clk: bcm: dvp: Add MODULE_DEVICE_TABLE()
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639                                         u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641                                 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652         rbd_assert(pending->num_pending > 0);
653
654         if (*result && !pending->result)
655                 pending->result = *result;
656         if (--pending->num_pending)
657                 return false;
658
659         *result = pending->result;
660         return true;
661 }
662
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666         bool removing = false;
667
668         spin_lock_irq(&rbd_dev->lock);
669         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670                 removing = true;
671         else
672                 rbd_dev->open_count++;
673         spin_unlock_irq(&rbd_dev->lock);
674         if (removing)
675                 return -ENOENT;
676
677         (void) get_device(&rbd_dev->dev);
678
679         return 0;
680 }
681
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684         struct rbd_device *rbd_dev = disk->private_data;
685         unsigned long open_count_before;
686
687         spin_lock_irq(&rbd_dev->lock);
688         open_count_before = rbd_dev->open_count--;
689         spin_unlock_irq(&rbd_dev->lock);
690         rbd_assert(open_count_before > 0);
691
692         put_device(&rbd_dev->dev);
693 }
694
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697         int ro;
698
699         if (get_user(ro, (int __user *)arg))
700                 return -EFAULT;
701
702         /*
703          * Both images mapped read-only and snapshots can't be marked
704          * read-write.
705          */
706         if (!ro) {
707                 if (rbd_is_ro(rbd_dev))
708                         return -EROFS;
709
710                 rbd_assert(!rbd_is_snap(rbd_dev));
711         }
712
713         /* Let blkdev_roset() handle it */
714         return -ENOTTY;
715 }
716
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718                         unsigned int cmd, unsigned long arg)
719 {
720         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721         int ret;
722
723         switch (cmd) {
724         case BLKROSET:
725                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
726                 break;
727         default:
728                 ret = -ENOTTY;
729         }
730
731         return ret;
732 }
733
734 #ifdef CONFIG_COMPAT
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736                                 unsigned int cmd, unsigned long arg)
737 {
738         return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741
742 static const struct block_device_operations rbd_bd_ops = {
743         .owner                  = THIS_MODULE,
744         .open                   = rbd_open,
745         .release                = rbd_release,
746         .ioctl                  = rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748         .compat_ioctl           = rbd_compat_ioctl,
749 #endif
750 };
751
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758         struct rbd_client *rbdc;
759         int ret = -ENOMEM;
760
761         dout("%s:\n", __func__);
762         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763         if (!rbdc)
764                 goto out_opt;
765
766         kref_init(&rbdc->kref);
767         INIT_LIST_HEAD(&rbdc->node);
768
769         rbdc->client = ceph_create_client(ceph_opts, rbdc);
770         if (IS_ERR(rbdc->client))
771                 goto out_rbdc;
772         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773
774         ret = ceph_open_session(rbdc->client);
775         if (ret < 0)
776                 goto out_client;
777
778         spin_lock(&rbd_client_list_lock);
779         list_add_tail(&rbdc->node, &rbd_client_list);
780         spin_unlock(&rbd_client_list_lock);
781
782         dout("%s: rbdc %p\n", __func__, rbdc);
783
784         return rbdc;
785 out_client:
786         ceph_destroy_client(rbdc->client);
787 out_rbdc:
788         kfree(rbdc);
789 out_opt:
790         if (ceph_opts)
791                 ceph_destroy_options(ceph_opts);
792         dout("%s: error %d\n", __func__, ret);
793
794         return ERR_PTR(ret);
795 }
796
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799         kref_get(&rbdc->kref);
800
801         return rbdc;
802 }
803
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810         struct rbd_client *client_node;
811         bool found = false;
812
813         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814                 return NULL;
815
816         spin_lock(&rbd_client_list_lock);
817         list_for_each_entry(client_node, &rbd_client_list, node) {
818                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
819                         __rbd_get_client(client_node);
820
821                         found = true;
822                         break;
823                 }
824         }
825         spin_unlock(&rbd_client_list_lock);
826
827         return found ? client_node : NULL;
828 }
829
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834         Opt_queue_depth,
835         Opt_alloc_size,
836         Opt_lock_timeout,
837         /* int args above */
838         Opt_pool_ns,
839         Opt_compression_hint,
840         /* string args above */
841         Opt_read_only,
842         Opt_read_write,
843         Opt_lock_on_read,
844         Opt_exclusive,
845         Opt_notrim,
846 };
847
848 enum {
849         Opt_compression_hint_none,
850         Opt_compression_hint_compressible,
851         Opt_compression_hint_incompressible,
852 };
853
854 static const struct constant_table rbd_param_compression_hint[] = {
855         {"none",                Opt_compression_hint_none},
856         {"compressible",        Opt_compression_hint_compressible},
857         {"incompressible",      Opt_compression_hint_incompressible},
858         {}
859 };
860
861 static const struct fs_parameter_spec rbd_parameters[] = {
862         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
863         fsparam_enum    ("compression_hint",            Opt_compression_hint,
864                          rbd_param_compression_hint),
865         fsparam_flag    ("exclusive",                   Opt_exclusive),
866         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
867         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
868         fsparam_flag    ("notrim",                      Opt_notrim),
869         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
870         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
871         fsparam_flag    ("read_only",                   Opt_read_only),
872         fsparam_flag    ("read_write",                  Opt_read_write),
873         fsparam_flag    ("ro",                          Opt_read_only),
874         fsparam_flag    ("rw",                          Opt_read_write),
875         {}
876 };
877
878 struct rbd_options {
879         int     queue_depth;
880         int     alloc_size;
881         unsigned long   lock_timeout;
882         bool    read_only;
883         bool    lock_on_read;
884         bool    exclusive;
885         bool    trim;
886
887         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889
890 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT   false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT   false
896 #define RBD_TRIM_DEFAULT        true
897
898 struct rbd_parse_opts_ctx {
899         struct rbd_spec         *spec;
900         struct ceph_options     *copts;
901         struct rbd_options      *opts;
902 };
903
904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906         switch (op_type) {
907         case OBJ_OP_READ:
908                 return "read";
909         case OBJ_OP_WRITE:
910                 return "write";
911         case OBJ_OP_DISCARD:
912                 return "discard";
913         case OBJ_OP_ZEROOUT:
914                 return "zeroout";
915         default:
916                 return "???";
917         }
918 }
919
920 /*
921  * Destroy ceph client
922  *
923  * Caller must hold rbd_client_list_lock.
924  */
925 static void rbd_client_release(struct kref *kref)
926 {
927         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928
929         dout("%s: rbdc %p\n", __func__, rbdc);
930         spin_lock(&rbd_client_list_lock);
931         list_del(&rbdc->node);
932         spin_unlock(&rbd_client_list_lock);
933
934         ceph_destroy_client(rbdc->client);
935         kfree(rbdc);
936 }
937
938 /*
939  * Drop reference to ceph client node. If it's not referenced anymore, release
940  * it.
941  */
942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944         if (rbdc)
945                 kref_put(&rbdc->kref, rbd_client_release);
946 }
947
948 /*
949  * Get a ceph client with specific addr and configuration, if one does
950  * not exist create it.  Either way, ceph_opts is consumed by this
951  * function.
952  */
953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955         struct rbd_client *rbdc;
956         int ret;
957
958         mutex_lock(&client_mutex);
959         rbdc = rbd_client_find(ceph_opts);
960         if (rbdc) {
961                 ceph_destroy_options(ceph_opts);
962
963                 /*
964                  * Using an existing client.  Make sure ->pg_pools is up to
965                  * date before we look up the pool id in do_rbd_add().
966                  */
967                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
968                                         rbdc->client->options->mount_timeout);
969                 if (ret) {
970                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971                         rbd_put_client(rbdc);
972                         rbdc = ERR_PTR(ret);
973                 }
974         } else {
975                 rbdc = rbd_client_create(ceph_opts);
976         }
977         mutex_unlock(&client_mutex);
978
979         return rbdc;
980 }
981
982 static bool rbd_image_format_valid(u32 image_format)
983 {
984         return image_format == 1 || image_format == 2;
985 }
986
987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989         size_t size;
990         u32 snap_count;
991
992         /* The header has to start with the magic rbd header text */
993         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994                 return false;
995
996         /* The bio layer requires at least sector-sized I/O */
997
998         if (ondisk->options.order < SECTOR_SHIFT)
999                 return false;
1000
1001         /* If we use u64 in a few spots we may be able to loosen this */
1002
1003         if (ondisk->options.order > 8 * sizeof (int) - 1)
1004                 return false;
1005
1006         /*
1007          * The size of a snapshot header has to fit in a size_t, and
1008          * that limits the number of snapshots.
1009          */
1010         snap_count = le32_to_cpu(ondisk->snap_count);
1011         size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012         if (snap_count > size / sizeof (__le64))
1013                 return false;
1014
1015         /*
1016          * Not only that, but the size of the entire the snapshot
1017          * header must also be representable in a size_t.
1018          */
1019         size -= snap_count * sizeof (__le64);
1020         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021                 return false;
1022
1023         return true;
1024 }
1025
1026 /*
1027  * returns the size of an object in the image
1028  */
1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031         return 1U << header->obj_order;
1032 }
1033
1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036         if (rbd_dev->header.stripe_unit == 0 ||
1037             rbd_dev->header.stripe_count == 0) {
1038                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039                 rbd_dev->header.stripe_count = 1;
1040         }
1041
1042         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049
1050 /*
1051  * Fill an rbd image header with information from the given format 1
1052  * on-disk header.
1053  */
1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055                                  struct rbd_image_header_ondisk *ondisk)
1056 {
1057         struct rbd_image_header *header = &rbd_dev->header;
1058         bool first_time = header->object_prefix == NULL;
1059         struct ceph_snap_context *snapc;
1060         char *object_prefix = NULL;
1061         char *snap_names = NULL;
1062         u64 *snap_sizes = NULL;
1063         u32 snap_count;
1064         int ret = -ENOMEM;
1065         u32 i;
1066
1067         /* Allocate this now to avoid having to handle failure below */
1068
1069         if (first_time) {
1070                 object_prefix = kstrndup(ondisk->object_prefix,
1071                                          sizeof(ondisk->object_prefix),
1072                                          GFP_KERNEL);
1073                 if (!object_prefix)
1074                         return -ENOMEM;
1075         }
1076
1077         /* Allocate the snapshot context and fill it in */
1078
1079         snap_count = le32_to_cpu(ondisk->snap_count);
1080         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081         if (!snapc)
1082                 goto out_err;
1083         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084         if (snap_count) {
1085                 struct rbd_image_snap_ondisk *snaps;
1086                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087
1088                 /* We'll keep a copy of the snapshot names... */
1089
1090                 if (snap_names_len > (u64)SIZE_MAX)
1091                         goto out_2big;
1092                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093                 if (!snap_names)
1094                         goto out_err;
1095
1096                 /* ...as well as the array of their sizes. */
1097                 snap_sizes = kmalloc_array(snap_count,
1098                                            sizeof(*header->snap_sizes),
1099                                            GFP_KERNEL);
1100                 if (!snap_sizes)
1101                         goto out_err;
1102
1103                 /*
1104                  * Copy the names, and fill in each snapshot's id
1105                  * and size.
1106                  *
1107                  * Note that rbd_dev_v1_header_info() guarantees the
1108                  * ondisk buffer we're working with has
1109                  * snap_names_len bytes beyond the end of the
1110                  * snapshot id array, this memcpy() is safe.
1111                  */
1112                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113                 snaps = ondisk->snaps;
1114                 for (i = 0; i < snap_count; i++) {
1115                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117                 }
1118         }
1119
1120         /* We won't fail any more, fill in the header */
1121
1122         if (first_time) {
1123                 header->object_prefix = object_prefix;
1124                 header->obj_order = ondisk->options.order;
1125                 rbd_init_layout(rbd_dev);
1126         } else {
1127                 ceph_put_snap_context(header->snapc);
1128                 kfree(header->snap_names);
1129                 kfree(header->snap_sizes);
1130         }
1131
1132         /* The remaining fields always get updated (when we refresh) */
1133
1134         header->image_size = le64_to_cpu(ondisk->image_size);
1135         header->snapc = snapc;
1136         header->snap_names = snap_names;
1137         header->snap_sizes = snap_sizes;
1138
1139         return 0;
1140 out_2big:
1141         ret = -EIO;
1142 out_err:
1143         kfree(snap_sizes);
1144         kfree(snap_names);
1145         ceph_put_snap_context(snapc);
1146         kfree(object_prefix);
1147
1148         return ret;
1149 }
1150
1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153         const char *snap_name;
1154
1155         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156
1157         /* Skip over names until we find the one we are looking for */
1158
1159         snap_name = rbd_dev->header.snap_names;
1160         while (which--)
1161                 snap_name += strlen(snap_name) + 1;
1162
1163         return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165
1166 /*
1167  * Snapshot id comparison function for use with qsort()/bsearch().
1168  * Note that result is for snapshots in *descending* order.
1169  */
1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172         u64 snap_id1 = *(u64 *)s1;
1173         u64 snap_id2 = *(u64 *)s2;
1174
1175         if (snap_id1 < snap_id2)
1176                 return 1;
1177         return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179
1180 /*
1181  * Search a snapshot context to see if the given snapshot id is
1182  * present.
1183  *
1184  * Returns the position of the snapshot id in the array if it's found,
1185  * or BAD_SNAP_INDEX otherwise.
1186  *
1187  * Note: The snapshot array is in kept sorted (by the osd) in
1188  * reverse order, highest snapshot id first.
1189  */
1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193         u64 *found;
1194
1195         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196                                 sizeof (snap_id), snapid_compare_reverse);
1197
1198         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200
1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202                                         u64 snap_id)
1203 {
1204         u32 which;
1205         const char *snap_name;
1206
1207         which = rbd_dev_snap_index(rbd_dev, snap_id);
1208         if (which == BAD_SNAP_INDEX)
1209                 return ERR_PTR(-ENOENT);
1210
1211         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214
1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217         if (snap_id == CEPH_NOSNAP)
1218                 return RBD_SNAP_HEAD_NAME;
1219
1220         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221         if (rbd_dev->image_format == 1)
1222                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223
1224         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226
1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228                                 u64 *snap_size)
1229 {
1230         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231         if (snap_id == CEPH_NOSNAP) {
1232                 *snap_size = rbd_dev->header.image_size;
1233         } else if (rbd_dev->image_format == 1) {
1234                 u32 which;
1235
1236                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1237                 if (which == BAD_SNAP_INDEX)
1238                         return -ENOENT;
1239
1240                 *snap_size = rbd_dev->header.snap_sizes[which];
1241         } else {
1242                 u64 size = 0;
1243                 int ret;
1244
1245                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246                 if (ret)
1247                         return ret;
1248
1249                 *snap_size = size;
1250         }
1251         return 0;
1252 }
1253
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256         u64 snap_id = rbd_dev->spec->snap_id;
1257         u64 size = 0;
1258         int ret;
1259
1260         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261         if (ret)
1262                 return ret;
1263
1264         rbd_dev->mapping.size = size;
1265         return 0;
1266 }
1267
1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270         rbd_dev->mapping.size = 0;
1271 }
1272
1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275         void *buf;
1276         unsigned long flags;
1277
1278         buf = bvec_kmap_irq(bv, &flags);
1279         memset(buf, 0, bv->bv_len);
1280         flush_dcache_page(bv->bv_page);
1281         bvec_kunmap_irq(buf, &flags);
1282 }
1283
1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286         struct ceph_bio_iter it = *bio_pos;
1287
1288         ceph_bio_iter_advance(&it, off);
1289         ceph_bio_iter_advance_step(&it, bytes, ({
1290                 zero_bvec(&bv);
1291         }));
1292 }
1293
1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296         struct ceph_bvec_iter it = *bvec_pos;
1297
1298         ceph_bvec_iter_advance(&it, off);
1299         ceph_bvec_iter_advance_step(&it, bytes, ({
1300                 zero_bvec(&bv);
1301         }));
1302 }
1303
1304 /*
1305  * Zero a range in @obj_req data buffer defined by a bio (list) or
1306  * (private) bio_vec array.
1307  *
1308  * @off is relative to the start of the data buffer.
1309  */
1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311                                u32 bytes)
1312 {
1313         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314
1315         switch (obj_req->img_request->data_type) {
1316         case OBJ_REQUEST_BIO:
1317                 zero_bios(&obj_req->bio_pos, off, bytes);
1318                 break;
1319         case OBJ_REQUEST_BVECS:
1320         case OBJ_REQUEST_OWN_BVECS:
1321                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322                 break;
1323         default:
1324                 BUG();
1325         }
1326 }
1327
1328 static void rbd_obj_request_destroy(struct kref *kref);
1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331         rbd_assert(obj_request != NULL);
1332         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333                 kref_read(&obj_request->kref));
1334         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338                                         struct rbd_obj_request *obj_request)
1339 {
1340         rbd_assert(obj_request->img_request == NULL);
1341
1342         /* Image request now owns object's original reference */
1343         obj_request->img_request = img_request;
1344         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348                                         struct rbd_obj_request *obj_request)
1349 {
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351         list_del(&obj_request->ex.oe_item);
1352         rbd_assert(obj_request->img_request == img_request);
1353         rbd_obj_request_put(obj_request);
1354 }
1355
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358         struct rbd_obj_request *obj_req = osd_req->r_priv;
1359
1360         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362              obj_req->ex.oe_off, obj_req->ex.oe_len);
1363         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375
1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380
1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384
1385         return !obj_req->ex.oe_off &&
1386                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388
1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392
1393         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394                                         rbd_dev->layout.object_size;
1395 }
1396
1397 /*
1398  * Must be called after rbd_obj_calc_img_extents().
1399  */
1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402         if (!obj_req->num_img_extents ||
1403             (rbd_obj_is_entire(obj_req) &&
1404              !obj_req->img_request->snapc->num_snaps))
1405                 return false;
1406
1407         return true;
1408 }
1409
1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412         return ceph_file_extents_bytes(obj_req->img_extents,
1413                                        obj_req->num_img_extents);
1414 }
1415
1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418         switch (img_req->op_type) {
1419         case OBJ_OP_READ:
1420                 return false;
1421         case OBJ_OP_WRITE:
1422         case OBJ_OP_DISCARD:
1423         case OBJ_OP_ZEROOUT:
1424                 return true;
1425         default:
1426                 BUG();
1427         }
1428 }
1429
1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432         struct rbd_obj_request *obj_req = osd_req->r_priv;
1433         int result;
1434
1435         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436              osd_req->r_result, obj_req);
1437
1438         /*
1439          * Writes aren't allowed to return a data payload.  In some
1440          * guarded write cases (e.g. stat + zero on an empty object)
1441          * a stat response makes it through, but we don't care.
1442          */
1443         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444                 result = 0;
1445         else
1446                 result = osd_req->r_result;
1447
1448         rbd_obj_handle_request(obj_req, result);
1449 }
1450
1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453         struct rbd_obj_request *obj_request = osd_req->r_priv;
1454         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1455         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1456
1457         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1458         osd_req->r_snapid = obj_request->img_request->snap_id;
1459 }
1460
1461 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1462 {
1463         struct rbd_obj_request *obj_request = osd_req->r_priv;
1464
1465         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1466         ktime_get_real_ts64(&osd_req->r_mtime);
1467         osd_req->r_data_offset = obj_request->ex.oe_off;
1468 }
1469
1470 static struct ceph_osd_request *
1471 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1472                           struct ceph_snap_context *snapc, int num_ops)
1473 {
1474         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1475         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1476         struct ceph_osd_request *req;
1477         const char *name_format = rbd_dev->image_format == 1 ?
1478                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1479         int ret;
1480
1481         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1482         if (!req)
1483                 return ERR_PTR(-ENOMEM);
1484
1485         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1486         req->r_callback = rbd_osd_req_callback;
1487         req->r_priv = obj_req;
1488
1489         /*
1490          * Data objects may be stored in a separate pool, but always in
1491          * the same namespace in that pool as the header in its pool.
1492          */
1493         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1494         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1495
1496         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1497                                rbd_dev->header.object_prefix,
1498                                obj_req->ex.oe_objno);
1499         if (ret)
1500                 return ERR_PTR(ret);
1501
1502         return req;
1503 }
1504
1505 static struct ceph_osd_request *
1506 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1507 {
1508         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1509                                          num_ops);
1510 }
1511
1512 static struct rbd_obj_request *rbd_obj_request_create(void)
1513 {
1514         struct rbd_obj_request *obj_request;
1515
1516         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1517         if (!obj_request)
1518                 return NULL;
1519
1520         ceph_object_extent_init(&obj_request->ex);
1521         INIT_LIST_HEAD(&obj_request->osd_reqs);
1522         mutex_init(&obj_request->state_mutex);
1523         kref_init(&obj_request->kref);
1524
1525         dout("%s %p\n", __func__, obj_request);
1526         return obj_request;
1527 }
1528
1529 static void rbd_obj_request_destroy(struct kref *kref)
1530 {
1531         struct rbd_obj_request *obj_request;
1532         struct ceph_osd_request *osd_req;
1533         u32 i;
1534
1535         obj_request = container_of(kref, struct rbd_obj_request, kref);
1536
1537         dout("%s: obj %p\n", __func__, obj_request);
1538
1539         while (!list_empty(&obj_request->osd_reqs)) {
1540                 osd_req = list_first_entry(&obj_request->osd_reqs,
1541                                     struct ceph_osd_request, r_private_item);
1542                 list_del_init(&osd_req->r_private_item);
1543                 ceph_osdc_put_request(osd_req);
1544         }
1545
1546         switch (obj_request->img_request->data_type) {
1547         case OBJ_REQUEST_NODATA:
1548         case OBJ_REQUEST_BIO:
1549         case OBJ_REQUEST_BVECS:
1550                 break;          /* Nothing to do */
1551         case OBJ_REQUEST_OWN_BVECS:
1552                 kfree(obj_request->bvec_pos.bvecs);
1553                 break;
1554         default:
1555                 BUG();
1556         }
1557
1558         kfree(obj_request->img_extents);
1559         if (obj_request->copyup_bvecs) {
1560                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1561                         if (obj_request->copyup_bvecs[i].bv_page)
1562                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1563                 }
1564                 kfree(obj_request->copyup_bvecs);
1565         }
1566
1567         kmem_cache_free(rbd_obj_request_cache, obj_request);
1568 }
1569
1570 /* It's OK to call this for a device with no parent */
1571
1572 static void rbd_spec_put(struct rbd_spec *spec);
1573 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1574 {
1575         rbd_dev_remove_parent(rbd_dev);
1576         rbd_spec_put(rbd_dev->parent_spec);
1577         rbd_dev->parent_spec = NULL;
1578         rbd_dev->parent_overlap = 0;
1579 }
1580
1581 /*
1582  * Parent image reference counting is used to determine when an
1583  * image's parent fields can be safely torn down--after there are no
1584  * more in-flight requests to the parent image.  When the last
1585  * reference is dropped, cleaning them up is safe.
1586  */
1587 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1588 {
1589         int counter;
1590
1591         if (!rbd_dev->parent_spec)
1592                 return;
1593
1594         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1595         if (counter > 0)
1596                 return;
1597
1598         /* Last reference; clean up parent data structures */
1599
1600         if (!counter)
1601                 rbd_dev_unparent(rbd_dev);
1602         else
1603                 rbd_warn(rbd_dev, "parent reference underflow");
1604 }
1605
1606 /*
1607  * If an image has a non-zero parent overlap, get a reference to its
1608  * parent.
1609  *
1610  * Returns true if the rbd device has a parent with a non-zero
1611  * overlap and a reference for it was successfully taken, or
1612  * false otherwise.
1613  */
1614 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1615 {
1616         int counter = 0;
1617
1618         if (!rbd_dev->parent_spec)
1619                 return false;
1620
1621         if (rbd_dev->parent_overlap)
1622                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623
1624         if (counter < 0)
1625                 rbd_warn(rbd_dev, "parent reference overflow");
1626
1627         return counter > 0;
1628 }
1629
1630 static void rbd_img_request_init(struct rbd_img_request *img_request,
1631                                  struct rbd_device *rbd_dev,
1632                                  enum obj_operation_type op_type)
1633 {
1634         memset(img_request, 0, sizeof(*img_request));
1635
1636         img_request->rbd_dev = rbd_dev;
1637         img_request->op_type = op_type;
1638
1639         INIT_LIST_HEAD(&img_request->lock_item);
1640         INIT_LIST_HEAD(&img_request->object_extents);
1641         mutex_init(&img_request->state_mutex);
1642 }
1643
1644 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1645 {
1646         struct rbd_device *rbd_dev = img_req->rbd_dev;
1647
1648         lockdep_assert_held(&rbd_dev->header_rwsem);
1649
1650         if (rbd_img_is_write(img_req))
1651                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1652         else
1653                 img_req->snap_id = rbd_dev->spec->snap_id;
1654
1655         if (rbd_dev_parent_get(rbd_dev))
1656                 img_request_layered_set(img_req);
1657 }
1658
1659 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1660 {
1661         struct rbd_obj_request *obj_request;
1662         struct rbd_obj_request *next_obj_request;
1663
1664         dout("%s: img %p\n", __func__, img_request);
1665
1666         WARN_ON(!list_empty(&img_request->lock_item));
1667         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1668                 rbd_img_obj_request_del(img_request, obj_request);
1669
1670         if (img_request_layered_test(img_request))
1671                 rbd_dev_parent_put(img_request->rbd_dev);
1672
1673         if (rbd_img_is_write(img_request))
1674                 ceph_put_snap_context(img_request->snapc);
1675
1676         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1677                 kmem_cache_free(rbd_img_request_cache, img_request);
1678 }
1679
1680 #define BITS_PER_OBJ    2
1681 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1682 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1683
1684 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1685                                    u64 *index, u8 *shift)
1686 {
1687         u32 off;
1688
1689         rbd_assert(objno < rbd_dev->object_map_size);
1690         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1691         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1692 }
1693
1694 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696         u64 index;
1697         u8 shift;
1698
1699         lockdep_assert_held(&rbd_dev->object_map_lock);
1700         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1701         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1702 }
1703
1704 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1705 {
1706         u64 index;
1707         u8 shift;
1708         u8 *p;
1709
1710         lockdep_assert_held(&rbd_dev->object_map_lock);
1711         rbd_assert(!(val & ~OBJ_MASK));
1712
1713         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1714         p = &rbd_dev->object_map[index];
1715         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1716 }
1717
1718 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1719 {
1720         u8 state;
1721
1722         spin_lock(&rbd_dev->object_map_lock);
1723         state = __rbd_object_map_get(rbd_dev, objno);
1724         spin_unlock(&rbd_dev->object_map_lock);
1725         return state;
1726 }
1727
1728 static bool use_object_map(struct rbd_device *rbd_dev)
1729 {
1730         /*
1731          * An image mapped read-only can't use the object map -- it isn't
1732          * loaded because the header lock isn't acquired.  Someone else can
1733          * write to the image and update the object map behind our back.
1734          *
1735          * A snapshot can't be written to, so using the object map is always
1736          * safe.
1737          */
1738         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1739                 return false;
1740
1741         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1742                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1743 }
1744
1745 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1746 {
1747         u8 state;
1748
1749         /* fall back to default logic if object map is disabled or invalid */
1750         if (!use_object_map(rbd_dev))
1751                 return true;
1752
1753         state = rbd_object_map_get(rbd_dev, objno);
1754         return state != OBJECT_NONEXISTENT;
1755 }
1756
1757 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1758                                 struct ceph_object_id *oid)
1759 {
1760         if (snap_id == CEPH_NOSNAP)
1761                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1762                                 rbd_dev->spec->image_id);
1763         else
1764                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1765                                 rbd_dev->spec->image_id, snap_id);
1766 }
1767
1768 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1769 {
1770         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1771         CEPH_DEFINE_OID_ONSTACK(oid);
1772         u8 lock_type;
1773         char *lock_tag;
1774         struct ceph_locker *lockers;
1775         u32 num_lockers;
1776         bool broke_lock = false;
1777         int ret;
1778
1779         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1780
1781 again:
1782         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1783                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1784         if (ret != -EBUSY || broke_lock) {
1785                 if (ret == -EEXIST)
1786                         ret = 0; /* already locked by myself */
1787                 if (ret)
1788                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1789                 return ret;
1790         }
1791
1792         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1793                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1794                                  &lockers, &num_lockers);
1795         if (ret) {
1796                 if (ret == -ENOENT)
1797                         goto again;
1798
1799                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1800                 return ret;
1801         }
1802
1803         kfree(lock_tag);
1804         if (num_lockers == 0)
1805                 goto again;
1806
1807         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1808                  ENTITY_NAME(lockers[0].id.name));
1809
1810         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1811                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1812                                   &lockers[0].id.name);
1813         ceph_free_lockers(lockers, num_lockers);
1814         if (ret) {
1815                 if (ret == -ENOENT)
1816                         goto again;
1817
1818                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1819                 return ret;
1820         }
1821
1822         broke_lock = true;
1823         goto again;
1824 }
1825
1826 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1827 {
1828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829         CEPH_DEFINE_OID_ONSTACK(oid);
1830         int ret;
1831
1832         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1833
1834         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1835                               "");
1836         if (ret && ret != -ENOENT)
1837                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1838 }
1839
1840 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1841 {
1842         u8 struct_v;
1843         u32 struct_len;
1844         u32 header_len;
1845         void *header_end;
1846         int ret;
1847
1848         ceph_decode_32_safe(p, end, header_len, e_inval);
1849         header_end = *p + header_len;
1850
1851         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1852                                   &struct_len);
1853         if (ret)
1854                 return ret;
1855
1856         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1857
1858         *p = header_end;
1859         return 0;
1860
1861 e_inval:
1862         return -EINVAL;
1863 }
1864
1865 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1866 {
1867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1868         CEPH_DEFINE_OID_ONSTACK(oid);
1869         struct page **pages;
1870         void *p, *end;
1871         size_t reply_len;
1872         u64 num_objects;
1873         u64 object_map_bytes;
1874         u64 object_map_size;
1875         int num_pages;
1876         int ret;
1877
1878         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1879
1880         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1881                                            rbd_dev->mapping.size);
1882         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1883                                             BITS_PER_BYTE);
1884         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1885         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1886         if (IS_ERR(pages))
1887                 return PTR_ERR(pages);
1888
1889         reply_len = num_pages * PAGE_SIZE;
1890         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1891         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1892                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1893                              NULL, 0, pages, &reply_len);
1894         if (ret)
1895                 goto out;
1896
1897         p = page_address(pages[0]);
1898         end = p + min(reply_len, (size_t)PAGE_SIZE);
1899         ret = decode_object_map_header(&p, end, &object_map_size);
1900         if (ret)
1901                 goto out;
1902
1903         if (object_map_size != num_objects) {
1904                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1905                          object_map_size, num_objects);
1906                 ret = -EINVAL;
1907                 goto out;
1908         }
1909
1910         if (offset_in_page(p) + object_map_bytes > reply_len) {
1911                 ret = -EINVAL;
1912                 goto out;
1913         }
1914
1915         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1916         if (!rbd_dev->object_map) {
1917                 ret = -ENOMEM;
1918                 goto out;
1919         }
1920
1921         rbd_dev->object_map_size = object_map_size;
1922         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1923                                    offset_in_page(p), object_map_bytes);
1924
1925 out:
1926         ceph_release_page_vector(pages, num_pages);
1927         return ret;
1928 }
1929
1930 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1931 {
1932         kvfree(rbd_dev->object_map);
1933         rbd_dev->object_map = NULL;
1934         rbd_dev->object_map_size = 0;
1935 }
1936
1937 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1938 {
1939         int ret;
1940
1941         ret = __rbd_object_map_load(rbd_dev);
1942         if (ret)
1943                 return ret;
1944
1945         ret = rbd_dev_v2_get_flags(rbd_dev);
1946         if (ret) {
1947                 rbd_object_map_free(rbd_dev);
1948                 return ret;
1949         }
1950
1951         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1952                 rbd_warn(rbd_dev, "object map is invalid");
1953
1954         return 0;
1955 }
1956
1957 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1958 {
1959         int ret;
1960
1961         ret = rbd_object_map_lock(rbd_dev);
1962         if (ret)
1963                 return ret;
1964
1965         ret = rbd_object_map_load(rbd_dev);
1966         if (ret) {
1967                 rbd_object_map_unlock(rbd_dev);
1968                 return ret;
1969         }
1970
1971         return 0;
1972 }
1973
1974 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1975 {
1976         rbd_object_map_free(rbd_dev);
1977         rbd_object_map_unlock(rbd_dev);
1978 }
1979
1980 /*
1981  * This function needs snap_id (or more precisely just something to
1982  * distinguish between HEAD and snapshot object maps), new_state and
1983  * current_state that were passed to rbd_object_map_update().
1984  *
1985  * To avoid allocating and stashing a context we piggyback on the OSD
1986  * request.  A HEAD update has two ops (assert_locked).  For new_state
1987  * and current_state we decode our own object_map_update op, encoded in
1988  * rbd_cls_object_map_update().
1989  */
1990 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1991                                         struct ceph_osd_request *osd_req)
1992 {
1993         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1994         struct ceph_osd_data *osd_data;
1995         u64 objno;
1996         u8 state, new_state, current_state;
1997         bool has_current_state;
1998         void *p;
1999
2000         if (osd_req->r_result)
2001                 return osd_req->r_result;
2002
2003         /*
2004          * Nothing to do for a snapshot object map.
2005          */
2006         if (osd_req->r_num_ops == 1)
2007                 return 0;
2008
2009         /*
2010          * Update in-memory HEAD object map.
2011          */
2012         rbd_assert(osd_req->r_num_ops == 2);
2013         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2014         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2015
2016         p = page_address(osd_data->pages[0]);
2017         objno = ceph_decode_64(&p);
2018         rbd_assert(objno == obj_req->ex.oe_objno);
2019         rbd_assert(ceph_decode_64(&p) == objno + 1);
2020         new_state = ceph_decode_8(&p);
2021         has_current_state = ceph_decode_8(&p);
2022         if (has_current_state)
2023                 current_state = ceph_decode_8(&p);
2024
2025         spin_lock(&rbd_dev->object_map_lock);
2026         state = __rbd_object_map_get(rbd_dev, objno);
2027         if (!has_current_state || current_state == state ||
2028             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2029                 __rbd_object_map_set(rbd_dev, objno, new_state);
2030         spin_unlock(&rbd_dev->object_map_lock);
2031
2032         return 0;
2033 }
2034
2035 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2036 {
2037         struct rbd_obj_request *obj_req = osd_req->r_priv;
2038         int result;
2039
2040         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2041              osd_req->r_result, obj_req);
2042
2043         result = rbd_object_map_update_finish(obj_req, osd_req);
2044         rbd_obj_handle_request(obj_req, result);
2045 }
2046
2047 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2048 {
2049         u8 state = rbd_object_map_get(rbd_dev, objno);
2050
2051         if (state == new_state ||
2052             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2053             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2054                 return false;
2055
2056         return true;
2057 }
2058
2059 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2060                                      int which, u64 objno, u8 new_state,
2061                                      const u8 *current_state)
2062 {
2063         struct page **pages;
2064         void *p, *start;
2065         int ret;
2066
2067         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2068         if (ret)
2069                 return ret;
2070
2071         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2072         if (IS_ERR(pages))
2073                 return PTR_ERR(pages);
2074
2075         p = start = page_address(pages[0]);
2076         ceph_encode_64(&p, objno);
2077         ceph_encode_64(&p, objno + 1);
2078         ceph_encode_8(&p, new_state);
2079         if (current_state) {
2080                 ceph_encode_8(&p, 1);
2081                 ceph_encode_8(&p, *current_state);
2082         } else {
2083                 ceph_encode_8(&p, 0);
2084         }
2085
2086         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2087                                           false, true);
2088         return 0;
2089 }
2090
2091 /*
2092  * Return:
2093  *   0 - object map update sent
2094  *   1 - object map update isn't needed
2095  *  <0 - error
2096  */
2097 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2098                                  u8 new_state, const u8 *current_state)
2099 {
2100         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2101         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2102         struct ceph_osd_request *req;
2103         int num_ops = 1;
2104         int which = 0;
2105         int ret;
2106
2107         if (snap_id == CEPH_NOSNAP) {
2108                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2109                         return 1;
2110
2111                 num_ops++; /* assert_locked */
2112         }
2113
2114         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2115         if (!req)
2116                 return -ENOMEM;
2117
2118         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2119         req->r_callback = rbd_object_map_callback;
2120         req->r_priv = obj_req;
2121
2122         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2123         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2124         req->r_flags = CEPH_OSD_FLAG_WRITE;
2125         ktime_get_real_ts64(&req->r_mtime);
2126
2127         if (snap_id == CEPH_NOSNAP) {
2128                 /*
2129                  * Protect against possible race conditions during lock
2130                  * ownership transitions.
2131                  */
2132                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2133                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2134                 if (ret)
2135                         return ret;
2136         }
2137
2138         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2139                                         new_state, current_state);
2140         if (ret)
2141                 return ret;
2142
2143         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2144         if (ret)
2145                 return ret;
2146
2147         ceph_osdc_start_request(osdc, req, false);
2148         return 0;
2149 }
2150
2151 static void prune_extents(struct ceph_file_extent *img_extents,
2152                           u32 *num_img_extents, u64 overlap)
2153 {
2154         u32 cnt = *num_img_extents;
2155
2156         /* drop extents completely beyond the overlap */
2157         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2158                 cnt--;
2159
2160         if (cnt) {
2161                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2162
2163                 /* trim final overlapping extent */
2164                 if (ex->fe_off + ex->fe_len > overlap)
2165                         ex->fe_len = overlap - ex->fe_off;
2166         }
2167
2168         *num_img_extents = cnt;
2169 }
2170
2171 /*
2172  * Determine the byte range(s) covered by either just the object extent
2173  * or the entire object in the parent image.
2174  */
2175 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2176                                     bool entire)
2177 {
2178         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2179         int ret;
2180
2181         if (!rbd_dev->parent_overlap)
2182                 return 0;
2183
2184         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2185                                   entire ? 0 : obj_req->ex.oe_off,
2186                                   entire ? rbd_dev->layout.object_size :
2187                                                         obj_req->ex.oe_len,
2188                                   &obj_req->img_extents,
2189                                   &obj_req->num_img_extents);
2190         if (ret)
2191                 return ret;
2192
2193         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2194                       rbd_dev->parent_overlap);
2195         return 0;
2196 }
2197
2198 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2199 {
2200         struct rbd_obj_request *obj_req = osd_req->r_priv;
2201
2202         switch (obj_req->img_request->data_type) {
2203         case OBJ_REQUEST_BIO:
2204                 osd_req_op_extent_osd_data_bio(osd_req, which,
2205                                                &obj_req->bio_pos,
2206                                                obj_req->ex.oe_len);
2207                 break;
2208         case OBJ_REQUEST_BVECS:
2209         case OBJ_REQUEST_OWN_BVECS:
2210                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2211                                                         obj_req->ex.oe_len);
2212                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2213                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2214                                                     &obj_req->bvec_pos);
2215                 break;
2216         default:
2217                 BUG();
2218         }
2219 }
2220
2221 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2222 {
2223         struct page **pages;
2224
2225         /*
2226          * The response data for a STAT call consists of:
2227          *     le64 length;
2228          *     struct {
2229          *         le32 tv_sec;
2230          *         le32 tv_nsec;
2231          *     } mtime;
2232          */
2233         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2234         if (IS_ERR(pages))
2235                 return PTR_ERR(pages);
2236
2237         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2238         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2239                                      8 + sizeof(struct ceph_timespec),
2240                                      0, false, true);
2241         return 0;
2242 }
2243
2244 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2245                                 u32 bytes)
2246 {
2247         struct rbd_obj_request *obj_req = osd_req->r_priv;
2248         int ret;
2249
2250         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2251         if (ret)
2252                 return ret;
2253
2254         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2255                                           obj_req->copyup_bvec_count, bytes);
2256         return 0;
2257 }
2258
2259 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2260 {
2261         obj_req->read_state = RBD_OBJ_READ_START;
2262         return 0;
2263 }
2264
2265 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2266                                       int which)
2267 {
2268         struct rbd_obj_request *obj_req = osd_req->r_priv;
2269         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2270         u16 opcode;
2271
2272         if (!use_object_map(rbd_dev) ||
2273             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2274                 osd_req_op_alloc_hint_init(osd_req, which++,
2275                                            rbd_dev->layout.object_size,
2276                                            rbd_dev->layout.object_size,
2277                                            rbd_dev->opts->alloc_hint_flags);
2278         }
2279
2280         if (rbd_obj_is_entire(obj_req))
2281                 opcode = CEPH_OSD_OP_WRITEFULL;
2282         else
2283                 opcode = CEPH_OSD_OP_WRITE;
2284
2285         osd_req_op_extent_init(osd_req, which, opcode,
2286                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2287         rbd_osd_setup_data(osd_req, which);
2288 }
2289
2290 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2291 {
2292         int ret;
2293
2294         /* reverse map the entire object onto the parent */
2295         ret = rbd_obj_calc_img_extents(obj_req, true);
2296         if (ret)
2297                 return ret;
2298
2299         if (rbd_obj_copyup_enabled(obj_req))
2300                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2301
2302         obj_req->write_state = RBD_OBJ_WRITE_START;
2303         return 0;
2304 }
2305
2306 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2307 {
2308         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2309                                           CEPH_OSD_OP_ZERO;
2310 }
2311
2312 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2313                                         int which)
2314 {
2315         struct rbd_obj_request *obj_req = osd_req->r_priv;
2316
2317         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2318                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2319                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2320         } else {
2321                 osd_req_op_extent_init(osd_req, which,
2322                                        truncate_or_zero_opcode(obj_req),
2323                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2324                                        0, 0);
2325         }
2326 }
2327
2328 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2329 {
2330         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2331         u64 off, next_off;
2332         int ret;
2333
2334         /*
2335          * Align the range to alloc_size boundary and punt on discards
2336          * that are too small to free up any space.
2337          *
2338          * alloc_size == object_size && is_tail() is a special case for
2339          * filestore with filestore_punch_hole = false, needed to allow
2340          * truncate (in addition to delete).
2341          */
2342         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2343             !rbd_obj_is_tail(obj_req)) {
2344                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2345                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2346                                       rbd_dev->opts->alloc_size);
2347                 if (off >= next_off)
2348                         return 1;
2349
2350                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2351                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2352                      off, next_off - off);
2353                 obj_req->ex.oe_off = off;
2354                 obj_req->ex.oe_len = next_off - off;
2355         }
2356
2357         /* reverse map the entire object onto the parent */
2358         ret = rbd_obj_calc_img_extents(obj_req, true);
2359         if (ret)
2360                 return ret;
2361
2362         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2364                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365
2366         obj_req->write_state = RBD_OBJ_WRITE_START;
2367         return 0;
2368 }
2369
2370 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2371                                         int which)
2372 {
2373         struct rbd_obj_request *obj_req = osd_req->r_priv;
2374         u16 opcode;
2375
2376         if (rbd_obj_is_entire(obj_req)) {
2377                 if (obj_req->num_img_extents) {
2378                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2379                                 osd_req_op_init(osd_req, which++,
2380                                                 CEPH_OSD_OP_CREATE, 0);
2381                         opcode = CEPH_OSD_OP_TRUNCATE;
2382                 } else {
2383                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2384                         osd_req_op_init(osd_req, which++,
2385                                         CEPH_OSD_OP_DELETE, 0);
2386                         opcode = 0;
2387                 }
2388         } else {
2389                 opcode = truncate_or_zero_opcode(obj_req);
2390         }
2391
2392         if (opcode)
2393                 osd_req_op_extent_init(osd_req, which, opcode,
2394                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2395                                        0, 0);
2396 }
2397
2398 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2399 {
2400         int ret;
2401
2402         /* reverse map the entire object onto the parent */
2403         ret = rbd_obj_calc_img_extents(obj_req, true);
2404         if (ret)
2405                 return ret;
2406
2407         if (rbd_obj_copyup_enabled(obj_req))
2408                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2409         if (!obj_req->num_img_extents) {
2410                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2411                 if (rbd_obj_is_entire(obj_req))
2412                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2413         }
2414
2415         obj_req->write_state = RBD_OBJ_WRITE_START;
2416         return 0;
2417 }
2418
2419 static int count_write_ops(struct rbd_obj_request *obj_req)
2420 {
2421         struct rbd_img_request *img_req = obj_req->img_request;
2422
2423         switch (img_req->op_type) {
2424         case OBJ_OP_WRITE:
2425                 if (!use_object_map(img_req->rbd_dev) ||
2426                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2427                         return 2; /* setallochint + write/writefull */
2428
2429                 return 1; /* write/writefull */
2430         case OBJ_OP_DISCARD:
2431                 return 1; /* delete/truncate/zero */
2432         case OBJ_OP_ZEROOUT:
2433                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2434                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2435                         return 2; /* create + truncate */
2436
2437                 return 1; /* delete/truncate/zero */
2438         default:
2439                 BUG();
2440         }
2441 }
2442
2443 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2444                                     int which)
2445 {
2446         struct rbd_obj_request *obj_req = osd_req->r_priv;
2447
2448         switch (obj_req->img_request->op_type) {
2449         case OBJ_OP_WRITE:
2450                 __rbd_osd_setup_write_ops(osd_req, which);
2451                 break;
2452         case OBJ_OP_DISCARD:
2453                 __rbd_osd_setup_discard_ops(osd_req, which);
2454                 break;
2455         case OBJ_OP_ZEROOUT:
2456                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2457                 break;
2458         default:
2459                 BUG();
2460         }
2461 }
2462
2463 /*
2464  * Prune the list of object requests (adjust offset and/or length, drop
2465  * redundant requests).  Prepare object request state machines and image
2466  * request state machine for execution.
2467  */
2468 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2469 {
2470         struct rbd_obj_request *obj_req, *next_obj_req;
2471         int ret;
2472
2473         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2474                 switch (img_req->op_type) {
2475                 case OBJ_OP_READ:
2476                         ret = rbd_obj_init_read(obj_req);
2477                         break;
2478                 case OBJ_OP_WRITE:
2479                         ret = rbd_obj_init_write(obj_req);
2480                         break;
2481                 case OBJ_OP_DISCARD:
2482                         ret = rbd_obj_init_discard(obj_req);
2483                         break;
2484                 case OBJ_OP_ZEROOUT:
2485                         ret = rbd_obj_init_zeroout(obj_req);
2486                         break;
2487                 default:
2488                         BUG();
2489                 }
2490                 if (ret < 0)
2491                         return ret;
2492                 if (ret > 0) {
2493                         rbd_img_obj_request_del(img_req, obj_req);
2494                         continue;
2495                 }
2496         }
2497
2498         img_req->state = RBD_IMG_START;
2499         return 0;
2500 }
2501
2502 union rbd_img_fill_iter {
2503         struct ceph_bio_iter    bio_iter;
2504         struct ceph_bvec_iter   bvec_iter;
2505 };
2506
2507 struct rbd_img_fill_ctx {
2508         enum obj_request_type   pos_type;
2509         union rbd_img_fill_iter *pos;
2510         union rbd_img_fill_iter iter;
2511         ceph_object_extent_fn_t set_pos_fn;
2512         ceph_object_extent_fn_t count_fn;
2513         ceph_object_extent_fn_t copy_fn;
2514 };
2515
2516 static struct ceph_object_extent *alloc_object_extent(void *arg)
2517 {
2518         struct rbd_img_request *img_req = arg;
2519         struct rbd_obj_request *obj_req;
2520
2521         obj_req = rbd_obj_request_create();
2522         if (!obj_req)
2523                 return NULL;
2524
2525         rbd_img_obj_request_add(img_req, obj_req);
2526         return &obj_req->ex;
2527 }
2528
2529 /*
2530  * While su != os && sc == 1 is technically not fancy (it's the same
2531  * layout as su == os && sc == 1), we can't use the nocopy path for it
2532  * because ->set_pos_fn() should be called only once per object.
2533  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2534  * treat su != os && sc == 1 as fancy.
2535  */
2536 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2537 {
2538         return l->stripe_unit != l->object_size;
2539 }
2540
2541 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2542                                        struct ceph_file_extent *img_extents,
2543                                        u32 num_img_extents,
2544                                        struct rbd_img_fill_ctx *fctx)
2545 {
2546         u32 i;
2547         int ret;
2548
2549         img_req->data_type = fctx->pos_type;
2550
2551         /*
2552          * Create object requests and set each object request's starting
2553          * position in the provided bio (list) or bio_vec array.
2554          */
2555         fctx->iter = *fctx->pos;
2556         for (i = 0; i < num_img_extents; i++) {
2557                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2558                                            img_extents[i].fe_off,
2559                                            img_extents[i].fe_len,
2560                                            &img_req->object_extents,
2561                                            alloc_object_extent, img_req,
2562                                            fctx->set_pos_fn, &fctx->iter);
2563                 if (ret)
2564                         return ret;
2565         }
2566
2567         return __rbd_img_fill_request(img_req);
2568 }
2569
2570 /*
2571  * Map a list of image extents to a list of object extents, create the
2572  * corresponding object requests (normally each to a different object,
2573  * but not always) and add them to @img_req.  For each object request,
2574  * set up its data descriptor to point to the corresponding chunk(s) of
2575  * @fctx->pos data buffer.
2576  *
2577  * Because ceph_file_to_extents() will merge adjacent object extents
2578  * together, each object request's data descriptor may point to multiple
2579  * different chunks of @fctx->pos data buffer.
2580  *
2581  * @fctx->pos data buffer is assumed to be large enough.
2582  */
2583 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2584                                 struct ceph_file_extent *img_extents,
2585                                 u32 num_img_extents,
2586                                 struct rbd_img_fill_ctx *fctx)
2587 {
2588         struct rbd_device *rbd_dev = img_req->rbd_dev;
2589         struct rbd_obj_request *obj_req;
2590         u32 i;
2591         int ret;
2592
2593         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2594             !rbd_layout_is_fancy(&rbd_dev->layout))
2595                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2596                                                    num_img_extents, fctx);
2597
2598         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2599
2600         /*
2601          * Create object requests and determine ->bvec_count for each object
2602          * request.  Note that ->bvec_count sum over all object requests may
2603          * be greater than the number of bio_vecs in the provided bio (list)
2604          * or bio_vec array because when mapped, those bio_vecs can straddle
2605          * stripe unit boundaries.
2606          */
2607         fctx->iter = *fctx->pos;
2608         for (i = 0; i < num_img_extents; i++) {
2609                 ret = ceph_file_to_extents(&rbd_dev->layout,
2610                                            img_extents[i].fe_off,
2611                                            img_extents[i].fe_len,
2612                                            &img_req->object_extents,
2613                                            alloc_object_extent, img_req,
2614                                            fctx->count_fn, &fctx->iter);
2615                 if (ret)
2616                         return ret;
2617         }
2618
2619         for_each_obj_request(img_req, obj_req) {
2620                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2621                                               sizeof(*obj_req->bvec_pos.bvecs),
2622                                               GFP_NOIO);
2623                 if (!obj_req->bvec_pos.bvecs)
2624                         return -ENOMEM;
2625         }
2626
2627         /*
2628          * Fill in each object request's private bio_vec array, splitting and
2629          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2630          */
2631         fctx->iter = *fctx->pos;
2632         for (i = 0; i < num_img_extents; i++) {
2633                 ret = ceph_iterate_extents(&rbd_dev->layout,
2634                                            img_extents[i].fe_off,
2635                                            img_extents[i].fe_len,
2636                                            &img_req->object_extents,
2637                                            fctx->copy_fn, &fctx->iter);
2638                 if (ret)
2639                         return ret;
2640         }
2641
2642         return __rbd_img_fill_request(img_req);
2643 }
2644
2645 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2646                                u64 off, u64 len)
2647 {
2648         struct ceph_file_extent ex = { off, len };
2649         union rbd_img_fill_iter dummy = {};
2650         struct rbd_img_fill_ctx fctx = {
2651                 .pos_type = OBJ_REQUEST_NODATA,
2652                 .pos = &dummy,
2653         };
2654
2655         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2656 }
2657
2658 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660         struct rbd_obj_request *obj_req =
2661             container_of(ex, struct rbd_obj_request, ex);
2662         struct ceph_bio_iter *it = arg;
2663
2664         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2665         obj_req->bio_pos = *it;
2666         ceph_bio_iter_advance(it, bytes);
2667 }
2668
2669 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671         struct rbd_obj_request *obj_req =
2672             container_of(ex, struct rbd_obj_request, ex);
2673         struct ceph_bio_iter *it = arg;
2674
2675         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2676         ceph_bio_iter_advance_step(it, bytes, ({
2677                 obj_req->bvec_count++;
2678         }));
2679
2680 }
2681
2682 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 {
2684         struct rbd_obj_request *obj_req =
2685             container_of(ex, struct rbd_obj_request, ex);
2686         struct ceph_bio_iter *it = arg;
2687
2688         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2689         ceph_bio_iter_advance_step(it, bytes, ({
2690                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2691                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2692         }));
2693 }
2694
2695 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2696                                    struct ceph_file_extent *img_extents,
2697                                    u32 num_img_extents,
2698                                    struct ceph_bio_iter *bio_pos)
2699 {
2700         struct rbd_img_fill_ctx fctx = {
2701                 .pos_type = OBJ_REQUEST_BIO,
2702                 .pos = (union rbd_img_fill_iter *)bio_pos,
2703                 .set_pos_fn = set_bio_pos,
2704                 .count_fn = count_bio_bvecs,
2705                 .copy_fn = copy_bio_bvecs,
2706         };
2707
2708         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2709                                     &fctx);
2710 }
2711
2712 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2713                                  u64 off, u64 len, struct bio *bio)
2714 {
2715         struct ceph_file_extent ex = { off, len };
2716         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2717
2718         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2719 }
2720
2721 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2722 {
2723         struct rbd_obj_request *obj_req =
2724             container_of(ex, struct rbd_obj_request, ex);
2725         struct ceph_bvec_iter *it = arg;
2726
2727         obj_req->bvec_pos = *it;
2728         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2729         ceph_bvec_iter_advance(it, bytes);
2730 }
2731
2732 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2733 {
2734         struct rbd_obj_request *obj_req =
2735             container_of(ex, struct rbd_obj_request, ex);
2736         struct ceph_bvec_iter *it = arg;
2737
2738         ceph_bvec_iter_advance_step(it, bytes, ({
2739                 obj_req->bvec_count++;
2740         }));
2741 }
2742
2743 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2744 {
2745         struct rbd_obj_request *obj_req =
2746             container_of(ex, struct rbd_obj_request, ex);
2747         struct ceph_bvec_iter *it = arg;
2748
2749         ceph_bvec_iter_advance_step(it, bytes, ({
2750                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2751                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2752         }));
2753 }
2754
2755 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2756                                      struct ceph_file_extent *img_extents,
2757                                      u32 num_img_extents,
2758                                      struct ceph_bvec_iter *bvec_pos)
2759 {
2760         struct rbd_img_fill_ctx fctx = {
2761                 .pos_type = OBJ_REQUEST_BVECS,
2762                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2763                 .set_pos_fn = set_bvec_pos,
2764                 .count_fn = count_bvecs,
2765                 .copy_fn = copy_bvecs,
2766         };
2767
2768         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2769                                     &fctx);
2770 }
2771
2772 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2773                                    struct ceph_file_extent *img_extents,
2774                                    u32 num_img_extents,
2775                                    struct bio_vec *bvecs)
2776 {
2777         struct ceph_bvec_iter it = {
2778                 .bvecs = bvecs,
2779                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2780                                                              num_img_extents) },
2781         };
2782
2783         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2784                                          &it);
2785 }
2786
2787 static void rbd_img_handle_request_work(struct work_struct *work)
2788 {
2789         struct rbd_img_request *img_req =
2790             container_of(work, struct rbd_img_request, work);
2791
2792         rbd_img_handle_request(img_req, img_req->work_result);
2793 }
2794
2795 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2796 {
2797         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2798         img_req->work_result = result;
2799         queue_work(rbd_wq, &img_req->work);
2800 }
2801
2802 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2803 {
2804         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2805
2806         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2807                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2808                 return true;
2809         }
2810
2811         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2812              obj_req->ex.oe_objno);
2813         return false;
2814 }
2815
2816 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2817 {
2818         struct ceph_osd_request *osd_req;
2819         int ret;
2820
2821         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2822         if (IS_ERR(osd_req))
2823                 return PTR_ERR(osd_req);
2824
2825         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2826                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2827         rbd_osd_setup_data(osd_req, 0);
2828         rbd_osd_format_read(osd_req);
2829
2830         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2831         if (ret)
2832                 return ret;
2833
2834         rbd_osd_submit(osd_req);
2835         return 0;
2836 }
2837
2838 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2839 {
2840         struct rbd_img_request *img_req = obj_req->img_request;
2841         struct rbd_device *parent = img_req->rbd_dev->parent;
2842         struct rbd_img_request *child_img_req;
2843         int ret;
2844
2845         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2846         if (!child_img_req)
2847                 return -ENOMEM;
2848
2849         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2850         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2851         child_img_req->obj_request = obj_req;
2852
2853         down_read(&parent->header_rwsem);
2854         rbd_img_capture_header(child_img_req);
2855         up_read(&parent->header_rwsem);
2856
2857         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2858              obj_req);
2859
2860         if (!rbd_img_is_write(img_req)) {
2861                 switch (img_req->data_type) {
2862                 case OBJ_REQUEST_BIO:
2863                         ret = __rbd_img_fill_from_bio(child_img_req,
2864                                                       obj_req->img_extents,
2865                                                       obj_req->num_img_extents,
2866                                                       &obj_req->bio_pos);
2867                         break;
2868                 case OBJ_REQUEST_BVECS:
2869                 case OBJ_REQUEST_OWN_BVECS:
2870                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2871                                                       obj_req->img_extents,
2872                                                       obj_req->num_img_extents,
2873                                                       &obj_req->bvec_pos);
2874                         break;
2875                 default:
2876                         BUG();
2877                 }
2878         } else {
2879                 ret = rbd_img_fill_from_bvecs(child_img_req,
2880                                               obj_req->img_extents,
2881                                               obj_req->num_img_extents,
2882                                               obj_req->copyup_bvecs);
2883         }
2884         if (ret) {
2885                 rbd_img_request_destroy(child_img_req);
2886                 return ret;
2887         }
2888
2889         /* avoid parent chain recursion */
2890         rbd_img_schedule(child_img_req, 0);
2891         return 0;
2892 }
2893
2894 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2895 {
2896         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2897         int ret;
2898
2899 again:
2900         switch (obj_req->read_state) {
2901         case RBD_OBJ_READ_START:
2902                 rbd_assert(!*result);
2903
2904                 if (!rbd_obj_may_exist(obj_req)) {
2905                         *result = -ENOENT;
2906                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2907                         goto again;
2908                 }
2909
2910                 ret = rbd_obj_read_object(obj_req);
2911                 if (ret) {
2912                         *result = ret;
2913                         return true;
2914                 }
2915                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2916                 return false;
2917         case RBD_OBJ_READ_OBJECT:
2918                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2919                         /* reverse map this object extent onto the parent */
2920                         ret = rbd_obj_calc_img_extents(obj_req, false);
2921                         if (ret) {
2922                                 *result = ret;
2923                                 return true;
2924                         }
2925                         if (obj_req->num_img_extents) {
2926                                 ret = rbd_obj_read_from_parent(obj_req);
2927                                 if (ret) {
2928                                         *result = ret;
2929                                         return true;
2930                                 }
2931                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2932                                 return false;
2933                         }
2934                 }
2935
2936                 /*
2937                  * -ENOENT means a hole in the image -- zero-fill the entire
2938                  * length of the request.  A short read also implies zero-fill
2939                  * to the end of the request.
2940                  */
2941                 if (*result == -ENOENT) {
2942                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2943                         *result = 0;
2944                 } else if (*result >= 0) {
2945                         if (*result < obj_req->ex.oe_len)
2946                                 rbd_obj_zero_range(obj_req, *result,
2947                                                 obj_req->ex.oe_len - *result);
2948                         else
2949                                 rbd_assert(*result == obj_req->ex.oe_len);
2950                         *result = 0;
2951                 }
2952                 return true;
2953         case RBD_OBJ_READ_PARENT:
2954                 /*
2955                  * The parent image is read only up to the overlap -- zero-fill
2956                  * from the overlap to the end of the request.
2957                  */
2958                 if (!*result) {
2959                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2960
2961                         if (obj_overlap < obj_req->ex.oe_len)
2962                                 rbd_obj_zero_range(obj_req, obj_overlap,
2963                                             obj_req->ex.oe_len - obj_overlap);
2964                 }
2965                 return true;
2966         default:
2967                 BUG();
2968         }
2969 }
2970
2971 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2972 {
2973         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2974
2975         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2976                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2977
2978         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2979             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2980                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2981                 return true;
2982         }
2983
2984         return false;
2985 }
2986
2987 /*
2988  * Return:
2989  *   0 - object map update sent
2990  *   1 - object map update isn't needed
2991  *  <0 - error
2992  */
2993 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2994 {
2995         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2996         u8 new_state;
2997
2998         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2999                 return 1;
3000
3001         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3002                 new_state = OBJECT_PENDING;
3003         else
3004                 new_state = OBJECT_EXISTS;
3005
3006         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3007 }
3008
3009 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3010 {
3011         struct ceph_osd_request *osd_req;
3012         int num_ops = count_write_ops(obj_req);
3013         int which = 0;
3014         int ret;
3015
3016         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3017                 num_ops++; /* stat */
3018
3019         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3020         if (IS_ERR(osd_req))
3021                 return PTR_ERR(osd_req);
3022
3023         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3024                 ret = rbd_osd_setup_stat(osd_req, which++);
3025                 if (ret)
3026                         return ret;
3027         }
3028
3029         rbd_osd_setup_write_ops(osd_req, which);
3030         rbd_osd_format_write(osd_req);
3031
3032         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3033         if (ret)
3034                 return ret;
3035
3036         rbd_osd_submit(osd_req);
3037         return 0;
3038 }
3039
3040 /*
3041  * copyup_bvecs pages are never highmem pages
3042  */
3043 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3044 {
3045         struct ceph_bvec_iter it = {
3046                 .bvecs = bvecs,
3047                 .iter = { .bi_size = bytes },
3048         };
3049
3050         ceph_bvec_iter_advance_step(&it, bytes, ({
3051                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3052                                bv.bv_len))
3053                         return false;
3054         }));
3055         return true;
3056 }
3057
3058 #define MODS_ONLY       U32_MAX
3059
3060 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3061                                       u32 bytes)
3062 {
3063         struct ceph_osd_request *osd_req;
3064         int ret;
3065
3066         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3067         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3068
3069         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3070         if (IS_ERR(osd_req))
3071                 return PTR_ERR(osd_req);
3072
3073         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3074         if (ret)
3075                 return ret;
3076
3077         rbd_osd_format_write(osd_req);
3078
3079         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3080         if (ret)
3081                 return ret;
3082
3083         rbd_osd_submit(osd_req);
3084         return 0;
3085 }
3086
3087 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3088                                         u32 bytes)
3089 {
3090         struct ceph_osd_request *osd_req;
3091         int num_ops = count_write_ops(obj_req);
3092         int which = 0;
3093         int ret;
3094
3095         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3096
3097         if (bytes != MODS_ONLY)
3098                 num_ops++; /* copyup */
3099
3100         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3101         if (IS_ERR(osd_req))
3102                 return PTR_ERR(osd_req);
3103
3104         if (bytes != MODS_ONLY) {
3105                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3106                 if (ret)
3107                         return ret;
3108         }
3109
3110         rbd_osd_setup_write_ops(osd_req, which);
3111         rbd_osd_format_write(osd_req);
3112
3113         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3114         if (ret)
3115                 return ret;
3116
3117         rbd_osd_submit(osd_req);
3118         return 0;
3119 }
3120
3121 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3122 {
3123         u32 i;
3124
3125         rbd_assert(!obj_req->copyup_bvecs);
3126         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3127         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3128                                         sizeof(*obj_req->copyup_bvecs),
3129                                         GFP_NOIO);
3130         if (!obj_req->copyup_bvecs)
3131                 return -ENOMEM;
3132
3133         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3134                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3135
3136                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3137                 if (!obj_req->copyup_bvecs[i].bv_page)
3138                         return -ENOMEM;
3139
3140                 obj_req->copyup_bvecs[i].bv_offset = 0;
3141                 obj_req->copyup_bvecs[i].bv_len = len;
3142                 obj_overlap -= len;
3143         }
3144
3145         rbd_assert(!obj_overlap);
3146         return 0;
3147 }
3148
3149 /*
3150  * The target object doesn't exist.  Read the data for the entire
3151  * target object up to the overlap point (if any) from the parent,
3152  * so we can use it for a copyup.
3153  */
3154 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3155 {
3156         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3157         int ret;
3158
3159         rbd_assert(obj_req->num_img_extents);
3160         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3161                       rbd_dev->parent_overlap);
3162         if (!obj_req->num_img_extents) {
3163                 /*
3164                  * The overlap has become 0 (most likely because the
3165                  * image has been flattened).  Re-submit the original write
3166                  * request -- pass MODS_ONLY since the copyup isn't needed
3167                  * anymore.
3168                  */
3169                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3170         }
3171
3172         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3173         if (ret)
3174                 return ret;
3175
3176         return rbd_obj_read_from_parent(obj_req);
3177 }
3178
3179 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3180 {
3181         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3182         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3183         u8 new_state;
3184         u32 i;
3185         int ret;
3186
3187         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188
3189         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3190                 return;
3191
3192         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3193                 return;
3194
3195         for (i = 0; i < snapc->num_snaps; i++) {
3196                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3197                     i + 1 < snapc->num_snaps)
3198                         new_state = OBJECT_EXISTS_CLEAN;
3199                 else
3200                         new_state = OBJECT_EXISTS;
3201
3202                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3203                                             new_state, NULL);
3204                 if (ret < 0) {
3205                         obj_req->pending.result = ret;
3206                         return;
3207                 }
3208
3209                 rbd_assert(!ret);
3210                 obj_req->pending.num_pending++;
3211         }
3212 }
3213
3214 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3215 {
3216         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3217         int ret;
3218
3219         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3220
3221         /*
3222          * Only send non-zero copyup data to save some I/O and network
3223          * bandwidth -- zero copyup data is equivalent to the object not
3224          * existing.
3225          */
3226         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3227                 bytes = 0;
3228
3229         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3230                 /*
3231                  * Send a copyup request with an empty snapshot context to
3232                  * deep-copyup the object through all existing snapshots.
3233                  * A second request with the current snapshot context will be
3234                  * sent for the actual modification.
3235                  */
3236                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3237                 if (ret) {
3238                         obj_req->pending.result = ret;
3239                         return;
3240                 }
3241
3242                 obj_req->pending.num_pending++;
3243                 bytes = MODS_ONLY;
3244         }
3245
3246         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3247         if (ret) {
3248                 obj_req->pending.result = ret;
3249                 return;
3250         }
3251
3252         obj_req->pending.num_pending++;
3253 }
3254
3255 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3256 {
3257         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3258         int ret;
3259
3260 again:
3261         switch (obj_req->copyup_state) {
3262         case RBD_OBJ_COPYUP_START:
3263                 rbd_assert(!*result);
3264
3265                 ret = rbd_obj_copyup_read_parent(obj_req);
3266                 if (ret) {
3267                         *result = ret;
3268                         return true;
3269                 }
3270                 if (obj_req->num_img_extents)
3271                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3272                 else
3273                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3274                 return false;
3275         case RBD_OBJ_COPYUP_READ_PARENT:
3276                 if (*result)
3277                         return true;
3278
3279                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3280                                   rbd_obj_img_extents_bytes(obj_req))) {
3281                         dout("%s %p detected zeros\n", __func__, obj_req);
3282                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3283                 }
3284
3285                 rbd_obj_copyup_object_maps(obj_req);
3286                 if (!obj_req->pending.num_pending) {
3287                         *result = obj_req->pending.result;
3288                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3289                         goto again;
3290                 }
3291                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3292                 return false;
3293         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3294                 if (!pending_result_dec(&obj_req->pending, result))
3295                         return false;
3296                 fallthrough;
3297         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3298                 if (*result) {
3299                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3300                                  *result);
3301                         return true;
3302                 }
3303
3304                 rbd_obj_copyup_write_object(obj_req);
3305                 if (!obj_req->pending.num_pending) {
3306                         *result = obj_req->pending.result;
3307                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3308                         goto again;
3309                 }
3310                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3311                 return false;
3312         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3313                 if (!pending_result_dec(&obj_req->pending, result))
3314                         return false;
3315                 fallthrough;
3316         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3317                 return true;
3318         default:
3319                 BUG();
3320         }
3321 }
3322
3323 /*
3324  * Return:
3325  *   0 - object map update sent
3326  *   1 - object map update isn't needed
3327  *  <0 - error
3328  */
3329 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3330 {
3331         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3332         u8 current_state = OBJECT_PENDING;
3333
3334         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3335                 return 1;
3336
3337         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3338                 return 1;
3339
3340         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3341                                      &current_state);
3342 }
3343
3344 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3345 {
3346         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3347         int ret;
3348
3349 again:
3350         switch (obj_req->write_state) {
3351         case RBD_OBJ_WRITE_START:
3352                 rbd_assert(!*result);
3353
3354                 if (rbd_obj_write_is_noop(obj_req))
3355                         return true;
3356
3357                 ret = rbd_obj_write_pre_object_map(obj_req);
3358                 if (ret < 0) {
3359                         *result = ret;
3360                         return true;
3361                 }
3362                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3363                 if (ret > 0)
3364                         goto again;
3365                 return false;
3366         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3367                 if (*result) {
3368                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3369                                  *result);
3370                         return true;
3371                 }
3372                 ret = rbd_obj_write_object(obj_req);
3373                 if (ret) {
3374                         *result = ret;
3375                         return true;
3376                 }
3377                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3378                 return false;
3379         case RBD_OBJ_WRITE_OBJECT:
3380                 if (*result == -ENOENT) {
3381                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3382                                 *result = 0;
3383                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3384                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3385                                 goto again;
3386                         }
3387                         /*
3388                          * On a non-existent object:
3389                          *   delete - -ENOENT, truncate/zero - 0
3390                          */
3391                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3392                                 *result = 0;
3393                 }
3394                 if (*result)
3395                         return true;
3396
3397                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3398                 goto again;
3399         case __RBD_OBJ_WRITE_COPYUP:
3400                 if (!rbd_obj_advance_copyup(obj_req, result))
3401                         return false;
3402                 fallthrough;
3403         case RBD_OBJ_WRITE_COPYUP:
3404                 if (*result) {
3405                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3406                         return true;
3407                 }
3408                 ret = rbd_obj_write_post_object_map(obj_req);
3409                 if (ret < 0) {
3410                         *result = ret;
3411                         return true;
3412                 }
3413                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3414                 if (ret > 0)
3415                         goto again;
3416                 return false;
3417         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3418                 if (*result)
3419                         rbd_warn(rbd_dev, "post object map update failed: %d",
3420                                  *result);
3421                 return true;
3422         default:
3423                 BUG();
3424         }
3425 }
3426
3427 /*
3428  * Return true if @obj_req is completed.
3429  */
3430 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3431                                      int *result)
3432 {
3433         struct rbd_img_request *img_req = obj_req->img_request;
3434         struct rbd_device *rbd_dev = img_req->rbd_dev;
3435         bool done;
3436
3437         mutex_lock(&obj_req->state_mutex);
3438         if (!rbd_img_is_write(img_req))
3439                 done = rbd_obj_advance_read(obj_req, result);
3440         else
3441                 done = rbd_obj_advance_write(obj_req, result);
3442         mutex_unlock(&obj_req->state_mutex);
3443
3444         if (done && *result) {
3445                 rbd_assert(*result < 0);
3446                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3447                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3448                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3449         }
3450         return done;
3451 }
3452
3453 /*
3454  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3455  * recursion.
3456  */
3457 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3458 {
3459         if (__rbd_obj_handle_request(obj_req, &result))
3460                 rbd_img_handle_request(obj_req->img_request, result);
3461 }
3462
3463 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465         struct rbd_device *rbd_dev = img_req->rbd_dev;
3466
3467         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3468                 return false;
3469
3470         if (rbd_is_ro(rbd_dev))
3471                 return false;
3472
3473         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3474         if (rbd_dev->opts->lock_on_read ||
3475             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3476                 return true;
3477
3478         return rbd_img_is_write(img_req);
3479 }
3480
3481 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3482 {
3483         struct rbd_device *rbd_dev = img_req->rbd_dev;
3484         bool locked;
3485
3486         lockdep_assert_held(&rbd_dev->lock_rwsem);
3487         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3488         spin_lock(&rbd_dev->lock_lists_lock);
3489         rbd_assert(list_empty(&img_req->lock_item));
3490         if (!locked)
3491                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3492         else
3493                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3494         spin_unlock(&rbd_dev->lock_lists_lock);
3495         return locked;
3496 }
3497
3498 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3499 {
3500         struct rbd_device *rbd_dev = img_req->rbd_dev;
3501         bool need_wakeup;
3502
3503         lockdep_assert_held(&rbd_dev->lock_rwsem);
3504         spin_lock(&rbd_dev->lock_lists_lock);
3505         rbd_assert(!list_empty(&img_req->lock_item));
3506         list_del_init(&img_req->lock_item);
3507         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3508                        list_empty(&rbd_dev->running_list));
3509         spin_unlock(&rbd_dev->lock_lists_lock);
3510         if (need_wakeup)
3511                 complete(&rbd_dev->releasing_wait);
3512 }
3513
3514 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3515 {
3516         struct rbd_device *rbd_dev = img_req->rbd_dev;
3517
3518         if (!need_exclusive_lock(img_req))
3519                 return 1;
3520
3521         if (rbd_lock_add_request(img_req))
3522                 return 1;
3523
3524         if (rbd_dev->opts->exclusive) {
3525                 WARN_ON(1); /* lock got released? */
3526                 return -EROFS;
3527         }
3528
3529         /*
3530          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3531          * and cancel_delayed_work() in wake_lock_waiters().
3532          */
3533         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3534         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3535         return 0;
3536 }
3537
3538 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3539 {
3540         struct rbd_obj_request *obj_req;
3541
3542         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3543
3544         for_each_obj_request(img_req, obj_req) {
3545                 int result = 0;
3546
3547                 if (__rbd_obj_handle_request(obj_req, &result)) {
3548                         if (result) {
3549                                 img_req->pending.result = result;
3550                                 return;
3551                         }
3552                 } else {
3553                         img_req->pending.num_pending++;
3554                 }
3555         }
3556 }
3557
3558 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3559 {
3560         struct rbd_device *rbd_dev = img_req->rbd_dev;
3561         int ret;
3562
3563 again:
3564         switch (img_req->state) {
3565         case RBD_IMG_START:
3566                 rbd_assert(!*result);
3567
3568                 ret = rbd_img_exclusive_lock(img_req);
3569                 if (ret < 0) {
3570                         *result = ret;
3571                         return true;
3572                 }
3573                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3574                 if (ret > 0)
3575                         goto again;
3576                 return false;
3577         case RBD_IMG_EXCLUSIVE_LOCK:
3578                 if (*result)
3579                         return true;
3580
3581                 rbd_assert(!need_exclusive_lock(img_req) ||
3582                            __rbd_is_lock_owner(rbd_dev));
3583
3584                 rbd_img_object_requests(img_req);
3585                 if (!img_req->pending.num_pending) {
3586                         *result = img_req->pending.result;
3587                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3588                         goto again;
3589                 }
3590                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3591                 return false;
3592         case __RBD_IMG_OBJECT_REQUESTS:
3593                 if (!pending_result_dec(&img_req->pending, result))
3594                         return false;
3595                 fallthrough;
3596         case RBD_IMG_OBJECT_REQUESTS:
3597                 return true;
3598         default:
3599                 BUG();
3600         }
3601 }
3602
3603 /*
3604  * Return true if @img_req is completed.
3605  */
3606 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3607                                      int *result)
3608 {
3609         struct rbd_device *rbd_dev = img_req->rbd_dev;
3610         bool done;
3611
3612         if (need_exclusive_lock(img_req)) {
3613                 down_read(&rbd_dev->lock_rwsem);
3614                 mutex_lock(&img_req->state_mutex);
3615                 done = rbd_img_advance(img_req, result);
3616                 if (done)
3617                         rbd_lock_del_request(img_req);
3618                 mutex_unlock(&img_req->state_mutex);
3619                 up_read(&rbd_dev->lock_rwsem);
3620         } else {
3621                 mutex_lock(&img_req->state_mutex);
3622                 done = rbd_img_advance(img_req, result);
3623                 mutex_unlock(&img_req->state_mutex);
3624         }
3625
3626         if (done && *result) {
3627                 rbd_assert(*result < 0);
3628                 rbd_warn(rbd_dev, "%s%s result %d",
3629                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3630                       obj_op_name(img_req->op_type), *result);
3631         }
3632         return done;
3633 }
3634
3635 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3636 {
3637 again:
3638         if (!__rbd_img_handle_request(img_req, &result))
3639                 return;
3640
3641         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3642                 struct rbd_obj_request *obj_req = img_req->obj_request;
3643
3644                 rbd_img_request_destroy(img_req);
3645                 if (__rbd_obj_handle_request(obj_req, &result)) {
3646                         img_req = obj_req->img_request;
3647                         goto again;
3648                 }
3649         } else {
3650                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3651
3652                 rbd_img_request_destroy(img_req);
3653                 blk_mq_end_request(rq, errno_to_blk_status(result));
3654         }
3655 }
3656
3657 static const struct rbd_client_id rbd_empty_cid;
3658
3659 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3660                           const struct rbd_client_id *rhs)
3661 {
3662         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3663 }
3664
3665 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3666 {
3667         struct rbd_client_id cid;
3668
3669         mutex_lock(&rbd_dev->watch_mutex);
3670         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3671         cid.handle = rbd_dev->watch_cookie;
3672         mutex_unlock(&rbd_dev->watch_mutex);
3673         return cid;
3674 }
3675
3676 /*
3677  * lock_rwsem must be held for write
3678  */
3679 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3680                               const struct rbd_client_id *cid)
3681 {
3682         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3683              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3684              cid->gid, cid->handle);
3685         rbd_dev->owner_cid = *cid; /* struct */
3686 }
3687
3688 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3689 {
3690         mutex_lock(&rbd_dev->watch_mutex);
3691         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3692         mutex_unlock(&rbd_dev->watch_mutex);
3693 }
3694
3695 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3696 {
3697         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3698
3699         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3700         strcpy(rbd_dev->lock_cookie, cookie);
3701         rbd_set_owner_cid(rbd_dev, &cid);
3702         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3703 }
3704
3705 /*
3706  * lock_rwsem must be held for write
3707  */
3708 static int rbd_lock(struct rbd_device *rbd_dev)
3709 {
3710         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3711         char cookie[32];
3712         int ret;
3713
3714         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3715                 rbd_dev->lock_cookie[0] != '\0');
3716
3717         format_lock_cookie(rbd_dev, cookie);
3718         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3720                             RBD_LOCK_TAG, "", 0);
3721         if (ret)
3722                 return ret;
3723
3724         __rbd_lock(rbd_dev, cookie);
3725         return 0;
3726 }
3727
3728 /*
3729  * lock_rwsem must be held for write
3730  */
3731 static void rbd_unlock(struct rbd_device *rbd_dev)
3732 {
3733         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3734         int ret;
3735
3736         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3737                 rbd_dev->lock_cookie[0] == '\0');
3738
3739         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3740                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3741         if (ret && ret != -ENOENT)
3742                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3743
3744         /* treat errors as the image is unlocked */
3745         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3746         rbd_dev->lock_cookie[0] = '\0';
3747         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3748         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3749 }
3750
3751 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3752                                 enum rbd_notify_op notify_op,
3753                                 struct page ***preply_pages,
3754                                 size_t *preply_len)
3755 {
3756         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3757         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3758         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3759         int buf_size = sizeof(buf);
3760         void *p = buf;
3761
3762         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3763
3764         /* encode *LockPayload NotifyMessage (op + ClientId) */
3765         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3766         ceph_encode_32(&p, notify_op);
3767         ceph_encode_64(&p, cid.gid);
3768         ceph_encode_64(&p, cid.handle);
3769
3770         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3771                                 &rbd_dev->header_oloc, buf, buf_size,
3772                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3773 }
3774
3775 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3776                                enum rbd_notify_op notify_op)
3777 {
3778         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3779 }
3780
3781 static void rbd_notify_acquired_lock(struct work_struct *work)
3782 {
3783         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3784                                                   acquired_lock_work);
3785
3786         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3787 }
3788
3789 static void rbd_notify_released_lock(struct work_struct *work)
3790 {
3791         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3792                                                   released_lock_work);
3793
3794         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3795 }
3796
3797 static int rbd_request_lock(struct rbd_device *rbd_dev)
3798 {
3799         struct page **reply_pages;
3800         size_t reply_len;
3801         bool lock_owner_responded = false;
3802         int ret;
3803
3804         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3805
3806         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3807                                    &reply_pages, &reply_len);
3808         if (ret && ret != -ETIMEDOUT) {
3809                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3810                 goto out;
3811         }
3812
3813         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3814                 void *p = page_address(reply_pages[0]);
3815                 void *const end = p + reply_len;
3816                 u32 n;
3817
3818                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3819                 while (n--) {
3820                         u8 struct_v;
3821                         u32 len;
3822
3823                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3824                         p += 8 + 8; /* skip gid and cookie */
3825
3826                         ceph_decode_32_safe(&p, end, len, e_inval);
3827                         if (!len)
3828                                 continue;
3829
3830                         if (lock_owner_responded) {
3831                                 rbd_warn(rbd_dev,
3832                                          "duplicate lock owners detected");
3833                                 ret = -EIO;
3834                                 goto out;
3835                         }
3836
3837                         lock_owner_responded = true;
3838                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3839                                                   &struct_v, &len);
3840                         if (ret) {
3841                                 rbd_warn(rbd_dev,
3842                                          "failed to decode ResponseMessage: %d",
3843                                          ret);
3844                                 goto e_inval;
3845                         }
3846
3847                         ret = ceph_decode_32(&p);
3848                 }
3849         }
3850
3851         if (!lock_owner_responded) {
3852                 rbd_warn(rbd_dev, "no lock owners detected");
3853                 ret = -ETIMEDOUT;
3854         }
3855
3856 out:
3857         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3858         return ret;
3859
3860 e_inval:
3861         ret = -EINVAL;
3862         goto out;
3863 }
3864
3865 /*
3866  * Either image request state machine(s) or rbd_add_acquire_lock()
3867  * (i.e. "rbd map").
3868  */
3869 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3870 {
3871         struct rbd_img_request *img_req;
3872
3873         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3874         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3875
3876         cancel_delayed_work(&rbd_dev->lock_dwork);
3877         if (!completion_done(&rbd_dev->acquire_wait)) {
3878                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3879                            list_empty(&rbd_dev->running_list));
3880                 rbd_dev->acquire_err = result;
3881                 complete_all(&rbd_dev->acquire_wait);
3882                 return;
3883         }
3884
3885         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3886                 mutex_lock(&img_req->state_mutex);
3887                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3888                 rbd_img_schedule(img_req, result);
3889                 mutex_unlock(&img_req->state_mutex);
3890         }
3891
3892         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3893 }
3894
3895 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3896                                struct ceph_locker **lockers, u32 *num_lockers)
3897 {
3898         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3899         u8 lock_type;
3900         char *lock_tag;
3901         int ret;
3902
3903         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3904
3905         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3906                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3907                                  &lock_type, &lock_tag, lockers, num_lockers);
3908         if (ret)
3909                 return ret;
3910
3911         if (*num_lockers == 0) {
3912                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3913                 goto out;
3914         }
3915
3916         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3917                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3918                          lock_tag);
3919                 ret = -EBUSY;
3920                 goto out;
3921         }
3922
3923         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3924                 rbd_warn(rbd_dev, "shared lock type detected");
3925                 ret = -EBUSY;
3926                 goto out;
3927         }
3928
3929         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3930                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3931                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3932                          (*lockers)[0].id.cookie);
3933                 ret = -EBUSY;
3934                 goto out;
3935         }
3936
3937 out:
3938         kfree(lock_tag);
3939         return ret;
3940 }
3941
3942 static int find_watcher(struct rbd_device *rbd_dev,
3943                         const struct ceph_locker *locker)
3944 {
3945         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3946         struct ceph_watch_item *watchers;
3947         u32 num_watchers;
3948         u64 cookie;
3949         int i;
3950         int ret;
3951
3952         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3953                                       &rbd_dev->header_oloc, &watchers,
3954                                       &num_watchers);
3955         if (ret)
3956                 return ret;
3957
3958         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3959         for (i = 0; i < num_watchers; i++) {
3960                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3961                             sizeof(locker->info.addr)) &&
3962                     watchers[i].cookie == cookie) {
3963                         struct rbd_client_id cid = {
3964                                 .gid = le64_to_cpu(watchers[i].name.num),
3965                                 .handle = cookie,
3966                         };
3967
3968                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3969                              rbd_dev, cid.gid, cid.handle);
3970                         rbd_set_owner_cid(rbd_dev, &cid);
3971                         ret = 1;
3972                         goto out;
3973                 }
3974         }
3975
3976         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3977         ret = 0;
3978 out:
3979         kfree(watchers);
3980         return ret;
3981 }
3982
3983 /*
3984  * lock_rwsem must be held for write
3985  */
3986 static int rbd_try_lock(struct rbd_device *rbd_dev)
3987 {
3988         struct ceph_client *client = rbd_dev->rbd_client->client;
3989         struct ceph_locker *lockers;
3990         u32 num_lockers;
3991         int ret;
3992
3993         for (;;) {
3994                 ret = rbd_lock(rbd_dev);
3995                 if (ret != -EBUSY)
3996                         return ret;
3997
3998                 /* determine if the current lock holder is still alive */
3999                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4000                 if (ret)
4001                         return ret;
4002
4003                 if (num_lockers == 0)
4004                         goto again;
4005
4006                 ret = find_watcher(rbd_dev, lockers);
4007                 if (ret)
4008                         goto out; /* request lock or error */
4009
4010                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4011                          ENTITY_NAME(lockers[0].id.name));
4012
4013                 ret = ceph_monc_blocklist_add(&client->monc,
4014                                               &lockers[0].info.addr);
4015                 if (ret) {
4016                         rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
4017                                  ENTITY_NAME(lockers[0].id.name), ret);
4018                         goto out;
4019                 }
4020
4021                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4022                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4023                                           lockers[0].id.cookie,
4024                                           &lockers[0].id.name);
4025                 if (ret && ret != -ENOENT)
4026                         goto out;
4027
4028 again:
4029                 ceph_free_lockers(lockers, num_lockers);
4030         }
4031
4032 out:
4033         ceph_free_lockers(lockers, num_lockers);
4034         return ret;
4035 }
4036
4037 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4038 {
4039         int ret;
4040
4041         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4042                 ret = rbd_object_map_open(rbd_dev);
4043                 if (ret)
4044                         return ret;
4045         }
4046
4047         return 0;
4048 }
4049
4050 /*
4051  * Return:
4052  *   0 - lock acquired
4053  *   1 - caller should call rbd_request_lock()
4054  *  <0 - error
4055  */
4056 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4057 {
4058         int ret;
4059
4060         down_read(&rbd_dev->lock_rwsem);
4061         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4062              rbd_dev->lock_state);
4063         if (__rbd_is_lock_owner(rbd_dev)) {
4064                 up_read(&rbd_dev->lock_rwsem);
4065                 return 0;
4066         }
4067
4068         up_read(&rbd_dev->lock_rwsem);
4069         down_write(&rbd_dev->lock_rwsem);
4070         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4071              rbd_dev->lock_state);
4072         if (__rbd_is_lock_owner(rbd_dev)) {
4073                 up_write(&rbd_dev->lock_rwsem);
4074                 return 0;
4075         }
4076
4077         ret = rbd_try_lock(rbd_dev);
4078         if (ret < 0) {
4079                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4080                 if (ret == -EBLOCKLISTED)
4081                         goto out;
4082
4083                 ret = 1; /* request lock anyway */
4084         }
4085         if (ret > 0) {
4086                 up_write(&rbd_dev->lock_rwsem);
4087                 return ret;
4088         }
4089
4090         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4091         rbd_assert(list_empty(&rbd_dev->running_list));
4092
4093         ret = rbd_post_acquire_action(rbd_dev);
4094         if (ret) {
4095                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4096                 /*
4097                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4098                  * rbd_lock_add_request() would let the request through,
4099                  * assuming that e.g. object map is locked and loaded.
4100                  */
4101                 rbd_unlock(rbd_dev);
4102         }
4103
4104 out:
4105         wake_lock_waiters(rbd_dev, ret);
4106         up_write(&rbd_dev->lock_rwsem);
4107         return ret;
4108 }
4109
4110 static void rbd_acquire_lock(struct work_struct *work)
4111 {
4112         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4113                                             struct rbd_device, lock_dwork);
4114         int ret;
4115
4116         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4117 again:
4118         ret = rbd_try_acquire_lock(rbd_dev);
4119         if (ret <= 0) {
4120                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4121                 return;
4122         }
4123
4124         ret = rbd_request_lock(rbd_dev);
4125         if (ret == -ETIMEDOUT) {
4126                 goto again; /* treat this as a dead client */
4127         } else if (ret == -EROFS) {
4128                 rbd_warn(rbd_dev, "peer will not release lock");
4129                 down_write(&rbd_dev->lock_rwsem);
4130                 wake_lock_waiters(rbd_dev, ret);
4131                 up_write(&rbd_dev->lock_rwsem);
4132         } else if (ret < 0) {
4133                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4134                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4135                                  RBD_RETRY_DELAY);
4136         } else {
4137                 /*
4138                  * lock owner acked, but resend if we don't see them
4139                  * release the lock
4140                  */
4141                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4142                      rbd_dev);
4143                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4144                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4145         }
4146 }
4147
4148 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4149 {
4150         bool need_wait;
4151
4152         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4153         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4154
4155         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4156                 return false;
4157
4158         /*
4159          * Ensure that all in-flight IO is flushed.
4160          */
4161         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4162         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4163         need_wait = !list_empty(&rbd_dev->running_list);
4164         downgrade_write(&rbd_dev->lock_rwsem);
4165         if (need_wait)
4166                 wait_for_completion(&rbd_dev->releasing_wait);
4167         up_read(&rbd_dev->lock_rwsem);
4168
4169         down_write(&rbd_dev->lock_rwsem);
4170         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4171                 return false;
4172
4173         rbd_assert(list_empty(&rbd_dev->running_list));
4174         return true;
4175 }
4176
4177 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4178 {
4179         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4180                 rbd_object_map_close(rbd_dev);
4181 }
4182
4183 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4184 {
4185         rbd_assert(list_empty(&rbd_dev->running_list));
4186
4187         rbd_pre_release_action(rbd_dev);
4188         rbd_unlock(rbd_dev);
4189 }
4190
4191 /*
4192  * lock_rwsem must be held for write
4193  */
4194 static void rbd_release_lock(struct rbd_device *rbd_dev)
4195 {
4196         if (!rbd_quiesce_lock(rbd_dev))
4197                 return;
4198
4199         __rbd_release_lock(rbd_dev);
4200
4201         /*
4202          * Give others a chance to grab the lock - we would re-acquire
4203          * almost immediately if we got new IO while draining the running
4204          * list otherwise.  We need to ack our own notifications, so this
4205          * lock_dwork will be requeued from rbd_handle_released_lock() by
4206          * way of maybe_kick_acquire().
4207          */
4208         cancel_delayed_work(&rbd_dev->lock_dwork);
4209 }
4210
4211 static void rbd_release_lock_work(struct work_struct *work)
4212 {
4213         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4214                                                   unlock_work);
4215
4216         down_write(&rbd_dev->lock_rwsem);
4217         rbd_release_lock(rbd_dev);
4218         up_write(&rbd_dev->lock_rwsem);
4219 }
4220
4221 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4222 {
4223         bool have_requests;
4224
4225         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4226         if (__rbd_is_lock_owner(rbd_dev))
4227                 return;
4228
4229         spin_lock(&rbd_dev->lock_lists_lock);
4230         have_requests = !list_empty(&rbd_dev->acquiring_list);
4231         spin_unlock(&rbd_dev->lock_lists_lock);
4232         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4233                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4234                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4235         }
4236 }
4237
4238 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4239                                      void **p)
4240 {
4241         struct rbd_client_id cid = { 0 };
4242
4243         if (struct_v >= 2) {
4244                 cid.gid = ceph_decode_64(p);
4245                 cid.handle = ceph_decode_64(p);
4246         }
4247
4248         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4249              cid.handle);
4250         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4251                 down_write(&rbd_dev->lock_rwsem);
4252                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4253                         /*
4254                          * we already know that the remote client is
4255                          * the owner
4256                          */
4257                         up_write(&rbd_dev->lock_rwsem);
4258                         return;
4259                 }
4260
4261                 rbd_set_owner_cid(rbd_dev, &cid);
4262                 downgrade_write(&rbd_dev->lock_rwsem);
4263         } else {
4264                 down_read(&rbd_dev->lock_rwsem);
4265         }
4266
4267         maybe_kick_acquire(rbd_dev);
4268         up_read(&rbd_dev->lock_rwsem);
4269 }
4270
4271 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4272                                      void **p)
4273 {
4274         struct rbd_client_id cid = { 0 };
4275
4276         if (struct_v >= 2) {
4277                 cid.gid = ceph_decode_64(p);
4278                 cid.handle = ceph_decode_64(p);
4279         }
4280
4281         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4282              cid.handle);
4283         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4284                 down_write(&rbd_dev->lock_rwsem);
4285                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4286                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4287                              __func__, rbd_dev, cid.gid, cid.handle,
4288                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4289                         up_write(&rbd_dev->lock_rwsem);
4290                         return;
4291                 }
4292
4293                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4294                 downgrade_write(&rbd_dev->lock_rwsem);
4295         } else {
4296                 down_read(&rbd_dev->lock_rwsem);
4297         }
4298
4299         maybe_kick_acquire(rbd_dev);
4300         up_read(&rbd_dev->lock_rwsem);
4301 }
4302
4303 /*
4304  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4305  * ResponseMessage is needed.
4306  */
4307 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4308                                    void **p)
4309 {
4310         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4311         struct rbd_client_id cid = { 0 };
4312         int result = 1;
4313
4314         if (struct_v >= 2) {
4315                 cid.gid = ceph_decode_64(p);
4316                 cid.handle = ceph_decode_64(p);
4317         }
4318
4319         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4320              cid.handle);
4321         if (rbd_cid_equal(&cid, &my_cid))
4322                 return result;
4323
4324         down_read(&rbd_dev->lock_rwsem);
4325         if (__rbd_is_lock_owner(rbd_dev)) {
4326                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4327                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4328                         goto out_unlock;
4329
4330                 /*
4331                  * encode ResponseMessage(0) so the peer can detect
4332                  * a missing owner
4333                  */
4334                 result = 0;
4335
4336                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4337                         if (!rbd_dev->opts->exclusive) {
4338                                 dout("%s rbd_dev %p queueing unlock_work\n",
4339                                      __func__, rbd_dev);
4340                                 queue_work(rbd_dev->task_wq,
4341                                            &rbd_dev->unlock_work);
4342                         } else {
4343                                 /* refuse to release the lock */
4344                                 result = -EROFS;
4345                         }
4346                 }
4347         }
4348
4349 out_unlock:
4350         up_read(&rbd_dev->lock_rwsem);
4351         return result;
4352 }
4353
4354 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4355                                      u64 notify_id, u64 cookie, s32 *result)
4356 {
4357         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4358         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4359         int buf_size = sizeof(buf);
4360         int ret;
4361
4362         if (result) {
4363                 void *p = buf;
4364
4365                 /* encode ResponseMessage */
4366                 ceph_start_encoding(&p, 1, 1,
4367                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4368                 ceph_encode_32(&p, *result);
4369         } else {
4370                 buf_size = 0;
4371         }
4372
4373         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4374                                    &rbd_dev->header_oloc, notify_id, cookie,
4375                                    buf, buf_size);
4376         if (ret)
4377                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4378 }
4379
4380 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4381                                    u64 cookie)
4382 {
4383         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4384         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4385 }
4386
4387 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4388                                           u64 notify_id, u64 cookie, s32 result)
4389 {
4390         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4391         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4392 }
4393
4394 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4395                          u64 notifier_id, void *data, size_t data_len)
4396 {
4397         struct rbd_device *rbd_dev = arg;
4398         void *p = data;
4399         void *const end = p + data_len;
4400         u8 struct_v = 0;
4401         u32 len;
4402         u32 notify_op;
4403         int ret;
4404
4405         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4406              __func__, rbd_dev, cookie, notify_id, data_len);
4407         if (data_len) {
4408                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4409                                           &struct_v, &len);
4410                 if (ret) {
4411                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4412                                  ret);
4413                         return;
4414                 }
4415
4416                 notify_op = ceph_decode_32(&p);
4417         } else {
4418                 /* legacy notification for header updates */
4419                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4420                 len = 0;
4421         }
4422
4423         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4424         switch (notify_op) {
4425         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4426                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4427                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4428                 break;
4429         case RBD_NOTIFY_OP_RELEASED_LOCK:
4430                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4431                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4432                 break;
4433         case RBD_NOTIFY_OP_REQUEST_LOCK:
4434                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4435                 if (ret <= 0)
4436                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4437                                                       cookie, ret);
4438                 else
4439                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4440                 break;
4441         case RBD_NOTIFY_OP_HEADER_UPDATE:
4442                 ret = rbd_dev_refresh(rbd_dev);
4443                 if (ret)
4444                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4445
4446                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4447                 break;
4448         default:
4449                 if (rbd_is_lock_owner(rbd_dev))
4450                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4451                                                       cookie, -EOPNOTSUPP);
4452                 else
4453                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4454                 break;
4455         }
4456 }
4457
4458 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4459
4460 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4461 {
4462         struct rbd_device *rbd_dev = arg;
4463
4464         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4465
4466         down_write(&rbd_dev->lock_rwsem);
4467         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4468         up_write(&rbd_dev->lock_rwsem);
4469
4470         mutex_lock(&rbd_dev->watch_mutex);
4471         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4472                 __rbd_unregister_watch(rbd_dev);
4473                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4474
4475                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4476         }
4477         mutex_unlock(&rbd_dev->watch_mutex);
4478 }
4479
4480 /*
4481  * watch_mutex must be locked
4482  */
4483 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4484 {
4485         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4486         struct ceph_osd_linger_request *handle;
4487
4488         rbd_assert(!rbd_dev->watch_handle);
4489         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4490
4491         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4492                                  &rbd_dev->header_oloc, rbd_watch_cb,
4493                                  rbd_watch_errcb, rbd_dev);
4494         if (IS_ERR(handle))
4495                 return PTR_ERR(handle);
4496
4497         rbd_dev->watch_handle = handle;
4498         return 0;
4499 }
4500
4501 /*
4502  * watch_mutex must be locked
4503  */
4504 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4505 {
4506         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507         int ret;
4508
4509         rbd_assert(rbd_dev->watch_handle);
4510         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4511
4512         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4513         if (ret)
4514                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4515
4516         rbd_dev->watch_handle = NULL;
4517 }
4518
4519 static int rbd_register_watch(struct rbd_device *rbd_dev)
4520 {
4521         int ret;
4522
4523         mutex_lock(&rbd_dev->watch_mutex);
4524         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4525         ret = __rbd_register_watch(rbd_dev);
4526         if (ret)
4527                 goto out;
4528
4529         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4530         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4531
4532 out:
4533         mutex_unlock(&rbd_dev->watch_mutex);
4534         return ret;
4535 }
4536
4537 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4538 {
4539         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4540
4541         cancel_work_sync(&rbd_dev->acquired_lock_work);
4542         cancel_work_sync(&rbd_dev->released_lock_work);
4543         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4544         cancel_work_sync(&rbd_dev->unlock_work);
4545 }
4546
4547 /*
4548  * header_rwsem must not be held to avoid a deadlock with
4549  * rbd_dev_refresh() when flushing notifies.
4550  */
4551 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4552 {
4553         cancel_tasks_sync(rbd_dev);
4554
4555         mutex_lock(&rbd_dev->watch_mutex);
4556         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4557                 __rbd_unregister_watch(rbd_dev);
4558         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4559         mutex_unlock(&rbd_dev->watch_mutex);
4560
4561         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4562         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4563 }
4564
4565 /*
4566  * lock_rwsem must be held for write
4567  */
4568 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4569 {
4570         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4571         char cookie[32];
4572         int ret;
4573
4574         if (!rbd_quiesce_lock(rbd_dev))
4575                 return;
4576
4577         format_lock_cookie(rbd_dev, cookie);
4578         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4579                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4580                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4581                                   RBD_LOCK_TAG, cookie);
4582         if (ret) {
4583                 if (ret != -EOPNOTSUPP)
4584                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4585                                  ret);
4586
4587                 /*
4588                  * Lock cookie cannot be updated on older OSDs, so do
4589                  * a manual release and queue an acquire.
4590                  */
4591                 __rbd_release_lock(rbd_dev);
4592                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4593         } else {
4594                 __rbd_lock(rbd_dev, cookie);
4595                 wake_lock_waiters(rbd_dev, 0);
4596         }
4597 }
4598
4599 static void rbd_reregister_watch(struct work_struct *work)
4600 {
4601         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4602                                             struct rbd_device, watch_dwork);
4603         int ret;
4604
4605         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4606
4607         mutex_lock(&rbd_dev->watch_mutex);
4608         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4609                 mutex_unlock(&rbd_dev->watch_mutex);
4610                 return;
4611         }
4612
4613         ret = __rbd_register_watch(rbd_dev);
4614         if (ret) {
4615                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4616                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4617                         queue_delayed_work(rbd_dev->task_wq,
4618                                            &rbd_dev->watch_dwork,
4619                                            RBD_RETRY_DELAY);
4620                         mutex_unlock(&rbd_dev->watch_mutex);
4621                         return;
4622                 }
4623
4624                 mutex_unlock(&rbd_dev->watch_mutex);
4625                 down_write(&rbd_dev->lock_rwsem);
4626                 wake_lock_waiters(rbd_dev, ret);
4627                 up_write(&rbd_dev->lock_rwsem);
4628                 return;
4629         }
4630
4631         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4632         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4633         mutex_unlock(&rbd_dev->watch_mutex);
4634
4635         down_write(&rbd_dev->lock_rwsem);
4636         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4637                 rbd_reacquire_lock(rbd_dev);
4638         up_write(&rbd_dev->lock_rwsem);
4639
4640         ret = rbd_dev_refresh(rbd_dev);
4641         if (ret)
4642                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4643 }
4644
4645 /*
4646  * Synchronous osd object method call.  Returns the number of bytes
4647  * returned in the outbound buffer, or a negative error code.
4648  */
4649 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4650                              struct ceph_object_id *oid,
4651                              struct ceph_object_locator *oloc,
4652                              const char *method_name,
4653                              const void *outbound,
4654                              size_t outbound_size,
4655                              void *inbound,
4656                              size_t inbound_size)
4657 {
4658         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4659         struct page *req_page = NULL;
4660         struct page *reply_page;
4661         int ret;
4662
4663         /*
4664          * Method calls are ultimately read operations.  The result
4665          * should placed into the inbound buffer provided.  They
4666          * also supply outbound data--parameters for the object
4667          * method.  Currently if this is present it will be a
4668          * snapshot id.
4669          */
4670         if (outbound) {
4671                 if (outbound_size > PAGE_SIZE)
4672                         return -E2BIG;
4673
4674                 req_page = alloc_page(GFP_KERNEL);
4675                 if (!req_page)
4676                         return -ENOMEM;
4677
4678                 memcpy(page_address(req_page), outbound, outbound_size);
4679         }
4680
4681         reply_page = alloc_page(GFP_KERNEL);
4682         if (!reply_page) {
4683                 if (req_page)
4684                         __free_page(req_page);
4685                 return -ENOMEM;
4686         }
4687
4688         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4689                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4690                              &reply_page, &inbound_size);
4691         if (!ret) {
4692                 memcpy(inbound, page_address(reply_page), inbound_size);
4693                 ret = inbound_size;
4694         }
4695
4696         if (req_page)
4697                 __free_page(req_page);
4698         __free_page(reply_page);
4699         return ret;
4700 }
4701
4702 static void rbd_queue_workfn(struct work_struct *work)
4703 {
4704         struct rbd_img_request *img_request =
4705             container_of(work, struct rbd_img_request, work);
4706         struct rbd_device *rbd_dev = img_request->rbd_dev;
4707         enum obj_operation_type op_type = img_request->op_type;
4708         struct request *rq = blk_mq_rq_from_pdu(img_request);
4709         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4710         u64 length = blk_rq_bytes(rq);
4711         u64 mapping_size;
4712         int result;
4713
4714         /* Ignore/skip any zero-length requests */
4715         if (!length) {
4716                 dout("%s: zero-length request\n", __func__);
4717                 result = 0;
4718                 goto err_img_request;
4719         }
4720
4721         blk_mq_start_request(rq);
4722
4723         down_read(&rbd_dev->header_rwsem);
4724         mapping_size = rbd_dev->mapping.size;
4725         rbd_img_capture_header(img_request);
4726         up_read(&rbd_dev->header_rwsem);
4727
4728         if (offset + length > mapping_size) {
4729                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4730                          length, mapping_size);
4731                 result = -EIO;
4732                 goto err_img_request;
4733         }
4734
4735         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4736              img_request, obj_op_name(op_type), offset, length);
4737
4738         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4739                 result = rbd_img_fill_nodata(img_request, offset, length);
4740         else
4741                 result = rbd_img_fill_from_bio(img_request, offset, length,
4742                                                rq->bio);
4743         if (result)
4744                 goto err_img_request;
4745
4746         rbd_img_handle_request(img_request, 0);
4747         return;
4748
4749 err_img_request:
4750         rbd_img_request_destroy(img_request);
4751         if (result)
4752                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4753                          obj_op_name(op_type), length, offset, result);
4754         blk_mq_end_request(rq, errno_to_blk_status(result));
4755 }
4756
4757 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4758                 const struct blk_mq_queue_data *bd)
4759 {
4760         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4761         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4762         enum obj_operation_type op_type;
4763
4764         switch (req_op(bd->rq)) {
4765         case REQ_OP_DISCARD:
4766                 op_type = OBJ_OP_DISCARD;
4767                 break;
4768         case REQ_OP_WRITE_ZEROES:
4769                 op_type = OBJ_OP_ZEROOUT;
4770                 break;
4771         case REQ_OP_WRITE:
4772                 op_type = OBJ_OP_WRITE;
4773                 break;
4774         case REQ_OP_READ:
4775                 op_type = OBJ_OP_READ;
4776                 break;
4777         default:
4778                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4779                 return BLK_STS_IOERR;
4780         }
4781
4782         rbd_img_request_init(img_req, rbd_dev, op_type);
4783
4784         if (rbd_img_is_write(img_req)) {
4785                 if (rbd_is_ro(rbd_dev)) {
4786                         rbd_warn(rbd_dev, "%s on read-only mapping",
4787                                  obj_op_name(img_req->op_type));
4788                         return BLK_STS_IOERR;
4789                 }
4790                 rbd_assert(!rbd_is_snap(rbd_dev));
4791         }
4792
4793         INIT_WORK(&img_req->work, rbd_queue_workfn);
4794         queue_work(rbd_wq, &img_req->work);
4795         return BLK_STS_OK;
4796 }
4797
4798 static void rbd_free_disk(struct rbd_device *rbd_dev)
4799 {
4800         blk_cleanup_queue(rbd_dev->disk->queue);
4801         blk_mq_free_tag_set(&rbd_dev->tag_set);
4802         put_disk(rbd_dev->disk);
4803         rbd_dev->disk = NULL;
4804 }
4805
4806 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4807                              struct ceph_object_id *oid,
4808                              struct ceph_object_locator *oloc,
4809                              void *buf, int buf_len)
4810
4811 {
4812         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4813         struct ceph_osd_request *req;
4814         struct page **pages;
4815         int num_pages = calc_pages_for(0, buf_len);
4816         int ret;
4817
4818         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4819         if (!req)
4820                 return -ENOMEM;
4821
4822         ceph_oid_copy(&req->r_base_oid, oid);
4823         ceph_oloc_copy(&req->r_base_oloc, oloc);
4824         req->r_flags = CEPH_OSD_FLAG_READ;
4825
4826         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4827         if (IS_ERR(pages)) {
4828                 ret = PTR_ERR(pages);
4829                 goto out_req;
4830         }
4831
4832         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4833         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4834                                          true);
4835
4836         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4837         if (ret)
4838                 goto out_req;
4839
4840         ceph_osdc_start_request(osdc, req, false);
4841         ret = ceph_osdc_wait_request(osdc, req);
4842         if (ret >= 0)
4843                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4844
4845 out_req:
4846         ceph_osdc_put_request(req);
4847         return ret;
4848 }
4849
4850 /*
4851  * Read the complete header for the given rbd device.  On successful
4852  * return, the rbd_dev->header field will contain up-to-date
4853  * information about the image.
4854  */
4855 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4856 {
4857         struct rbd_image_header_ondisk *ondisk = NULL;
4858         u32 snap_count = 0;
4859         u64 names_size = 0;
4860         u32 want_count;
4861         int ret;
4862
4863         /*
4864          * The complete header will include an array of its 64-bit
4865          * snapshot ids, followed by the names of those snapshots as
4866          * a contiguous block of NUL-terminated strings.  Note that
4867          * the number of snapshots could change by the time we read
4868          * it in, in which case we re-read it.
4869          */
4870         do {
4871                 size_t size;
4872
4873                 kfree(ondisk);
4874
4875                 size = sizeof (*ondisk);
4876                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4877                 size += names_size;
4878                 ondisk = kmalloc(size, GFP_KERNEL);
4879                 if (!ondisk)
4880                         return -ENOMEM;
4881
4882                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4883                                         &rbd_dev->header_oloc, ondisk, size);
4884                 if (ret < 0)
4885                         goto out;
4886                 if ((size_t)ret < size) {
4887                         ret = -ENXIO;
4888                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4889                                 size, ret);
4890                         goto out;
4891                 }
4892                 if (!rbd_dev_ondisk_valid(ondisk)) {
4893                         ret = -ENXIO;
4894                         rbd_warn(rbd_dev, "invalid header");
4895                         goto out;
4896                 }
4897
4898                 names_size = le64_to_cpu(ondisk->snap_names_len);
4899                 want_count = snap_count;
4900                 snap_count = le32_to_cpu(ondisk->snap_count);
4901         } while (snap_count != want_count);
4902
4903         ret = rbd_header_from_disk(rbd_dev, ondisk);
4904 out:
4905         kfree(ondisk);
4906
4907         return ret;
4908 }
4909
4910 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4911 {
4912         sector_t size;
4913
4914         /*
4915          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4916          * try to update its size.  If REMOVING is set, updating size
4917          * is just useless work since the device can't be opened.
4918          */
4919         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4920             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4921                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4922                 dout("setting size to %llu sectors", (unsigned long long)size);
4923                 set_capacity(rbd_dev->disk, size);
4924                 revalidate_disk_size(rbd_dev->disk, true);
4925         }
4926 }
4927
4928 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4929 {
4930         u64 mapping_size;
4931         int ret;
4932
4933         down_write(&rbd_dev->header_rwsem);
4934         mapping_size = rbd_dev->mapping.size;
4935
4936         ret = rbd_dev_header_info(rbd_dev);
4937         if (ret)
4938                 goto out;
4939
4940         /*
4941          * If there is a parent, see if it has disappeared due to the
4942          * mapped image getting flattened.
4943          */
4944         if (rbd_dev->parent) {
4945                 ret = rbd_dev_v2_parent_info(rbd_dev);
4946                 if (ret)
4947                         goto out;
4948         }
4949
4950         rbd_assert(!rbd_is_snap(rbd_dev));
4951         rbd_dev->mapping.size = rbd_dev->header.image_size;
4952
4953 out:
4954         up_write(&rbd_dev->header_rwsem);
4955         if (!ret && mapping_size != rbd_dev->mapping.size)
4956                 rbd_dev_update_size(rbd_dev);
4957
4958         return ret;
4959 }
4960
4961 static const struct blk_mq_ops rbd_mq_ops = {
4962         .queue_rq       = rbd_queue_rq,
4963 };
4964
4965 static int rbd_init_disk(struct rbd_device *rbd_dev)
4966 {
4967         struct gendisk *disk;
4968         struct request_queue *q;
4969         unsigned int objset_bytes =
4970             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4971         int err;
4972
4973         /* create gendisk info */
4974         disk = alloc_disk(single_major ?
4975                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4976                           RBD_MINORS_PER_MAJOR);
4977         if (!disk)
4978                 return -ENOMEM;
4979
4980         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4981                  rbd_dev->dev_id);
4982         disk->major = rbd_dev->major;
4983         disk->first_minor = rbd_dev->minor;
4984         if (single_major)
4985                 disk->flags |= GENHD_FL_EXT_DEVT;
4986         disk->fops = &rbd_bd_ops;
4987         disk->private_data = rbd_dev;
4988
4989         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4990         rbd_dev->tag_set.ops = &rbd_mq_ops;
4991         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4992         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4993         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4994         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4995         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4996
4997         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4998         if (err)
4999                 goto out_disk;
5000
5001         q = blk_mq_init_queue(&rbd_dev->tag_set);
5002         if (IS_ERR(q)) {
5003                 err = PTR_ERR(q);
5004                 goto out_tag_set;
5005         }
5006
5007         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5008         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5009
5010         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5011         q->limits.max_sectors = queue_max_hw_sectors(q);
5012         blk_queue_max_segments(q, USHRT_MAX);
5013         blk_queue_max_segment_size(q, UINT_MAX);
5014         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5015         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5016
5017         if (rbd_dev->opts->trim) {
5018                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5019                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5020                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5021                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5022         }
5023
5024         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5025                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5026
5027         /*
5028          * disk_release() expects a queue ref from add_disk() and will
5029          * put it.  Hold an extra ref until add_disk() is called.
5030          */
5031         WARN_ON(!blk_get_queue(q));
5032         disk->queue = q;
5033         q->queuedata = rbd_dev;
5034
5035         rbd_dev->disk = disk;
5036
5037         return 0;
5038 out_tag_set:
5039         blk_mq_free_tag_set(&rbd_dev->tag_set);
5040 out_disk:
5041         put_disk(disk);
5042         return err;
5043 }
5044
5045 /*
5046   sysfs
5047 */
5048
5049 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5050 {
5051         return container_of(dev, struct rbd_device, dev);
5052 }
5053
5054 static ssize_t rbd_size_show(struct device *dev,
5055                              struct device_attribute *attr, char *buf)
5056 {
5057         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5058
5059         return sprintf(buf, "%llu\n",
5060                 (unsigned long long)rbd_dev->mapping.size);
5061 }
5062
5063 static ssize_t rbd_features_show(struct device *dev,
5064                              struct device_attribute *attr, char *buf)
5065 {
5066         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067
5068         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5069 }
5070
5071 static ssize_t rbd_major_show(struct device *dev,
5072                               struct device_attribute *attr, char *buf)
5073 {
5074         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5075
5076         if (rbd_dev->major)
5077                 return sprintf(buf, "%d\n", rbd_dev->major);
5078
5079         return sprintf(buf, "(none)\n");
5080 }
5081
5082 static ssize_t rbd_minor_show(struct device *dev,
5083                               struct device_attribute *attr, char *buf)
5084 {
5085         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5086
5087         return sprintf(buf, "%d\n", rbd_dev->minor);
5088 }
5089
5090 static ssize_t rbd_client_addr_show(struct device *dev,
5091                                     struct device_attribute *attr, char *buf)
5092 {
5093         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5094         struct ceph_entity_addr *client_addr =
5095             ceph_client_addr(rbd_dev->rbd_client->client);
5096
5097         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5098                        le32_to_cpu(client_addr->nonce));
5099 }
5100
5101 static ssize_t rbd_client_id_show(struct device *dev,
5102                                   struct device_attribute *attr, char *buf)
5103 {
5104         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5105
5106         return sprintf(buf, "client%lld\n",
5107                        ceph_client_gid(rbd_dev->rbd_client->client));
5108 }
5109
5110 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5111                                      struct device_attribute *attr, char *buf)
5112 {
5113         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114
5115         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5116 }
5117
5118 static ssize_t rbd_config_info_show(struct device *dev,
5119                                     struct device_attribute *attr, char *buf)
5120 {
5121         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5122
5123         if (!capable(CAP_SYS_ADMIN))
5124                 return -EPERM;
5125
5126         return sprintf(buf, "%s\n", rbd_dev->config_info);
5127 }
5128
5129 static ssize_t rbd_pool_show(struct device *dev,
5130                              struct device_attribute *attr, char *buf)
5131 {
5132         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5133
5134         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5135 }
5136
5137 static ssize_t rbd_pool_id_show(struct device *dev,
5138                              struct device_attribute *attr, char *buf)
5139 {
5140         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5141
5142         return sprintf(buf, "%llu\n",
5143                         (unsigned long long) rbd_dev->spec->pool_id);
5144 }
5145
5146 static ssize_t rbd_pool_ns_show(struct device *dev,
5147                                 struct device_attribute *attr, char *buf)
5148 {
5149         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5150
5151         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5152 }
5153
5154 static ssize_t rbd_name_show(struct device *dev,
5155                              struct device_attribute *attr, char *buf)
5156 {
5157         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5158
5159         if (rbd_dev->spec->image_name)
5160                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5161
5162         return sprintf(buf, "(unknown)\n");
5163 }
5164
5165 static ssize_t rbd_image_id_show(struct device *dev,
5166                              struct device_attribute *attr, char *buf)
5167 {
5168         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5169
5170         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5171 }
5172
5173 /*
5174  * Shows the name of the currently-mapped snapshot (or
5175  * RBD_SNAP_HEAD_NAME for the base image).
5176  */
5177 static ssize_t rbd_snap_show(struct device *dev,
5178                              struct device_attribute *attr,
5179                              char *buf)
5180 {
5181         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5182
5183         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5184 }
5185
5186 static ssize_t rbd_snap_id_show(struct device *dev,
5187                                 struct device_attribute *attr, char *buf)
5188 {
5189         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5190
5191         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5192 }
5193
5194 /*
5195  * For a v2 image, shows the chain of parent images, separated by empty
5196  * lines.  For v1 images or if there is no parent, shows "(no parent
5197  * image)".
5198  */
5199 static ssize_t rbd_parent_show(struct device *dev,
5200                                struct device_attribute *attr,
5201                                char *buf)
5202 {
5203         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5204         ssize_t count = 0;
5205
5206         if (!rbd_dev->parent)
5207                 return sprintf(buf, "(no parent image)\n");
5208
5209         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5210                 struct rbd_spec *spec = rbd_dev->parent_spec;
5211
5212                 count += sprintf(&buf[count], "%s"
5213                             "pool_id %llu\npool_name %s\n"
5214                             "pool_ns %s\n"
5215                             "image_id %s\nimage_name %s\n"
5216                             "snap_id %llu\nsnap_name %s\n"
5217                             "overlap %llu\n",
5218                             !count ? "" : "\n", /* first? */
5219                             spec->pool_id, spec->pool_name,
5220                             spec->pool_ns ?: "",
5221                             spec->image_id, spec->image_name ?: "(unknown)",
5222                             spec->snap_id, spec->snap_name,
5223                             rbd_dev->parent_overlap);
5224         }
5225
5226         return count;
5227 }
5228
5229 static ssize_t rbd_image_refresh(struct device *dev,
5230                                  struct device_attribute *attr,
5231                                  const char *buf,
5232                                  size_t size)
5233 {
5234         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5235         int ret;
5236
5237         if (!capable(CAP_SYS_ADMIN))
5238                 return -EPERM;
5239
5240         ret = rbd_dev_refresh(rbd_dev);
5241         if (ret)
5242                 return ret;
5243
5244         return size;
5245 }
5246
5247 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5248 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5249 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5250 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5251 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5252 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5253 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5254 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5255 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5256 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5257 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5258 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5259 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5260 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5261 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5262 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5263 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5264
5265 static struct attribute *rbd_attrs[] = {
5266         &dev_attr_size.attr,
5267         &dev_attr_features.attr,
5268         &dev_attr_major.attr,
5269         &dev_attr_minor.attr,
5270         &dev_attr_client_addr.attr,
5271         &dev_attr_client_id.attr,
5272         &dev_attr_cluster_fsid.attr,
5273         &dev_attr_config_info.attr,
5274         &dev_attr_pool.attr,
5275         &dev_attr_pool_id.attr,
5276         &dev_attr_pool_ns.attr,
5277         &dev_attr_name.attr,
5278         &dev_attr_image_id.attr,
5279         &dev_attr_current_snap.attr,
5280         &dev_attr_snap_id.attr,
5281         &dev_attr_parent.attr,
5282         &dev_attr_refresh.attr,
5283         NULL
5284 };
5285
5286 static struct attribute_group rbd_attr_group = {
5287         .attrs = rbd_attrs,
5288 };
5289
5290 static const struct attribute_group *rbd_attr_groups[] = {
5291         &rbd_attr_group,
5292         NULL
5293 };
5294
5295 static void rbd_dev_release(struct device *dev);
5296
5297 static const struct device_type rbd_device_type = {
5298         .name           = "rbd",
5299         .groups         = rbd_attr_groups,
5300         .release        = rbd_dev_release,
5301 };
5302
5303 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5304 {
5305         kref_get(&spec->kref);
5306
5307         return spec;
5308 }
5309
5310 static void rbd_spec_free(struct kref *kref);
5311 static void rbd_spec_put(struct rbd_spec *spec)
5312 {
5313         if (spec)
5314                 kref_put(&spec->kref, rbd_spec_free);
5315 }
5316
5317 static struct rbd_spec *rbd_spec_alloc(void)
5318 {
5319         struct rbd_spec *spec;
5320
5321         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5322         if (!spec)
5323                 return NULL;
5324
5325         spec->pool_id = CEPH_NOPOOL;
5326         spec->snap_id = CEPH_NOSNAP;
5327         kref_init(&spec->kref);
5328
5329         return spec;
5330 }
5331
5332 static void rbd_spec_free(struct kref *kref)
5333 {
5334         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5335
5336         kfree(spec->pool_name);
5337         kfree(spec->pool_ns);
5338         kfree(spec->image_id);
5339         kfree(spec->image_name);
5340         kfree(spec->snap_name);
5341         kfree(spec);
5342 }
5343
5344 static void rbd_dev_free(struct rbd_device *rbd_dev)
5345 {
5346         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5347         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5348
5349         ceph_oid_destroy(&rbd_dev->header_oid);
5350         ceph_oloc_destroy(&rbd_dev->header_oloc);
5351         kfree(rbd_dev->config_info);
5352
5353         rbd_put_client(rbd_dev->rbd_client);
5354         rbd_spec_put(rbd_dev->spec);
5355         kfree(rbd_dev->opts);
5356         kfree(rbd_dev);
5357 }
5358
5359 static void rbd_dev_release(struct device *dev)
5360 {
5361         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5362         bool need_put = !!rbd_dev->opts;
5363
5364         if (need_put) {
5365                 destroy_workqueue(rbd_dev->task_wq);
5366                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5367         }
5368
5369         rbd_dev_free(rbd_dev);
5370
5371         /*
5372          * This is racy, but way better than putting module outside of
5373          * the release callback.  The race window is pretty small, so
5374          * doing something similar to dm (dm-builtin.c) is overkill.
5375          */
5376         if (need_put)
5377                 module_put(THIS_MODULE);
5378 }
5379
5380 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5381                                            struct rbd_spec *spec)
5382 {
5383         struct rbd_device *rbd_dev;
5384
5385         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5386         if (!rbd_dev)
5387                 return NULL;
5388
5389         spin_lock_init(&rbd_dev->lock);
5390         INIT_LIST_HEAD(&rbd_dev->node);
5391         init_rwsem(&rbd_dev->header_rwsem);
5392
5393         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5394         ceph_oid_init(&rbd_dev->header_oid);
5395         rbd_dev->header_oloc.pool = spec->pool_id;
5396         if (spec->pool_ns) {
5397                 WARN_ON(!*spec->pool_ns);
5398                 rbd_dev->header_oloc.pool_ns =
5399                     ceph_find_or_create_string(spec->pool_ns,
5400                                                strlen(spec->pool_ns));
5401         }
5402
5403         mutex_init(&rbd_dev->watch_mutex);
5404         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5405         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5406
5407         init_rwsem(&rbd_dev->lock_rwsem);
5408         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5409         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5410         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5411         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5412         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5413         spin_lock_init(&rbd_dev->lock_lists_lock);
5414         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5415         INIT_LIST_HEAD(&rbd_dev->running_list);
5416         init_completion(&rbd_dev->acquire_wait);
5417         init_completion(&rbd_dev->releasing_wait);
5418
5419         spin_lock_init(&rbd_dev->object_map_lock);
5420
5421         rbd_dev->dev.bus = &rbd_bus_type;
5422         rbd_dev->dev.type = &rbd_device_type;
5423         rbd_dev->dev.parent = &rbd_root_dev;
5424         device_initialize(&rbd_dev->dev);
5425
5426         rbd_dev->rbd_client = rbdc;
5427         rbd_dev->spec = spec;
5428
5429         return rbd_dev;
5430 }
5431
5432 /*
5433  * Create a mapping rbd_dev.
5434  */
5435 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5436                                          struct rbd_spec *spec,
5437                                          struct rbd_options *opts)
5438 {
5439         struct rbd_device *rbd_dev;
5440
5441         rbd_dev = __rbd_dev_create(rbdc, spec);
5442         if (!rbd_dev)
5443                 return NULL;
5444
5445         rbd_dev->opts = opts;
5446
5447         /* get an id and fill in device name */
5448         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5449                                          minor_to_rbd_dev_id(1 << MINORBITS),
5450                                          GFP_KERNEL);
5451         if (rbd_dev->dev_id < 0)
5452                 goto fail_rbd_dev;
5453
5454         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5455         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5456                                                    rbd_dev->name);
5457         if (!rbd_dev->task_wq)
5458                 goto fail_dev_id;
5459
5460         /* we have a ref from do_rbd_add() */
5461         __module_get(THIS_MODULE);
5462
5463         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5464         return rbd_dev;
5465
5466 fail_dev_id:
5467         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5468 fail_rbd_dev:
5469         rbd_dev_free(rbd_dev);
5470         return NULL;
5471 }
5472
5473 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5474 {
5475         if (rbd_dev)
5476                 put_device(&rbd_dev->dev);
5477 }
5478
5479 /*
5480  * Get the size and object order for an image snapshot, or if
5481  * snap_id is CEPH_NOSNAP, gets this information for the base
5482  * image.
5483  */
5484 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5485                                 u8 *order, u64 *snap_size)
5486 {
5487         __le64 snapid = cpu_to_le64(snap_id);
5488         int ret;
5489         struct {
5490                 u8 order;
5491                 __le64 size;
5492         } __attribute__ ((packed)) size_buf = { 0 };
5493
5494         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5495                                   &rbd_dev->header_oloc, "get_size",
5496                                   &snapid, sizeof(snapid),
5497                                   &size_buf, sizeof(size_buf));
5498         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5499         if (ret < 0)
5500                 return ret;
5501         if (ret < sizeof (size_buf))
5502                 return -ERANGE;
5503
5504         if (order) {
5505                 *order = size_buf.order;
5506                 dout("  order %u", (unsigned int)*order);
5507         }
5508         *snap_size = le64_to_cpu(size_buf.size);
5509
5510         dout("  snap_id 0x%016llx snap_size = %llu\n",
5511                 (unsigned long long)snap_id,
5512                 (unsigned long long)*snap_size);
5513
5514         return 0;
5515 }
5516
5517 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5518 {
5519         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5520                                         &rbd_dev->header.obj_order,
5521                                         &rbd_dev->header.image_size);
5522 }
5523
5524 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5525 {
5526         size_t size;
5527         void *reply_buf;
5528         int ret;
5529         void *p;
5530
5531         /* Response will be an encoded string, which includes a length */
5532         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5533         reply_buf = kzalloc(size, GFP_KERNEL);
5534         if (!reply_buf)
5535                 return -ENOMEM;
5536
5537         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5538                                   &rbd_dev->header_oloc, "get_object_prefix",
5539                                   NULL, 0, reply_buf, size);
5540         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5541         if (ret < 0)
5542                 goto out;
5543
5544         p = reply_buf;
5545         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5546                                                 p + ret, NULL, GFP_NOIO);
5547         ret = 0;
5548
5549         if (IS_ERR(rbd_dev->header.object_prefix)) {
5550                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5551                 rbd_dev->header.object_prefix = NULL;
5552         } else {
5553                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5554         }
5555 out:
5556         kfree(reply_buf);
5557
5558         return ret;
5559 }
5560
5561 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5562                                      bool read_only, u64 *snap_features)
5563 {
5564         struct {
5565                 __le64 snap_id;
5566                 u8 read_only;
5567         } features_in;
5568         struct {
5569                 __le64 features;
5570                 __le64 incompat;
5571         } __attribute__ ((packed)) features_buf = { 0 };
5572         u64 unsup;
5573         int ret;
5574
5575         features_in.snap_id = cpu_to_le64(snap_id);
5576         features_in.read_only = read_only;
5577
5578         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5579                                   &rbd_dev->header_oloc, "get_features",
5580                                   &features_in, sizeof(features_in),
5581                                   &features_buf, sizeof(features_buf));
5582         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5583         if (ret < 0)
5584                 return ret;
5585         if (ret < sizeof (features_buf))
5586                 return -ERANGE;
5587
5588         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5589         if (unsup) {
5590                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5591                          unsup);
5592                 return -ENXIO;
5593         }
5594
5595         *snap_features = le64_to_cpu(features_buf.features);
5596
5597         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5598                 (unsigned long long)snap_id,
5599                 (unsigned long long)*snap_features,
5600                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5601
5602         return 0;
5603 }
5604
5605 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5606 {
5607         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5608                                          rbd_is_ro(rbd_dev),
5609                                          &rbd_dev->header.features);
5610 }
5611
5612 /*
5613  * These are generic image flags, but since they are used only for
5614  * object map, store them in rbd_dev->object_map_flags.
5615  *
5616  * For the same reason, this function is called only on object map
5617  * (re)load and not on header refresh.
5618  */
5619 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5620 {
5621         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5622         __le64 flags;
5623         int ret;
5624
5625         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5626                                   &rbd_dev->header_oloc, "get_flags",
5627                                   &snapid, sizeof(snapid),
5628                                   &flags, sizeof(flags));
5629         if (ret < 0)
5630                 return ret;
5631         if (ret < sizeof(flags))
5632                 return -EBADMSG;
5633
5634         rbd_dev->object_map_flags = le64_to_cpu(flags);
5635         return 0;
5636 }
5637
5638 struct parent_image_info {
5639         u64             pool_id;
5640         const char      *pool_ns;
5641         const char      *image_id;
5642         u64             snap_id;
5643
5644         bool            has_overlap;
5645         u64             overlap;
5646 };
5647
5648 /*
5649  * The caller is responsible for @pii.
5650  */
5651 static int decode_parent_image_spec(void **p, void *end,
5652                                     struct parent_image_info *pii)
5653 {
5654         u8 struct_v;
5655         u32 struct_len;
5656         int ret;
5657
5658         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5659                                   &struct_v, &struct_len);
5660         if (ret)
5661                 return ret;
5662
5663         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5664         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5665         if (IS_ERR(pii->pool_ns)) {
5666                 ret = PTR_ERR(pii->pool_ns);
5667                 pii->pool_ns = NULL;
5668                 return ret;
5669         }
5670         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5671         if (IS_ERR(pii->image_id)) {
5672                 ret = PTR_ERR(pii->image_id);
5673                 pii->image_id = NULL;
5674                 return ret;
5675         }
5676         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5677         return 0;
5678
5679 e_inval:
5680         return -EINVAL;
5681 }
5682
5683 static int __get_parent_info(struct rbd_device *rbd_dev,
5684                              struct page *req_page,
5685                              struct page *reply_page,
5686                              struct parent_image_info *pii)
5687 {
5688         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5689         size_t reply_len = PAGE_SIZE;
5690         void *p, *end;
5691         int ret;
5692
5693         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5694                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5695                              req_page, sizeof(u64), &reply_page, &reply_len);
5696         if (ret)
5697                 return ret == -EOPNOTSUPP ? 1 : ret;
5698
5699         p = page_address(reply_page);
5700         end = p + reply_len;
5701         ret = decode_parent_image_spec(&p, end, pii);
5702         if (ret)
5703                 return ret;
5704
5705         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5706                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5707                              req_page, sizeof(u64), &reply_page, &reply_len);
5708         if (ret)
5709                 return ret;
5710
5711         p = page_address(reply_page);
5712         end = p + reply_len;
5713         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5714         if (pii->has_overlap)
5715                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5716
5717         return 0;
5718
5719 e_inval:
5720         return -EINVAL;
5721 }
5722
5723 /*
5724  * The caller is responsible for @pii.
5725  */
5726 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5727                                     struct page *req_page,
5728                                     struct page *reply_page,
5729                                     struct parent_image_info *pii)
5730 {
5731         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5732         size_t reply_len = PAGE_SIZE;
5733         void *p, *end;
5734         int ret;
5735
5736         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5737                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5738                              req_page, sizeof(u64), &reply_page, &reply_len);
5739         if (ret)
5740                 return ret;
5741
5742         p = page_address(reply_page);
5743         end = p + reply_len;
5744         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5745         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5746         if (IS_ERR(pii->image_id)) {
5747                 ret = PTR_ERR(pii->image_id);
5748                 pii->image_id = NULL;
5749                 return ret;
5750         }
5751         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5752         pii->has_overlap = true;
5753         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5754
5755         return 0;
5756
5757 e_inval:
5758         return -EINVAL;
5759 }
5760
5761 static int get_parent_info(struct rbd_device *rbd_dev,
5762                            struct parent_image_info *pii)
5763 {
5764         struct page *req_page, *reply_page;
5765         void *p;
5766         int ret;
5767
5768         req_page = alloc_page(GFP_KERNEL);
5769         if (!req_page)
5770                 return -ENOMEM;
5771
5772         reply_page = alloc_page(GFP_KERNEL);
5773         if (!reply_page) {
5774                 __free_page(req_page);
5775                 return -ENOMEM;
5776         }
5777
5778         p = page_address(req_page);
5779         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5780         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5781         if (ret > 0)
5782                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5783                                                pii);
5784
5785         __free_page(req_page);
5786         __free_page(reply_page);
5787         return ret;
5788 }
5789
5790 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5791 {
5792         struct rbd_spec *parent_spec;
5793         struct parent_image_info pii = { 0 };
5794         int ret;
5795
5796         parent_spec = rbd_spec_alloc();
5797         if (!parent_spec)
5798                 return -ENOMEM;
5799
5800         ret = get_parent_info(rbd_dev, &pii);
5801         if (ret)
5802                 goto out_err;
5803
5804         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5805              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5806              pii.has_overlap, pii.overlap);
5807
5808         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5809                 /*
5810                  * Either the parent never existed, or we have
5811                  * record of it but the image got flattened so it no
5812                  * longer has a parent.  When the parent of a
5813                  * layered image disappears we immediately set the
5814                  * overlap to 0.  The effect of this is that all new
5815                  * requests will be treated as if the image had no
5816                  * parent.
5817                  *
5818                  * If !pii.has_overlap, the parent image spec is not
5819                  * applicable.  It's there to avoid duplication in each
5820                  * snapshot record.
5821                  */
5822                 if (rbd_dev->parent_overlap) {
5823                         rbd_dev->parent_overlap = 0;
5824                         rbd_dev_parent_put(rbd_dev);
5825                         pr_info("%s: clone image has been flattened\n",
5826                                 rbd_dev->disk->disk_name);
5827                 }
5828
5829                 goto out;       /* No parent?  No problem. */
5830         }
5831
5832         /* The ceph file layout needs to fit pool id in 32 bits */
5833
5834         ret = -EIO;
5835         if (pii.pool_id > (u64)U32_MAX) {
5836                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5837                         (unsigned long long)pii.pool_id, U32_MAX);
5838                 goto out_err;
5839         }
5840
5841         /*
5842          * The parent won't change (except when the clone is
5843          * flattened, already handled that).  So we only need to
5844          * record the parent spec we have not already done so.
5845          */
5846         if (!rbd_dev->parent_spec) {
5847                 parent_spec->pool_id = pii.pool_id;
5848                 if (pii.pool_ns && *pii.pool_ns) {
5849                         parent_spec->pool_ns = pii.pool_ns;
5850                         pii.pool_ns = NULL;
5851                 }
5852                 parent_spec->image_id = pii.image_id;
5853                 pii.image_id = NULL;
5854                 parent_spec->snap_id = pii.snap_id;
5855
5856                 rbd_dev->parent_spec = parent_spec;
5857                 parent_spec = NULL;     /* rbd_dev now owns this */
5858         }
5859
5860         /*
5861          * We always update the parent overlap.  If it's zero we issue
5862          * a warning, as we will proceed as if there was no parent.
5863          */
5864         if (!pii.overlap) {
5865                 if (parent_spec) {
5866                         /* refresh, careful to warn just once */
5867                         if (rbd_dev->parent_overlap)
5868                                 rbd_warn(rbd_dev,
5869                                     "clone now standalone (overlap became 0)");
5870                 } else {
5871                         /* initial probe */
5872                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5873                 }
5874         }
5875         rbd_dev->parent_overlap = pii.overlap;
5876
5877 out:
5878         ret = 0;
5879 out_err:
5880         kfree(pii.pool_ns);
5881         kfree(pii.image_id);
5882         rbd_spec_put(parent_spec);
5883         return ret;
5884 }
5885
5886 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5887 {
5888         struct {
5889                 __le64 stripe_unit;
5890                 __le64 stripe_count;
5891         } __attribute__ ((packed)) striping_info_buf = { 0 };
5892         size_t size = sizeof (striping_info_buf);
5893         void *p;
5894         int ret;
5895
5896         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5897                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5898                                 NULL, 0, &striping_info_buf, size);
5899         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5900         if (ret < 0)
5901                 return ret;
5902         if (ret < size)
5903                 return -ERANGE;
5904
5905         p = &striping_info_buf;
5906         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5907         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5908         return 0;
5909 }
5910
5911 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5912 {
5913         __le64 data_pool_id;
5914         int ret;
5915
5916         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5917                                   &rbd_dev->header_oloc, "get_data_pool",
5918                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5919         if (ret < 0)
5920                 return ret;
5921         if (ret < sizeof(data_pool_id))
5922                 return -EBADMSG;
5923
5924         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5925         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5926         return 0;
5927 }
5928
5929 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5930 {
5931         CEPH_DEFINE_OID_ONSTACK(oid);
5932         size_t image_id_size;
5933         char *image_id;
5934         void *p;
5935         void *end;
5936         size_t size;
5937         void *reply_buf = NULL;
5938         size_t len = 0;
5939         char *image_name = NULL;
5940         int ret;
5941
5942         rbd_assert(!rbd_dev->spec->image_name);
5943
5944         len = strlen(rbd_dev->spec->image_id);
5945         image_id_size = sizeof (__le32) + len;
5946         image_id = kmalloc(image_id_size, GFP_KERNEL);
5947         if (!image_id)
5948                 return NULL;
5949
5950         p = image_id;
5951         end = image_id + image_id_size;
5952         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5953
5954         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5955         reply_buf = kmalloc(size, GFP_KERNEL);
5956         if (!reply_buf)
5957                 goto out;
5958
5959         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5960         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5961                                   "dir_get_name", image_id, image_id_size,
5962                                   reply_buf, size);
5963         if (ret < 0)
5964                 goto out;
5965         p = reply_buf;
5966         end = reply_buf + ret;
5967
5968         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5969         if (IS_ERR(image_name))
5970                 image_name = NULL;
5971         else
5972                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5973 out:
5974         kfree(reply_buf);
5975         kfree(image_id);
5976
5977         return image_name;
5978 }
5979
5980 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5981 {
5982         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5983         const char *snap_name;
5984         u32 which = 0;
5985
5986         /* Skip over names until we find the one we are looking for */
5987
5988         snap_name = rbd_dev->header.snap_names;
5989         while (which < snapc->num_snaps) {
5990                 if (!strcmp(name, snap_name))
5991                         return snapc->snaps[which];
5992                 snap_name += strlen(snap_name) + 1;
5993                 which++;
5994         }
5995         return CEPH_NOSNAP;
5996 }
5997
5998 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5999 {
6000         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6001         u32 which;
6002         bool found = false;
6003         u64 snap_id;
6004
6005         for (which = 0; !found && which < snapc->num_snaps; which++) {
6006                 const char *snap_name;
6007
6008                 snap_id = snapc->snaps[which];
6009                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6010                 if (IS_ERR(snap_name)) {
6011                         /* ignore no-longer existing snapshots */
6012                         if (PTR_ERR(snap_name) == -ENOENT)
6013                                 continue;
6014                         else
6015                                 break;
6016                 }
6017                 found = !strcmp(name, snap_name);
6018                 kfree(snap_name);
6019         }
6020         return found ? snap_id : CEPH_NOSNAP;
6021 }
6022
6023 /*
6024  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6025  * no snapshot by that name is found, or if an error occurs.
6026  */
6027 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6028 {
6029         if (rbd_dev->image_format == 1)
6030                 return rbd_v1_snap_id_by_name(rbd_dev, name);
6031
6032         return rbd_v2_snap_id_by_name(rbd_dev, name);
6033 }
6034
6035 /*
6036  * An image being mapped will have everything but the snap id.
6037  */
6038 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6039 {
6040         struct rbd_spec *spec = rbd_dev->spec;
6041
6042         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6043         rbd_assert(spec->image_id && spec->image_name);
6044         rbd_assert(spec->snap_name);
6045
6046         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6047                 u64 snap_id;
6048
6049                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6050                 if (snap_id == CEPH_NOSNAP)
6051                         return -ENOENT;
6052
6053                 spec->snap_id = snap_id;
6054         } else {
6055                 spec->snap_id = CEPH_NOSNAP;
6056         }
6057
6058         return 0;
6059 }
6060
6061 /*
6062  * A parent image will have all ids but none of the names.
6063  *
6064  * All names in an rbd spec are dynamically allocated.  It's OK if we
6065  * can't figure out the name for an image id.
6066  */
6067 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6068 {
6069         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6070         struct rbd_spec *spec = rbd_dev->spec;
6071         const char *pool_name;
6072         const char *image_name;
6073         const char *snap_name;
6074         int ret;
6075
6076         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6077         rbd_assert(spec->image_id);
6078         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6079
6080         /* Get the pool name; we have to make our own copy of this */
6081
6082         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6083         if (!pool_name) {
6084                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6085                 return -EIO;
6086         }
6087         pool_name = kstrdup(pool_name, GFP_KERNEL);
6088         if (!pool_name)
6089                 return -ENOMEM;
6090
6091         /* Fetch the image name; tolerate failure here */
6092
6093         image_name = rbd_dev_image_name(rbd_dev);
6094         if (!image_name)
6095                 rbd_warn(rbd_dev, "unable to get image name");
6096
6097         /* Fetch the snapshot name */
6098
6099         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6100         if (IS_ERR(snap_name)) {
6101                 ret = PTR_ERR(snap_name);
6102                 goto out_err;
6103         }
6104
6105         spec->pool_name = pool_name;
6106         spec->image_name = image_name;
6107         spec->snap_name = snap_name;
6108
6109         return 0;
6110
6111 out_err:
6112         kfree(image_name);
6113         kfree(pool_name);
6114         return ret;
6115 }
6116
6117 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6118 {
6119         size_t size;
6120         int ret;
6121         void *reply_buf;
6122         void *p;
6123         void *end;
6124         u64 seq;
6125         u32 snap_count;
6126         struct ceph_snap_context *snapc;
6127         u32 i;
6128
6129         /*
6130          * We'll need room for the seq value (maximum snapshot id),
6131          * snapshot count, and array of that many snapshot ids.
6132          * For now we have a fixed upper limit on the number we're
6133          * prepared to receive.
6134          */
6135         size = sizeof (__le64) + sizeof (__le32) +
6136                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6137         reply_buf = kzalloc(size, GFP_KERNEL);
6138         if (!reply_buf)
6139                 return -ENOMEM;
6140
6141         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6142                                   &rbd_dev->header_oloc, "get_snapcontext",
6143                                   NULL, 0, reply_buf, size);
6144         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6145         if (ret < 0)
6146                 goto out;
6147
6148         p = reply_buf;
6149         end = reply_buf + ret;
6150         ret = -ERANGE;
6151         ceph_decode_64_safe(&p, end, seq, out);
6152         ceph_decode_32_safe(&p, end, snap_count, out);
6153
6154         /*
6155          * Make sure the reported number of snapshot ids wouldn't go
6156          * beyond the end of our buffer.  But before checking that,
6157          * make sure the computed size of the snapshot context we
6158          * allocate is representable in a size_t.
6159          */
6160         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6161                                  / sizeof (u64)) {
6162                 ret = -EINVAL;
6163                 goto out;
6164         }
6165         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6166                 goto out;
6167         ret = 0;
6168
6169         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6170         if (!snapc) {
6171                 ret = -ENOMEM;
6172                 goto out;
6173         }
6174         snapc->seq = seq;
6175         for (i = 0; i < snap_count; i++)
6176                 snapc->snaps[i] = ceph_decode_64(&p);
6177
6178         ceph_put_snap_context(rbd_dev->header.snapc);
6179         rbd_dev->header.snapc = snapc;
6180
6181         dout("  snap context seq = %llu, snap_count = %u\n",
6182                 (unsigned long long)seq, (unsigned int)snap_count);
6183 out:
6184         kfree(reply_buf);
6185
6186         return ret;
6187 }
6188
6189 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6190                                         u64 snap_id)
6191 {
6192         size_t size;
6193         void *reply_buf;
6194         __le64 snapid;
6195         int ret;
6196         void *p;
6197         void *end;
6198         char *snap_name;
6199
6200         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6201         reply_buf = kmalloc(size, GFP_KERNEL);
6202         if (!reply_buf)
6203                 return ERR_PTR(-ENOMEM);
6204
6205         snapid = cpu_to_le64(snap_id);
6206         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6207                                   &rbd_dev->header_oloc, "get_snapshot_name",
6208                                   &snapid, sizeof(snapid), reply_buf, size);
6209         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6210         if (ret < 0) {
6211                 snap_name = ERR_PTR(ret);
6212                 goto out;
6213         }
6214
6215         p = reply_buf;
6216         end = reply_buf + ret;
6217         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6218         if (IS_ERR(snap_name))
6219                 goto out;
6220
6221         dout("  snap_id 0x%016llx snap_name = %s\n",
6222                 (unsigned long long)snap_id, snap_name);
6223 out:
6224         kfree(reply_buf);
6225
6226         return snap_name;
6227 }
6228
6229 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6230 {
6231         bool first_time = rbd_dev->header.object_prefix == NULL;
6232         int ret;
6233
6234         ret = rbd_dev_v2_image_size(rbd_dev);
6235         if (ret)
6236                 return ret;
6237
6238         if (first_time) {
6239                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6240                 if (ret)
6241                         return ret;
6242         }
6243
6244         ret = rbd_dev_v2_snap_context(rbd_dev);
6245         if (ret && first_time) {
6246                 kfree(rbd_dev->header.object_prefix);
6247                 rbd_dev->header.object_prefix = NULL;
6248         }
6249
6250         return ret;
6251 }
6252
6253 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6254 {
6255         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6256
6257         if (rbd_dev->image_format == 1)
6258                 return rbd_dev_v1_header_info(rbd_dev);
6259
6260         return rbd_dev_v2_header_info(rbd_dev);
6261 }
6262
6263 /*
6264  * Skips over white space at *buf, and updates *buf to point to the
6265  * first found non-space character (if any). Returns the length of
6266  * the token (string of non-white space characters) found.  Note
6267  * that *buf must be terminated with '\0'.
6268  */
6269 static inline size_t next_token(const char **buf)
6270 {
6271         /*
6272         * These are the characters that produce nonzero for
6273         * isspace() in the "C" and "POSIX" locales.
6274         */
6275         const char *spaces = " \f\n\r\t\v";
6276
6277         *buf += strspn(*buf, spaces);   /* Find start of token */
6278
6279         return strcspn(*buf, spaces);   /* Return token length */
6280 }
6281
6282 /*
6283  * Finds the next token in *buf, dynamically allocates a buffer big
6284  * enough to hold a copy of it, and copies the token into the new
6285  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6286  * that a duplicate buffer is created even for a zero-length token.
6287  *
6288  * Returns a pointer to the newly-allocated duplicate, or a null
6289  * pointer if memory for the duplicate was not available.  If
6290  * the lenp argument is a non-null pointer, the length of the token
6291  * (not including the '\0') is returned in *lenp.
6292  *
6293  * If successful, the *buf pointer will be updated to point beyond
6294  * the end of the found token.
6295  *
6296  * Note: uses GFP_KERNEL for allocation.
6297  */
6298 static inline char *dup_token(const char **buf, size_t *lenp)
6299 {
6300         char *dup;
6301         size_t len;
6302
6303         len = next_token(buf);
6304         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6305         if (!dup)
6306                 return NULL;
6307         *(dup + len) = '\0';
6308         *buf += len;
6309
6310         if (lenp)
6311                 *lenp = len;
6312
6313         return dup;
6314 }
6315
6316 static int rbd_parse_param(struct fs_parameter *param,
6317                             struct rbd_parse_opts_ctx *pctx)
6318 {
6319         struct rbd_options *opt = pctx->opts;
6320         struct fs_parse_result result;
6321         struct p_log log = {.prefix = "rbd"};
6322         int token, ret;
6323
6324         ret = ceph_parse_param(param, pctx->copts, NULL);
6325         if (ret != -ENOPARAM)
6326                 return ret;
6327
6328         token = __fs_parse(&log, rbd_parameters, param, &result);
6329         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6330         if (token < 0) {
6331                 if (token == -ENOPARAM)
6332                         return inval_plog(&log, "Unknown parameter '%s'",
6333                                           param->key);
6334                 return token;
6335         }
6336
6337         switch (token) {
6338         case Opt_queue_depth:
6339                 if (result.uint_32 < 1)
6340                         goto out_of_range;
6341                 opt->queue_depth = result.uint_32;
6342                 break;
6343         case Opt_alloc_size:
6344                 if (result.uint_32 < SECTOR_SIZE)
6345                         goto out_of_range;
6346                 if (!is_power_of_2(result.uint_32))
6347                         return inval_plog(&log, "alloc_size must be a power of 2");
6348                 opt->alloc_size = result.uint_32;
6349                 break;
6350         case Opt_lock_timeout:
6351                 /* 0 is "wait forever" (i.e. infinite timeout) */
6352                 if (result.uint_32 > INT_MAX / 1000)
6353                         goto out_of_range;
6354                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6355                 break;
6356         case Opt_pool_ns:
6357                 kfree(pctx->spec->pool_ns);
6358                 pctx->spec->pool_ns = param->string;
6359                 param->string = NULL;
6360                 break;
6361         case Opt_compression_hint:
6362                 switch (result.uint_32) {
6363                 case Opt_compression_hint_none:
6364                         opt->alloc_hint_flags &=
6365                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6366                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6367                         break;
6368                 case Opt_compression_hint_compressible:
6369                         opt->alloc_hint_flags |=
6370                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371                         opt->alloc_hint_flags &=
6372                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6373                         break;
6374                 case Opt_compression_hint_incompressible:
6375                         opt->alloc_hint_flags |=
6376                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6377                         opt->alloc_hint_flags &=
6378                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6379                         break;
6380                 default:
6381                         BUG();
6382                 }
6383                 break;
6384         case Opt_read_only:
6385                 opt->read_only = true;
6386                 break;
6387         case Opt_read_write:
6388                 opt->read_only = false;
6389                 break;
6390         case Opt_lock_on_read:
6391                 opt->lock_on_read = true;
6392                 break;
6393         case Opt_exclusive:
6394                 opt->exclusive = true;
6395                 break;
6396         case Opt_notrim:
6397                 opt->trim = false;
6398                 break;
6399         default:
6400                 BUG();
6401         }
6402
6403         return 0;
6404
6405 out_of_range:
6406         return inval_plog(&log, "%s out of range", param->key);
6407 }
6408
6409 /*
6410  * This duplicates most of generic_parse_monolithic(), untying it from
6411  * fs_context and skipping standard superblock and security options.
6412  */
6413 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6414 {
6415         char *key;
6416         int ret = 0;
6417
6418         dout("%s '%s'\n", __func__, options);
6419         while ((key = strsep(&options, ",")) != NULL) {
6420                 if (*key) {
6421                         struct fs_parameter param = {
6422                                 .key    = key,
6423                                 .type   = fs_value_is_flag,
6424                         };
6425                         char *value = strchr(key, '=');
6426                         size_t v_len = 0;
6427
6428                         if (value) {
6429                                 if (value == key)
6430                                         continue;
6431                                 *value++ = 0;
6432                                 v_len = strlen(value);
6433                                 param.string = kmemdup_nul(value, v_len,
6434                                                            GFP_KERNEL);
6435                                 if (!param.string)
6436                                         return -ENOMEM;
6437                                 param.type = fs_value_is_string;
6438                         }
6439                         param.size = v_len;
6440
6441                         ret = rbd_parse_param(&param, pctx);
6442                         kfree(param.string);
6443                         if (ret)
6444                                 break;
6445                 }
6446         }
6447
6448         return ret;
6449 }
6450
6451 /*
6452  * Parse the options provided for an "rbd add" (i.e., rbd image
6453  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6454  * and the data written is passed here via a NUL-terminated buffer.
6455  * Returns 0 if successful or an error code otherwise.
6456  *
6457  * The information extracted from these options is recorded in
6458  * the other parameters which return dynamically-allocated
6459  * structures:
6460  *  ceph_opts
6461  *      The address of a pointer that will refer to a ceph options
6462  *      structure.  Caller must release the returned pointer using
6463  *      ceph_destroy_options() when it is no longer needed.
6464  *  rbd_opts
6465  *      Address of an rbd options pointer.  Fully initialized by
6466  *      this function; caller must release with kfree().
6467  *  spec
6468  *      Address of an rbd image specification pointer.  Fully
6469  *      initialized by this function based on parsed options.
6470  *      Caller must release with rbd_spec_put().
6471  *
6472  * The options passed take this form:
6473  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6474  * where:
6475  *  <mon_addrs>
6476  *      A comma-separated list of one or more monitor addresses.
6477  *      A monitor address is an ip address, optionally followed
6478  *      by a port number (separated by a colon).
6479  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6480  *  <options>
6481  *      A comma-separated list of ceph and/or rbd options.
6482  *  <pool_name>
6483  *      The name of the rados pool containing the rbd image.
6484  *  <image_name>
6485  *      The name of the image in that pool to map.
6486  *  <snap_id>
6487  *      An optional snapshot id.  If provided, the mapping will
6488  *      present data from the image at the time that snapshot was
6489  *      created.  The image head is used if no snapshot id is
6490  *      provided.  Snapshot mappings are always read-only.
6491  */
6492 static int rbd_add_parse_args(const char *buf,
6493                                 struct ceph_options **ceph_opts,
6494                                 struct rbd_options **opts,
6495                                 struct rbd_spec **rbd_spec)
6496 {
6497         size_t len;
6498         char *options;
6499         const char *mon_addrs;
6500         char *snap_name;
6501         size_t mon_addrs_size;
6502         struct rbd_parse_opts_ctx pctx = { 0 };
6503         int ret;
6504
6505         /* The first four tokens are required */
6506
6507         len = next_token(&buf);
6508         if (!len) {
6509                 rbd_warn(NULL, "no monitor address(es) provided");
6510                 return -EINVAL;
6511         }
6512         mon_addrs = buf;
6513         mon_addrs_size = len;
6514         buf += len;
6515
6516         ret = -EINVAL;
6517         options = dup_token(&buf, NULL);
6518         if (!options)
6519                 return -ENOMEM;
6520         if (!*options) {
6521                 rbd_warn(NULL, "no options provided");
6522                 goto out_err;
6523         }
6524
6525         pctx.spec = rbd_spec_alloc();
6526         if (!pctx.spec)
6527                 goto out_mem;
6528
6529         pctx.spec->pool_name = dup_token(&buf, NULL);
6530         if (!pctx.spec->pool_name)
6531                 goto out_mem;
6532         if (!*pctx.spec->pool_name) {
6533                 rbd_warn(NULL, "no pool name provided");
6534                 goto out_err;
6535         }
6536
6537         pctx.spec->image_name = dup_token(&buf, NULL);
6538         if (!pctx.spec->image_name)
6539                 goto out_mem;
6540         if (!*pctx.spec->image_name) {
6541                 rbd_warn(NULL, "no image name provided");
6542                 goto out_err;
6543         }
6544
6545         /*
6546          * Snapshot name is optional; default is to use "-"
6547          * (indicating the head/no snapshot).
6548          */
6549         len = next_token(&buf);
6550         if (!len) {
6551                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6552                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6553         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6554                 ret = -ENAMETOOLONG;
6555                 goto out_err;
6556         }
6557         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6558         if (!snap_name)
6559                 goto out_mem;
6560         *(snap_name + len) = '\0';
6561         pctx.spec->snap_name = snap_name;
6562
6563         pctx.copts = ceph_alloc_options();
6564         if (!pctx.copts)
6565                 goto out_mem;
6566
6567         /* Initialize all rbd options to the defaults */
6568
6569         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6570         if (!pctx.opts)
6571                 goto out_mem;
6572
6573         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6574         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6575         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6576         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6577         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6578         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6579         pctx.opts->trim = RBD_TRIM_DEFAULT;
6580
6581         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6582         if (ret)
6583                 goto out_err;
6584
6585         ret = rbd_parse_options(options, &pctx);
6586         if (ret)
6587                 goto out_err;
6588
6589         *ceph_opts = pctx.copts;
6590         *opts = pctx.opts;
6591         *rbd_spec = pctx.spec;
6592         kfree(options);
6593         return 0;
6594
6595 out_mem:
6596         ret = -ENOMEM;
6597 out_err:
6598         kfree(pctx.opts);
6599         ceph_destroy_options(pctx.copts);
6600         rbd_spec_put(pctx.spec);
6601         kfree(options);
6602         return ret;
6603 }
6604
6605 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6606 {
6607         down_write(&rbd_dev->lock_rwsem);
6608         if (__rbd_is_lock_owner(rbd_dev))
6609                 __rbd_release_lock(rbd_dev);
6610         up_write(&rbd_dev->lock_rwsem);
6611 }
6612
6613 /*
6614  * If the wait is interrupted, an error is returned even if the lock
6615  * was successfully acquired.  rbd_dev_image_unlock() will release it
6616  * if needed.
6617  */
6618 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6619 {
6620         long ret;
6621
6622         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6623                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6624                         return 0;
6625
6626                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6627                 return -EINVAL;
6628         }
6629
6630         if (rbd_is_ro(rbd_dev))
6631                 return 0;
6632
6633         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6634         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6635         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6636                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6637         if (ret > 0) {
6638                 ret = rbd_dev->acquire_err;
6639         } else {
6640                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6641                 if (!ret)
6642                         ret = -ETIMEDOUT;
6643         }
6644
6645         if (ret) {
6646                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6647                 return ret;
6648         }
6649
6650         /*
6651          * The lock may have been released by now, unless automatic lock
6652          * transitions are disabled.
6653          */
6654         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6655         return 0;
6656 }
6657
6658 /*
6659  * An rbd format 2 image has a unique identifier, distinct from the
6660  * name given to it by the user.  Internally, that identifier is
6661  * what's used to specify the names of objects related to the image.
6662  *
6663  * A special "rbd id" object is used to map an rbd image name to its
6664  * id.  If that object doesn't exist, then there is no v2 rbd image
6665  * with the supplied name.
6666  *
6667  * This function will record the given rbd_dev's image_id field if
6668  * it can be determined, and in that case will return 0.  If any
6669  * errors occur a negative errno will be returned and the rbd_dev's
6670  * image_id field will be unchanged (and should be NULL).
6671  */
6672 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6673 {
6674         int ret;
6675         size_t size;
6676         CEPH_DEFINE_OID_ONSTACK(oid);
6677         void *response;
6678         char *image_id;
6679
6680         /*
6681          * When probing a parent image, the image id is already
6682          * known (and the image name likely is not).  There's no
6683          * need to fetch the image id again in this case.  We
6684          * do still need to set the image format though.
6685          */
6686         if (rbd_dev->spec->image_id) {
6687                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6688
6689                 return 0;
6690         }
6691
6692         /*
6693          * First, see if the format 2 image id file exists, and if
6694          * so, get the image's persistent id from it.
6695          */
6696         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6697                                rbd_dev->spec->image_name);
6698         if (ret)
6699                 return ret;
6700
6701         dout("rbd id object name is %s\n", oid.name);
6702
6703         /* Response will be an encoded string, which includes a length */
6704         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6705         response = kzalloc(size, GFP_NOIO);
6706         if (!response) {
6707                 ret = -ENOMEM;
6708                 goto out;
6709         }
6710
6711         /* If it doesn't exist we'll assume it's a format 1 image */
6712
6713         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6714                                   "get_id", NULL, 0,
6715                                   response, size);
6716         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6717         if (ret == -ENOENT) {
6718                 image_id = kstrdup("", GFP_KERNEL);
6719                 ret = image_id ? 0 : -ENOMEM;
6720                 if (!ret)
6721                         rbd_dev->image_format = 1;
6722         } else if (ret >= 0) {
6723                 void *p = response;
6724
6725                 image_id = ceph_extract_encoded_string(&p, p + ret,
6726                                                 NULL, GFP_NOIO);
6727                 ret = PTR_ERR_OR_ZERO(image_id);
6728                 if (!ret)
6729                         rbd_dev->image_format = 2;
6730         }
6731
6732         if (!ret) {
6733                 rbd_dev->spec->image_id = image_id;
6734                 dout("image_id is %s\n", image_id);
6735         }
6736 out:
6737         kfree(response);
6738         ceph_oid_destroy(&oid);
6739         return ret;
6740 }
6741
6742 /*
6743  * Undo whatever state changes are made by v1 or v2 header info
6744  * call.
6745  */
6746 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6747 {
6748         struct rbd_image_header *header;
6749
6750         rbd_dev_parent_put(rbd_dev);
6751         rbd_object_map_free(rbd_dev);
6752         rbd_dev_mapping_clear(rbd_dev);
6753
6754         /* Free dynamic fields from the header, then zero it out */
6755
6756         header = &rbd_dev->header;
6757         ceph_put_snap_context(header->snapc);
6758         kfree(header->snap_sizes);
6759         kfree(header->snap_names);
6760         kfree(header->object_prefix);
6761         memset(header, 0, sizeof (*header));
6762 }
6763
6764 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6765 {
6766         int ret;
6767
6768         ret = rbd_dev_v2_object_prefix(rbd_dev);
6769         if (ret)
6770                 goto out_err;
6771
6772         /*
6773          * Get the and check features for the image.  Currently the
6774          * features are assumed to never change.
6775          */
6776         ret = rbd_dev_v2_features(rbd_dev);
6777         if (ret)
6778                 goto out_err;
6779
6780         /* If the image supports fancy striping, get its parameters */
6781
6782         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6783                 ret = rbd_dev_v2_striping_info(rbd_dev);
6784                 if (ret < 0)
6785                         goto out_err;
6786         }
6787
6788         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6789                 ret = rbd_dev_v2_data_pool(rbd_dev);
6790                 if (ret)
6791                         goto out_err;
6792         }
6793
6794         rbd_init_layout(rbd_dev);
6795         return 0;
6796
6797 out_err:
6798         rbd_dev->header.features = 0;
6799         kfree(rbd_dev->header.object_prefix);
6800         rbd_dev->header.object_prefix = NULL;
6801         return ret;
6802 }
6803
6804 /*
6805  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6806  * rbd_dev_image_probe() recursion depth, which means it's also the
6807  * length of the already discovered part of the parent chain.
6808  */
6809 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6810 {
6811         struct rbd_device *parent = NULL;
6812         int ret;
6813
6814         if (!rbd_dev->parent_spec)
6815                 return 0;
6816
6817         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6818                 pr_info("parent chain is too long (%d)\n", depth);
6819                 ret = -EINVAL;
6820                 goto out_err;
6821         }
6822
6823         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6824         if (!parent) {
6825                 ret = -ENOMEM;
6826                 goto out_err;
6827         }
6828
6829         /*
6830          * Images related by parent/child relationships always share
6831          * rbd_client and spec/parent_spec, so bump their refcounts.
6832          */
6833         __rbd_get_client(rbd_dev->rbd_client);
6834         rbd_spec_get(rbd_dev->parent_spec);
6835
6836         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6837
6838         ret = rbd_dev_image_probe(parent, depth);
6839         if (ret < 0)
6840                 goto out_err;
6841
6842         rbd_dev->parent = parent;
6843         atomic_set(&rbd_dev->parent_ref, 1);
6844         return 0;
6845
6846 out_err:
6847         rbd_dev_unparent(rbd_dev);
6848         rbd_dev_destroy(parent);
6849         return ret;
6850 }
6851
6852 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6853 {
6854         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6855         rbd_free_disk(rbd_dev);
6856         if (!single_major)
6857                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6858 }
6859
6860 /*
6861  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6862  * upon return.
6863  */
6864 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6865 {
6866         int ret;
6867
6868         /* Record our major and minor device numbers. */
6869
6870         if (!single_major) {
6871                 ret = register_blkdev(0, rbd_dev->name);
6872                 if (ret < 0)
6873                         goto err_out_unlock;
6874
6875                 rbd_dev->major = ret;
6876                 rbd_dev->minor = 0;
6877         } else {
6878                 rbd_dev->major = rbd_major;
6879                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6880         }
6881
6882         /* Set up the blkdev mapping. */
6883
6884         ret = rbd_init_disk(rbd_dev);
6885         if (ret)
6886                 goto err_out_blkdev;
6887
6888         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6889         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6890
6891         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6892         if (ret)
6893                 goto err_out_disk;
6894
6895         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6896         up_write(&rbd_dev->header_rwsem);
6897         return 0;
6898
6899 err_out_disk:
6900         rbd_free_disk(rbd_dev);
6901 err_out_blkdev:
6902         if (!single_major)
6903                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6904 err_out_unlock:
6905         up_write(&rbd_dev->header_rwsem);
6906         return ret;
6907 }
6908
6909 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6910 {
6911         struct rbd_spec *spec = rbd_dev->spec;
6912         int ret;
6913
6914         /* Record the header object name for this rbd image. */
6915
6916         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6917         if (rbd_dev->image_format == 1)
6918                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6919                                        spec->image_name, RBD_SUFFIX);
6920         else
6921                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6922                                        RBD_HEADER_PREFIX, spec->image_id);
6923
6924         return ret;
6925 }
6926
6927 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6928 {
6929         if (!is_snap) {
6930                 pr_info("image %s/%s%s%s does not exist\n",
6931                         rbd_dev->spec->pool_name,
6932                         rbd_dev->spec->pool_ns ?: "",
6933                         rbd_dev->spec->pool_ns ? "/" : "",
6934                         rbd_dev->spec->image_name);
6935         } else {
6936                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6937                         rbd_dev->spec->pool_name,
6938                         rbd_dev->spec->pool_ns ?: "",
6939                         rbd_dev->spec->pool_ns ? "/" : "",
6940                         rbd_dev->spec->image_name,
6941                         rbd_dev->spec->snap_name);
6942         }
6943 }
6944
6945 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6946 {
6947         if (!rbd_is_ro(rbd_dev))
6948                 rbd_unregister_watch(rbd_dev);
6949
6950         rbd_dev_unprobe(rbd_dev);
6951         rbd_dev->image_format = 0;
6952         kfree(rbd_dev->spec->image_id);
6953         rbd_dev->spec->image_id = NULL;
6954 }
6955
6956 /*
6957  * Probe for the existence of the header object for the given rbd
6958  * device.  If this image is the one being mapped (i.e., not a
6959  * parent), initiate a watch on its header object before using that
6960  * object to get detailed information about the rbd image.
6961  *
6962  * On success, returns with header_rwsem held for write if called
6963  * with @depth == 0.
6964  */
6965 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6966 {
6967         bool need_watch = !rbd_is_ro(rbd_dev);
6968         int ret;
6969
6970         /*
6971          * Get the id from the image id object.  Unless there's an
6972          * error, rbd_dev->spec->image_id will be filled in with
6973          * a dynamically-allocated string, and rbd_dev->image_format
6974          * will be set to either 1 or 2.
6975          */
6976         ret = rbd_dev_image_id(rbd_dev);
6977         if (ret)
6978                 return ret;
6979
6980         ret = rbd_dev_header_name(rbd_dev);
6981         if (ret)
6982                 goto err_out_format;
6983
6984         if (need_watch) {
6985                 ret = rbd_register_watch(rbd_dev);
6986                 if (ret) {
6987                         if (ret == -ENOENT)
6988                                 rbd_print_dne(rbd_dev, false);
6989                         goto err_out_format;
6990                 }
6991         }
6992
6993         if (!depth)
6994                 down_write(&rbd_dev->header_rwsem);
6995
6996         ret = rbd_dev_header_info(rbd_dev);
6997         if (ret) {
6998                 if (ret == -ENOENT && !need_watch)
6999                         rbd_print_dne(rbd_dev, false);
7000                 goto err_out_probe;
7001         }
7002
7003         /*
7004          * If this image is the one being mapped, we have pool name and
7005          * id, image name and id, and snap name - need to fill snap id.
7006          * Otherwise this is a parent image, identified by pool, image
7007          * and snap ids - need to fill in names for those ids.
7008          */
7009         if (!depth)
7010                 ret = rbd_spec_fill_snap_id(rbd_dev);
7011         else
7012                 ret = rbd_spec_fill_names(rbd_dev);
7013         if (ret) {
7014                 if (ret == -ENOENT)
7015                         rbd_print_dne(rbd_dev, true);
7016                 goto err_out_probe;
7017         }
7018
7019         ret = rbd_dev_mapping_set(rbd_dev);
7020         if (ret)
7021                 goto err_out_probe;
7022
7023         if (rbd_is_snap(rbd_dev) &&
7024             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7025                 ret = rbd_object_map_load(rbd_dev);
7026                 if (ret)
7027                         goto err_out_probe;
7028         }
7029
7030         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7031                 ret = rbd_dev_v2_parent_info(rbd_dev);
7032                 if (ret)
7033                         goto err_out_probe;
7034         }
7035
7036         ret = rbd_dev_probe_parent(rbd_dev, depth);
7037         if (ret)
7038                 goto err_out_probe;
7039
7040         dout("discovered format %u image, header name is %s\n",
7041                 rbd_dev->image_format, rbd_dev->header_oid.name);
7042         return 0;
7043
7044 err_out_probe:
7045         if (!depth)
7046                 up_write(&rbd_dev->header_rwsem);
7047         if (need_watch)
7048                 rbd_unregister_watch(rbd_dev);
7049         rbd_dev_unprobe(rbd_dev);
7050 err_out_format:
7051         rbd_dev->image_format = 0;
7052         kfree(rbd_dev->spec->image_id);
7053         rbd_dev->spec->image_id = NULL;
7054         return ret;
7055 }
7056
7057 static ssize_t do_rbd_add(struct bus_type *bus,
7058                           const char *buf,
7059                           size_t count)
7060 {
7061         struct rbd_device *rbd_dev = NULL;
7062         struct ceph_options *ceph_opts = NULL;
7063         struct rbd_options *rbd_opts = NULL;
7064         struct rbd_spec *spec = NULL;
7065         struct rbd_client *rbdc;
7066         int rc;
7067
7068         if (!capable(CAP_SYS_ADMIN))
7069                 return -EPERM;
7070
7071         if (!try_module_get(THIS_MODULE))
7072                 return -ENODEV;
7073
7074         /* parse add command */
7075         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7076         if (rc < 0)
7077                 goto out;
7078
7079         rbdc = rbd_get_client(ceph_opts);
7080         if (IS_ERR(rbdc)) {
7081                 rc = PTR_ERR(rbdc);
7082                 goto err_out_args;
7083         }
7084
7085         /* pick the pool */
7086         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7087         if (rc < 0) {
7088                 if (rc == -ENOENT)
7089                         pr_info("pool %s does not exist\n", spec->pool_name);
7090                 goto err_out_client;
7091         }
7092         spec->pool_id = (u64)rc;
7093
7094         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7095         if (!rbd_dev) {
7096                 rc = -ENOMEM;
7097                 goto err_out_client;
7098         }
7099         rbdc = NULL;            /* rbd_dev now owns this */
7100         spec = NULL;            /* rbd_dev now owns this */
7101         rbd_opts = NULL;        /* rbd_dev now owns this */
7102
7103         /* if we are mapping a snapshot it will be a read-only mapping */
7104         if (rbd_dev->opts->read_only ||
7105             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7106                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7107
7108         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7109         if (!rbd_dev->config_info) {
7110                 rc = -ENOMEM;
7111                 goto err_out_rbd_dev;
7112         }
7113
7114         rc = rbd_dev_image_probe(rbd_dev, 0);
7115         if (rc < 0)
7116                 goto err_out_rbd_dev;
7117
7118         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7119                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7120                          rbd_dev->layout.object_size);
7121                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7122         }
7123
7124         rc = rbd_dev_device_setup(rbd_dev);
7125         if (rc)
7126                 goto err_out_image_probe;
7127
7128         rc = rbd_add_acquire_lock(rbd_dev);
7129         if (rc)
7130                 goto err_out_image_lock;
7131
7132         /* Everything's ready.  Announce the disk to the world. */
7133
7134         rc = device_add(&rbd_dev->dev);
7135         if (rc)
7136                 goto err_out_image_lock;
7137
7138         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7139         /* see rbd_init_disk() */
7140         blk_put_queue(rbd_dev->disk->queue);
7141
7142         spin_lock(&rbd_dev_list_lock);
7143         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7144         spin_unlock(&rbd_dev_list_lock);
7145
7146         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7147                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7148                 rbd_dev->header.features);
7149         rc = count;
7150 out:
7151         module_put(THIS_MODULE);
7152         return rc;
7153
7154 err_out_image_lock:
7155         rbd_dev_image_unlock(rbd_dev);
7156         rbd_dev_device_release(rbd_dev);
7157 err_out_image_probe:
7158         rbd_dev_image_release(rbd_dev);
7159 err_out_rbd_dev:
7160         rbd_dev_destroy(rbd_dev);
7161 err_out_client:
7162         rbd_put_client(rbdc);
7163 err_out_args:
7164         rbd_spec_put(spec);
7165         kfree(rbd_opts);
7166         goto out;
7167 }
7168
7169 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7170 {
7171         if (single_major)
7172                 return -EINVAL;
7173
7174         return do_rbd_add(bus, buf, count);
7175 }
7176
7177 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7178                                       size_t count)
7179 {
7180         return do_rbd_add(bus, buf, count);
7181 }
7182
7183 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7184 {
7185         while (rbd_dev->parent) {
7186                 struct rbd_device *first = rbd_dev;
7187                 struct rbd_device *second = first->parent;
7188                 struct rbd_device *third;
7189
7190                 /*
7191                  * Follow to the parent with no grandparent and
7192                  * remove it.
7193                  */
7194                 while (second && (third = second->parent)) {
7195                         first = second;
7196                         second = third;
7197                 }
7198                 rbd_assert(second);
7199                 rbd_dev_image_release(second);
7200                 rbd_dev_destroy(second);
7201                 first->parent = NULL;
7202                 first->parent_overlap = 0;
7203
7204                 rbd_assert(first->parent_spec);
7205                 rbd_spec_put(first->parent_spec);
7206                 first->parent_spec = NULL;
7207         }
7208 }
7209
7210 static ssize_t do_rbd_remove(struct bus_type *bus,
7211                              const char *buf,
7212                              size_t count)
7213 {
7214         struct rbd_device *rbd_dev = NULL;
7215         struct list_head *tmp;
7216         int dev_id;
7217         char opt_buf[6];
7218         bool force = false;
7219         int ret;
7220
7221         if (!capable(CAP_SYS_ADMIN))
7222                 return -EPERM;
7223
7224         dev_id = -1;
7225         opt_buf[0] = '\0';
7226         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7227         if (dev_id < 0) {
7228                 pr_err("dev_id out of range\n");
7229                 return -EINVAL;
7230         }
7231         if (opt_buf[0] != '\0') {
7232                 if (!strcmp(opt_buf, "force")) {
7233                         force = true;
7234                 } else {
7235                         pr_err("bad remove option at '%s'\n", opt_buf);
7236                         return -EINVAL;
7237                 }
7238         }
7239
7240         ret = -ENOENT;
7241         spin_lock(&rbd_dev_list_lock);
7242         list_for_each(tmp, &rbd_dev_list) {
7243                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7244                 if (rbd_dev->dev_id == dev_id) {
7245                         ret = 0;
7246                         break;
7247                 }
7248         }
7249         if (!ret) {
7250                 spin_lock_irq(&rbd_dev->lock);
7251                 if (rbd_dev->open_count && !force)
7252                         ret = -EBUSY;
7253                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7254                                           &rbd_dev->flags))
7255                         ret = -EINPROGRESS;
7256                 spin_unlock_irq(&rbd_dev->lock);
7257         }
7258         spin_unlock(&rbd_dev_list_lock);
7259         if (ret)
7260                 return ret;
7261
7262         if (force) {
7263                 /*
7264                  * Prevent new IO from being queued and wait for existing
7265                  * IO to complete/fail.
7266                  */
7267                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7268                 blk_set_queue_dying(rbd_dev->disk->queue);
7269         }
7270
7271         del_gendisk(rbd_dev->disk);
7272         spin_lock(&rbd_dev_list_lock);
7273         list_del_init(&rbd_dev->node);
7274         spin_unlock(&rbd_dev_list_lock);
7275         device_del(&rbd_dev->dev);
7276
7277         rbd_dev_image_unlock(rbd_dev);
7278         rbd_dev_device_release(rbd_dev);
7279         rbd_dev_image_release(rbd_dev);
7280         rbd_dev_destroy(rbd_dev);
7281         return count;
7282 }
7283
7284 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7285 {
7286         if (single_major)
7287                 return -EINVAL;
7288
7289         return do_rbd_remove(bus, buf, count);
7290 }
7291
7292 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7293                                          size_t count)
7294 {
7295         return do_rbd_remove(bus, buf, count);
7296 }
7297
7298 /*
7299  * create control files in sysfs
7300  * /sys/bus/rbd/...
7301  */
7302 static int __init rbd_sysfs_init(void)
7303 {
7304         int ret;
7305
7306         ret = device_register(&rbd_root_dev);
7307         if (ret < 0)
7308                 return ret;
7309
7310         ret = bus_register(&rbd_bus_type);
7311         if (ret < 0)
7312                 device_unregister(&rbd_root_dev);
7313
7314         return ret;
7315 }
7316
7317 static void __exit rbd_sysfs_cleanup(void)
7318 {
7319         bus_unregister(&rbd_bus_type);
7320         device_unregister(&rbd_root_dev);
7321 }
7322
7323 static int __init rbd_slab_init(void)
7324 {
7325         rbd_assert(!rbd_img_request_cache);
7326         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7327         if (!rbd_img_request_cache)
7328                 return -ENOMEM;
7329
7330         rbd_assert(!rbd_obj_request_cache);
7331         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7332         if (!rbd_obj_request_cache)
7333                 goto out_err;
7334
7335         return 0;
7336
7337 out_err:
7338         kmem_cache_destroy(rbd_img_request_cache);
7339         rbd_img_request_cache = NULL;
7340         return -ENOMEM;
7341 }
7342
7343 static void rbd_slab_exit(void)
7344 {
7345         rbd_assert(rbd_obj_request_cache);
7346         kmem_cache_destroy(rbd_obj_request_cache);
7347         rbd_obj_request_cache = NULL;
7348
7349         rbd_assert(rbd_img_request_cache);
7350         kmem_cache_destroy(rbd_img_request_cache);
7351         rbd_img_request_cache = NULL;
7352 }
7353
7354 static int __init rbd_init(void)
7355 {
7356         int rc;
7357
7358         if (!libceph_compatible(NULL)) {
7359                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7360                 return -EINVAL;
7361         }
7362
7363         rc = rbd_slab_init();
7364         if (rc)
7365                 return rc;
7366
7367         /*
7368          * The number of active work items is limited by the number of
7369          * rbd devices * queue depth, so leave @max_active at default.
7370          */
7371         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7372         if (!rbd_wq) {
7373                 rc = -ENOMEM;
7374                 goto err_out_slab;
7375         }
7376
7377         if (single_major) {
7378                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7379                 if (rbd_major < 0) {
7380                         rc = rbd_major;
7381                         goto err_out_wq;
7382                 }
7383         }
7384
7385         rc = rbd_sysfs_init();
7386         if (rc)
7387                 goto err_out_blkdev;
7388
7389         if (single_major)
7390                 pr_info("loaded (major %d)\n", rbd_major);
7391         else
7392                 pr_info("loaded\n");
7393
7394         return 0;
7395
7396 err_out_blkdev:
7397         if (single_major)
7398                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7399 err_out_wq:
7400         destroy_workqueue(rbd_wq);
7401 err_out_slab:
7402         rbd_slab_exit();
7403         return rc;
7404 }
7405
7406 static void __exit rbd_exit(void)
7407 {
7408         ida_destroy(&rbd_dev_id_ida);
7409         rbd_sysfs_cleanup();
7410         if (single_major)
7411                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7412         destroy_workqueue(rbd_wq);
7413         rbd_slab_exit();
7414 }
7415
7416 module_init(rbd_init);
7417 module_exit(rbd_exit);
7418
7419 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7420 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7421 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7422 /* following authorship retained from original osdblk.c */
7423 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7424
7425 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7426 MODULE_LICENSE("GPL");