 ret = image_id ? 0 : -ENOMEM;
6736                 if (!ret)
6737                         rbd_dev->image_format = 1;
6738         } else if (ret >= 0) {
6739                 void *p = response;
6740
6741                 image_id = ceph_extract_encoded_string(&p, p + ret,
6742                                                 NULL, GFP_NOIO);
6743                 ret = PTR_ERR_OR_ZERO(image_id);
6744                 if (!ret)
6745                         rbd_dev->image_format = 2;
6746         }
6747
6748         if (!ret) {
6749                 rbd_dev->spec->image_id = image_id;
6750                 dout("image_id is %s\n", image_id);
6751         }
6752 out:
6753         kfree(response);
6754         ceph_oid_destroy(&oid);
6755         return ret;
6756 }
6757
6758 /*
6759  * Undo whatever state changes are made by v1 or v2 header info
6760  * call.
6761  */
6762 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6763 {
6764         struct rbd_image_header *header;
6765
6766         rbd_dev_parent_put(rbd_dev);
6767         rbd_object_map_free(rbd_dev);
6768         rbd_dev_mapping_clear(rbd_dev);
6769
6770         /* Free dynamic fields from the header, then zero it out */
6771
6772         header = &rbd_dev->header;
6773         ceph_put_snap_context(header->snapc);
6774         kfree(header->snap_sizes);
6775         kfree(header->snap_names);
6776         kfree(header->object_prefix);
6777         memset(header, 0, sizeof (*header));
6778 }
6779
6780 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6781 {
6782         int ret;
6783
6784         ret = rbd_dev_v2_object_prefix(rbd_dev);
6785         if (ret)
6786                 goto out_err;
6787
6788         /*
6789          * Get the and check features for the image.  Currently the
6790          * features are assumed to never change.
6791          */
6792         ret = rbd_dev_v2_features(rbd_dev);
6793         if (ret)
6794                 goto out_err;
6795
6796         /* If the image supports fancy striping, get its parameters */
6797
6798         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6799                 ret = rbd_dev_v2_striping_info(rbd_dev);
6800                 if (ret < 0)
6801                         goto out_err;
6802         }
6803
6804         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6805                 ret = rbd_dev_v2_data_pool(rbd_dev);
6806                 if (ret)
6807                         goto out_err;
6808         }
6809
6810         rbd_init_layout(rbd_dev);
6811         return 0;
6812
6813 out_err:
6814         rbd_dev->header.features = 0;
6815         kfree(rbd_dev->header.object_prefix);
6816         rbd_dev->header.object_prefix = NULL;
6817         return ret;
6818 }
6819
6820 /*
6821  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6822  * rbd_dev_image_probe() recursion depth, which means it's also the
6823  * length of the already discovered part of the parent chain.
6824  */
6825 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6826 {
6827         struct rbd_device *parent = NULL;
6828         int ret;
6829
6830         if (!rbd_dev->parent_spec)
6831                 return 0;
6832
6833         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6834                 pr_info("parent chain is too long (%d)\n", depth);
6835                 ret = -EINVAL;
6836                 goto out_err;
6837         }
6838
6839         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6840         if (!parent) {
6841                 ret = -ENOMEM;
6842                 goto out_err;
6843         }
6844
6845         /*
6846          * Images related by parent/child relationships always share
6847          * rbd_client and spec/parent_spec, so bump their refcounts.
6848          */
6849         __rbd_get_client(rbd_dev->rbd_client);
6850         rbd_spec_get(rbd_dev->parent_spec);
6851
6852         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6853
6854         ret = rbd_dev_image_probe(parent, depth);
6855         if (ret < 0)
6856                 goto out_err;
6857
6858         rbd_dev->parent = parent;
6859         atomic_set(&rbd_dev->parent_ref, 1);
6860         return 0;
6861
6862 out_err:
6863         rbd_dev_unparent(rbd_dev);
6864         rbd_dev_destroy(parent);
6865         return ret;
6866 }
6867
6868 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6869 {
6870         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6871         rbd_free_disk(rbd_dev);
6872         if (!single_major)
6873                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6874 }
6875
6876 /*
6877  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6878  * upon return.
6879  */
6880 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6881 {
6882         int ret;
6883
6884         /* Record our major and minor device numbers. */
6885
6886         if (!single_major) {
6887                 ret = register_blkdev(0, rbd_dev->name);
6888                 if (ret < 0)
6889                         goto err_out_unlock;
6890
6891                 rbd_dev->major = ret;
6892                 rbd_dev->minor = 0;
6893         } else {
6894                 rbd_dev->major = rbd_major;
6895                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6896         }
6897
6898         /* Set up the blkdev mapping. */
6899
6900         ret = rbd_init_disk(rbd_dev);
6901         if (ret)
6902                 goto err_out_blkdev;
6903
6904         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6905         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6906
6907         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6908         if (ret)
6909                 goto err_out_disk;
6910
6911         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6912         up_write(&rbd_dev->header_rwsem);
6913         return 0;
6914
6915 err_out_disk:
6916         rbd_free_disk(rbd_dev);
6917 err_out_blkdev:
6918         if (!single_major)
6919                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6920 err_out_unlock:
6921         up_write(&rbd_dev->header_rwsem);
6922         return ret;
6923 }
6924
6925 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6926 {
6927         struct rbd_spec *spec = rbd_dev->spec;
6928         int ret;
6929
6930         /* Record the header object name for this rbd image. */
6931
6932         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6933         if (rbd_dev->image_format == 1)
6934                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6935                                        spec->image_name, RBD_SUFFIX);
6936         else
6937                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6938                                        RBD_HEADER_PREFIX, spec->image_id);
6939
6940         return ret;
6941 }
6942
6943 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6944 {
6945         if (!is_snap) {
6946                 pr_info("image %s/%s%s%s does not exist\n",
6947                         rbd_dev->spec->pool_name,
6948                         rbd_dev->spec->pool_ns ?: "",
6949                         rbd_dev->spec->pool_ns ? "/" : "",
6950                         rbd_dev->spec->image_name);
6951         } else {
6952                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6953                         rbd_dev->spec->pool_name,
6954                         rbd_dev->spec->pool_ns ?: "",
6955                         rbd_dev->spec->pool_ns ? "/" : "",
6956                         rbd_dev->spec->image_name,
6957                         rbd_dev->spec->snap_name);
6958         }
6959 }
6960
6961 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6962 {
6963         rbd_dev_unprobe(rbd_dev);
6964         if (rbd_dev->opts)
6965                 rbd_unregister_watch(rbd_dev);
6966         rbd_dev->image_format = 0;
6967         kfree(rbd_dev->spec->image_id);
6968         rbd_dev->spec->image_id = NULL;
6969 }
6970
6971 /*
6972  * Probe for the existence of the header object for the given rbd
6973  * device.  If this image is the one being mapped (i.e., not a
6974  * parent), initiate a watch on its header object before using that
6975  * object to get detailed information about the rbd image.
6976  */
6977 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6978 {
6979         bool need_watch = !rbd_is_ro(rbd_dev);
6980         int ret;
6981
6982         /*
6983          * Get the id from the image id object.  Unless there's an
6984          * error, rbd_dev->spec->image_id will be filled in with
6985          * a dynamically-allocated string, and rbd_dev->image_format
6986          * will be set to either 1 or 2.
6987          */
6988         ret = rbd_dev_image_id(rbd_dev);
6989         if (ret)
6990                 return ret;
6991
6992         ret = rbd_dev_header_name(rbd_dev);
6993         if (ret)
6994                 goto err_out_format;
6995
6996         if (need_watch) {
6997                 ret = rbd_register_watch(rbd_dev);
6998                 if (ret) {
6999                         if (ret == -ENOENT)
7000                                 rbd_print_dne(rbd_dev, false);
7001                         goto err_out_format;
7002                 }
7003         }
7004
7005         ret = rbd_dev_header_info(rbd_dev);
7006         if (ret) {
7007                 if (ret == -ENOENT && !need_watch)
7008                         rbd_print_dne(rbd_dev, false);
7009                 goto err_out_watch;
7010         }
7011
7012         /*
7013          * If this image is the one being mapped, we have pool name and
7014          * id, image name and id, and snap name - need to fill snap id.
7015          * Otherwise this is a parent image, identified by pool, image
7016          * and snap ids - need to fill in names for those ids.
7017          */
7018         if (!depth)
7019                 ret = rbd_spec_fill_snap_id(rbd_dev);
7020         else
7021                 ret = rbd_spec_fill_names(rbd_dev);
7022         if (ret) {
7023                 if (ret == -ENOENT)
7024                         rbd_print_dne(rbd_dev, true);
7025                 goto err_out_probe;
7026         }
7027
7028         ret = rbd_dev_mapping_set(rbd_dev);
7029         if (ret)
7030                 goto err_out_probe;
7031
7032         if (rbd_is_snap(rbd_dev) &&
7033             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7034                 ret = rbd_object_map_load(rbd_dev);
7035                 if (ret)
7036                         goto err_out_probe;
7037         }
7038
7039         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7040                 ret = rbd_dev_v2_parent_info(rbd_dev);
7041                 if (ret)
7042                         goto err_out_probe;
7043         }
7044
7045         ret = rbd_dev_probe_parent(rbd_dev, depth);
7046         if (ret)
7047                 goto err_out_probe;
7048
7049         dout("discovered format %u image, header name is %s\n",
7050                 rbd_dev->image_format, rbd_dev->header_oid.name);
7051         return 0;
7052
7053 err_out_probe:
7054         rbd_dev_unprobe(rbd_dev);
7055 err_out_watch:
7056         if (need_watch)
7057                 rbd_unregister_watch(rbd_dev);
7058 err_out_format:
7059         rbd_dev->image_format = 0;
7060         kfree(rbd_dev->spec->image_id);
7061         rbd_dev->spec->image_id = NULL;
7062         return ret;
7063 }
7064
7065 static ssize_t do_rbd_add(struct bus_type *bus,
7066                           const char *buf,
7067                           size_t count)
7068 {
7069         struct rbd_device *rbd_dev = NULL;
7070         struct ceph_options *ceph_opts = NULL;
7071         struct rbd_options *rbd_opts = NULL;
7072         struct rbd_spec *spec = NULL;
7073         struct rbd_client *rbdc;
7074         int rc;
7075
7076         if (!try_module_get(THIS_MODULE))
7077                 return -ENODEV;
7078
7079         /* parse add command */
7080         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7081         if (rc < 0)
7082                 goto out;
7083
7084         rbdc = rbd_get_client(ceph_opts);
7085         if (IS_ERR(rbdc)) {
7086                 rc = PTR_ERR(rbdc);
7087                 goto err_out_args;
7088         }
7089
7090         /* pick the pool */
7091         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7092         if (rc < 0) {
7093                 if (rc == -ENOENT)
7094                         pr_info("pool %s does not exist\n", spec->pool_name);
7095                 goto err_out_client;
7096         }
7097         spec->pool_id = (u64)rc;
7098
7099         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7100         if (!rbd_dev) {
7101                 rc = -ENOMEM;
7102                 goto err_out_client;
7103         }
7104         rbdc = NULL;            /* rbd_dev now owns this */
7105         spec = NULL;            /* rbd_dev now owns this */
7106         rbd_opts = NULL;        /* rbd_dev now owns this */
7107
7108         /* if we are mapping a snapshot it will be a read-only mapping */
7109         if (rbd_dev->opts->read_only ||
7110             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7111                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7112
7113         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7114         if (!rbd_dev->config_info) {
7115                 rc = -ENOMEM;
7116                 goto err_out_rbd_dev;
7117         }
7118
7119         down_write(&rbd_dev->header_rwsem);
7120         rc = rbd_dev_image_probe(rbd_dev, 0);
7121         if (rc < 0) {
7122                 up_write(&rbd_dev->header_rwsem);
7123                 goto err_out_rbd_dev;
7124         }
7125
7126         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7127                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7128                          rbd_dev->layout.object_size);
7129                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7130         }
7131
7132         rc = rbd_dev_device_setup(rbd_dev);
7133         if (rc)
7134                 goto err_out_image_probe;
7135
7136         rc = rbd_add_acquire_lock(rbd_dev);
7137         if (rc)
7138                 goto err_out_image_lock;
7139
7140         /* Everything's ready.  Announce the disk to the world. */
7141
7142         rc = device_add(&rbd_dev->dev);
7143         if (rc)
7144                 goto err_out_image_lock;
7145
7146         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7147         /* see rbd_init_disk() */
7148         blk_put_queue(rbd_dev->disk->queue);
7149
7150         spin_lock(&rbd_dev_list_lock);
7151         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7152         spin_unlock(&rbd_dev_list_lock);
7153
7154         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7155                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7156                 rbd_dev->header.features);
7157         rc = count;
7158 out:
7159         module_put(THIS_MODULE);
7160         return rc;
7161
7162 err_out_image_lock:
7163         rbd_dev_image_unlock(rbd_dev);
7164         rbd_dev_device_release(rbd_dev);
7165 err_out_image_probe:
7166         rbd_dev_image_release(rbd_dev);
7167 err_out_rbd_dev:
7168         rbd_dev_destroy(rbd_dev);
7169 err_out_client:
7170         rbd_put_client(rbdc);
7171 err_out_args:
7172         rbd_spec_put(spec);
7173         kfree(rbd_opts);
7174         goto out;
7175 }
7176
7177 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7178 {
7179         if (single_major)
7180                 return -EINVAL;
7181
7182         return do_rbd_add(bus, buf, count);
7183 }
7184
7185 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7186                                       size_t count)
7187 {
7188         return do_rbd_add(bus, buf, count);
7189 }
7190
7191 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7192 {
7193         while (rbd_dev->parent) {
7194                 struct rbd_device *first = rbd_dev;
7195                 struct rbd_device *second = first->parent;
7196                 struct rbd_device *third;
7197
7198                 /*
7199                  * Follow to the parent with no grandparent and
7200                  * remove it.
7201                  */
7202                 while (second && (third = second->parent)) {
7203                         first = second;
7204                         second = third;
7205                 }
7206                 rbd_assert(second);
7207                 rbd_dev_image_release(second);
7208                 rbd_dev_destroy(second);
7209                 first->parent = NULL;
7210                 first->parent_overlap = 0;
7211
7212                 rbd_assert(first->parent_spec);
7213                 rbd_spec_put(first->parent_spec);
7214                 first->parent_spec = NULL;
7215         }
7216 }
7217
7218 static ssize_t do_rbd_remove(struct bus_type *bus,
7219                              const char *buf,
7220                              size_t count)
7221 {
7222         struct rbd_device *rbd_dev = NULL;
7223         struct list_head *tmp;
7224         int dev_id;
7225         char opt_buf[6];
7226         bool force = false;
7227         int ret;
7228
7229         dev_id = -1;
7230         opt_buf[0] = '\0';
7231         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7232         if (dev_id < 0) {
7233                 pr_err("dev_id out of range\n");
7234                 return -EINVAL;
7235         }
7236         if (opt_buf[0] != '\0') {
7237                 if (!strcmp(opt_buf, "force")) {
7238                         force = true;
7239                 } else {
7240                         pr_err("bad remove option at '%s'\n", opt_buf);
7241                         return -EINVAL;
7242                 }
7243         }
7244
7245         ret = -ENOENT;
7246         spin_lock(&rbd_dev_list_lock);
7247         list_for_each(tmp, &rbd_dev_list) {
7248                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7249                 if (rbd_dev->dev_id == dev_id) {
7250                         ret = 0;
7251                         break;
7252                 }
7253         }
7254         if (!ret) {
7255                 spin_lock_irq(&rbd_dev->lock);
7256                 if (rbd_dev->open_count && !force)
7257                         ret = -EBUSY;
7258                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7259                                           &rbd_dev->flags))
7260                         ret = -EINPROGRESS;
7261                 spin_unlock_irq(&rbd_dev->lock);
7262         }
7263         spin_unlock(&rbd_dev_list_lock);
7264         if (ret)
7265                 return ret;
7266
7267         if (force) {
7268                 /*
7269                  * Prevent new IO from being queued and wait for existing
7270                  * IO to complete/fail.
7271                  */
7272                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7273                 blk_set_queue_dying(rbd_dev->disk->queue);
7274         }
7275
7276         del_gendisk(rbd_dev->disk);
7277         spin_lock(&rbd_dev_list_lock);
7278         list_del_init(&rbd_dev->node);
7279         spin_unlock(&rbd_dev_list_lock);
7280         device_del(&rbd_dev->dev);
7281
7282         rbd_dev_image_unlock(rbd_dev);
7283         rbd_dev_device_release(rbd_dev);
7284         rbd_dev_image_release(rbd_dev);
7285         rbd_dev_destroy(rbd_dev);
7286         return count;
7287 }
7288
7289 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7290 {
7291         if (single_major)
7292                 return -EINVAL;
7293
7294         return do_rbd_remove(bus, buf, count);
7295 }
7296
7297 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7298                                          size_t count)
7299 {
7300         return do_rbd_remove(bus, buf, count);
7301 }
7302
7303 /*
7304  * create control files in sysfs
7305  * /sys/bus/rbd/...
7306  */
7307 static int __init rbd_sysfs_init(void)
7308 {
7309         int ret;
7310
7311         ret = device_register(&rbd_root_dev);
7312         if (ret < 0)
7313                 return ret;
7314
7315         ret = bus_register(&rbd_bus_type);
7316         if (ret < 0)
7317                 device_unregister(&rbd_root_dev);
7318
7319         return ret;
7320 }
7321
7322 static void __exit rbd_sysfs_cleanup(void)
7323 {
7324         bus_unregister(&rbd_bus_type);
7325         device_unregister(&rbd_root_dev);
7326 }
7327
7328 static int __init rbd_slab_init(void)
7329 {
7330         rbd_assert(!rbd_img_request_cache);
7331         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7332         if (!rbd_img_request_cache)
7333                 return -ENOMEM;
7334
7335         rbd_assert(!rbd_obj_request_cache);
7336         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7337         if (!rbd_obj_request_cache)
7338                 goto out_err;
7339
7340         return 0;
7341
7342 out_err:
7343         kmem_cache_destroy(rbd_img_request_cache);
7344         rbd_img_request_cache = NULL;
7345         return -ENOMEM;
7346 }
7347
7348 static void rbd_slab_exit(void)
7349 {
7350         rbd_assert(rbd_obj_request_cache);
7351         kmem_cache_destroy(rbd_obj_request_cache);
7352         rbd_obj_request_cache = NULL;
7353
7354         rbd_assert(rbd_img_request_cache);
7355         kmem_cache_destroy(rbd_img_request_cache);
7356         rbd_img_request_cache = NULL;
7357 }
7358
7359 static int __init rbd_init(void)
7360 {
7361         int rc;
7362
7363         if (!libceph_compatible(NULL)) {
7364                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7365                 return -EINVAL;
7366         }
7367
7368         rc = rbd_slab_init();
7369         if (rc)
7370                 return rc;
7371
7372         /*
7373          * The number of active work items is limited by the number of
7374          * rbd devices * queue depth, so leave @max_active at default.
7375          */
7376         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7377         if (!rbd_wq) {
7378                 rc = -ENOMEM;
7379                 goto err_out_slab;
7380         }
7381
7382         if (single_major) {
7383                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7384                 if (rbd_major < 0) {
7385                         rc = rbd_major;
7386                         goto err_out_wq;
7387                 }
7388         }
7389
7390         rc = rbd_sysfs_init();
7391         if (rc)
7392                 goto err_out_blkdev;
7393
7394         if (single_major)
7395                 pr_info("loaded (major %d)\n", rbd_major);
7396         else
7397                 pr_info("loaded\n");
7398
7399         return 0;
7400
7401 err_out_blkdev:
7402         if (single_major)
7403                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7404 err_out_wq:
7405         destroy_workqueue(rbd_wq);
7406 err_out_slab:
7407         rbd_slab_exit();
7408         return rc;
7409 }
7410
7411 static void __exit rbd_exit(void)
7412 {
7413         ida_destroy(&rbd_dev_id_ida);
7414         rbd_sysfs_cleanup();
7415         if (single_major)
7416                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7417         destroy_workqueue(rbd_wq);
7418         rbd_slab_exit();
7419 }
7420
7421 module_init(rbd_init);
7422 module_exit(rbd_exit);
7423
7424 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7425 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7426 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7427 /* following authorship retained from original osdblk.c */
7428 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7429
7430 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7431 MODULE_LICENSE("GPL");