Merge tag 'ceph-for-5.11-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639                                         u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641                                 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652         rbd_assert(pending->num_pending > 0);
653
654         if (*result && !pending->result)
655                 pending->result = *result;
656         if (--pending->num_pending)
657                 return false;
658
659         *result = pending->result;
660         return true;
661 }
662
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666         bool removing = false;
667
668         spin_lock_irq(&rbd_dev->lock);
669         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670                 removing = true;
671         else
672                 rbd_dev->open_count++;
673         spin_unlock_irq(&rbd_dev->lock);
674         if (removing)
675                 return -ENOENT;
676
677         (void) get_device(&rbd_dev->dev);
678
679         return 0;
680 }
681
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684         struct rbd_device *rbd_dev = disk->private_data;
685         unsigned long open_count_before;
686
687         spin_lock_irq(&rbd_dev->lock);
688         open_count_before = rbd_dev->open_count--;
689         spin_unlock_irq(&rbd_dev->lock);
690         rbd_assert(open_count_before > 0);
691
692         put_device(&rbd_dev->dev);
693 }
694
695 static int rbd_set_read_only(struct block_device *bdev, bool ro)
696 {
697         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
698
699         /*
700          * Both images mapped read-only and snapshots can't be marked
701          * read-write.
702          */
703         if (!ro) {
704                 if (rbd_is_ro(rbd_dev))
705                         return -EROFS;
706
707                 rbd_assert(!rbd_is_snap(rbd_dev));
708         }
709
710         return 0;
711 }
712
713 static const struct block_device_operations rbd_bd_ops = {
714         .owner                  = THIS_MODULE,
715         .open                   = rbd_open,
716         .release                = rbd_release,
717         .set_read_only          = rbd_set_read_only,
718 };
719
720 /*
721  * Initialize an rbd client instance.  Success or not, this function
722  * consumes ceph_opts.  Caller holds client_mutex.
723  */
724 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
725 {
726         struct rbd_client *rbdc;
727         int ret = -ENOMEM;
728
729         dout("%s:\n", __func__);
730         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
731         if (!rbdc)
732                 goto out_opt;
733
734         kref_init(&rbdc->kref);
735         INIT_LIST_HEAD(&rbdc->node);
736
737         rbdc->client = ceph_create_client(ceph_opts, rbdc);
738         if (IS_ERR(rbdc->client))
739                 goto out_rbdc;
740         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
741
742         ret = ceph_open_session(rbdc->client);
743         if (ret < 0)
744                 goto out_client;
745
746         spin_lock(&rbd_client_list_lock);
747         list_add_tail(&rbdc->node, &rbd_client_list);
748         spin_unlock(&rbd_client_list_lock);
749
750         dout("%s: rbdc %p\n", __func__, rbdc);
751
752         return rbdc;
753 out_client:
754         ceph_destroy_client(rbdc->client);
755 out_rbdc:
756         kfree(rbdc);
757 out_opt:
758         if (ceph_opts)
759                 ceph_destroy_options(ceph_opts);
760         dout("%s: error %d\n", __func__, ret);
761
762         return ERR_PTR(ret);
763 }
764
765 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
766 {
767         kref_get(&rbdc->kref);
768
769         return rbdc;
770 }
771
772 /*
773  * Find a ceph client with specific addr and configuration.  If
774  * found, bump its reference count.
775  */
776 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
777 {
778         struct rbd_client *client_node;
779         bool found = false;
780
781         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
782                 return NULL;
783
784         spin_lock(&rbd_client_list_lock);
785         list_for_each_entry(client_node, &rbd_client_list, node) {
786                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
787                         __rbd_get_client(client_node);
788
789                         found = true;
790                         break;
791                 }
792         }
793         spin_unlock(&rbd_client_list_lock);
794
795         return found ? client_node : NULL;
796 }
797
798 /*
799  * (Per device) rbd map options
800  */
801 enum {
802         Opt_queue_depth,
803         Opt_alloc_size,
804         Opt_lock_timeout,
805         /* int args above */
806         Opt_pool_ns,
807         Opt_compression_hint,
808         /* string args above */
809         Opt_read_only,
810         Opt_read_write,
811         Opt_lock_on_read,
812         Opt_exclusive,
813         Opt_notrim,
814 };
815
816 enum {
817         Opt_compression_hint_none,
818         Opt_compression_hint_compressible,
819         Opt_compression_hint_incompressible,
820 };
821
822 static const struct constant_table rbd_param_compression_hint[] = {
823         {"none",                Opt_compression_hint_none},
824         {"compressible",        Opt_compression_hint_compressible},
825         {"incompressible",      Opt_compression_hint_incompressible},
826         {}
827 };
828
829 static const struct fs_parameter_spec rbd_parameters[] = {
830         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
831         fsparam_enum    ("compression_hint",            Opt_compression_hint,
832                          rbd_param_compression_hint),
833         fsparam_flag    ("exclusive",                   Opt_exclusive),
834         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
835         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
836         fsparam_flag    ("notrim",                      Opt_notrim),
837         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
838         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
839         fsparam_flag    ("read_only",                   Opt_read_only),
840         fsparam_flag    ("read_write",                  Opt_read_write),
841         fsparam_flag    ("ro",                          Opt_read_only),
842         fsparam_flag    ("rw",                          Opt_read_write),
843         {}
844 };
845
846 struct rbd_options {
847         int     queue_depth;
848         int     alloc_size;
849         unsigned long   lock_timeout;
850         bool    read_only;
851         bool    lock_on_read;
852         bool    exclusive;
853         bool    trim;
854
855         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
856 };
857
858 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
859 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
860 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
861 #define RBD_READ_ONLY_DEFAULT   false
862 #define RBD_LOCK_ON_READ_DEFAULT false
863 #define RBD_EXCLUSIVE_DEFAULT   false
864 #define RBD_TRIM_DEFAULT        true
865
866 struct rbd_parse_opts_ctx {
867         struct rbd_spec         *spec;
868         struct ceph_options     *copts;
869         struct rbd_options      *opts;
870 };
871
872 static char* obj_op_name(enum obj_operation_type op_type)
873 {
874         switch (op_type) {
875         case OBJ_OP_READ:
876                 return "read";
877         case OBJ_OP_WRITE:
878                 return "write";
879         case OBJ_OP_DISCARD:
880                 return "discard";
881         case OBJ_OP_ZEROOUT:
882                 return "zeroout";
883         default:
884                 return "???";
885         }
886 }
887
888 /*
889  * Destroy ceph client
890  *
891  * Caller must hold rbd_client_list_lock.
892  */
893 static void rbd_client_release(struct kref *kref)
894 {
895         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
896
897         dout("%s: rbdc %p\n", __func__, rbdc);
898         spin_lock(&rbd_client_list_lock);
899         list_del(&rbdc->node);
900         spin_unlock(&rbd_client_list_lock);
901
902         ceph_destroy_client(rbdc->client);
903         kfree(rbdc);
904 }
905
906 /*
907  * Drop reference to ceph client node. If it's not referenced anymore, release
908  * it.
909  */
910 static void rbd_put_client(struct rbd_client *rbdc)
911 {
912         if (rbdc)
913                 kref_put(&rbdc->kref, rbd_client_release);
914 }
915
916 /*
917  * Get a ceph client with specific addr and configuration, if one does
918  * not exist create it.  Either way, ceph_opts is consumed by this
919  * function.
920  */
921 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
922 {
923         struct rbd_client *rbdc;
924         int ret;
925
926         mutex_lock(&client_mutex);
927         rbdc = rbd_client_find(ceph_opts);
928         if (rbdc) {
929                 ceph_destroy_options(ceph_opts);
930
931                 /*
932                  * Using an existing client.  Make sure ->pg_pools is up to
933                  * date before we look up the pool id in do_rbd_add().
934                  */
935                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
936                                         rbdc->client->options->mount_timeout);
937                 if (ret) {
938                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
939                         rbd_put_client(rbdc);
940                         rbdc = ERR_PTR(ret);
941                 }
942         } else {
943                 rbdc = rbd_client_create(ceph_opts);
944         }
945         mutex_unlock(&client_mutex);
946
947         return rbdc;
948 }
949
950 static bool rbd_image_format_valid(u32 image_format)
951 {
952         return image_format == 1 || image_format == 2;
953 }
954
955 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
956 {
957         size_t size;
958         u32 snap_count;
959
960         /* The header has to start with the magic rbd header text */
961         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
962                 return false;
963
964         /* The bio layer requires at least sector-sized I/O */
965
966         if (ondisk->options.order < SECTOR_SHIFT)
967                 return false;
968
969         /* If we use u64 in a few spots we may be able to loosen this */
970
971         if (ondisk->options.order > 8 * sizeof (int) - 1)
972                 return false;
973
974         /*
975          * The size of a snapshot header has to fit in a size_t, and
976          * that limits the number of snapshots.
977          */
978         snap_count = le32_to_cpu(ondisk->snap_count);
979         size = SIZE_MAX - sizeof (struct ceph_snap_context);
980         if (snap_count > size / sizeof (__le64))
981                 return false;
982
983         /*
984          * Not only that, but the size of the entire the snapshot
985          * header must also be representable in a size_t.
986          */
987         size -= snap_count * sizeof (__le64);
988         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
989                 return false;
990
991         return true;
992 }
993
994 /*
995  * returns the size of an object in the image
996  */
997 static u32 rbd_obj_bytes(struct rbd_image_header *header)
998 {
999         return 1U << header->obj_order;
1000 }
1001
1002 static void rbd_init_layout(struct rbd_device *rbd_dev)
1003 {
1004         if (rbd_dev->header.stripe_unit == 0 ||
1005             rbd_dev->header.stripe_count == 0) {
1006                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1007                 rbd_dev->header.stripe_count = 1;
1008         }
1009
1010         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1011         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1012         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1013         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1014                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1015         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1016 }
1017
1018 /*
1019  * Fill an rbd image header with information from the given format 1
1020  * on-disk header.
1021  */
1022 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1023                                  struct rbd_image_header_ondisk *ondisk)
1024 {
1025         struct rbd_image_header *header = &rbd_dev->header;
1026         bool first_time = header->object_prefix == NULL;
1027         struct ceph_snap_context *snapc;
1028         char *object_prefix = NULL;
1029         char *snap_names = NULL;
1030         u64 *snap_sizes = NULL;
1031         u32 snap_count;
1032         int ret = -ENOMEM;
1033         u32 i;
1034
1035         /* Allocate this now to avoid having to handle failure below */
1036
1037         if (first_time) {
1038                 object_prefix = kstrndup(ondisk->object_prefix,
1039                                          sizeof(ondisk->object_prefix),
1040                                          GFP_KERNEL);
1041                 if (!object_prefix)
1042                         return -ENOMEM;
1043         }
1044
1045         /* Allocate the snapshot context and fill it in */
1046
1047         snap_count = le32_to_cpu(ondisk->snap_count);
1048         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1049         if (!snapc)
1050                 goto out_err;
1051         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1052         if (snap_count) {
1053                 struct rbd_image_snap_ondisk *snaps;
1054                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1055
1056                 /* We'll keep a copy of the snapshot names... */
1057
1058                 if (snap_names_len > (u64)SIZE_MAX)
1059                         goto out_2big;
1060                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1061                 if (!snap_names)
1062                         goto out_err;
1063
1064                 /* ...as well as the array of their sizes. */
1065                 snap_sizes = kmalloc_array(snap_count,
1066                                            sizeof(*header->snap_sizes),
1067                                            GFP_KERNEL);
1068                 if (!snap_sizes)
1069                         goto out_err;
1070
1071                 /*
1072                  * Copy the names, and fill in each snapshot's id
1073                  * and size.
1074                  *
1075                  * Note that rbd_dev_v1_header_info() guarantees the
1076                  * ondisk buffer we're working with has
1077                  * snap_names_len bytes beyond the end of the
1078                  * snapshot id array, this memcpy() is safe.
1079                  */
1080                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1081                 snaps = ondisk->snaps;
1082                 for (i = 0; i < snap_count; i++) {
1083                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1084                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1085                 }
1086         }
1087
1088         /* We won't fail any more, fill in the header */
1089
1090         if (first_time) {
1091                 header->object_prefix = object_prefix;
1092                 header->obj_order = ondisk->options.order;
1093                 rbd_init_layout(rbd_dev);
1094         } else {
1095                 ceph_put_snap_context(header->snapc);
1096                 kfree(header->snap_names);
1097                 kfree(header->snap_sizes);
1098         }
1099
1100         /* The remaining fields always get updated (when we refresh) */
1101
1102         header->image_size = le64_to_cpu(ondisk->image_size);
1103         header->snapc = snapc;
1104         header->snap_names = snap_names;
1105         header->snap_sizes = snap_sizes;
1106
1107         return 0;
1108 out_2big:
1109         ret = -EIO;
1110 out_err:
1111         kfree(snap_sizes);
1112         kfree(snap_names);
1113         ceph_put_snap_context(snapc);
1114         kfree(object_prefix);
1115
1116         return ret;
1117 }
1118
1119 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1120 {
1121         const char *snap_name;
1122
1123         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1124
1125         /* Skip over names until we find the one we are looking for */
1126
1127         snap_name = rbd_dev->header.snap_names;
1128         while (which--)
1129                 snap_name += strlen(snap_name) + 1;
1130
1131         return kstrdup(snap_name, GFP_KERNEL);
1132 }
1133
1134 /*
1135  * Snapshot id comparison function for use with qsort()/bsearch().
1136  * Note that result is for snapshots in *descending* order.
1137  */
1138 static int snapid_compare_reverse(const void *s1, const void *s2)
1139 {
1140         u64 snap_id1 = *(u64 *)s1;
1141         u64 snap_id2 = *(u64 *)s2;
1142
1143         if (snap_id1 < snap_id2)
1144                 return 1;
1145         return snap_id1 == snap_id2 ? 0 : -1;
1146 }
1147
1148 /*
1149  * Search a snapshot context to see if the given snapshot id is
1150  * present.
1151  *
1152  * Returns the position of the snapshot id in the array if it's found,
1153  * or BAD_SNAP_INDEX otherwise.
1154  *
1155  * Note: The snapshot array is in kept sorted (by the osd) in
1156  * reverse order, highest snapshot id first.
1157  */
1158 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1159 {
1160         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1161         u64 *found;
1162
1163         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1164                                 sizeof (snap_id), snapid_compare_reverse);
1165
1166         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1167 }
1168
1169 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1170                                         u64 snap_id)
1171 {
1172         u32 which;
1173         const char *snap_name;
1174
1175         which = rbd_dev_snap_index(rbd_dev, snap_id);
1176         if (which == BAD_SNAP_INDEX)
1177                 return ERR_PTR(-ENOENT);
1178
1179         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1180         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1181 }
1182
1183 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1184 {
1185         if (snap_id == CEPH_NOSNAP)
1186                 return RBD_SNAP_HEAD_NAME;
1187
1188         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1189         if (rbd_dev->image_format == 1)
1190                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1191
1192         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1193 }
1194
1195 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1196                                 u64 *snap_size)
1197 {
1198         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1199         if (snap_id == CEPH_NOSNAP) {
1200                 *snap_size = rbd_dev->header.image_size;
1201         } else if (rbd_dev->image_format == 1) {
1202                 u32 which;
1203
1204                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1205                 if (which == BAD_SNAP_INDEX)
1206                         return -ENOENT;
1207
1208                 *snap_size = rbd_dev->header.snap_sizes[which];
1209         } else {
1210                 u64 size = 0;
1211                 int ret;
1212
1213                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1214                 if (ret)
1215                         return ret;
1216
1217                 *snap_size = size;
1218         }
1219         return 0;
1220 }
1221
1222 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1223 {
1224         u64 snap_id = rbd_dev->spec->snap_id;
1225         u64 size = 0;
1226         int ret;
1227
1228         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1229         if (ret)
1230                 return ret;
1231
1232         rbd_dev->mapping.size = size;
1233         return 0;
1234 }
1235
1236 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1237 {
1238         rbd_dev->mapping.size = 0;
1239 }
1240
1241 static void zero_bvec(struct bio_vec *bv)
1242 {
1243         void *buf;
1244         unsigned long flags;
1245
1246         buf = bvec_kmap_irq(bv, &flags);
1247         memset(buf, 0, bv->bv_len);
1248         flush_dcache_page(bv->bv_page);
1249         bvec_kunmap_irq(buf, &flags);
1250 }
1251
1252 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1253 {
1254         struct ceph_bio_iter it = *bio_pos;
1255
1256         ceph_bio_iter_advance(&it, off);
1257         ceph_bio_iter_advance_step(&it, bytes, ({
1258                 zero_bvec(&bv);
1259         }));
1260 }
1261
1262 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1263 {
1264         struct ceph_bvec_iter it = *bvec_pos;
1265
1266         ceph_bvec_iter_advance(&it, off);
1267         ceph_bvec_iter_advance_step(&it, bytes, ({
1268                 zero_bvec(&bv);
1269         }));
1270 }
1271
1272 /*
1273  * Zero a range in @obj_req data buffer defined by a bio (list) or
1274  * (private) bio_vec array.
1275  *
1276  * @off is relative to the start of the data buffer.
1277  */
1278 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1279                                u32 bytes)
1280 {
1281         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1282
1283         switch (obj_req->img_request->data_type) {
1284         case OBJ_REQUEST_BIO:
1285                 zero_bios(&obj_req->bio_pos, off, bytes);
1286                 break;
1287         case OBJ_REQUEST_BVECS:
1288         case OBJ_REQUEST_OWN_BVECS:
1289                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1290                 break;
1291         default:
1292                 BUG();
1293         }
1294 }
1295
1296 static void rbd_obj_request_destroy(struct kref *kref);
1297 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1298 {
1299         rbd_assert(obj_request != NULL);
1300         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1301                 kref_read(&obj_request->kref));
1302         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1303 }
1304
1305 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1306                                         struct rbd_obj_request *obj_request)
1307 {
1308         rbd_assert(obj_request->img_request == NULL);
1309
1310         /* Image request now owns object's original reference */
1311         obj_request->img_request = img_request;
1312         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1313 }
1314
1315 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1316                                         struct rbd_obj_request *obj_request)
1317 {
1318         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1319         list_del(&obj_request->ex.oe_item);
1320         rbd_assert(obj_request->img_request == img_request);
1321         rbd_obj_request_put(obj_request);
1322 }
1323
1324 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1325 {
1326         struct rbd_obj_request *obj_req = osd_req->r_priv;
1327
1328         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1329              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1330              obj_req->ex.oe_off, obj_req->ex.oe_len);
1331         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1332 }
1333
1334 /*
1335  * The default/initial value for all image request flags is 0.  Each
1336  * is conditionally set to 1 at image request initialization time
1337  * and currently never change thereafter.
1338  */
1339 static void img_request_layered_set(struct rbd_img_request *img_request)
1340 {
1341         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1342 }
1343
1344 static bool img_request_layered_test(struct rbd_img_request *img_request)
1345 {
1346         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1347 }
1348
1349 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1350 {
1351         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1352
1353         return !obj_req->ex.oe_off &&
1354                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1355 }
1356
1357 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1358 {
1359         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1360
1361         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1362                                         rbd_dev->layout.object_size;
1363 }
1364
1365 /*
1366  * Must be called after rbd_obj_calc_img_extents().
1367  */
1368 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1369 {
1370         if (!obj_req->num_img_extents ||
1371             (rbd_obj_is_entire(obj_req) &&
1372              !obj_req->img_request->snapc->num_snaps))
1373                 return false;
1374
1375         return true;
1376 }
1377
1378 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1379 {
1380         return ceph_file_extents_bytes(obj_req->img_extents,
1381                                        obj_req->num_img_extents);
1382 }
1383
1384 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1385 {
1386         switch (img_req->op_type) {
1387         case OBJ_OP_READ:
1388                 return false;
1389         case OBJ_OP_WRITE:
1390         case OBJ_OP_DISCARD:
1391         case OBJ_OP_ZEROOUT:
1392                 return true;
1393         default:
1394                 BUG();
1395         }
1396 }
1397
1398 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1399 {
1400         struct rbd_obj_request *obj_req = osd_req->r_priv;
1401         int result;
1402
1403         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1404              osd_req->r_result, obj_req);
1405
1406         /*
1407          * Writes aren't allowed to return a data payload.  In some
1408          * guarded write cases (e.g. stat + zero on an empty object)
1409          * a stat response makes it through, but we don't care.
1410          */
1411         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1412                 result = 0;
1413         else
1414                 result = osd_req->r_result;
1415
1416         rbd_obj_handle_request(obj_req, result);
1417 }
1418
1419 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1420 {
1421         struct rbd_obj_request *obj_request = osd_req->r_priv;
1422         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1423         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1424
1425         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1426         osd_req->r_snapid = obj_request->img_request->snap_id;
1427 }
1428
1429 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1430 {
1431         struct rbd_obj_request *obj_request = osd_req->r_priv;
1432
1433         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1434         ktime_get_real_ts64(&osd_req->r_mtime);
1435         osd_req->r_data_offset = obj_request->ex.oe_off;
1436 }
1437
1438 static struct ceph_osd_request *
1439 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1440                           struct ceph_snap_context *snapc, int num_ops)
1441 {
1442         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1443         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1444         struct ceph_osd_request *req;
1445         const char *name_format = rbd_dev->image_format == 1 ?
1446                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1447         int ret;
1448
1449         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1450         if (!req)
1451                 return ERR_PTR(-ENOMEM);
1452
1453         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1454         req->r_callback = rbd_osd_req_callback;
1455         req->r_priv = obj_req;
1456
1457         /*
1458          * Data objects may be stored in a separate pool, but always in
1459          * the same namespace in that pool as the header in its pool.
1460          */
1461         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1462         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1463
1464         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1465                                rbd_dev->header.object_prefix,
1466                                obj_req->ex.oe_objno);
1467         if (ret)
1468                 return ERR_PTR(ret);
1469
1470         return req;
1471 }
1472
1473 static struct ceph_osd_request *
1474 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1475 {
1476         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1477                                          num_ops);
1478 }
1479
1480 static struct rbd_obj_request *rbd_obj_request_create(void)
1481 {
1482         struct rbd_obj_request *obj_request;
1483
1484         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1485         if (!obj_request)
1486                 return NULL;
1487
1488         ceph_object_extent_init(&obj_request->ex);
1489         INIT_LIST_HEAD(&obj_request->osd_reqs);
1490         mutex_init(&obj_request->state_mutex);
1491         kref_init(&obj_request->kref);
1492
1493         dout("%s %p\n", __func__, obj_request);
1494         return obj_request;
1495 }
1496
1497 static void rbd_obj_request_destroy(struct kref *kref)
1498 {
1499         struct rbd_obj_request *obj_request;
1500         struct ceph_osd_request *osd_req;
1501         u32 i;
1502
1503         obj_request = container_of(kref, struct rbd_obj_request, kref);
1504
1505         dout("%s: obj %p\n", __func__, obj_request);
1506
1507         while (!list_empty(&obj_request->osd_reqs)) {
1508                 osd_req = list_first_entry(&obj_request->osd_reqs,
1509                                     struct ceph_osd_request, r_private_item);
1510                 list_del_init(&osd_req->r_private_item);
1511                 ceph_osdc_put_request(osd_req);
1512         }
1513
1514         switch (obj_request->img_request->data_type) {
1515         case OBJ_REQUEST_NODATA:
1516         case OBJ_REQUEST_BIO:
1517         case OBJ_REQUEST_BVECS:
1518                 break;          /* Nothing to do */
1519         case OBJ_REQUEST_OWN_BVECS:
1520                 kfree(obj_request->bvec_pos.bvecs);
1521                 break;
1522         default:
1523                 BUG();
1524         }
1525
1526         kfree(obj_request->img_extents);
1527         if (obj_request->copyup_bvecs) {
1528                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1529                         if (obj_request->copyup_bvecs[i].bv_page)
1530                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1531                 }
1532                 kfree(obj_request->copyup_bvecs);
1533         }
1534
1535         kmem_cache_free(rbd_obj_request_cache, obj_request);
1536 }
1537
1538 /* It's OK to call this for a device with no parent */
1539
1540 static void rbd_spec_put(struct rbd_spec *spec);
1541 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1542 {
1543         rbd_dev_remove_parent(rbd_dev);
1544         rbd_spec_put(rbd_dev->parent_spec);
1545         rbd_dev->parent_spec = NULL;
1546         rbd_dev->parent_overlap = 0;
1547 }
1548
1549 /*
1550  * Parent image reference counting is used to determine when an
1551  * image's parent fields can be safely torn down--after there are no
1552  * more in-flight requests to the parent image.  When the last
1553  * reference is dropped, cleaning them up is safe.
1554  */
1555 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1556 {
1557         int counter;
1558
1559         if (!rbd_dev->parent_spec)
1560                 return;
1561
1562         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1563         if (counter > 0)
1564                 return;
1565
1566         /* Last reference; clean up parent data structures */
1567
1568         if (!counter)
1569                 rbd_dev_unparent(rbd_dev);
1570         else
1571                 rbd_warn(rbd_dev, "parent reference underflow");
1572 }
1573
1574 /*
1575  * If an image has a non-zero parent overlap, get a reference to its
1576  * parent.
1577  *
1578  * Returns true if the rbd device has a parent with a non-zero
1579  * overlap and a reference for it was successfully taken, or
1580  * false otherwise.
1581  */
1582 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1583 {
1584         int counter = 0;
1585
1586         if (!rbd_dev->parent_spec)
1587                 return false;
1588
1589         if (rbd_dev->parent_overlap)
1590                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1591
1592         if (counter < 0)
1593                 rbd_warn(rbd_dev, "parent reference overflow");
1594
1595         return counter > 0;
1596 }
1597
1598 static void rbd_img_request_init(struct rbd_img_request *img_request,
1599                                  struct rbd_device *rbd_dev,
1600                                  enum obj_operation_type op_type)
1601 {
1602         memset(img_request, 0, sizeof(*img_request));
1603
1604         img_request->rbd_dev = rbd_dev;
1605         img_request->op_type = op_type;
1606
1607         INIT_LIST_HEAD(&img_request->lock_item);
1608         INIT_LIST_HEAD(&img_request->object_extents);
1609         mutex_init(&img_request->state_mutex);
1610 }
1611
1612 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1613 {
1614         struct rbd_device *rbd_dev = img_req->rbd_dev;
1615
1616         lockdep_assert_held(&rbd_dev->header_rwsem);
1617
1618         if (rbd_img_is_write(img_req))
1619                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1620         else
1621                 img_req->snap_id = rbd_dev->spec->snap_id;
1622
1623         if (rbd_dev_parent_get(rbd_dev))
1624                 img_request_layered_set(img_req);
1625 }
1626
1627 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1628 {
1629         struct rbd_obj_request *obj_request;
1630         struct rbd_obj_request *next_obj_request;
1631
1632         dout("%s: img %p\n", __func__, img_request);
1633
1634         WARN_ON(!list_empty(&img_request->lock_item));
1635         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1636                 rbd_img_obj_request_del(img_request, obj_request);
1637
1638         if (img_request_layered_test(img_request))
1639                 rbd_dev_parent_put(img_request->rbd_dev);
1640
1641         if (rbd_img_is_write(img_request))
1642                 ceph_put_snap_context(img_request->snapc);
1643
1644         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1645                 kmem_cache_free(rbd_img_request_cache, img_request);
1646 }
1647
1648 #define BITS_PER_OBJ    2
1649 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1650 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1651
1652 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1653                                    u64 *index, u8 *shift)
1654 {
1655         u32 off;
1656
1657         rbd_assert(objno < rbd_dev->object_map_size);
1658         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1659         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1660 }
1661
1662 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1663 {
1664         u64 index;
1665         u8 shift;
1666
1667         lockdep_assert_held(&rbd_dev->object_map_lock);
1668         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1669         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1670 }
1671
1672 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1673 {
1674         u64 index;
1675         u8 shift;
1676         u8 *p;
1677
1678         lockdep_assert_held(&rbd_dev->object_map_lock);
1679         rbd_assert(!(val & ~OBJ_MASK));
1680
1681         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1682         p = &rbd_dev->object_map[index];
1683         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1684 }
1685
1686 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1687 {
1688         u8 state;
1689
1690         spin_lock(&rbd_dev->object_map_lock);
1691         state = __rbd_object_map_get(rbd_dev, objno);
1692         spin_unlock(&rbd_dev->object_map_lock);
1693         return state;
1694 }
1695
1696 static bool use_object_map(struct rbd_device *rbd_dev)
1697 {
1698         /*
1699          * An image mapped read-only can't use the object map -- it isn't
1700          * loaded because the header lock isn't acquired.  Someone else can
1701          * write to the image and update the object map behind our back.
1702          *
1703          * A snapshot can't be written to, so using the object map is always
1704          * safe.
1705          */
1706         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1707                 return false;
1708
1709         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1710                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1711 }
1712
1713 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1714 {
1715         u8 state;
1716
1717         /* fall back to default logic if object map is disabled or invalid */
1718         if (!use_object_map(rbd_dev))
1719                 return true;
1720
1721         state = rbd_object_map_get(rbd_dev, objno);
1722         return state != OBJECT_NONEXISTENT;
1723 }
1724
1725 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1726                                 struct ceph_object_id *oid)
1727 {
1728         if (snap_id == CEPH_NOSNAP)
1729                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1730                                 rbd_dev->spec->image_id);
1731         else
1732                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1733                                 rbd_dev->spec->image_id, snap_id);
1734 }
1735
1736 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1737 {
1738         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1739         CEPH_DEFINE_OID_ONSTACK(oid);
1740         u8 lock_type;
1741         char *lock_tag;
1742         struct ceph_locker *lockers;
1743         u32 num_lockers;
1744         bool broke_lock = false;
1745         int ret;
1746
1747         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1748
1749 again:
1750         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1751                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1752         if (ret != -EBUSY || broke_lock) {
1753                 if (ret == -EEXIST)
1754                         ret = 0; /* already locked by myself */
1755                 if (ret)
1756                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1757                 return ret;
1758         }
1759
1760         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1761                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1762                                  &lockers, &num_lockers);
1763         if (ret) {
1764                 if (ret == -ENOENT)
1765                         goto again;
1766
1767                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1768                 return ret;
1769         }
1770
1771         kfree(lock_tag);
1772         if (num_lockers == 0)
1773                 goto again;
1774
1775         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1776                  ENTITY_NAME(lockers[0].id.name));
1777
1778         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1779                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1780                                   &lockers[0].id.name);
1781         ceph_free_lockers(lockers, num_lockers);
1782         if (ret) {
1783                 if (ret == -ENOENT)
1784                         goto again;
1785
1786                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1787                 return ret;
1788         }
1789
1790         broke_lock = true;
1791         goto again;
1792 }
1793
1794 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1795 {
1796         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1797         CEPH_DEFINE_OID_ONSTACK(oid);
1798         int ret;
1799
1800         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1801
1802         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1803                               "");
1804         if (ret && ret != -ENOENT)
1805                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1806 }
1807
1808 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1809 {
1810         u8 struct_v;
1811         u32 struct_len;
1812         u32 header_len;
1813         void *header_end;
1814         int ret;
1815
1816         ceph_decode_32_safe(p, end, header_len, e_inval);
1817         header_end = *p + header_len;
1818
1819         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1820                                   &struct_len);
1821         if (ret)
1822                 return ret;
1823
1824         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1825
1826         *p = header_end;
1827         return 0;
1828
1829 e_inval:
1830         return -EINVAL;
1831 }
1832
1833 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1834 {
1835         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1836         CEPH_DEFINE_OID_ONSTACK(oid);
1837         struct page **pages;
1838         void *p, *end;
1839         size_t reply_len;
1840         u64 num_objects;
1841         u64 object_map_bytes;
1842         u64 object_map_size;
1843         int num_pages;
1844         int ret;
1845
1846         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1847
1848         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1849                                            rbd_dev->mapping.size);
1850         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1851                                             BITS_PER_BYTE);
1852         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1853         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1854         if (IS_ERR(pages))
1855                 return PTR_ERR(pages);
1856
1857         reply_len = num_pages * PAGE_SIZE;
1858         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1859         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1860                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1861                              NULL, 0, pages, &reply_len);
1862         if (ret)
1863                 goto out;
1864
1865         p = page_address(pages[0]);
1866         end = p + min(reply_len, (size_t)PAGE_SIZE);
1867         ret = decode_object_map_header(&p, end, &object_map_size);
1868         if (ret)
1869                 goto out;
1870
1871         if (object_map_size != num_objects) {
1872                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1873                          object_map_size, num_objects);
1874                 ret = -EINVAL;
1875                 goto out;
1876         }
1877
1878         if (offset_in_page(p) + object_map_bytes > reply_len) {
1879                 ret = -EINVAL;
1880                 goto out;
1881         }
1882
1883         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1884         if (!rbd_dev->object_map) {
1885                 ret = -ENOMEM;
1886                 goto out;
1887         }
1888
1889         rbd_dev->object_map_size = object_map_size;
1890         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1891                                    offset_in_page(p), object_map_bytes);
1892
1893 out:
1894         ceph_release_page_vector(pages, num_pages);
1895         return ret;
1896 }
1897
1898 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1899 {
1900         kvfree(rbd_dev->object_map);
1901         rbd_dev->object_map = NULL;
1902         rbd_dev->object_map_size = 0;
1903 }
1904
1905 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1906 {
1907         int ret;
1908
1909         ret = __rbd_object_map_load(rbd_dev);
1910         if (ret)
1911                 return ret;
1912
1913         ret = rbd_dev_v2_get_flags(rbd_dev);
1914         if (ret) {
1915                 rbd_object_map_free(rbd_dev);
1916                 return ret;
1917         }
1918
1919         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1920                 rbd_warn(rbd_dev, "object map is invalid");
1921
1922         return 0;
1923 }
1924
1925 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1926 {
1927         int ret;
1928
1929         ret = rbd_object_map_lock(rbd_dev);
1930         if (ret)
1931                 return ret;
1932
1933         ret = rbd_object_map_load(rbd_dev);
1934         if (ret) {
1935                 rbd_object_map_unlock(rbd_dev);
1936                 return ret;
1937         }
1938
1939         return 0;
1940 }
1941
1942 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1943 {
1944         rbd_object_map_free(rbd_dev);
1945         rbd_object_map_unlock(rbd_dev);
1946 }
1947
1948 /*
1949  * This function needs snap_id (or more precisely just something to
1950  * distinguish between HEAD and snapshot object maps), new_state and
1951  * current_state that were passed to rbd_object_map_update().
1952  *
1953  * To avoid allocating and stashing a context we piggyback on the OSD
1954  * request.  A HEAD update has two ops (assert_locked).  For new_state
1955  * and current_state we decode our own object_map_update op, encoded in
1956  * rbd_cls_object_map_update().
1957  */
1958 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1959                                         struct ceph_osd_request *osd_req)
1960 {
1961         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1962         struct ceph_osd_data *osd_data;
1963         u64 objno;
1964         u8 state, new_state, current_state;
1965         bool has_current_state;
1966         void *p;
1967
1968         if (osd_req->r_result)
1969                 return osd_req->r_result;
1970
1971         /*
1972          * Nothing to do for a snapshot object map.
1973          */
1974         if (osd_req->r_num_ops == 1)
1975                 return 0;
1976
1977         /*
1978          * Update in-memory HEAD object map.
1979          */
1980         rbd_assert(osd_req->r_num_ops == 2);
1981         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1982         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1983
1984         p = page_address(osd_data->pages[0]);
1985         objno = ceph_decode_64(&p);
1986         rbd_assert(objno == obj_req->ex.oe_objno);
1987         rbd_assert(ceph_decode_64(&p) == objno + 1);
1988         new_state = ceph_decode_8(&p);
1989         has_current_state = ceph_decode_8(&p);
1990         if (has_current_state)
1991                 current_state = ceph_decode_8(&p);
1992
1993         spin_lock(&rbd_dev->object_map_lock);
1994         state = __rbd_object_map_get(rbd_dev, objno);
1995         if (!has_current_state || current_state == state ||
1996             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1997                 __rbd_object_map_set(rbd_dev, objno, new_state);
1998         spin_unlock(&rbd_dev->object_map_lock);
1999
2000         return 0;
2001 }
2002
2003 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2004 {
2005         struct rbd_obj_request *obj_req = osd_req->r_priv;
2006         int result;
2007
2008         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2009              osd_req->r_result, obj_req);
2010
2011         result = rbd_object_map_update_finish(obj_req, osd_req);
2012         rbd_obj_handle_request(obj_req, result);
2013 }
2014
2015 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2016 {
2017         u8 state = rbd_object_map_get(rbd_dev, objno);
2018
2019         if (state == new_state ||
2020             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2021             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2022                 return false;
2023
2024         return true;
2025 }
2026
2027 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2028                                      int which, u64 objno, u8 new_state,
2029                                      const u8 *current_state)
2030 {
2031         struct page **pages;
2032         void *p, *start;
2033         int ret;
2034
2035         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2036         if (ret)
2037                 return ret;
2038
2039         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2040         if (IS_ERR(pages))
2041                 return PTR_ERR(pages);
2042
2043         p = start = page_address(pages[0]);
2044         ceph_encode_64(&p, objno);
2045         ceph_encode_64(&p, objno + 1);
2046         ceph_encode_8(&p, new_state);
2047         if (current_state) {
2048                 ceph_encode_8(&p, 1);
2049                 ceph_encode_8(&p, *current_state);
2050         } else {
2051                 ceph_encode_8(&p, 0);
2052         }
2053
2054         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2055                                           false, true);
2056         return 0;
2057 }
2058
2059 /*
2060  * Return:
2061  *   0 - object map update sent
2062  *   1 - object map update isn't needed
2063  *  <0 - error
2064  */
2065 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2066                                  u8 new_state, const u8 *current_state)
2067 {
2068         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2069         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2070         struct ceph_osd_request *req;
2071         int num_ops = 1;
2072         int which = 0;
2073         int ret;
2074
2075         if (snap_id == CEPH_NOSNAP) {
2076                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2077                         return 1;
2078
2079                 num_ops++; /* assert_locked */
2080         }
2081
2082         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2083         if (!req)
2084                 return -ENOMEM;
2085
2086         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2087         req->r_callback = rbd_object_map_callback;
2088         req->r_priv = obj_req;
2089
2090         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2091         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2092         req->r_flags = CEPH_OSD_FLAG_WRITE;
2093         ktime_get_real_ts64(&req->r_mtime);
2094
2095         if (snap_id == CEPH_NOSNAP) {
2096                 /*
2097                  * Protect against possible race conditions during lock
2098                  * ownership transitions.
2099                  */
2100                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2101                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2102                 if (ret)
2103                         return ret;
2104         }
2105
2106         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2107                                         new_state, current_state);
2108         if (ret)
2109                 return ret;
2110
2111         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2112         if (ret)
2113                 return ret;
2114
2115         ceph_osdc_start_request(osdc, req, false);
2116         return 0;
2117 }
2118
2119 static void prune_extents(struct ceph_file_extent *img_extents,
2120                           u32 *num_img_extents, u64 overlap)
2121 {
2122         u32 cnt = *num_img_extents;
2123
2124         /* drop extents completely beyond the overlap */
2125         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2126                 cnt--;
2127
2128         if (cnt) {
2129                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2130
2131                 /* trim final overlapping extent */
2132                 if (ex->fe_off + ex->fe_len > overlap)
2133                         ex->fe_len = overlap - ex->fe_off;
2134         }
2135
2136         *num_img_extents = cnt;
2137 }
2138
2139 /*
2140  * Determine the byte range(s) covered by either just the object extent
2141  * or the entire object in the parent image.
2142  */
2143 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2144                                     bool entire)
2145 {
2146         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2147         int ret;
2148
2149         if (!rbd_dev->parent_overlap)
2150                 return 0;
2151
2152         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2153                                   entire ? 0 : obj_req->ex.oe_off,
2154                                   entire ? rbd_dev->layout.object_size :
2155                                                         obj_req->ex.oe_len,
2156                                   &obj_req->img_extents,
2157                                   &obj_req->num_img_extents);
2158         if (ret)
2159                 return ret;
2160
2161         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2162                       rbd_dev->parent_overlap);
2163         return 0;
2164 }
2165
2166 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2167 {
2168         struct rbd_obj_request *obj_req = osd_req->r_priv;
2169
2170         switch (obj_req->img_request->data_type) {
2171         case OBJ_REQUEST_BIO:
2172                 osd_req_op_extent_osd_data_bio(osd_req, which,
2173                                                &obj_req->bio_pos,
2174                                                obj_req->ex.oe_len);
2175                 break;
2176         case OBJ_REQUEST_BVECS:
2177         case OBJ_REQUEST_OWN_BVECS:
2178                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2179                                                         obj_req->ex.oe_len);
2180                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2181                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2182                                                     &obj_req->bvec_pos);
2183                 break;
2184         default:
2185                 BUG();
2186         }
2187 }
2188
2189 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2190 {
2191         struct page **pages;
2192
2193         /*
2194          * The response data for a STAT call consists of:
2195          *     le64 length;
2196          *     struct {
2197          *         le32 tv_sec;
2198          *         le32 tv_nsec;
2199          *     } mtime;
2200          */
2201         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2202         if (IS_ERR(pages))
2203                 return PTR_ERR(pages);
2204
2205         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2206         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2207                                      8 + sizeof(struct ceph_timespec),
2208                                      0, false, true);
2209         return 0;
2210 }
2211
2212 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2213                                 u32 bytes)
2214 {
2215         struct rbd_obj_request *obj_req = osd_req->r_priv;
2216         int ret;
2217
2218         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2219         if (ret)
2220                 return ret;
2221
2222         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2223                                           obj_req->copyup_bvec_count, bytes);
2224         return 0;
2225 }
2226
2227 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2228 {
2229         obj_req->read_state = RBD_OBJ_READ_START;
2230         return 0;
2231 }
2232
2233 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2234                                       int which)
2235 {
2236         struct rbd_obj_request *obj_req = osd_req->r_priv;
2237         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2238         u16 opcode;
2239
2240         if (!use_object_map(rbd_dev) ||
2241             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2242                 osd_req_op_alloc_hint_init(osd_req, which++,
2243                                            rbd_dev->layout.object_size,
2244                                            rbd_dev->layout.object_size,
2245                                            rbd_dev->opts->alloc_hint_flags);
2246         }
2247
2248         if (rbd_obj_is_entire(obj_req))
2249                 opcode = CEPH_OSD_OP_WRITEFULL;
2250         else
2251                 opcode = CEPH_OSD_OP_WRITE;
2252
2253         osd_req_op_extent_init(osd_req, which, opcode,
2254                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2255         rbd_osd_setup_data(osd_req, which);
2256 }
2257
2258 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2259 {
2260         int ret;
2261
2262         /* reverse map the entire object onto the parent */
2263         ret = rbd_obj_calc_img_extents(obj_req, true);
2264         if (ret)
2265                 return ret;
2266
2267         if (rbd_obj_copyup_enabled(obj_req))
2268                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2269
2270         obj_req->write_state = RBD_OBJ_WRITE_START;
2271         return 0;
2272 }
2273
2274 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2275 {
2276         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2277                                           CEPH_OSD_OP_ZERO;
2278 }
2279
2280 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2281                                         int which)
2282 {
2283         struct rbd_obj_request *obj_req = osd_req->r_priv;
2284
2285         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2286                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2287                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2288         } else {
2289                 osd_req_op_extent_init(osd_req, which,
2290                                        truncate_or_zero_opcode(obj_req),
2291                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2292                                        0, 0);
2293         }
2294 }
2295
2296 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2297 {
2298         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2299         u64 off, next_off;
2300         int ret;
2301
2302         /*
2303          * Align the range to alloc_size boundary and punt on discards
2304          * that are too small to free up any space.
2305          *
2306          * alloc_size == object_size && is_tail() is a special case for
2307          * filestore with filestore_punch_hole = false, needed to allow
2308          * truncate (in addition to delete).
2309          */
2310         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2311             !rbd_obj_is_tail(obj_req)) {
2312                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2313                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2314                                       rbd_dev->opts->alloc_size);
2315                 if (off >= next_off)
2316                         return 1;
2317
2318                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2319                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2320                      off, next_off - off);
2321                 obj_req->ex.oe_off = off;
2322                 obj_req->ex.oe_len = next_off - off;
2323         }
2324
2325         /* reverse map the entire object onto the parent */
2326         ret = rbd_obj_calc_img_extents(obj_req, true);
2327         if (ret)
2328                 return ret;
2329
2330         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2331         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2332                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2333
2334         obj_req->write_state = RBD_OBJ_WRITE_START;
2335         return 0;
2336 }
2337
2338 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2339                                         int which)
2340 {
2341         struct rbd_obj_request *obj_req = osd_req->r_priv;
2342         u16 opcode;
2343
2344         if (rbd_obj_is_entire(obj_req)) {
2345                 if (obj_req->num_img_extents) {
2346                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2347                                 osd_req_op_init(osd_req, which++,
2348                                                 CEPH_OSD_OP_CREATE, 0);
2349                         opcode = CEPH_OSD_OP_TRUNCATE;
2350                 } else {
2351                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2352                         osd_req_op_init(osd_req, which++,
2353                                         CEPH_OSD_OP_DELETE, 0);
2354                         opcode = 0;
2355                 }
2356         } else {
2357                 opcode = truncate_or_zero_opcode(obj_req);
2358         }
2359
2360         if (opcode)
2361                 osd_req_op_extent_init(osd_req, which, opcode,
2362                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2363                                        0, 0);
2364 }
2365
2366 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2367 {
2368         int ret;
2369
2370         /* reverse map the entire object onto the parent */
2371         ret = rbd_obj_calc_img_extents(obj_req, true);
2372         if (ret)
2373                 return ret;
2374
2375         if (rbd_obj_copyup_enabled(obj_req))
2376                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2377         if (!obj_req->num_img_extents) {
2378                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2379                 if (rbd_obj_is_entire(obj_req))
2380                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2381         }
2382
2383         obj_req->write_state = RBD_OBJ_WRITE_START;
2384         return 0;
2385 }
2386
2387 static int count_write_ops(struct rbd_obj_request *obj_req)
2388 {
2389         struct rbd_img_request *img_req = obj_req->img_request;
2390
2391         switch (img_req->op_type) {
2392         case OBJ_OP_WRITE:
2393                 if (!use_object_map(img_req->rbd_dev) ||
2394                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2395                         return 2; /* setallochint + write/writefull */
2396
2397                 return 1; /* write/writefull */
2398         case OBJ_OP_DISCARD:
2399                 return 1; /* delete/truncate/zero */
2400         case OBJ_OP_ZEROOUT:
2401                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2402                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2403                         return 2; /* create + truncate */
2404
2405                 return 1; /* delete/truncate/zero */
2406         default:
2407                 BUG();
2408         }
2409 }
2410
2411 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2412                                     int which)
2413 {
2414         struct rbd_obj_request *obj_req = osd_req->r_priv;
2415
2416         switch (obj_req->img_request->op_type) {
2417         case OBJ_OP_WRITE:
2418                 __rbd_osd_setup_write_ops(osd_req, which);
2419                 break;
2420         case OBJ_OP_DISCARD:
2421                 __rbd_osd_setup_discard_ops(osd_req, which);
2422                 break;
2423         case OBJ_OP_ZEROOUT:
2424                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2425                 break;
2426         default:
2427                 BUG();
2428         }
2429 }
2430
2431 /*
2432  * Prune the list of object requests (adjust offset and/or length, drop
2433  * redundant requests).  Prepare object request state machines and image
2434  * request state machine for execution.
2435  */
2436 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2437 {
2438         struct rbd_obj_request *obj_req, *next_obj_req;
2439         int ret;
2440
2441         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2442                 switch (img_req->op_type) {
2443                 case OBJ_OP_READ:
2444                         ret = rbd_obj_init_read(obj_req);
2445                         break;
2446                 case OBJ_OP_WRITE:
2447                         ret = rbd_obj_init_write(obj_req);
2448                         break;
2449                 case OBJ_OP_DISCARD:
2450                         ret = rbd_obj_init_discard(obj_req);
2451                         break;
2452                 case OBJ_OP_ZEROOUT:
2453                         ret = rbd_obj_init_zeroout(obj_req);
2454                         break;
2455                 default:
2456                         BUG();
2457                 }
2458                 if (ret < 0)
2459                         return ret;
2460                 if (ret > 0) {
2461                         rbd_img_obj_request_del(img_req, obj_req);
2462                         continue;
2463                 }
2464         }
2465
2466         img_req->state = RBD_IMG_START;
2467         return 0;
2468 }
2469
2470 union rbd_img_fill_iter {
2471         struct ceph_bio_iter    bio_iter;
2472         struct ceph_bvec_iter   bvec_iter;
2473 };
2474
2475 struct rbd_img_fill_ctx {
2476         enum obj_request_type   pos_type;
2477         union rbd_img_fill_iter *pos;
2478         union rbd_img_fill_iter iter;
2479         ceph_object_extent_fn_t set_pos_fn;
2480         ceph_object_extent_fn_t count_fn;
2481         ceph_object_extent_fn_t copy_fn;
2482 };
2483
2484 static struct ceph_object_extent *alloc_object_extent(void *arg)
2485 {
2486         struct rbd_img_request *img_req = arg;
2487         struct rbd_obj_request *obj_req;
2488
2489         obj_req = rbd_obj_request_create();
2490         if (!obj_req)
2491                 return NULL;
2492
2493         rbd_img_obj_request_add(img_req, obj_req);
2494         return &obj_req->ex;
2495 }
2496
2497 /*
2498  * While su != os && sc == 1 is technically not fancy (it's the same
2499  * layout as su == os && sc == 1), we can't use the nocopy path for it
2500  * because ->set_pos_fn() should be called only once per object.
2501  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2502  * treat su != os && sc == 1 as fancy.
2503  */
2504 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2505 {
2506         return l->stripe_unit != l->object_size;
2507 }
2508
2509 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2510                                        struct ceph_file_extent *img_extents,
2511                                        u32 num_img_extents,
2512                                        struct rbd_img_fill_ctx *fctx)
2513 {
2514         u32 i;
2515         int ret;
2516
2517         img_req->data_type = fctx->pos_type;
2518
2519         /*
2520          * Create object requests and set each object request's starting
2521          * position in the provided bio (list) or bio_vec array.
2522          */
2523         fctx->iter = *fctx->pos;
2524         for (i = 0; i < num_img_extents; i++) {
2525                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2526                                            img_extents[i].fe_off,
2527                                            img_extents[i].fe_len,
2528                                            &img_req->object_extents,
2529                                            alloc_object_extent, img_req,
2530                                            fctx->set_pos_fn, &fctx->iter);
2531                 if (ret)
2532                         return ret;
2533         }
2534
2535         return __rbd_img_fill_request(img_req);
2536 }
2537
2538 /*
2539  * Map a list of image extents to a list of object extents, create the
2540  * corresponding object requests (normally each to a different object,
2541  * but not always) and add them to @img_req.  For each object request,
2542  * set up its data descriptor to point to the corresponding chunk(s) of
2543  * @fctx->pos data buffer.
2544  *
2545  * Because ceph_file_to_extents() will merge adjacent object extents
2546  * together, each object request's data descriptor may point to multiple
2547  * different chunks of @fctx->pos data buffer.
2548  *
2549  * @fctx->pos data buffer is assumed to be large enough.
2550  */
2551 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2552                                 struct ceph_file_extent *img_extents,
2553                                 u32 num_img_extents,
2554                                 struct rbd_img_fill_ctx *fctx)
2555 {
2556         struct rbd_device *rbd_dev = img_req->rbd_dev;
2557         struct rbd_obj_request *obj_req;
2558         u32 i;
2559         int ret;
2560
2561         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2562             !rbd_layout_is_fancy(&rbd_dev->layout))
2563                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2564                                                    num_img_extents, fctx);
2565
2566         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2567
2568         /*
2569          * Create object requests and determine ->bvec_count for each object
2570          * request.  Note that ->bvec_count sum over all object requests may
2571          * be greater than the number of bio_vecs in the provided bio (list)
2572          * or bio_vec array because when mapped, those bio_vecs can straddle
2573          * stripe unit boundaries.
2574          */
2575         fctx->iter = *fctx->pos;
2576         for (i = 0; i < num_img_extents; i++) {
2577                 ret = ceph_file_to_extents(&rbd_dev->layout,
2578                                            img_extents[i].fe_off,
2579                                            img_extents[i].fe_len,
2580                                            &img_req->object_extents,
2581                                            alloc_object_extent, img_req,
2582                                            fctx->count_fn, &fctx->iter);
2583                 if (ret)
2584                         return ret;
2585         }
2586
2587         for_each_obj_request(img_req, obj_req) {
2588                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2589                                               sizeof(*obj_req->bvec_pos.bvecs),
2590                                               GFP_NOIO);
2591                 if (!obj_req->bvec_pos.bvecs)
2592                         return -ENOMEM;
2593         }
2594
2595         /*
2596          * Fill in each object request's private bio_vec array, splitting and
2597          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2598          */
2599         fctx->iter = *fctx->pos;
2600         for (i = 0; i < num_img_extents; i++) {
2601                 ret = ceph_iterate_extents(&rbd_dev->layout,
2602                                            img_extents[i].fe_off,
2603                                            img_extents[i].fe_len,
2604                                            &img_req->object_extents,
2605                                            fctx->copy_fn, &fctx->iter);
2606                 if (ret)
2607                         return ret;
2608         }
2609
2610         return __rbd_img_fill_request(img_req);
2611 }
2612
2613 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2614                                u64 off, u64 len)
2615 {
2616         struct ceph_file_extent ex = { off, len };
2617         union rbd_img_fill_iter dummy = {};
2618         struct rbd_img_fill_ctx fctx = {
2619                 .pos_type = OBJ_REQUEST_NODATA,
2620                 .pos = &dummy,
2621         };
2622
2623         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2624 }
2625
2626 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2627 {
2628         struct rbd_obj_request *obj_req =
2629             container_of(ex, struct rbd_obj_request, ex);
2630         struct ceph_bio_iter *it = arg;
2631
2632         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2633         obj_req->bio_pos = *it;
2634         ceph_bio_iter_advance(it, bytes);
2635 }
2636
2637 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639         struct rbd_obj_request *obj_req =
2640             container_of(ex, struct rbd_obj_request, ex);
2641         struct ceph_bio_iter *it = arg;
2642
2643         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644         ceph_bio_iter_advance_step(it, bytes, ({
2645                 obj_req->bvec_count++;
2646         }));
2647
2648 }
2649
2650 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2651 {
2652         struct rbd_obj_request *obj_req =
2653             container_of(ex, struct rbd_obj_request, ex);
2654         struct ceph_bio_iter *it = arg;
2655
2656         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2657         ceph_bio_iter_advance_step(it, bytes, ({
2658                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2659                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2660         }));
2661 }
2662
2663 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2664                                    struct ceph_file_extent *img_extents,
2665                                    u32 num_img_extents,
2666                                    struct ceph_bio_iter *bio_pos)
2667 {
2668         struct rbd_img_fill_ctx fctx = {
2669                 .pos_type = OBJ_REQUEST_BIO,
2670                 .pos = (union rbd_img_fill_iter *)bio_pos,
2671                 .set_pos_fn = set_bio_pos,
2672                 .count_fn = count_bio_bvecs,
2673                 .copy_fn = copy_bio_bvecs,
2674         };
2675
2676         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2677                                     &fctx);
2678 }
2679
2680 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2681                                  u64 off, u64 len, struct bio *bio)
2682 {
2683         struct ceph_file_extent ex = { off, len };
2684         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2685
2686         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2687 }
2688
2689 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2690 {
2691         struct rbd_obj_request *obj_req =
2692             container_of(ex, struct rbd_obj_request, ex);
2693         struct ceph_bvec_iter *it = arg;
2694
2695         obj_req->bvec_pos = *it;
2696         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2697         ceph_bvec_iter_advance(it, bytes);
2698 }
2699
2700 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702         struct rbd_obj_request *obj_req =
2703             container_of(ex, struct rbd_obj_request, ex);
2704         struct ceph_bvec_iter *it = arg;
2705
2706         ceph_bvec_iter_advance_step(it, bytes, ({
2707                 obj_req->bvec_count++;
2708         }));
2709 }
2710
2711 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2712 {
2713         struct rbd_obj_request *obj_req =
2714             container_of(ex, struct rbd_obj_request, ex);
2715         struct ceph_bvec_iter *it = arg;
2716
2717         ceph_bvec_iter_advance_step(it, bytes, ({
2718                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2719                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2720         }));
2721 }
2722
2723 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2724                                      struct ceph_file_extent *img_extents,
2725                                      u32 num_img_extents,
2726                                      struct ceph_bvec_iter *bvec_pos)
2727 {
2728         struct rbd_img_fill_ctx fctx = {
2729                 .pos_type = OBJ_REQUEST_BVECS,
2730                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2731                 .set_pos_fn = set_bvec_pos,
2732                 .count_fn = count_bvecs,
2733                 .copy_fn = copy_bvecs,
2734         };
2735
2736         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2737                                     &fctx);
2738 }
2739
2740 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2741                                    struct ceph_file_extent *img_extents,
2742                                    u32 num_img_extents,
2743                                    struct bio_vec *bvecs)
2744 {
2745         struct ceph_bvec_iter it = {
2746                 .bvecs = bvecs,
2747                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2748                                                              num_img_extents) },
2749         };
2750
2751         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2752                                          &it);
2753 }
2754
2755 static void rbd_img_handle_request_work(struct work_struct *work)
2756 {
2757         struct rbd_img_request *img_req =
2758             container_of(work, struct rbd_img_request, work);
2759
2760         rbd_img_handle_request(img_req, img_req->work_result);
2761 }
2762
2763 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2764 {
2765         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2766         img_req->work_result = result;
2767         queue_work(rbd_wq, &img_req->work);
2768 }
2769
2770 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2771 {
2772         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2773
2774         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2775                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2776                 return true;
2777         }
2778
2779         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2780              obj_req->ex.oe_objno);
2781         return false;
2782 }
2783
2784 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2785 {
2786         struct ceph_osd_request *osd_req;
2787         int ret;
2788
2789         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2790         if (IS_ERR(osd_req))
2791                 return PTR_ERR(osd_req);
2792
2793         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2794                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2795         rbd_osd_setup_data(osd_req, 0);
2796         rbd_osd_format_read(osd_req);
2797
2798         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2799         if (ret)
2800                 return ret;
2801
2802         rbd_osd_submit(osd_req);
2803         return 0;
2804 }
2805
2806 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2807 {
2808         struct rbd_img_request *img_req = obj_req->img_request;
2809         struct rbd_device *parent = img_req->rbd_dev->parent;
2810         struct rbd_img_request *child_img_req;
2811         int ret;
2812
2813         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2814         if (!child_img_req)
2815                 return -ENOMEM;
2816
2817         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2818         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2819         child_img_req->obj_request = obj_req;
2820
2821         down_read(&parent->header_rwsem);
2822         rbd_img_capture_header(child_img_req);
2823         up_read(&parent->header_rwsem);
2824
2825         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2826              obj_req);
2827
2828         if (!rbd_img_is_write(img_req)) {
2829                 switch (img_req->data_type) {
2830                 case OBJ_REQUEST_BIO:
2831                         ret = __rbd_img_fill_from_bio(child_img_req,
2832                                                       obj_req->img_extents,
2833                                                       obj_req->num_img_extents,
2834                                                       &obj_req->bio_pos);
2835                         break;
2836                 case OBJ_REQUEST_BVECS:
2837                 case OBJ_REQUEST_OWN_BVECS:
2838                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2839                                                       obj_req->img_extents,
2840                                                       obj_req->num_img_extents,
2841                                                       &obj_req->bvec_pos);
2842                         break;
2843                 default:
2844                         BUG();
2845                 }
2846         } else {
2847                 ret = rbd_img_fill_from_bvecs(child_img_req,
2848                                               obj_req->img_extents,
2849                                               obj_req->num_img_extents,
2850                                               obj_req->copyup_bvecs);
2851         }
2852         if (ret) {
2853                 rbd_img_request_destroy(child_img_req);
2854                 return ret;
2855         }
2856
2857         /* avoid parent chain recursion */
2858         rbd_img_schedule(child_img_req, 0);
2859         return 0;
2860 }
2861
2862 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2863 {
2864         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2865         int ret;
2866
2867 again:
2868         switch (obj_req->read_state) {
2869         case RBD_OBJ_READ_START:
2870                 rbd_assert(!*result);
2871
2872                 if (!rbd_obj_may_exist(obj_req)) {
2873                         *result = -ENOENT;
2874                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2875                         goto again;
2876                 }
2877
2878                 ret = rbd_obj_read_object(obj_req);
2879                 if (ret) {
2880                         *result = ret;
2881                         return true;
2882                 }
2883                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2884                 return false;
2885         case RBD_OBJ_READ_OBJECT:
2886                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2887                         /* reverse map this object extent onto the parent */
2888                         ret = rbd_obj_calc_img_extents(obj_req, false);
2889                         if (ret) {
2890                                 *result = ret;
2891                                 return true;
2892                         }
2893                         if (obj_req->num_img_extents) {
2894                                 ret = rbd_obj_read_from_parent(obj_req);
2895                                 if (ret) {
2896                                         *result = ret;
2897                                         return true;
2898                                 }
2899                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2900                                 return false;
2901                         }
2902                 }
2903
2904                 /*
2905                  * -ENOENT means a hole in the image -- zero-fill the entire
2906                  * length of the request.  A short read also implies zero-fill
2907                  * to the end of the request.
2908                  */
2909                 if (*result == -ENOENT) {
2910                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2911                         *result = 0;
2912                 } else if (*result >= 0) {
2913                         if (*result < obj_req->ex.oe_len)
2914                                 rbd_obj_zero_range(obj_req, *result,
2915                                                 obj_req->ex.oe_len - *result);
2916                         else
2917                                 rbd_assert(*result == obj_req->ex.oe_len);
2918                         *result = 0;
2919                 }
2920                 return true;
2921         case RBD_OBJ_READ_PARENT:
2922                 /*
2923                  * The parent image is read only up to the overlap -- zero-fill
2924                  * from the overlap to the end of the request.
2925                  */
2926                 if (!*result) {
2927                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2928
2929                         if (obj_overlap < obj_req->ex.oe_len)
2930                                 rbd_obj_zero_range(obj_req, obj_overlap,
2931                                             obj_req->ex.oe_len - obj_overlap);
2932                 }
2933                 return true;
2934         default:
2935                 BUG();
2936         }
2937 }
2938
2939 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2940 {
2941         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2942
2943         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2944                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2945
2946         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2947             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2948                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2949                 return true;
2950         }
2951
2952         return false;
2953 }
2954
2955 /*
2956  * Return:
2957  *   0 - object map update sent
2958  *   1 - object map update isn't needed
2959  *  <0 - error
2960  */
2961 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2962 {
2963         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2964         u8 new_state;
2965
2966         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2967                 return 1;
2968
2969         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2970                 new_state = OBJECT_PENDING;
2971         else
2972                 new_state = OBJECT_EXISTS;
2973
2974         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2975 }
2976
2977 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2978 {
2979         struct ceph_osd_request *osd_req;
2980         int num_ops = count_write_ops(obj_req);
2981         int which = 0;
2982         int ret;
2983
2984         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2985                 num_ops++; /* stat */
2986
2987         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2988         if (IS_ERR(osd_req))
2989                 return PTR_ERR(osd_req);
2990
2991         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2992                 ret = rbd_osd_setup_stat(osd_req, which++);
2993                 if (ret)
2994                         return ret;
2995         }
2996
2997         rbd_osd_setup_write_ops(osd_req, which);
2998         rbd_osd_format_write(osd_req);
2999
3000         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3001         if (ret)
3002                 return ret;
3003
3004         rbd_osd_submit(osd_req);
3005         return 0;
3006 }
3007
3008 /*
3009  * copyup_bvecs pages are never highmem pages
3010  */
3011 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3012 {
3013         struct ceph_bvec_iter it = {
3014                 .bvecs = bvecs,
3015                 .iter = { .bi_size = bytes },
3016         };
3017
3018         ceph_bvec_iter_advance_step(&it, bytes, ({
3019                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3020                                bv.bv_len))
3021                         return false;
3022         }));
3023         return true;
3024 }
3025
3026 #define MODS_ONLY       U32_MAX
3027
3028 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3029                                       u32 bytes)
3030 {
3031         struct ceph_osd_request *osd_req;
3032         int ret;
3033
3034         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3035         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3036
3037         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3038         if (IS_ERR(osd_req))
3039                 return PTR_ERR(osd_req);
3040
3041         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3042         if (ret)
3043                 return ret;
3044
3045         rbd_osd_format_write(osd_req);
3046
3047         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3048         if (ret)
3049                 return ret;
3050
3051         rbd_osd_submit(osd_req);
3052         return 0;
3053 }
3054
3055 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3056                                         u32 bytes)
3057 {
3058         struct ceph_osd_request *osd_req;
3059         int num_ops = count_write_ops(obj_req);
3060         int which = 0;
3061         int ret;
3062
3063         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3064
3065         if (bytes != MODS_ONLY)
3066                 num_ops++; /* copyup */
3067
3068         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3069         if (IS_ERR(osd_req))
3070                 return PTR_ERR(osd_req);
3071
3072         if (bytes != MODS_ONLY) {
3073                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3074                 if (ret)
3075                         return ret;
3076         }
3077
3078         rbd_osd_setup_write_ops(osd_req, which);
3079         rbd_osd_format_write(osd_req);
3080
3081         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3082         if (ret)
3083                 return ret;
3084
3085         rbd_osd_submit(osd_req);
3086         return 0;
3087 }
3088
3089 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3090 {
3091         u32 i;
3092
3093         rbd_assert(!obj_req->copyup_bvecs);
3094         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3095         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3096                                         sizeof(*obj_req->copyup_bvecs),
3097                                         GFP_NOIO);
3098         if (!obj_req->copyup_bvecs)
3099                 return -ENOMEM;
3100
3101         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3102                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3103
3104                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3105                 if (!obj_req->copyup_bvecs[i].bv_page)
3106                         return -ENOMEM;
3107
3108                 obj_req->copyup_bvecs[i].bv_offset = 0;
3109                 obj_req->copyup_bvecs[i].bv_len = len;
3110                 obj_overlap -= len;
3111         }
3112
3113         rbd_assert(!obj_overlap);
3114         return 0;
3115 }
3116
3117 /*
3118  * The target object doesn't exist.  Read the data for the entire
3119  * target object up to the overlap point (if any) from the parent,
3120  * so we can use it for a copyup.
3121  */
3122 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3123 {
3124         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3125         int ret;
3126
3127         rbd_assert(obj_req->num_img_extents);
3128         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3129                       rbd_dev->parent_overlap);
3130         if (!obj_req->num_img_extents) {
3131                 /*
3132                  * The overlap has become 0 (most likely because the
3133                  * image has been flattened).  Re-submit the original write
3134                  * request -- pass MODS_ONLY since the copyup isn't needed
3135                  * anymore.
3136                  */
3137                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3138         }
3139
3140         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3141         if (ret)
3142                 return ret;
3143
3144         return rbd_obj_read_from_parent(obj_req);
3145 }
3146
3147 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3148 {
3149         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3150         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3151         u8 new_state;
3152         u32 i;
3153         int ret;
3154
3155         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3156
3157         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3158                 return;
3159
3160         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3161                 return;
3162
3163         for (i = 0; i < snapc->num_snaps; i++) {
3164                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3165                     i + 1 < snapc->num_snaps)
3166                         new_state = OBJECT_EXISTS_CLEAN;
3167                 else
3168                         new_state = OBJECT_EXISTS;
3169
3170                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3171                                             new_state, NULL);
3172                 if (ret < 0) {
3173                         obj_req->pending.result = ret;
3174                         return;
3175                 }
3176
3177                 rbd_assert(!ret);
3178                 obj_req->pending.num_pending++;
3179         }
3180 }
3181
3182 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3183 {
3184         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3185         int ret;
3186
3187         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188
3189         /*
3190          * Only send non-zero copyup data to save some I/O and network
3191          * bandwidth -- zero copyup data is equivalent to the object not
3192          * existing.
3193          */
3194         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3195                 bytes = 0;
3196
3197         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3198                 /*
3199                  * Send a copyup request with an empty snapshot context to
3200                  * deep-copyup the object through all existing snapshots.
3201                  * A second request with the current snapshot context will be
3202                  * sent for the actual modification.
3203                  */
3204                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3205                 if (ret) {
3206                         obj_req->pending.result = ret;
3207                         return;
3208                 }
3209
3210                 obj_req->pending.num_pending++;
3211                 bytes = MODS_ONLY;
3212         }
3213
3214         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3215         if (ret) {
3216                 obj_req->pending.result = ret;
3217                 return;
3218         }
3219
3220         obj_req->pending.num_pending++;
3221 }
3222
3223 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3224 {
3225         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3226         int ret;
3227
3228 again:
3229         switch (obj_req->copyup_state) {
3230         case RBD_OBJ_COPYUP_START:
3231                 rbd_assert(!*result);
3232
3233                 ret = rbd_obj_copyup_read_parent(obj_req);
3234                 if (ret) {
3235                         *result = ret;
3236                         return true;
3237                 }
3238                 if (obj_req->num_img_extents)
3239                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3240                 else
3241                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3242                 return false;
3243         case RBD_OBJ_COPYUP_READ_PARENT:
3244                 if (*result)
3245                         return true;
3246
3247                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3248                                   rbd_obj_img_extents_bytes(obj_req))) {
3249                         dout("%s %p detected zeros\n", __func__, obj_req);
3250                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3251                 }
3252
3253                 rbd_obj_copyup_object_maps(obj_req);
3254                 if (!obj_req->pending.num_pending) {
3255                         *result = obj_req->pending.result;
3256                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3257                         goto again;
3258                 }
3259                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3260                 return false;
3261         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3262                 if (!pending_result_dec(&obj_req->pending, result))
3263                         return false;
3264                 fallthrough;
3265         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3266                 if (*result) {
3267                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3268                                  *result);
3269                         return true;
3270                 }
3271
3272                 rbd_obj_copyup_write_object(obj_req);
3273                 if (!obj_req->pending.num_pending) {
3274                         *result = obj_req->pending.result;
3275                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3276                         goto again;
3277                 }
3278                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3279                 return false;
3280         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3281                 if (!pending_result_dec(&obj_req->pending, result))
3282                         return false;
3283                 fallthrough;
3284         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3285                 return true;
3286         default:
3287                 BUG();
3288         }
3289 }
3290
3291 /*
3292  * Return:
3293  *   0 - object map update sent
3294  *   1 - object map update isn't needed
3295  *  <0 - error
3296  */
3297 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3298 {
3299         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300         u8 current_state = OBJECT_PENDING;
3301
3302         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3303                 return 1;
3304
3305         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3306                 return 1;
3307
3308         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3309                                      &current_state);
3310 }
3311
3312 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3313 {
3314         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3315         int ret;
3316
3317 again:
3318         switch (obj_req->write_state) {
3319         case RBD_OBJ_WRITE_START:
3320                 rbd_assert(!*result);
3321
3322                 if (rbd_obj_write_is_noop(obj_req))
3323                         return true;
3324
3325                 ret = rbd_obj_write_pre_object_map(obj_req);
3326                 if (ret < 0) {
3327                         *result = ret;
3328                         return true;
3329                 }
3330                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3331                 if (ret > 0)
3332                         goto again;
3333                 return false;
3334         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3335                 if (*result) {
3336                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3337                                  *result);
3338                         return true;
3339                 }
3340                 ret = rbd_obj_write_object(obj_req);
3341                 if (ret) {
3342                         *result = ret;
3343                         return true;
3344                 }
3345                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3346                 return false;
3347         case RBD_OBJ_WRITE_OBJECT:
3348                 if (*result == -ENOENT) {
3349                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3350                                 *result = 0;
3351                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3352                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3353                                 goto again;
3354                         }
3355                         /*
3356                          * On a non-existent object:
3357                          *   delete - -ENOENT, truncate/zero - 0
3358                          */
3359                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3360                                 *result = 0;
3361                 }
3362                 if (*result)
3363                         return true;
3364
3365                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3366                 goto again;
3367         case __RBD_OBJ_WRITE_COPYUP:
3368                 if (!rbd_obj_advance_copyup(obj_req, result))
3369                         return false;
3370                 fallthrough;
3371         case RBD_OBJ_WRITE_COPYUP:
3372                 if (*result) {
3373                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3374                         return true;
3375                 }
3376                 ret = rbd_obj_write_post_object_map(obj_req);
3377                 if (ret < 0) {
3378                         *result = ret;
3379                         return true;
3380                 }
3381                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3382                 if (ret > 0)
3383                         goto again;
3384                 return false;
3385         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3386                 if (*result)
3387                         rbd_warn(rbd_dev, "post object map update failed: %d",
3388                                  *result);
3389                 return true;
3390         default:
3391                 BUG();
3392         }
3393 }
3394
3395 /*
3396  * Return true if @obj_req is completed.
3397  */
3398 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3399                                      int *result)
3400 {
3401         struct rbd_img_request *img_req = obj_req->img_request;
3402         struct rbd_device *rbd_dev = img_req->rbd_dev;
3403         bool done;
3404
3405         mutex_lock(&obj_req->state_mutex);
3406         if (!rbd_img_is_write(img_req))
3407                 done = rbd_obj_advance_read(obj_req, result);
3408         else
3409                 done = rbd_obj_advance_write(obj_req, result);
3410         mutex_unlock(&obj_req->state_mutex);
3411
3412         if (done && *result) {
3413                 rbd_assert(*result < 0);
3414                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3415                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3416                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3417         }
3418         return done;
3419 }
3420
3421 /*
3422  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3423  * recursion.
3424  */
3425 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3426 {
3427         if (__rbd_obj_handle_request(obj_req, &result))
3428                 rbd_img_handle_request(obj_req->img_request, result);
3429 }
3430
3431 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3432 {
3433         struct rbd_device *rbd_dev = img_req->rbd_dev;
3434
3435         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3436                 return false;
3437
3438         if (rbd_is_ro(rbd_dev))
3439                 return false;
3440
3441         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3442         if (rbd_dev->opts->lock_on_read ||
3443             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3444                 return true;
3445
3446         return rbd_img_is_write(img_req);
3447 }
3448
3449 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3450 {
3451         struct rbd_device *rbd_dev = img_req->rbd_dev;
3452         bool locked;
3453
3454         lockdep_assert_held(&rbd_dev->lock_rwsem);
3455         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3456         spin_lock(&rbd_dev->lock_lists_lock);
3457         rbd_assert(list_empty(&img_req->lock_item));
3458         if (!locked)
3459                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3460         else
3461                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3462         spin_unlock(&rbd_dev->lock_lists_lock);
3463         return locked;
3464 }
3465
3466 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3467 {
3468         struct rbd_device *rbd_dev = img_req->rbd_dev;
3469         bool need_wakeup;
3470
3471         lockdep_assert_held(&rbd_dev->lock_rwsem);
3472         spin_lock(&rbd_dev->lock_lists_lock);
3473         rbd_assert(!list_empty(&img_req->lock_item));
3474         list_del_init(&img_req->lock_item);
3475         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3476                        list_empty(&rbd_dev->running_list));
3477         spin_unlock(&rbd_dev->lock_lists_lock);
3478         if (need_wakeup)
3479                 complete(&rbd_dev->releasing_wait);
3480 }
3481
3482 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3483 {
3484         struct rbd_device *rbd_dev = img_req->rbd_dev;
3485
3486         if (!need_exclusive_lock(img_req))
3487                 return 1;
3488
3489         if (rbd_lock_add_request(img_req))
3490                 return 1;
3491
3492         if (rbd_dev->opts->exclusive) {
3493                 WARN_ON(1); /* lock got released? */
3494                 return -EROFS;
3495         }
3496
3497         /*
3498          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3499          * and cancel_delayed_work() in wake_lock_waiters().
3500          */
3501         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3502         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3503         return 0;
3504 }
3505
3506 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3507 {
3508         struct rbd_obj_request *obj_req;
3509
3510         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3511
3512         for_each_obj_request(img_req, obj_req) {
3513                 int result = 0;
3514
3515                 if (__rbd_obj_handle_request(obj_req, &result)) {
3516                         if (result) {
3517                                 img_req->pending.result = result;
3518                                 return;
3519                         }
3520                 } else {
3521                         img_req->pending.num_pending++;
3522                 }
3523         }
3524 }
3525
3526 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3527 {
3528         struct rbd_device *rbd_dev = img_req->rbd_dev;
3529         int ret;
3530
3531 again:
3532         switch (img_req->state) {
3533         case RBD_IMG_START:
3534                 rbd_assert(!*result);
3535
3536                 ret = rbd_img_exclusive_lock(img_req);
3537                 if (ret < 0) {
3538                         *result = ret;
3539                         return true;
3540                 }
3541                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3542                 if (ret > 0)
3543                         goto again;
3544                 return false;
3545         case RBD_IMG_EXCLUSIVE_LOCK:
3546                 if (*result)
3547                         return true;
3548
3549                 rbd_assert(!need_exclusive_lock(img_req) ||
3550                            __rbd_is_lock_owner(rbd_dev));
3551
3552                 rbd_img_object_requests(img_req);
3553                 if (!img_req->pending.num_pending) {
3554                         *result = img_req->pending.result;
3555                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3556                         goto again;
3557                 }
3558                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3559                 return false;
3560         case __RBD_IMG_OBJECT_REQUESTS:
3561                 if (!pending_result_dec(&img_req->pending, result))
3562                         return false;
3563                 fallthrough;
3564         case RBD_IMG_OBJECT_REQUESTS:
3565                 return true;
3566         default:
3567                 BUG();
3568         }
3569 }
3570
3571 /*
3572  * Return true if @img_req is completed.
3573  */
3574 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3575                                      int *result)
3576 {
3577         struct rbd_device *rbd_dev = img_req->rbd_dev;
3578         bool done;
3579
3580         if (need_exclusive_lock(img_req)) {
3581                 down_read(&rbd_dev->lock_rwsem);
3582                 mutex_lock(&img_req->state_mutex);
3583                 done = rbd_img_advance(img_req, result);
3584                 if (done)
3585                         rbd_lock_del_request(img_req);
3586                 mutex_unlock(&img_req->state_mutex);
3587                 up_read(&rbd_dev->lock_rwsem);
3588         } else {
3589                 mutex_lock(&img_req->state_mutex);
3590                 done = rbd_img_advance(img_req, result);
3591                 mutex_unlock(&img_req->state_mutex);
3592         }
3593
3594         if (done && *result) {
3595                 rbd_assert(*result < 0);
3596                 rbd_warn(rbd_dev, "%s%s result %d",
3597                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3598                       obj_op_name(img_req->op_type), *result);
3599         }
3600         return done;
3601 }
3602
3603 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3604 {
3605 again:
3606         if (!__rbd_img_handle_request(img_req, &result))
3607                 return;
3608
3609         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3610                 struct rbd_obj_request *obj_req = img_req->obj_request;
3611
3612                 rbd_img_request_destroy(img_req);
3613                 if (__rbd_obj_handle_request(obj_req, &result)) {
3614                         img_req = obj_req->img_request;
3615                         goto again;
3616                 }
3617         } else {
3618                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3619
3620                 rbd_img_request_destroy(img_req);
3621                 blk_mq_end_request(rq, errno_to_blk_status(result));
3622         }
3623 }
3624
3625 static const struct rbd_client_id rbd_empty_cid;
3626
3627 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3628                           const struct rbd_client_id *rhs)
3629 {
3630         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3631 }
3632
3633 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3634 {
3635         struct rbd_client_id cid;
3636
3637         mutex_lock(&rbd_dev->watch_mutex);
3638         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3639         cid.handle = rbd_dev->watch_cookie;
3640         mutex_unlock(&rbd_dev->watch_mutex);
3641         return cid;
3642 }
3643
3644 /*
3645  * lock_rwsem must be held for write
3646  */
3647 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3648                               const struct rbd_client_id *cid)
3649 {
3650         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3651              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3652              cid->gid, cid->handle);
3653         rbd_dev->owner_cid = *cid; /* struct */
3654 }
3655
3656 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3657 {
3658         mutex_lock(&rbd_dev->watch_mutex);
3659         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3660         mutex_unlock(&rbd_dev->watch_mutex);
3661 }
3662
3663 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3664 {
3665         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3666
3667         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3668         strcpy(rbd_dev->lock_cookie, cookie);
3669         rbd_set_owner_cid(rbd_dev, &cid);
3670         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3671 }
3672
3673 /*
3674  * lock_rwsem must be held for write
3675  */
3676 static int rbd_lock(struct rbd_device *rbd_dev)
3677 {
3678         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3679         char cookie[32];
3680         int ret;
3681
3682         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3683                 rbd_dev->lock_cookie[0] != '\0');
3684
3685         format_lock_cookie(rbd_dev, cookie);
3686         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3687                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3688                             RBD_LOCK_TAG, "", 0);
3689         if (ret)
3690                 return ret;
3691
3692         __rbd_lock(rbd_dev, cookie);
3693         return 0;
3694 }
3695
3696 /*
3697  * lock_rwsem must be held for write
3698  */
3699 static void rbd_unlock(struct rbd_device *rbd_dev)
3700 {
3701         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3702         int ret;
3703
3704         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3705                 rbd_dev->lock_cookie[0] == '\0');
3706
3707         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3708                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3709         if (ret && ret != -ENOENT)
3710                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3711
3712         /* treat errors as the image is unlocked */
3713         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3714         rbd_dev->lock_cookie[0] = '\0';
3715         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3716         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3717 }
3718
3719 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3720                                 enum rbd_notify_op notify_op,
3721                                 struct page ***preply_pages,
3722                                 size_t *preply_len)
3723 {
3724         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3725         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3726         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3727         int buf_size = sizeof(buf);
3728         void *p = buf;
3729
3730         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3731
3732         /* encode *LockPayload NotifyMessage (op + ClientId) */
3733         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3734         ceph_encode_32(&p, notify_op);
3735         ceph_encode_64(&p, cid.gid);
3736         ceph_encode_64(&p, cid.handle);
3737
3738         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3739                                 &rbd_dev->header_oloc, buf, buf_size,
3740                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3741 }
3742
3743 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3744                                enum rbd_notify_op notify_op)
3745 {
3746         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3747 }
3748
3749 static void rbd_notify_acquired_lock(struct work_struct *work)
3750 {
3751         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3752                                                   acquired_lock_work);
3753
3754         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3755 }
3756
3757 static void rbd_notify_released_lock(struct work_struct *work)
3758 {
3759         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3760                                                   released_lock_work);
3761
3762         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3763 }
3764
3765 static int rbd_request_lock(struct rbd_device *rbd_dev)
3766 {
3767         struct page **reply_pages;
3768         size_t reply_len;
3769         bool lock_owner_responded = false;
3770         int ret;
3771
3772         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3773
3774         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3775                                    &reply_pages, &reply_len);
3776         if (ret && ret != -ETIMEDOUT) {
3777                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3778                 goto out;
3779         }
3780
3781         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3782                 void *p = page_address(reply_pages[0]);
3783                 void *const end = p + reply_len;
3784                 u32 n;
3785
3786                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3787                 while (n--) {
3788                         u8 struct_v;
3789                         u32 len;
3790
3791                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3792                         p += 8 + 8; /* skip gid and cookie */
3793
3794                         ceph_decode_32_safe(&p, end, len, e_inval);
3795                         if (!len)
3796                                 continue;
3797
3798                         if (lock_owner_responded) {
3799                                 rbd_warn(rbd_dev,
3800                                          "duplicate lock owners detected");
3801                                 ret = -EIO;
3802                                 goto out;
3803                         }
3804
3805                         lock_owner_responded = true;
3806                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3807                                                   &struct_v, &len);
3808                         if (ret) {
3809                                 rbd_warn(rbd_dev,
3810                                          "failed to decode ResponseMessage: %d",
3811                                          ret);
3812                                 goto e_inval;
3813                         }
3814
3815                         ret = ceph_decode_32(&p);
3816                 }
3817         }
3818
3819         if (!lock_owner_responded) {
3820                 rbd_warn(rbd_dev, "no lock owners detected");
3821                 ret = -ETIMEDOUT;
3822         }
3823
3824 out:
3825         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3826         return ret;
3827
3828 e_inval:
3829         ret = -EINVAL;
3830         goto out;
3831 }
3832
3833 /*
3834  * Either image request state machine(s) or rbd_add_acquire_lock()
3835  * (i.e. "rbd map").
3836  */
3837 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3838 {
3839         struct rbd_img_request *img_req;
3840
3841         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3842         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3843
3844         cancel_delayed_work(&rbd_dev->lock_dwork);
3845         if (!completion_done(&rbd_dev->acquire_wait)) {
3846                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3847                            list_empty(&rbd_dev->running_list));
3848                 rbd_dev->acquire_err = result;
3849                 complete_all(&rbd_dev->acquire_wait);
3850                 return;
3851         }
3852
3853         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3854                 mutex_lock(&img_req->state_mutex);
3855                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3856                 rbd_img_schedule(img_req, result);
3857                 mutex_unlock(&img_req->state_mutex);
3858         }
3859
3860         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3861 }
3862
3863 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3864                                struct ceph_locker **lockers, u32 *num_lockers)
3865 {
3866         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3867         u8 lock_type;
3868         char *lock_tag;
3869         int ret;
3870
3871         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3872
3873         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3874                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3875                                  &lock_type, &lock_tag, lockers, num_lockers);
3876         if (ret)
3877                 return ret;
3878
3879         if (*num_lockers == 0) {
3880                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3881                 goto out;
3882         }
3883
3884         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3885                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3886                          lock_tag);
3887                 ret = -EBUSY;
3888                 goto out;
3889         }
3890
3891         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3892                 rbd_warn(rbd_dev, "shared lock type detected");
3893                 ret = -EBUSY;
3894                 goto out;
3895         }
3896
3897         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3898                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3899                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3900                          (*lockers)[0].id.cookie);
3901                 ret = -EBUSY;
3902                 goto out;
3903         }
3904
3905 out:
3906         kfree(lock_tag);
3907         return ret;
3908 }
3909
3910 static int find_watcher(struct rbd_device *rbd_dev,
3911                         const struct ceph_locker *locker)
3912 {
3913         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3914         struct ceph_watch_item *watchers;
3915         u32 num_watchers;
3916         u64 cookie;
3917         int i;
3918         int ret;
3919
3920         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3921                                       &rbd_dev->header_oloc, &watchers,
3922                                       &num_watchers);
3923         if (ret)
3924                 return ret;
3925
3926         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3927         for (i = 0; i < num_watchers; i++) {
3928                 /*
3929                  * Ignore addr->type while comparing.  This mimics
3930                  * entity_addr_t::get_legacy_str() + strcmp().
3931                  */
3932                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3933                                             &locker->info.addr) &&
3934                     watchers[i].cookie == cookie) {
3935                         struct rbd_client_id cid = {
3936                                 .gid = le64_to_cpu(watchers[i].name.num),
3937                                 .handle = cookie,
3938                         };
3939
3940                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3941                              rbd_dev, cid.gid, cid.handle);
3942                         rbd_set_owner_cid(rbd_dev, &cid);
3943                         ret = 1;
3944                         goto out;
3945                 }
3946         }
3947
3948         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3949         ret = 0;
3950 out:
3951         kfree(watchers);
3952         return ret;
3953 }
3954
3955 /*
3956  * lock_rwsem must be held for write
3957  */
3958 static int rbd_try_lock(struct rbd_device *rbd_dev)
3959 {
3960         struct ceph_client *client = rbd_dev->rbd_client->client;
3961         struct ceph_locker *lockers;
3962         u32 num_lockers;
3963         int ret;
3964
3965         for (;;) {
3966                 ret = rbd_lock(rbd_dev);
3967                 if (ret != -EBUSY)
3968                         return ret;
3969
3970                 /* determine if the current lock holder is still alive */
3971                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3972                 if (ret)
3973                         return ret;
3974
3975                 if (num_lockers == 0)
3976                         goto again;
3977
3978                 ret = find_watcher(rbd_dev, lockers);
3979                 if (ret)
3980                         goto out; /* request lock or error */
3981
3982                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3983                          ENTITY_NAME(lockers[0].id.name));
3984
3985                 ret = ceph_monc_blocklist_add(&client->monc,
3986                                               &lockers[0].info.addr);
3987                 if (ret) {
3988                         rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3989                                  ENTITY_NAME(lockers[0].id.name), ret);
3990                         goto out;
3991                 }
3992
3993                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3994                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3995                                           lockers[0].id.cookie,
3996                                           &lockers[0].id.name);
3997                 if (ret && ret != -ENOENT)
3998                         goto out;
3999
4000 again:
4001                 ceph_free_lockers(lockers, num_lockers);
4002         }
4003
4004 out:
4005         ceph_free_lockers(lockers, num_lockers);
4006         return ret;
4007 }
4008
4009 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4010 {
4011         int ret;
4012
4013         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4014                 ret = rbd_object_map_open(rbd_dev);
4015                 if (ret)
4016                         return ret;
4017         }
4018
4019         return 0;
4020 }
4021
4022 /*
4023  * Return:
4024  *   0 - lock acquired
4025  *   1 - caller should call rbd_request_lock()
4026  *  <0 - error
4027  */
4028 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4029 {
4030         int ret;
4031
4032         down_read(&rbd_dev->lock_rwsem);
4033         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4034              rbd_dev->lock_state);
4035         if (__rbd_is_lock_owner(rbd_dev)) {
4036                 up_read(&rbd_dev->lock_rwsem);
4037                 return 0;
4038         }
4039
4040         up_read(&rbd_dev->lock_rwsem);
4041         down_write(&rbd_dev->lock_rwsem);
4042         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4043              rbd_dev->lock_state);
4044         if (__rbd_is_lock_owner(rbd_dev)) {
4045                 up_write(&rbd_dev->lock_rwsem);
4046                 return 0;
4047         }
4048
4049         ret = rbd_try_lock(rbd_dev);
4050         if (ret < 0) {
4051                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4052                 if (ret == -EBLOCKLISTED)
4053                         goto out;
4054
4055                 ret = 1; /* request lock anyway */
4056         }
4057         if (ret > 0) {
4058                 up_write(&rbd_dev->lock_rwsem);
4059                 return ret;
4060         }
4061
4062         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4063         rbd_assert(list_empty(&rbd_dev->running_list));
4064
4065         ret = rbd_post_acquire_action(rbd_dev);
4066         if (ret) {
4067                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4068                 /*
4069                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4070                  * rbd_lock_add_request() would let the request through,
4071                  * assuming that e.g. object map is locked and loaded.
4072                  */
4073                 rbd_unlock(rbd_dev);
4074         }
4075
4076 out:
4077         wake_lock_waiters(rbd_dev, ret);
4078         up_write(&rbd_dev->lock_rwsem);
4079         return ret;
4080 }
4081
4082 static void rbd_acquire_lock(struct work_struct *work)
4083 {
4084         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4085                                             struct rbd_device, lock_dwork);
4086         int ret;
4087
4088         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4089 again:
4090         ret = rbd_try_acquire_lock(rbd_dev);
4091         if (ret <= 0) {
4092                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4093                 return;
4094         }
4095
4096         ret = rbd_request_lock(rbd_dev);
4097         if (ret == -ETIMEDOUT) {
4098                 goto again; /* treat this as a dead client */
4099         } else if (ret == -EROFS) {
4100                 rbd_warn(rbd_dev, "peer will not release lock");
4101                 down_write(&rbd_dev->lock_rwsem);
4102                 wake_lock_waiters(rbd_dev, ret);
4103                 up_write(&rbd_dev->lock_rwsem);
4104         } else if (ret < 0) {
4105                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4106                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4107                                  RBD_RETRY_DELAY);
4108         } else {
4109                 /*
4110                  * lock owner acked, but resend if we don't see them
4111                  * release the lock
4112                  */
4113                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4114                      rbd_dev);
4115                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4116                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4117         }
4118 }
4119
4120 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4121 {
4122         bool need_wait;
4123
4124         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4125         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4126
4127         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4128                 return false;
4129
4130         /*
4131          * Ensure that all in-flight IO is flushed.
4132          */
4133         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4134         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4135         need_wait = !list_empty(&rbd_dev->running_list);
4136         downgrade_write(&rbd_dev->lock_rwsem);
4137         if (need_wait)
4138                 wait_for_completion(&rbd_dev->releasing_wait);
4139         up_read(&rbd_dev->lock_rwsem);
4140
4141         down_write(&rbd_dev->lock_rwsem);
4142         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4143                 return false;
4144
4145         rbd_assert(list_empty(&rbd_dev->running_list));
4146         return true;
4147 }
4148
4149 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4150 {
4151         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4152                 rbd_object_map_close(rbd_dev);
4153 }
4154
4155 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4156 {
4157         rbd_assert(list_empty(&rbd_dev->running_list));
4158
4159         rbd_pre_release_action(rbd_dev);
4160         rbd_unlock(rbd_dev);
4161 }
4162
4163 /*
4164  * lock_rwsem must be held for write
4165  */
4166 static void rbd_release_lock(struct rbd_device *rbd_dev)
4167 {
4168         if (!rbd_quiesce_lock(rbd_dev))
4169                 return;
4170
4171         __rbd_release_lock(rbd_dev);
4172
4173         /*
4174          * Give others a chance to grab the lock - we would re-acquire
4175          * almost immediately if we got new IO while draining the running
4176          * list otherwise.  We need to ack our own notifications, so this
4177          * lock_dwork will be requeued from rbd_handle_released_lock() by
4178          * way of maybe_kick_acquire().
4179          */
4180         cancel_delayed_work(&rbd_dev->lock_dwork);
4181 }
4182
4183 static void rbd_release_lock_work(struct work_struct *work)
4184 {
4185         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4186                                                   unlock_work);
4187
4188         down_write(&rbd_dev->lock_rwsem);
4189         rbd_release_lock(rbd_dev);
4190         up_write(&rbd_dev->lock_rwsem);
4191 }
4192
4193 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4194 {
4195         bool have_requests;
4196
4197         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4198         if (__rbd_is_lock_owner(rbd_dev))
4199                 return;
4200
4201         spin_lock(&rbd_dev->lock_lists_lock);
4202         have_requests = !list_empty(&rbd_dev->acquiring_list);
4203         spin_unlock(&rbd_dev->lock_lists_lock);
4204         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4205                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4206                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4207         }
4208 }
4209
4210 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4211                                      void **p)
4212 {
4213         struct rbd_client_id cid = { 0 };
4214
4215         if (struct_v >= 2) {
4216                 cid.gid = ceph_decode_64(p);
4217                 cid.handle = ceph_decode_64(p);
4218         }
4219
4220         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4221              cid.handle);
4222         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4223                 down_write(&rbd_dev->lock_rwsem);
4224                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4225                         /*
4226                          * we already know that the remote client is
4227                          * the owner
4228                          */
4229                         up_write(&rbd_dev->lock_rwsem);
4230                         return;
4231                 }
4232
4233                 rbd_set_owner_cid(rbd_dev, &cid);
4234                 downgrade_write(&rbd_dev->lock_rwsem);
4235         } else {
4236                 down_read(&rbd_dev->lock_rwsem);
4237         }
4238
4239         maybe_kick_acquire(rbd_dev);
4240         up_read(&rbd_dev->lock_rwsem);
4241 }
4242
4243 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4244                                      void **p)
4245 {
4246         struct rbd_client_id cid = { 0 };
4247
4248         if (struct_v >= 2) {
4249                 cid.gid = ceph_decode_64(p);
4250                 cid.handle = ceph_decode_64(p);
4251         }
4252
4253         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4254              cid.handle);
4255         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4256                 down_write(&rbd_dev->lock_rwsem);
4257                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4258                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4259                              __func__, rbd_dev, cid.gid, cid.handle,
4260                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4261                         up_write(&rbd_dev->lock_rwsem);
4262                         return;
4263                 }
4264
4265                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4266                 downgrade_write(&rbd_dev->lock_rwsem);
4267         } else {
4268                 down_read(&rbd_dev->lock_rwsem);
4269         }
4270
4271         maybe_kick_acquire(rbd_dev);
4272         up_read(&rbd_dev->lock_rwsem);
4273 }
4274
4275 /*
4276  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4277  * ResponseMessage is needed.
4278  */
4279 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4280                                    void **p)
4281 {
4282         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4283         struct rbd_client_id cid = { 0 };
4284         int result = 1;
4285
4286         if (struct_v >= 2) {
4287                 cid.gid = ceph_decode_64(p);
4288                 cid.handle = ceph_decode_64(p);
4289         }
4290
4291         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4292              cid.handle);
4293         if (rbd_cid_equal(&cid, &my_cid))
4294                 return result;
4295
4296         down_read(&rbd_dev->lock_rwsem);
4297         if (__rbd_is_lock_owner(rbd_dev)) {
4298                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4299                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4300                         goto out_unlock;
4301
4302                 /*
4303                  * encode ResponseMessage(0) so the peer can detect
4304                  * a missing owner
4305                  */
4306                 result = 0;
4307
4308                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4309                         if (!rbd_dev->opts->exclusive) {
4310                                 dout("%s rbd_dev %p queueing unlock_work\n",
4311                                      __func__, rbd_dev);
4312                                 queue_work(rbd_dev->task_wq,
4313                                            &rbd_dev->unlock_work);
4314                         } else {
4315                                 /* refuse to release the lock */
4316                                 result = -EROFS;
4317                         }
4318                 }
4319         }
4320
4321 out_unlock:
4322         up_read(&rbd_dev->lock_rwsem);
4323         return result;
4324 }
4325
4326 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4327                                      u64 notify_id, u64 cookie, s32 *result)
4328 {
4329         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4330         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4331         int buf_size = sizeof(buf);
4332         int ret;
4333
4334         if (result) {
4335                 void *p = buf;
4336
4337                 /* encode ResponseMessage */
4338                 ceph_start_encoding(&p, 1, 1,
4339                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4340                 ceph_encode_32(&p, *result);
4341         } else {
4342                 buf_size = 0;
4343         }
4344
4345         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4346                                    &rbd_dev->header_oloc, notify_id, cookie,
4347                                    buf, buf_size);
4348         if (ret)
4349                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4350 }
4351
4352 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4353                                    u64 cookie)
4354 {
4355         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4356         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4357 }
4358
4359 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4360                                           u64 notify_id, u64 cookie, s32 result)
4361 {
4362         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4363         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4364 }
4365
4366 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4367                          u64 notifier_id, void *data, size_t data_len)
4368 {
4369         struct rbd_device *rbd_dev = arg;
4370         void *p = data;
4371         void *const end = p + data_len;
4372         u8 struct_v = 0;
4373         u32 len;
4374         u32 notify_op;
4375         int ret;
4376
4377         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4378              __func__, rbd_dev, cookie, notify_id, data_len);
4379         if (data_len) {
4380                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4381                                           &struct_v, &len);
4382                 if (ret) {
4383                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4384                                  ret);
4385                         return;
4386                 }
4387
4388                 notify_op = ceph_decode_32(&p);
4389         } else {
4390                 /* legacy notification for header updates */
4391                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4392                 len = 0;
4393         }
4394
4395         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4396         switch (notify_op) {
4397         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4398                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4399                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4400                 break;
4401         case RBD_NOTIFY_OP_RELEASED_LOCK:
4402                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4403                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4404                 break;
4405         case RBD_NOTIFY_OP_REQUEST_LOCK:
4406                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4407                 if (ret <= 0)
4408                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4409                                                       cookie, ret);
4410                 else
4411                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4412                 break;
4413         case RBD_NOTIFY_OP_HEADER_UPDATE:
4414                 ret = rbd_dev_refresh(rbd_dev);
4415                 if (ret)
4416                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4417
4418                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4419                 break;
4420         default:
4421                 if (rbd_is_lock_owner(rbd_dev))
4422                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4423                                                       cookie, -EOPNOTSUPP);
4424                 else
4425                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4426                 break;
4427         }
4428 }
4429
4430 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4431
4432 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4433 {
4434         struct rbd_device *rbd_dev = arg;
4435
4436         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4437
4438         down_write(&rbd_dev->lock_rwsem);
4439         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4440         up_write(&rbd_dev->lock_rwsem);
4441
4442         mutex_lock(&rbd_dev->watch_mutex);
4443         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4444                 __rbd_unregister_watch(rbd_dev);
4445                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4446
4447                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4448         }
4449         mutex_unlock(&rbd_dev->watch_mutex);
4450 }
4451
4452 /*
4453  * watch_mutex must be locked
4454  */
4455 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4456 {
4457         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4458         struct ceph_osd_linger_request *handle;
4459
4460         rbd_assert(!rbd_dev->watch_handle);
4461         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4462
4463         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4464                                  &rbd_dev->header_oloc, rbd_watch_cb,
4465                                  rbd_watch_errcb, rbd_dev);
4466         if (IS_ERR(handle))
4467                 return PTR_ERR(handle);
4468
4469         rbd_dev->watch_handle = handle;
4470         return 0;
4471 }
4472
4473 /*
4474  * watch_mutex must be locked
4475  */
4476 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4477 {
4478         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4479         int ret;
4480
4481         rbd_assert(rbd_dev->watch_handle);
4482         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4483
4484         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4485         if (ret)
4486                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4487
4488         rbd_dev->watch_handle = NULL;
4489 }
4490
4491 static int rbd_register_watch(struct rbd_device *rbd_dev)
4492 {
4493         int ret;
4494
4495         mutex_lock(&rbd_dev->watch_mutex);
4496         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4497         ret = __rbd_register_watch(rbd_dev);
4498         if (ret)
4499                 goto out;
4500
4501         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4502         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4503
4504 out:
4505         mutex_unlock(&rbd_dev->watch_mutex);
4506         return ret;
4507 }
4508
4509 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4510 {
4511         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4512
4513         cancel_work_sync(&rbd_dev->acquired_lock_work);
4514         cancel_work_sync(&rbd_dev->released_lock_work);
4515         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4516         cancel_work_sync(&rbd_dev->unlock_work);
4517 }
4518
4519 /*
4520  * header_rwsem must not be held to avoid a deadlock with
4521  * rbd_dev_refresh() when flushing notifies.
4522  */
4523 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4524 {
4525         cancel_tasks_sync(rbd_dev);
4526
4527         mutex_lock(&rbd_dev->watch_mutex);
4528         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4529                 __rbd_unregister_watch(rbd_dev);
4530         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4531         mutex_unlock(&rbd_dev->watch_mutex);
4532
4533         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4534         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4535 }
4536
4537 /*
4538  * lock_rwsem must be held for write
4539  */
4540 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4541 {
4542         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4543         char cookie[32];
4544         int ret;
4545
4546         if (!rbd_quiesce_lock(rbd_dev))
4547                 return;
4548
4549         format_lock_cookie(rbd_dev, cookie);
4550         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4551                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4552                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4553                                   RBD_LOCK_TAG, cookie);
4554         if (ret) {
4555                 if (ret != -EOPNOTSUPP)
4556                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4557                                  ret);
4558
4559                 /*
4560                  * Lock cookie cannot be updated on older OSDs, so do
4561                  * a manual release and queue an acquire.
4562                  */
4563                 __rbd_release_lock(rbd_dev);
4564                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4565         } else {
4566                 __rbd_lock(rbd_dev, cookie);
4567                 wake_lock_waiters(rbd_dev, 0);
4568         }
4569 }
4570
4571 static void rbd_reregister_watch(struct work_struct *work)
4572 {
4573         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4574                                             struct rbd_device, watch_dwork);
4575         int ret;
4576
4577         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4578
4579         mutex_lock(&rbd_dev->watch_mutex);
4580         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4581                 mutex_unlock(&rbd_dev->watch_mutex);
4582                 return;
4583         }
4584
4585         ret = __rbd_register_watch(rbd_dev);
4586         if (ret) {
4587                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4588                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4589                         queue_delayed_work(rbd_dev->task_wq,
4590                                            &rbd_dev->watch_dwork,
4591                                            RBD_RETRY_DELAY);
4592                         mutex_unlock(&rbd_dev->watch_mutex);
4593                         return;
4594                 }
4595
4596                 mutex_unlock(&rbd_dev->watch_mutex);
4597                 down_write(&rbd_dev->lock_rwsem);
4598                 wake_lock_waiters(rbd_dev, ret);
4599                 up_write(&rbd_dev->lock_rwsem);
4600                 return;
4601         }
4602
4603         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4604         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4605         mutex_unlock(&rbd_dev->watch_mutex);
4606
4607         down_write(&rbd_dev->lock_rwsem);
4608         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4609                 rbd_reacquire_lock(rbd_dev);
4610         up_write(&rbd_dev->lock_rwsem);
4611
4612         ret = rbd_dev_refresh(rbd_dev);
4613         if (ret)
4614                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4615 }
4616
4617 /*
4618  * Synchronous osd object method call.  Returns the number of bytes
4619  * returned in the outbound buffer, or a negative error code.
4620  */
4621 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4622                              struct ceph_object_id *oid,
4623                              struct ceph_object_locator *oloc,
4624                              const char *method_name,
4625                              const void *outbound,
4626                              size_t outbound_size,
4627                              void *inbound,
4628                              size_t inbound_size)
4629 {
4630         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4631         struct page *req_page = NULL;
4632         struct page *reply_page;
4633         int ret;
4634
4635         /*
4636          * Method calls are ultimately read operations.  The result
4637          * should placed into the inbound buffer provided.  They
4638          * also supply outbound data--parameters for the object
4639          * method.  Currently if this is present it will be a
4640          * snapshot id.
4641          */
4642         if (outbound) {
4643                 if (outbound_size > PAGE_SIZE)
4644                         return -E2BIG;
4645
4646                 req_page = alloc_page(GFP_KERNEL);
4647                 if (!req_page)
4648                         return -ENOMEM;
4649
4650                 memcpy(page_address(req_page), outbound, outbound_size);
4651         }
4652
4653         reply_page = alloc_page(GFP_KERNEL);
4654         if (!reply_page) {
4655                 if (req_page)
4656                         __free_page(req_page);
4657                 return -ENOMEM;
4658         }
4659
4660         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4661                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4662                              &reply_page, &inbound_size);
4663         if (!ret) {
4664                 memcpy(inbound, page_address(reply_page), inbound_size);
4665                 ret = inbound_size;
4666         }
4667
4668         if (req_page)
4669                 __free_page(req_page);
4670         __free_page(reply_page);
4671         return ret;
4672 }
4673
4674 static void rbd_queue_workfn(struct work_struct *work)
4675 {
4676         struct rbd_img_request *img_request =
4677             container_of(work, struct rbd_img_request, work);
4678         struct rbd_device *rbd_dev = img_request->rbd_dev;
4679         enum obj_operation_type op_type = img_request->op_type;
4680         struct request *rq = blk_mq_rq_from_pdu(img_request);
4681         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4682         u64 length = blk_rq_bytes(rq);
4683         u64 mapping_size;
4684         int result;
4685
4686         /* Ignore/skip any zero-length requests */
4687         if (!length) {
4688                 dout("%s: zero-length request\n", __func__);
4689                 result = 0;
4690                 goto err_img_request;
4691         }
4692
4693         blk_mq_start_request(rq);
4694
4695         down_read(&rbd_dev->header_rwsem);
4696         mapping_size = rbd_dev->mapping.size;
4697         rbd_img_capture_header(img_request);
4698         up_read(&rbd_dev->header_rwsem);
4699
4700         if (offset + length > mapping_size) {
4701                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4702                          length, mapping_size);
4703                 result = -EIO;
4704                 goto err_img_request;
4705         }
4706
4707         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4708              img_request, obj_op_name(op_type), offset, length);
4709
4710         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4711                 result = rbd_img_fill_nodata(img_request, offset, length);
4712         else
4713                 result = rbd_img_fill_from_bio(img_request, offset, length,
4714                                                rq->bio);
4715         if (result)
4716                 goto err_img_request;
4717
4718         rbd_img_handle_request(img_request, 0);
4719         return;
4720
4721 err_img_request:
4722         rbd_img_request_destroy(img_request);
4723         if (result)
4724                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4725                          obj_op_name(op_type), length, offset, result);
4726         blk_mq_end_request(rq, errno_to_blk_status(result));
4727 }
4728
4729 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4730                 const struct blk_mq_queue_data *bd)
4731 {
4732         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4733         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4734         enum obj_operation_type op_type;
4735
4736         switch (req_op(bd->rq)) {
4737         case REQ_OP_DISCARD:
4738                 op_type = OBJ_OP_DISCARD;
4739                 break;
4740         case REQ_OP_WRITE_ZEROES:
4741                 op_type = OBJ_OP_ZEROOUT;
4742                 break;
4743         case REQ_OP_WRITE:
4744                 op_type = OBJ_OP_WRITE;
4745                 break;
4746         case REQ_OP_READ:
4747                 op_type = OBJ_OP_READ;
4748                 break;
4749         default:
4750                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4751                 return BLK_STS_IOERR;
4752         }
4753
4754         rbd_img_request_init(img_req, rbd_dev, op_type);
4755
4756         if (rbd_img_is_write(img_req)) {
4757                 if (rbd_is_ro(rbd_dev)) {
4758                         rbd_warn(rbd_dev, "%s on read-only mapping",
4759                                  obj_op_name(img_req->op_type));
4760                         return BLK_STS_IOERR;
4761                 }
4762                 rbd_assert(!rbd_is_snap(rbd_dev));
4763         }
4764
4765         INIT_WORK(&img_req->work, rbd_queue_workfn);
4766         queue_work(rbd_wq, &img_req->work);
4767         return BLK_STS_OK;
4768 }
4769
4770 static void rbd_free_disk(struct rbd_device *rbd_dev)
4771 {
4772         blk_cleanup_queue(rbd_dev->disk->queue);
4773         blk_mq_free_tag_set(&rbd_dev->tag_set);
4774         put_disk(rbd_dev->disk);
4775         rbd_dev->disk = NULL;
4776 }
4777
4778 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4779                              struct ceph_object_id *oid,
4780                              struct ceph_object_locator *oloc,
4781                              void *buf, int buf_len)
4782
4783 {
4784         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4785         struct ceph_osd_request *req;
4786         struct page **pages;
4787         int num_pages = calc_pages_for(0, buf_len);
4788         int ret;
4789
4790         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4791         if (!req)
4792                 return -ENOMEM;
4793
4794         ceph_oid_copy(&req->r_base_oid, oid);
4795         ceph_oloc_copy(&req->r_base_oloc, oloc);
4796         req->r_flags = CEPH_OSD_FLAG_READ;
4797
4798         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4799         if (IS_ERR(pages)) {
4800                 ret = PTR_ERR(pages);
4801                 goto out_req;
4802         }
4803
4804         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4805         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4806                                          true);
4807
4808         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4809         if (ret)
4810                 goto out_req;
4811
4812         ceph_osdc_start_request(osdc, req, false);
4813         ret = ceph_osdc_wait_request(osdc, req);
4814         if (ret >= 0)
4815                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4816
4817 out_req:
4818         ceph_osdc_put_request(req);
4819         return ret;
4820 }
4821
4822 /*
4823  * Read the complete header for the given rbd device.  On successful
4824  * return, the rbd_dev->header field will contain up-to-date
4825  * information about the image.
4826  */
4827 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4828 {
4829         struct rbd_image_header_ondisk *ondisk = NULL;
4830         u32 snap_count = 0;
4831         u64 names_size = 0;
4832         u32 want_count;
4833         int ret;
4834
4835         /*
4836          * The complete header will include an array of its 64-bit
4837          * snapshot ids, followed by the names of those snapshots as
4838          * a contiguous block of NUL-terminated strings.  Note that
4839          * the number of snapshots could change by the time we read
4840          * it in, in which case we re-read it.
4841          */
4842         do {
4843                 size_t size;
4844
4845                 kfree(ondisk);
4846
4847                 size = sizeof (*ondisk);
4848                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4849                 size += names_size;
4850                 ondisk = kmalloc(size, GFP_KERNEL);
4851                 if (!ondisk)
4852                         return -ENOMEM;
4853
4854                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4855                                         &rbd_dev->header_oloc, ondisk, size);
4856                 if (ret < 0)
4857                         goto out;
4858                 if ((size_t)ret < size) {
4859                         ret = -ENXIO;
4860                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4861                                 size, ret);
4862                         goto out;
4863                 }
4864                 if (!rbd_dev_ondisk_valid(ondisk)) {
4865                         ret = -ENXIO;
4866                         rbd_warn(rbd_dev, "invalid header");
4867                         goto out;
4868                 }
4869
4870                 names_size = le64_to_cpu(ondisk->snap_names_len);
4871                 want_count = snap_count;
4872                 snap_count = le32_to_cpu(ondisk->snap_count);
4873         } while (snap_count != want_count);
4874
4875         ret = rbd_header_from_disk(rbd_dev, ondisk);
4876 out:
4877         kfree(ondisk);
4878
4879         return ret;
4880 }
4881
4882 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4883 {
4884         sector_t size;
4885
4886         /*
4887          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4888          * try to update its size.  If REMOVING is set, updating size
4889          * is just useless work since the device can't be opened.
4890          */
4891         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4892             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4893                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4894                 dout("setting size to %llu sectors", (unsigned long long)size);
4895                 set_capacity_and_notify(rbd_dev->disk, size);
4896         }
4897 }
4898
4899 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4900 {
4901         u64 mapping_size;
4902         int ret;
4903
4904         down_write(&rbd_dev->header_rwsem);
4905         mapping_size = rbd_dev->mapping.size;
4906
4907         ret = rbd_dev_header_info(rbd_dev);
4908         if (ret)
4909                 goto out;
4910
4911         /*
4912          * If there is a parent, see if it has disappeared due to the
4913          * mapped image getting flattened.
4914          */
4915         if (rbd_dev->parent) {
4916                 ret = rbd_dev_v2_parent_info(rbd_dev);
4917                 if (ret)
4918                         goto out;
4919         }
4920
4921         rbd_assert(!rbd_is_snap(rbd_dev));
4922         rbd_dev->mapping.size = rbd_dev->header.image_size;
4923
4924 out:
4925         up_write(&rbd_dev->header_rwsem);
4926         if (!ret && mapping_size != rbd_dev->mapping.size)
4927                 rbd_dev_update_size(rbd_dev);
4928
4929         return ret;
4930 }
4931
4932 static const struct blk_mq_ops rbd_mq_ops = {
4933         .queue_rq       = rbd_queue_rq,
4934 };
4935
4936 static int rbd_init_disk(struct rbd_device *rbd_dev)
4937 {
4938         struct gendisk *disk;
4939         struct request_queue *q;
4940         unsigned int objset_bytes =
4941             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4942         int err;
4943
4944         /* create gendisk info */
4945         disk = alloc_disk(single_major ?
4946                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4947                           RBD_MINORS_PER_MAJOR);
4948         if (!disk)
4949                 return -ENOMEM;
4950
4951         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4952                  rbd_dev->dev_id);
4953         disk->major = rbd_dev->major;
4954         disk->first_minor = rbd_dev->minor;
4955         if (single_major)
4956                 disk->flags |= GENHD_FL_EXT_DEVT;
4957         disk->fops = &rbd_bd_ops;
4958         disk->private_data = rbd_dev;
4959
4960         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4961         rbd_dev->tag_set.ops = &rbd_mq_ops;
4962         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4963         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4964         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4965         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4966         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4967
4968         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4969         if (err)
4970                 goto out_disk;
4971
4972         q = blk_mq_init_queue(&rbd_dev->tag_set);
4973         if (IS_ERR(q)) {
4974                 err = PTR_ERR(q);
4975                 goto out_tag_set;
4976         }
4977
4978         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4979         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4980
4981         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4982         q->limits.max_sectors = queue_max_hw_sectors(q);
4983         blk_queue_max_segments(q, USHRT_MAX);
4984         blk_queue_max_segment_size(q, UINT_MAX);
4985         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4986         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4987
4988         if (rbd_dev->opts->trim) {
4989                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4990                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4991                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4992                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4993         }
4994
4995         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4996                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4997
4998         /*
4999          * disk_release() expects a queue ref from add_disk() and will
5000          * put it.  Hold an extra ref until add_disk() is called.
5001          */
5002         WARN_ON(!blk_get_queue(q));
5003         disk->queue = q;
5004         q->queuedata = rbd_dev;
5005
5006         rbd_dev->disk = disk;
5007
5008         return 0;
5009 out_tag_set:
5010         blk_mq_free_tag_set(&rbd_dev->tag_set);
5011 out_disk:
5012         put_disk(disk);
5013         return err;
5014 }
5015
5016 /*
5017   sysfs
5018 */
5019
5020 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5021 {
5022         return container_of(dev, struct rbd_device, dev);
5023 }
5024
5025 static ssize_t rbd_size_show(struct device *dev,
5026                              struct device_attribute *attr, char *buf)
5027 {
5028         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029
5030         return sprintf(buf, "%llu\n",
5031                 (unsigned long long)rbd_dev->mapping.size);
5032 }
5033
5034 static ssize_t rbd_features_show(struct device *dev,
5035                              struct device_attribute *attr, char *buf)
5036 {
5037         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038
5039         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5040 }
5041
5042 static ssize_t rbd_major_show(struct device *dev,
5043                               struct device_attribute *attr, char *buf)
5044 {
5045         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046
5047         if (rbd_dev->major)
5048                 return sprintf(buf, "%d\n", rbd_dev->major);
5049
5050         return sprintf(buf, "(none)\n");
5051 }
5052
5053 static ssize_t rbd_minor_show(struct device *dev,
5054                               struct device_attribute *attr, char *buf)
5055 {
5056         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057
5058         return sprintf(buf, "%d\n", rbd_dev->minor);
5059 }
5060
5061 static ssize_t rbd_client_addr_show(struct device *dev,
5062                                     struct device_attribute *attr, char *buf)
5063 {
5064         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065         struct ceph_entity_addr *client_addr =
5066             ceph_client_addr(rbd_dev->rbd_client->client);
5067
5068         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5069                        le32_to_cpu(client_addr->nonce));
5070 }
5071
5072 static ssize_t rbd_client_id_show(struct device *dev,
5073                                   struct device_attribute *attr, char *buf)
5074 {
5075         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076
5077         return sprintf(buf, "client%lld\n",
5078                        ceph_client_gid(rbd_dev->rbd_client->client));
5079 }
5080
5081 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5082                                      struct device_attribute *attr, char *buf)
5083 {
5084         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085
5086         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5087 }
5088
5089 static ssize_t rbd_config_info_show(struct device *dev,
5090                                     struct device_attribute *attr, char *buf)
5091 {
5092         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093
5094         if (!capable(CAP_SYS_ADMIN))
5095                 return -EPERM;
5096
5097         return sprintf(buf, "%s\n", rbd_dev->config_info);
5098 }
5099
5100 static ssize_t rbd_pool_show(struct device *dev,
5101                              struct device_attribute *attr, char *buf)
5102 {
5103         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104
5105         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5106 }
5107
5108 static ssize_t rbd_pool_id_show(struct device *dev,
5109                              struct device_attribute *attr, char *buf)
5110 {
5111         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112
5113         return sprintf(buf, "%llu\n",
5114                         (unsigned long long) rbd_dev->spec->pool_id);
5115 }
5116
5117 static ssize_t rbd_pool_ns_show(struct device *dev,
5118                                 struct device_attribute *attr, char *buf)
5119 {
5120         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121
5122         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5123 }
5124
5125 static ssize_t rbd_name_show(struct device *dev,
5126                              struct device_attribute *attr, char *buf)
5127 {
5128         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5129
5130         if (rbd_dev->spec->image_name)
5131                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5132
5133         return sprintf(buf, "(unknown)\n");
5134 }
5135
5136 static ssize_t rbd_image_id_show(struct device *dev,
5137                              struct device_attribute *attr, char *buf)
5138 {
5139         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5140
5141         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5142 }
5143
5144 /*
5145  * Shows the name of the currently-mapped snapshot (or
5146  * RBD_SNAP_HEAD_NAME for the base image).
5147  */
5148 static ssize_t rbd_snap_show(struct device *dev,
5149                              struct device_attribute *attr,
5150                              char *buf)
5151 {
5152         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153
5154         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5155 }
5156
5157 static ssize_t rbd_snap_id_show(struct device *dev,
5158                                 struct device_attribute *attr, char *buf)
5159 {
5160         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161
5162         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5163 }
5164
5165 /*
5166  * For a v2 image, shows the chain of parent images, separated by empty
5167  * lines.  For v1 images or if there is no parent, shows "(no parent
5168  * image)".
5169  */
5170 static ssize_t rbd_parent_show(struct device *dev,
5171                                struct device_attribute *attr,
5172                                char *buf)
5173 {
5174         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175         ssize_t count = 0;
5176
5177         if (!rbd_dev->parent)
5178                 return sprintf(buf, "(no parent image)\n");
5179
5180         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5181                 struct rbd_spec *spec = rbd_dev->parent_spec;
5182
5183                 count += sprintf(&buf[count], "%s"
5184                             "pool_id %llu\npool_name %s\n"
5185                             "pool_ns %s\n"
5186                             "image_id %s\nimage_name %s\n"
5187                             "snap_id %llu\nsnap_name %s\n"
5188                             "overlap %llu\n",
5189                             !count ? "" : "\n", /* first? */
5190                             spec->pool_id, spec->pool_name,
5191                             spec->pool_ns ?: "",
5192                             spec->image_id, spec->image_name ?: "(unknown)",
5193                             spec->snap_id, spec->snap_name,
5194                             rbd_dev->parent_overlap);
5195         }
5196
5197         return count;
5198 }
5199
5200 static ssize_t rbd_image_refresh(struct device *dev,
5201                                  struct device_attribute *attr,
5202                                  const char *buf,
5203                                  size_t size)
5204 {
5205         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5206         int ret;
5207
5208         if (!capable(CAP_SYS_ADMIN))
5209                 return -EPERM;
5210
5211         ret = rbd_dev_refresh(rbd_dev);
5212         if (ret)
5213                 return ret;
5214
5215         return size;
5216 }
5217
5218 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5219 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5220 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5221 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5222 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5223 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5224 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5225 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5226 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5227 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5228 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5229 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5230 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5231 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5232 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5233 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5234 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5235
5236 static struct attribute *rbd_attrs[] = {
5237         &dev_attr_size.attr,
5238         &dev_attr_features.attr,
5239         &dev_attr_major.attr,
5240         &dev_attr_minor.attr,
5241         &dev_attr_client_addr.attr,
5242         &dev_attr_client_id.attr,
5243         &dev_attr_cluster_fsid.attr,
5244         &dev_attr_config_info.attr,
5245         &dev_attr_pool.attr,
5246         &dev_attr_pool_id.attr,
5247         &dev_attr_pool_ns.attr,
5248         &dev_attr_name.attr,
5249         &dev_attr_image_id.attr,
5250         &dev_attr_current_snap.attr,
5251         &dev_attr_snap_id.attr,
5252         &dev_attr_parent.attr,
5253         &dev_attr_refresh.attr,
5254         NULL
5255 };
5256
5257 static struct attribute_group rbd_attr_group = {
5258         .attrs = rbd_attrs,
5259 };
5260
5261 static const struct attribute_group *rbd_attr_groups[] = {
5262         &rbd_attr_group,
5263         NULL
5264 };
5265
5266 static void rbd_dev_release(struct device *dev);
5267
5268 static const struct device_type rbd_device_type = {
5269         .name           = "rbd",
5270         .groups         = rbd_attr_groups,
5271         .release        = rbd_dev_release,
5272 };
5273
5274 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5275 {
5276         kref_get(&spec->kref);
5277
5278         return spec;
5279 }
5280
5281 static void rbd_spec_free(struct kref *kref);
5282 static void rbd_spec_put(struct rbd_spec *spec)
5283 {
5284         if (spec)
5285                 kref_put(&spec->kref, rbd_spec_free);
5286 }
5287
5288 static struct rbd_spec *rbd_spec_alloc(void)
5289 {
5290         struct rbd_spec *spec;
5291
5292         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5293         if (!spec)
5294                 return NULL;
5295
5296         spec->pool_id = CEPH_NOPOOL;
5297         spec->snap_id = CEPH_NOSNAP;
5298         kref_init(&spec->kref);
5299
5300         return spec;
5301 }
5302
5303 static void rbd_spec_free(struct kref *kref)
5304 {
5305         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5306
5307         kfree(spec->pool_name);
5308         kfree(spec->pool_ns);
5309         kfree(spec->image_id);
5310         kfree(spec->image_name);
5311         kfree(spec->snap_name);
5312         kfree(spec);
5313 }
5314
5315 static void rbd_dev_free(struct rbd_device *rbd_dev)
5316 {
5317         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5318         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5319
5320         ceph_oid_destroy(&rbd_dev->header_oid);
5321         ceph_oloc_destroy(&rbd_dev->header_oloc);
5322         kfree(rbd_dev->config_info);
5323
5324         rbd_put_client(rbd_dev->rbd_client);
5325         rbd_spec_put(rbd_dev->spec);
5326         kfree(rbd_dev->opts);
5327         kfree(rbd_dev);
5328 }
5329
5330 static void rbd_dev_release(struct device *dev)
5331 {
5332         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5333         bool need_put = !!rbd_dev->opts;
5334
5335         if (need_put) {
5336                 destroy_workqueue(rbd_dev->task_wq);
5337                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5338         }
5339
5340         rbd_dev_free(rbd_dev);
5341
5342         /*
5343          * This is racy, but way better than putting module outside of
5344          * the release callback.  The race window is pretty small, so
5345          * doing something similar to dm (dm-builtin.c) is overkill.
5346          */
5347         if (need_put)
5348                 module_put(THIS_MODULE);
5349 }
5350
5351 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5352                                            struct rbd_spec *spec)
5353 {
5354         struct rbd_device *rbd_dev;
5355
5356         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5357         if (!rbd_dev)
5358                 return NULL;
5359
5360         spin_lock_init(&rbd_dev->lock);
5361         INIT_LIST_HEAD(&rbd_dev->node);
5362         init_rwsem(&rbd_dev->header_rwsem);
5363
5364         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5365         ceph_oid_init(&rbd_dev->header_oid);
5366         rbd_dev->header_oloc.pool = spec->pool_id;
5367         if (spec->pool_ns) {
5368                 WARN_ON(!*spec->pool_ns);
5369                 rbd_dev->header_oloc.pool_ns =
5370                     ceph_find_or_create_string(spec->pool_ns,
5371                                                strlen(spec->pool_ns));
5372         }
5373
5374         mutex_init(&rbd_dev->watch_mutex);
5375         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5376         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5377
5378         init_rwsem(&rbd_dev->lock_rwsem);
5379         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5380         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5381         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5382         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5383         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5384         spin_lock_init(&rbd_dev->lock_lists_lock);
5385         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5386         INIT_LIST_HEAD(&rbd_dev->running_list);
5387         init_completion(&rbd_dev->acquire_wait);
5388         init_completion(&rbd_dev->releasing_wait);
5389
5390         spin_lock_init(&rbd_dev->object_map_lock);
5391
5392         rbd_dev->dev.bus = &rbd_bus_type;
5393         rbd_dev->dev.type = &rbd_device_type;
5394         rbd_dev->dev.parent = &rbd_root_dev;
5395         device_initialize(&rbd_dev->dev);
5396
5397         rbd_dev->rbd_client = rbdc;
5398         rbd_dev->spec = spec;
5399
5400         return rbd_dev;
5401 }
5402
5403 /*
5404  * Create a mapping rbd_dev.
5405  */
5406 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5407                                          struct rbd_spec *spec,
5408                                          struct rbd_options *opts)
5409 {
5410         struct rbd_device *rbd_dev;
5411
5412         rbd_dev = __rbd_dev_create(rbdc, spec);
5413         if (!rbd_dev)
5414                 return NULL;
5415
5416         rbd_dev->opts = opts;
5417
5418         /* get an id and fill in device name */
5419         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5420                                          minor_to_rbd_dev_id(1 << MINORBITS),
5421                                          GFP_KERNEL);
5422         if (rbd_dev->dev_id < 0)
5423                 goto fail_rbd_dev;
5424
5425         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5426         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5427                                                    rbd_dev->name);
5428         if (!rbd_dev->task_wq)
5429                 goto fail_dev_id;
5430
5431         /* we have a ref from do_rbd_add() */
5432         __module_get(THIS_MODULE);
5433
5434         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5435         return rbd_dev;
5436
5437 fail_dev_id:
5438         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5439 fail_rbd_dev:
5440         rbd_dev_free(rbd_dev);
5441         return NULL;
5442 }
5443
5444 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5445 {
5446         if (rbd_dev)
5447                 put_device(&rbd_dev->dev);
5448 }
5449
5450 /*
5451  * Get the size and object order for an image snapshot, or if
5452  * snap_id is CEPH_NOSNAP, gets this information for the base
5453  * image.
5454  */
5455 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5456                                 u8 *order, u64 *snap_size)
5457 {
5458         __le64 snapid = cpu_to_le64(snap_id);
5459         int ret;
5460         struct {
5461                 u8 order;
5462                 __le64 size;
5463         } __attribute__ ((packed)) size_buf = { 0 };
5464
5465         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5466                                   &rbd_dev->header_oloc, "get_size",
5467                                   &snapid, sizeof(snapid),
5468                                   &size_buf, sizeof(size_buf));
5469         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5470         if (ret < 0)
5471                 return ret;
5472         if (ret < sizeof (size_buf))
5473                 return -ERANGE;
5474
5475         if (order) {
5476                 *order = size_buf.order;
5477                 dout("  order %u", (unsigned int)*order);
5478         }
5479         *snap_size = le64_to_cpu(size_buf.size);
5480
5481         dout("  snap_id 0x%016llx snap_size = %llu\n",
5482                 (unsigned long long)snap_id,
5483                 (unsigned long long)*snap_size);
5484
5485         return 0;
5486 }
5487
5488 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5489 {
5490         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5491                                         &rbd_dev->header.obj_order,
5492                                         &rbd_dev->header.image_size);
5493 }
5494
5495 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5496 {
5497         size_t size;
5498         void *reply_buf;
5499         int ret;
5500         void *p;
5501
5502         /* Response will be an encoded string, which includes a length */
5503         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5504         reply_buf = kzalloc(size, GFP_KERNEL);
5505         if (!reply_buf)
5506                 return -ENOMEM;
5507
5508         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5509                                   &rbd_dev->header_oloc, "get_object_prefix",
5510                                   NULL, 0, reply_buf, size);
5511         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5512         if (ret < 0)
5513                 goto out;
5514
5515         p = reply_buf;
5516         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5517                                                 p + ret, NULL, GFP_NOIO);
5518         ret = 0;
5519
5520         if (IS_ERR(rbd_dev->header.object_prefix)) {
5521                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5522                 rbd_dev->header.object_prefix = NULL;
5523         } else {
5524                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5525         }
5526 out:
5527         kfree(reply_buf);
5528
5529         return ret;
5530 }
5531
5532 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5533                                      bool read_only, u64 *snap_features)
5534 {
5535         struct {
5536                 __le64 snap_id;
5537                 u8 read_only;
5538         } features_in;
5539         struct {
5540                 __le64 features;
5541                 __le64 incompat;
5542         } __attribute__ ((packed)) features_buf = { 0 };
5543         u64 unsup;
5544         int ret;
5545
5546         features_in.snap_id = cpu_to_le64(snap_id);
5547         features_in.read_only = read_only;
5548
5549         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5550                                   &rbd_dev->header_oloc, "get_features",
5551                                   &features_in, sizeof(features_in),
5552                                   &features_buf, sizeof(features_buf));
5553         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5554         if (ret < 0)
5555                 return ret;
5556         if (ret < sizeof (features_buf))
5557                 return -ERANGE;
5558
5559         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5560         if (unsup) {
5561                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5562                          unsup);
5563                 return -ENXIO;
5564         }
5565
5566         *snap_features = le64_to_cpu(features_buf.features);
5567
5568         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5569                 (unsigned long long)snap_id,
5570                 (unsigned long long)*snap_features,
5571                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5572
5573         return 0;
5574 }
5575
5576 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5577 {
5578         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5579                                          rbd_is_ro(rbd_dev),
5580                                          &rbd_dev->header.features);
5581 }
5582
5583 /*
5584  * These are generic image flags, but since they are used only for
5585  * object map, store them in rbd_dev->object_map_flags.
5586  *
5587  * For the same reason, this function is called only on object map
5588  * (re)load and not on header refresh.
5589  */
5590 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5591 {
5592         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5593         __le64 flags;
5594         int ret;
5595
5596         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5597                                   &rbd_dev->header_oloc, "get_flags",
5598                                   &snapid, sizeof(snapid),
5599                                   &flags, sizeof(flags));
5600         if (ret < 0)
5601                 return ret;
5602         if (ret < sizeof(flags))
5603                 return -EBADMSG;
5604
5605         rbd_dev->object_map_flags = le64_to_cpu(flags);
5606         return 0;
5607 }
5608
5609 struct parent_image_info {
5610         u64             pool_id;
5611         const char      *pool_ns;
5612         const char      *image_id;
5613         u64             snap_id;
5614
5615         bool            has_overlap;
5616         u64             overlap;
5617 };
5618
5619 /*
5620  * The caller is responsible for @pii.
5621  */
5622 static int decode_parent_image_spec(void **p, void *end,
5623                                     struct parent_image_info *pii)
5624 {
5625         u8 struct_v;
5626         u32 struct_len;
5627         int ret;
5628
5629         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5630                                   &struct_v, &struct_len);
5631         if (ret)
5632                 return ret;
5633
5634         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5635         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5636         if (IS_ERR(pii->pool_ns)) {
5637                 ret = PTR_ERR(pii->pool_ns);
5638                 pii->pool_ns = NULL;
5639                 return ret;
5640         }
5641         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5642         if (IS_ERR(pii->image_id)) {
5643                 ret = PTR_ERR(pii->image_id);
5644                 pii->image_id = NULL;
5645                 return ret;
5646         }
5647         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5648         return 0;
5649
5650 e_inval:
5651         return -EINVAL;
5652 }
5653
5654 static int __get_parent_info(struct rbd_device *rbd_dev,
5655                              struct page *req_page,
5656                              struct page *reply_page,
5657                              struct parent_image_info *pii)
5658 {
5659         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5660         size_t reply_len = PAGE_SIZE;
5661         void *p, *end;
5662         int ret;
5663
5664         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5665                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5666                              req_page, sizeof(u64), &reply_page, &reply_len);
5667         if (ret)
5668                 return ret == -EOPNOTSUPP ? 1 : ret;
5669
5670         p = page_address(reply_page);
5671         end = p + reply_len;
5672         ret = decode_parent_image_spec(&p, end, pii);
5673         if (ret)
5674                 return ret;
5675
5676         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5677                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5678                              req_page, sizeof(u64), &reply_page, &reply_len);
5679         if (ret)
5680                 return ret;
5681
5682         p = page_address(reply_page);
5683         end = p + reply_len;
5684         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5685         if (pii->has_overlap)
5686                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5687
5688         return 0;
5689
5690 e_inval:
5691         return -EINVAL;
5692 }
5693
5694 /*
5695  * The caller is responsible for @pii.
5696  */
5697 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5698                                     struct page *req_page,
5699                                     struct page *reply_page,
5700                                     struct parent_image_info *pii)
5701 {
5702         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5703         size_t reply_len = PAGE_SIZE;
5704         void *p, *end;
5705         int ret;
5706
5707         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5708                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5709                              req_page, sizeof(u64), &reply_page, &reply_len);
5710         if (ret)
5711                 return ret;
5712
5713         p = page_address(reply_page);
5714         end = p + reply_len;
5715         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5716         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5717         if (IS_ERR(pii->image_id)) {
5718                 ret = PTR_ERR(pii->image_id);
5719                 pii->image_id = NULL;
5720                 return ret;
5721         }
5722         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5723         pii->has_overlap = true;
5724         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5725
5726         return 0;
5727
5728 e_inval:
5729         return -EINVAL;
5730 }
5731
5732 static int get_parent_info(struct rbd_device *rbd_dev,
5733                            struct parent_image_info *pii)
5734 {
5735         struct page *req_page, *reply_page;
5736         void *p;
5737         int ret;
5738
5739         req_page = alloc_page(GFP_KERNEL);
5740         if (!req_page)
5741                 return -ENOMEM;
5742
5743         reply_page = alloc_page(GFP_KERNEL);
5744         if (!reply_page) {
5745                 __free_page(req_page);
5746                 return -ENOMEM;
5747         }
5748
5749         p = page_address(req_page);
5750         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5751         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5752         if (ret > 0)
5753                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5754                                                pii);
5755
5756         __free_page(req_page);
5757         __free_page(reply_page);
5758         return ret;
5759 }
5760
5761 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5762 {
5763         struct rbd_spec *parent_spec;
5764         struct parent_image_info pii = { 0 };
5765         int ret;
5766
5767         parent_spec = rbd_spec_alloc();
5768         if (!parent_spec)
5769                 return -ENOMEM;
5770
5771         ret = get_parent_info(rbd_dev, &pii);
5772         if (ret)
5773                 goto out_err;
5774
5775         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5776              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5777              pii.has_overlap, pii.overlap);
5778
5779         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5780                 /*
5781                  * Either the parent never existed, or we have
5782                  * record of it but the image got flattened so it no
5783                  * longer has a parent.  When the parent of a
5784                  * layered image disappears we immediately set the
5785                  * overlap to 0.  The effect of this is that all new
5786                  * requests will be treated as if the image had no
5787                  * parent.
5788                  *
5789                  * If !pii.has_overlap, the parent image spec is not
5790                  * applicable.  It's there to avoid duplication in each
5791                  * snapshot record.
5792                  */
5793                 if (rbd_dev->parent_overlap) {
5794                         rbd_dev->parent_overlap = 0;
5795                         rbd_dev_parent_put(rbd_dev);
5796                         pr_info("%s: clone image has been flattened\n",
5797                                 rbd_dev->disk->disk_name);
5798                 }
5799
5800                 goto out;       /* No parent?  No problem. */
5801         }
5802
5803         /* The ceph file layout needs to fit pool id in 32 bits */
5804
5805         ret = -EIO;
5806         if (pii.pool_id > (u64)U32_MAX) {
5807                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5808                         (unsigned long long)pii.pool_id, U32_MAX);
5809                 goto out_err;
5810         }
5811
5812         /*
5813          * The parent won't change (except when the clone is
5814          * flattened, already handled that).  So we only need to
5815          * record the parent spec we have not already done so.
5816          */
5817         if (!rbd_dev->parent_spec) {
5818                 parent_spec->pool_id = pii.pool_id;
5819                 if (pii.pool_ns && *pii.pool_ns) {
5820                         parent_spec->pool_ns = pii.pool_ns;
5821                         pii.pool_ns = NULL;
5822                 }
5823                 parent_spec->image_id = pii.image_id;
5824                 pii.image_id = NULL;
5825                 parent_spec->snap_id = pii.snap_id;
5826
5827                 rbd_dev->parent_spec = parent_spec;
5828                 parent_spec = NULL;     /* rbd_dev now owns this */
5829         }
5830
5831         /*
5832          * We always update the parent overlap.  If it's zero we issue
5833          * a warning, as we will proceed as if there was no parent.
5834          */
5835         if (!pii.overlap) {
5836                 if (parent_spec) {
5837                         /* refresh, careful to warn just once */
5838                         if (rbd_dev->parent_overlap)
5839                                 rbd_warn(rbd_dev,
5840                                     "clone now standalone (overlap became 0)");
5841                 } else {
5842                         /* initial probe */
5843                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5844                 }
5845         }
5846         rbd_dev->parent_overlap = pii.overlap;
5847
5848 out:
5849         ret = 0;
5850 out_err:
5851         kfree(pii.pool_ns);
5852         kfree(pii.image_id);
5853         rbd_spec_put(parent_spec);
5854         return ret;
5855 }
5856
5857 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5858 {
5859         struct {
5860                 __le64 stripe_unit;
5861                 __le64 stripe_count;
5862         } __attribute__ ((packed)) striping_info_buf = { 0 };
5863         size_t size = sizeof (striping_info_buf);
5864         void *p;
5865         int ret;
5866
5867         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5868                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5869                                 NULL, 0, &striping_info_buf, size);
5870         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5871         if (ret < 0)
5872                 return ret;
5873         if (ret < size)
5874                 return -ERANGE;
5875
5876         p = &striping_info_buf;
5877         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5878         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5879         return 0;
5880 }
5881
5882 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5883 {
5884         __le64 data_pool_id;
5885         int ret;
5886
5887         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5888                                   &rbd_dev->header_oloc, "get_data_pool",
5889                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5890         if (ret < 0)
5891                 return ret;
5892         if (ret < sizeof(data_pool_id))
5893                 return -EBADMSG;
5894
5895         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5896         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5897         return 0;
5898 }
5899
5900 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5901 {
5902         CEPH_DEFINE_OID_ONSTACK(oid);
5903         size_t image_id_size;
5904         char *image_id;
5905         void *p;
5906         void *end;
5907         size_t size;
5908         void *reply_buf = NULL;
5909         size_t len = 0;
5910         char *image_name = NULL;
5911         int ret;
5912
5913         rbd_assert(!rbd_dev->spec->image_name);
5914
5915         len = strlen(rbd_dev->spec->image_id);
5916         image_id_size = sizeof (__le32) + len;
5917         image_id = kmalloc(image_id_size, GFP_KERNEL);
5918         if (!image_id)
5919                 return NULL;
5920
5921         p = image_id;
5922         end = image_id + image_id_size;
5923         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5924
5925         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5926         reply_buf = kmalloc(size, GFP_KERNEL);
5927         if (!reply_buf)
5928                 goto out;
5929
5930         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5931         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5932                                   "dir_get_name", image_id, image_id_size,
5933                                   reply_buf, size);
5934         if (ret < 0)
5935                 goto out;
5936         p = reply_buf;
5937         end = reply_buf + ret;
5938
5939         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5940         if (IS_ERR(image_name))
5941                 image_name = NULL;
5942         else
5943                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5944 out:
5945         kfree(reply_buf);
5946         kfree(image_id);
5947
5948         return image_name;
5949 }
5950
5951 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5952 {
5953         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5954         const char *snap_name;
5955         u32 which = 0;
5956
5957         /* Skip over names until we find the one we are looking for */
5958
5959         snap_name = rbd_dev->header.snap_names;
5960         while (which < snapc->num_snaps) {
5961                 if (!strcmp(name, snap_name))
5962                         return snapc->snaps[which];
5963                 snap_name += strlen(snap_name) + 1;
5964                 which++;
5965         }
5966         return CEPH_NOSNAP;
5967 }
5968
5969 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5970 {
5971         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5972         u32 which;
5973         bool found = false;
5974         u64 snap_id;
5975
5976         for (which = 0; !found && which < snapc->num_snaps; which++) {
5977                 const char *snap_name;
5978
5979                 snap_id = snapc->snaps[which];
5980                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5981                 if (IS_ERR(snap_name)) {
5982                         /* ignore no-longer existing snapshots */
5983                         if (PTR_ERR(snap_name) == -ENOENT)
5984                                 continue;
5985                         else
5986                                 break;
5987                 }
5988                 found = !strcmp(name, snap_name);
5989                 kfree(snap_name);
5990         }
5991         return found ? snap_id : CEPH_NOSNAP;
5992 }
5993
5994 /*
5995  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5996  * no snapshot by that name is found, or if an error occurs.
5997  */
5998 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5999 {
6000         if (rbd_dev->image_format == 1)
6001                 return rbd_v1_snap_id_by_name(rbd_dev, name);
6002
6003         return rbd_v2_snap_id_by_name(rbd_dev, name);
6004 }
6005
6006 /*
6007  * An image being mapped will have everything but the snap id.
6008  */
6009 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6010 {
6011         struct rbd_spec *spec = rbd_dev->spec;
6012
6013         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6014         rbd_assert(spec->image_id && spec->image_name);
6015         rbd_assert(spec->snap_name);
6016
6017         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6018                 u64 snap_id;
6019
6020                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6021                 if (snap_id == CEPH_NOSNAP)
6022                         return -ENOENT;
6023
6024                 spec->snap_id = snap_id;
6025         } else {
6026                 spec->snap_id = CEPH_NOSNAP;
6027         }
6028
6029         return 0;
6030 }
6031
6032 /*
6033  * A parent image will have all ids but none of the names.
6034  *
6035  * All names in an rbd spec are dynamically allocated.  It's OK if we
6036  * can't figure out the name for an image id.
6037  */
6038 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6039 {
6040         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6041         struct rbd_spec *spec = rbd_dev->spec;
6042         const char *pool_name;
6043         const char *image_name;
6044         const char *snap_name;
6045         int ret;
6046
6047         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6048         rbd_assert(spec->image_id);
6049         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6050
6051         /* Get the pool name; we have to make our own copy of this */
6052
6053         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6054         if (!pool_name) {
6055                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6056                 return -EIO;
6057         }
6058         pool_name = kstrdup(pool_name, GFP_KERNEL);
6059         if (!pool_name)
6060                 return -ENOMEM;
6061
6062         /* Fetch the image name; tolerate failure here */
6063
6064         image_name = rbd_dev_image_name(rbd_dev);
6065         if (!image_name)
6066                 rbd_warn(rbd_dev, "unable to get image name");
6067
6068         /* Fetch the snapshot name */
6069
6070         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6071         if (IS_ERR(snap_name)) {
6072                 ret = PTR_ERR(snap_name);
6073                 goto out_err;
6074         }
6075
6076         spec->pool_name = pool_name;
6077         spec->image_name = image_name;
6078         spec->snap_name = snap_name;
6079
6080         return 0;
6081
6082 out_err:
6083         kfree(image_name);
6084         kfree(pool_name);
6085         return ret;
6086 }
6087
6088 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6089 {
6090         size_t size;
6091         int ret;
6092         void *reply_buf;
6093         void *p;
6094         void *end;
6095         u64 seq;
6096         u32 snap_count;
6097         struct ceph_snap_context *snapc;
6098         u32 i;
6099
6100         /*
6101          * We'll need room for the seq value (maximum snapshot id),
6102          * snapshot count, and array of that many snapshot ids.
6103          * For now we have a fixed upper limit on the number we're
6104          * prepared to receive.
6105          */
6106         size = sizeof (__le64) + sizeof (__le32) +
6107                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6108         reply_buf = kzalloc(size, GFP_KERNEL);
6109         if (!reply_buf)
6110                 return -ENOMEM;
6111
6112         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6113                                   &rbd_dev->header_oloc, "get_snapcontext",
6114                                   NULL, 0, reply_buf, size);
6115         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6116         if (ret < 0)
6117                 goto out;
6118
6119         p = reply_buf;
6120         end = reply_buf + ret;
6121         ret = -ERANGE;
6122         ceph_decode_64_safe(&p, end, seq, out);
6123         ceph_decode_32_safe(&p, end, snap_count, out);
6124
6125         /*
6126          * Make sure the reported number of snapshot ids wouldn't go
6127          * beyond the end of our buffer.  But before checking that,
6128          * make sure the computed size of the snapshot context we
6129          * allocate is representable in a size_t.
6130          */
6131         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6132                                  / sizeof (u64)) {
6133                 ret = -EINVAL;
6134                 goto out;
6135         }
6136         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6137                 goto out;
6138         ret = 0;
6139
6140         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6141         if (!snapc) {
6142                 ret = -ENOMEM;
6143                 goto out;
6144         }
6145         snapc->seq = seq;
6146         for (i = 0; i < snap_count; i++)
6147                 snapc->snaps[i] = ceph_decode_64(&p);
6148
6149         ceph_put_snap_context(rbd_dev->header.snapc);
6150         rbd_dev->header.snapc = snapc;
6151
6152         dout("  snap context seq = %llu, snap_count = %u\n",
6153                 (unsigned long long)seq, (unsigned int)snap_count);
6154 out:
6155         kfree(reply_buf);
6156
6157         return ret;
6158 }
6159
6160 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6161                                         u64 snap_id)
6162 {
6163         size_t size;
6164         void *reply_buf;
6165         __le64 snapid;
6166         int ret;
6167         void *p;
6168         void *end;
6169         char *snap_name;
6170
6171         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6172         reply_buf = kmalloc(size, GFP_KERNEL);
6173         if (!reply_buf)
6174                 return ERR_PTR(-ENOMEM);
6175
6176         snapid = cpu_to_le64(snap_id);
6177         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6178                                   &rbd_dev->header_oloc, "get_snapshot_name",
6179                                   &snapid, sizeof(snapid), reply_buf, size);
6180         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6181         if (ret < 0) {
6182                 snap_name = ERR_PTR(ret);
6183                 goto out;
6184         }
6185
6186         p = reply_buf;
6187         end = reply_buf + ret;
6188         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6189         if (IS_ERR(snap_name))
6190                 goto out;
6191
6192         dout("  snap_id 0x%016llx snap_name = %s\n",
6193                 (unsigned long long)snap_id, snap_name);
6194 out:
6195         kfree(reply_buf);
6196
6197         return snap_name;
6198 }
6199
6200 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6201 {
6202         bool first_time = rbd_dev->header.object_prefix == NULL;
6203         int ret;
6204
6205         ret = rbd_dev_v2_image_size(rbd_dev);
6206         if (ret)
6207                 return ret;
6208
6209         if (first_time) {
6210                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6211                 if (ret)
6212                         return ret;
6213         }
6214
6215         ret = rbd_dev_v2_snap_context(rbd_dev);
6216         if (ret && first_time) {
6217                 kfree(rbd_dev->header.object_prefix);
6218                 rbd_dev->header.object_prefix = NULL;
6219         }
6220
6221         return ret;
6222 }
6223
6224 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6225 {
6226         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6227
6228         if (rbd_dev->image_format == 1)
6229                 return rbd_dev_v1_header_info(rbd_dev);
6230
6231         return rbd_dev_v2_header_info(rbd_dev);
6232 }
6233
6234 /*
6235  * Skips over white space at *buf, and updates *buf to point to the
6236  * first found non-space character (if any). Returns the length of
6237  * the token (string of non-white space characters) found.  Note
6238  * that *buf must be terminated with '\0'.
6239  */
6240 static inline size_t next_token(const char **buf)
6241 {
6242         /*
6243         * These are the characters that produce nonzero for
6244         * isspace() in the "C" and "POSIX" locales.
6245         */
6246         const char *spaces = " \f\n\r\t\v";
6247
6248         *buf += strspn(*buf, spaces);   /* Find start of token */
6249
6250         return strcspn(*buf, spaces);   /* Return token length */
6251 }
6252
6253 /*
6254  * Finds the next token in *buf, dynamically allocates a buffer big
6255  * enough to hold a copy of it, and copies the token into the new
6256  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6257  * that a duplicate buffer is created even for a zero-length token.
6258  *
6259  * Returns a pointer to the newly-allocated duplicate, or a null
6260  * pointer if memory for the duplicate was not available.  If
6261  * the lenp argument is a non-null pointer, the length of the token
6262  * (not including the '\0') is returned in *lenp.
6263  *
6264  * If successful, the *buf pointer will be updated to point beyond
6265  * the end of the found token.
6266  *
6267  * Note: uses GFP_KERNEL for allocation.
6268  */
6269 static inline char *dup_token(const char **buf, size_t *lenp)
6270 {
6271         char *dup;
6272         size_t len;
6273
6274         len = next_token(buf);
6275         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6276         if (!dup)
6277                 return NULL;
6278         *(dup + len) = '\0';
6279         *buf += len;
6280
6281         if (lenp)
6282                 *lenp = len;
6283
6284         return dup;
6285 }
6286
6287 static int rbd_parse_param(struct fs_parameter *param,
6288                             struct rbd_parse_opts_ctx *pctx)
6289 {
6290         struct rbd_options *opt = pctx->opts;
6291         struct fs_parse_result result;
6292         struct p_log log = {.prefix = "rbd"};
6293         int token, ret;
6294
6295         ret = ceph_parse_param(param, pctx->copts, NULL);
6296         if (ret != -ENOPARAM)
6297                 return ret;
6298
6299         token = __fs_parse(&log, rbd_parameters, param, &result);
6300         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6301         if (token < 0) {
6302                 if (token == -ENOPARAM)
6303                         return inval_plog(&log, "Unknown parameter '%s'",
6304                                           param->key);
6305                 return token;
6306         }
6307
6308         switch (token) {
6309         case Opt_queue_depth:
6310                 if (result.uint_32 < 1)
6311                         goto out_of_range;
6312                 opt->queue_depth = result.uint_32;
6313                 break;
6314         case Opt_alloc_size:
6315                 if (result.uint_32 < SECTOR_SIZE)
6316                         goto out_of_range;
6317                 if (!is_power_of_2(result.uint_32))
6318                         return inval_plog(&log, "alloc_size must be a power of 2");
6319                 opt->alloc_size = result.uint_32;
6320                 break;
6321         case Opt_lock_timeout:
6322                 /* 0 is "wait forever" (i.e. infinite timeout) */
6323                 if (result.uint_32 > INT_MAX / 1000)
6324                         goto out_of_range;
6325                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6326                 break;
6327         case Opt_pool_ns:
6328                 kfree(pctx->spec->pool_ns);
6329                 pctx->spec->pool_ns = param->string;
6330                 param->string = NULL;
6331                 break;
6332         case Opt_compression_hint:
6333                 switch (result.uint_32) {
6334                 case Opt_compression_hint_none:
6335                         opt->alloc_hint_flags &=
6336                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6337                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6338                         break;
6339                 case Opt_compression_hint_compressible:
6340                         opt->alloc_hint_flags |=
6341                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6342                         opt->alloc_hint_flags &=
6343                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6344                         break;
6345                 case Opt_compression_hint_incompressible:
6346                         opt->alloc_hint_flags |=
6347                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6348                         opt->alloc_hint_flags &=
6349                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6350                         break;
6351                 default:
6352                         BUG();
6353                 }
6354                 break;
6355         case Opt_read_only:
6356                 opt->read_only = true;
6357                 break;
6358         case Opt_read_write:
6359                 opt->read_only = false;
6360                 break;
6361         case Opt_lock_on_read:
6362                 opt->lock_on_read = true;
6363                 break;
6364         case Opt_exclusive:
6365                 opt->exclusive = true;
6366                 break;
6367         case Opt_notrim:
6368                 opt->trim = false;
6369                 break;
6370         default:
6371                 BUG();
6372         }
6373
6374         return 0;
6375
6376 out_of_range:
6377         return inval_plog(&log, "%s out of range", param->key);
6378 }
6379
6380 /*
6381  * This duplicates most of generic_parse_monolithic(), untying it from
6382  * fs_context and skipping standard superblock and security options.
6383  */
6384 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6385 {
6386         char *key;
6387         int ret = 0;
6388
6389         dout("%s '%s'\n", __func__, options);
6390         while ((key = strsep(&options, ",")) != NULL) {
6391                 if (*key) {
6392                         struct fs_parameter param = {
6393                                 .key    = key,
6394                                 .type   = fs_value_is_flag,
6395                         };
6396                         char *value = strchr(key, '=');
6397                         size_t v_len = 0;
6398
6399                         if (value) {
6400                                 if (value == key)
6401                                         continue;
6402                                 *value++ = 0;
6403                                 v_len = strlen(value);
6404                                 param.string = kmemdup_nul(value, v_len,
6405                                                            GFP_KERNEL);
6406                                 if (!param.string)
6407                                         return -ENOMEM;
6408                                 param.type = fs_value_is_string;
6409                         }
6410                         param.size = v_len;
6411
6412                         ret = rbd_parse_param(&param, pctx);
6413                         kfree(param.string);
6414                         if (ret)
6415                                 break;
6416                 }
6417         }
6418
6419         return ret;
6420 }
6421
6422 /*
6423  * Parse the options provided for an "rbd add" (i.e., rbd image
6424  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6425  * and the data written is passed here via a NUL-terminated buffer.
6426  * Returns 0 if successful or an error code otherwise.
6427  *
6428  * The information extracted from these options is recorded in
6429  * the other parameters which return dynamically-allocated
6430  * structures:
6431  *  ceph_opts
6432  *      The address of a pointer that will refer to a ceph options
6433  *      structure.  Caller must release the returned pointer using
6434  *      ceph_destroy_options() when it is no longer needed.
6435  *  rbd_opts
6436  *      Address of an rbd options pointer.  Fully initialized by
6437  *      this function; caller must release with kfree().
6438  *  spec
6439  *      Address of an rbd image specification pointer.  Fully
6440  *      initialized by this function based on parsed options.
6441  *      Caller must release with rbd_spec_put().
6442  *
6443  * The options passed take this form:
6444  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6445  * where:
6446  *  <mon_addrs>
6447  *      A comma-separated list of one or more monitor addresses.
6448  *      A monitor address is an ip address, optionally followed
6449  *      by a port number (separated by a colon).
6450  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6451  *  <options>
6452  *      A comma-separated list of ceph and/or rbd options.
6453  *  <pool_name>
6454  *      The name of the rados pool containing the rbd image.
6455  *  <image_name>
6456  *      The name of the image in that pool to map.
6457  *  <snap_id>
6458  *      An optional snapshot id.  If provided, the mapping will
6459  *      present data from the image at the time that snapshot was
6460  *      created.  The image head is used if no snapshot id is
6461  *      provided.  Snapshot mappings are always read-only.
6462  */
6463 static int rbd_add_parse_args(const char *buf,
6464                                 struct ceph_options **ceph_opts,
6465                                 struct rbd_options **opts,
6466                                 struct rbd_spec **rbd_spec)
6467 {
6468         size_t len;
6469         char *options;
6470         const char *mon_addrs;
6471         char *snap_name;
6472         size_t mon_addrs_size;
6473         struct rbd_parse_opts_ctx pctx = { 0 };
6474         int ret;
6475
6476         /* The first four tokens are required */
6477
6478         len = next_token(&buf);
6479         if (!len) {
6480                 rbd_warn(NULL, "no monitor address(es) provided");
6481                 return -EINVAL;
6482         }
6483         mon_addrs = buf;
6484         mon_addrs_size = len;
6485         buf += len;
6486
6487         ret = -EINVAL;
6488         options = dup_token(&buf, NULL);
6489         if (!options)
6490                 return -ENOMEM;
6491         if (!*options) {
6492                 rbd_warn(NULL, "no options provided");
6493                 goto out_err;
6494         }
6495
6496         pctx.spec = rbd_spec_alloc();
6497         if (!pctx.spec)
6498                 goto out_mem;
6499
6500         pctx.spec->pool_name = dup_token(&buf, NULL);
6501         if (!pctx.spec->pool_name)
6502                 goto out_mem;
6503         if (!*pctx.spec->pool_name) {
6504                 rbd_warn(NULL, "no pool name provided");
6505                 goto out_err;
6506         }
6507
6508         pctx.spec->image_name = dup_token(&buf, NULL);
6509         if (!pctx.spec->image_name)
6510                 goto out_mem;
6511         if (!*pctx.spec->image_name) {
6512                 rbd_warn(NULL, "no image name provided");
6513                 goto out_err;
6514         }
6515
6516         /*
6517          * Snapshot name is optional; default is to use "-"
6518          * (indicating the head/no snapshot).
6519          */
6520         len = next_token(&buf);
6521         if (!len) {
6522                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6523                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6524         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6525                 ret = -ENAMETOOLONG;
6526                 goto out_err;
6527         }
6528         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6529         if (!snap_name)
6530                 goto out_mem;
6531         *(snap_name + len) = '\0';
6532         pctx.spec->snap_name = snap_name;
6533
6534         pctx.copts = ceph_alloc_options();
6535         if (!pctx.copts)
6536                 goto out_mem;
6537
6538         /* Initialize all rbd options to the defaults */
6539
6540         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6541         if (!pctx.opts)
6542                 goto out_mem;
6543
6544         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6545         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6546         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6547         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6548         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6549         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6550         pctx.opts->trim = RBD_TRIM_DEFAULT;
6551
6552         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6553         if (ret)
6554                 goto out_err;
6555
6556         ret = rbd_parse_options(options, &pctx);
6557         if (ret)
6558                 goto out_err;
6559
6560         *ceph_opts = pctx.copts;
6561         *opts = pctx.opts;
6562         *rbd_spec = pctx.spec;
6563         kfree(options);
6564         return 0;
6565
6566 out_mem:
6567         ret = -ENOMEM;
6568 out_err:
6569         kfree(pctx.opts);
6570         ceph_destroy_options(pctx.copts);
6571         rbd_spec_put(pctx.spec);
6572         kfree(options);
6573         return ret;
6574 }
6575
6576 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6577 {
6578         down_write(&rbd_dev->lock_rwsem);
6579         if (__rbd_is_lock_owner(rbd_dev))
6580                 __rbd_release_lock(rbd_dev);
6581         up_write(&rbd_dev->lock_rwsem);
6582 }
6583
6584 /*
6585  * If the wait is interrupted, an error is returned even if the lock
6586  * was successfully acquired.  rbd_dev_image_unlock() will release it
6587  * if needed.
6588  */
6589 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6590 {
6591         long ret;
6592
6593         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6594                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6595                         return 0;
6596
6597                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6598                 return -EINVAL;
6599         }
6600
6601         if (rbd_is_ro(rbd_dev))
6602                 return 0;
6603
6604         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6605         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6606         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6607                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6608         if (ret > 0) {
6609                 ret = rbd_dev->acquire_err;
6610         } else {
6611                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6612                 if (!ret)
6613                         ret = -ETIMEDOUT;
6614         }
6615
6616         if (ret) {
6617                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6618                 return ret;
6619         }
6620
6621         /*
6622          * The lock may have been released by now, unless automatic lock
6623          * transitions are disabled.
6624          */
6625         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6626         return 0;
6627 }
6628
6629 /*
6630  * An rbd format 2 image has a unique identifier, distinct from the
6631  * name given to it by the user.  Internally, that identifier is
6632  * what's used to specify the names of objects related to the image.
6633  *
6634  * A special "rbd id" object is used to map an rbd image name to its
6635  * id.  If that object doesn't exist, then there is no v2 rbd image
6636  * with the supplied name.
6637  *
6638  * This function will record the given rbd_dev's image_id field if
6639  * it can be determined, and in that case will return 0.  If any
6640  * errors occur a negative errno will be returned and the rbd_dev's
6641  * image_id field will be unchanged (and should be NULL).
6642  */
6643 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6644 {
6645         int ret;
6646         size_t size;
6647         CEPH_DEFINE_OID_ONSTACK(oid);
6648         void *response;
6649         char *image_id;
6650
6651         /*
6652          * When probing a parent image, the image id is already
6653          * known (and the image name likely is not).  There's no
6654          * need to fetch the image id again in this case.  We
6655          * do still need to set the image format though.
6656          */
6657         if (rbd_dev->spec->image_id) {
6658                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6659
6660                 return 0;
6661         }
6662
6663         /*
6664          * First, see if the format 2 image id file exists, and if
6665          * so, get the image's persistent id from it.
6666          */
6667         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6668                                rbd_dev->spec->image_name);
6669         if (ret)
6670                 return ret;
6671
6672         dout("rbd id object name is %s\n", oid.name);
6673
6674         /* Response will be an encoded string, which includes a length */
6675         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6676         response = kzalloc(size, GFP_NOIO);
6677         if (!response) {
6678                 ret = -ENOMEM;
6679                 goto out;
6680         }
6681
6682         /* If it doesn't exist we'll assume it's a format 1 image */
6683
6684         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6685                                   "get_id", NULL, 0,
6686                                   response, size);
6687         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6688         if (ret == -ENOENT) {
6689                 image_id = kstrdup("", GFP_KERNEL);
6690                 ret = image_id ? 0 : -ENOMEM;
6691                 if (!ret)
6692                         rbd_dev->image_format = 1;
6693         } else if (ret >= 0) {
6694                 void *p = response;
6695
6696                 image_id = ceph_extract_encoded_string(&p, p + ret,
6697                                                 NULL, GFP_NOIO);
6698                 ret = PTR_ERR_OR_ZERO(image_id);
6699                 if (!ret)
6700                         rbd_dev->image_format = 2;
6701         }
6702
6703         if (!ret) {
6704                 rbd_dev->spec->image_id = image_id;
6705                 dout("image_id is %s\n", image_id);
6706         }
6707 out:
6708         kfree(response);
6709         ceph_oid_destroy(&oid);
6710         return ret;
6711 }
6712
6713 /*
6714  * Undo whatever state changes are made by v1 or v2 header info
6715  * call.
6716  */
6717 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6718 {
6719         struct rbd_image_header *header;
6720
6721         rbd_dev_parent_put(rbd_dev);
6722         rbd_object_map_free(rbd_dev);
6723         rbd_dev_mapping_clear(rbd_dev);
6724
6725         /* Free dynamic fields from the header, then zero it out */
6726
6727         header = &rbd_dev->header;
6728         ceph_put_snap_context(header->snapc);
6729         kfree(header->snap_sizes);
6730         kfree(header->snap_names);
6731         kfree(header->object_prefix);
6732         memset(header, 0, sizeof (*header));
6733 }
6734
6735 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6736 {
6737         int ret;
6738
6739         ret = rbd_dev_v2_object_prefix(rbd_dev);
6740         if (ret)
6741                 goto out_err;
6742
6743         /*
6744          * Get the and check features for the image.  Currently the
6745          * features are assumed to never change.
6746          */
6747         ret = rbd_dev_v2_features(rbd_dev);
6748         if (ret)
6749                 goto out_err;
6750
6751         /* If the image supports fancy striping, get its parameters */
6752
6753         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6754                 ret = rbd_dev_v2_striping_info(rbd_dev);
6755                 if (ret < 0)
6756                         goto out_err;
6757         }
6758
6759         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6760                 ret = rbd_dev_v2_data_pool(rbd_dev);
6761                 if (ret)
6762                         goto out_err;
6763         }
6764
6765         rbd_init_layout(rbd_dev);
6766         return 0;
6767
6768 out_err:
6769         rbd_dev->header.features = 0;
6770         kfree(rbd_dev->header.object_prefix);
6771         rbd_dev->header.object_prefix = NULL;
6772         return ret;
6773 }
6774
6775 /*
6776  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6777  * rbd_dev_image_probe() recursion depth, which means it's also the
6778  * length of the already discovered part of the parent chain.
6779  */
6780 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6781 {
6782         struct rbd_device *parent = NULL;
6783         int ret;
6784
6785         if (!rbd_dev->parent_spec)
6786                 return 0;
6787
6788         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6789                 pr_info("parent chain is too long (%d)\n", depth);
6790                 ret = -EINVAL;
6791                 goto out_err;
6792         }
6793
6794         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6795         if (!parent) {
6796                 ret = -ENOMEM;
6797                 goto out_err;
6798         }
6799
6800         /*
6801          * Images related by parent/child relationships always share
6802          * rbd_client and spec/parent_spec, so bump their refcounts.
6803          */
6804         __rbd_get_client(rbd_dev->rbd_client);
6805         rbd_spec_get(rbd_dev->parent_spec);
6806
6807         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6808
6809         ret = rbd_dev_image_probe(parent, depth);
6810         if (ret < 0)
6811                 goto out_err;
6812
6813         rbd_dev->parent = parent;
6814         atomic_set(&rbd_dev->parent_ref, 1);
6815         return 0;
6816
6817 out_err:
6818         rbd_dev_unparent(rbd_dev);
6819         rbd_dev_destroy(parent);
6820         return ret;
6821 }
6822
6823 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6824 {
6825         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6826         rbd_free_disk(rbd_dev);
6827         if (!single_major)
6828                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6829 }
6830
6831 /*
6832  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6833  * upon return.
6834  */
6835 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6836 {
6837         int ret;
6838
6839         /* Record our major and minor device numbers. */
6840
6841         if (!single_major) {
6842                 ret = register_blkdev(0, rbd_dev->name);
6843                 if (ret < 0)
6844                         goto err_out_unlock;
6845
6846                 rbd_dev->major = ret;
6847                 rbd_dev->minor = 0;
6848         } else {
6849                 rbd_dev->major = rbd_major;
6850                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6851         }
6852
6853         /* Set up the blkdev mapping. */
6854
6855         ret = rbd_init_disk(rbd_dev);
6856         if (ret)
6857                 goto err_out_blkdev;
6858
6859         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6860         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6861
6862         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6863         if (ret)
6864                 goto err_out_disk;
6865
6866         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6867         up_write(&rbd_dev->header_rwsem);
6868         return 0;
6869
6870 err_out_disk:
6871         rbd_free_disk(rbd_dev);
6872 err_out_blkdev:
6873         if (!single_major)
6874                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6875 err_out_unlock:
6876         up_write(&rbd_dev->header_rwsem);
6877         return ret;
6878 }
6879
6880 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6881 {
6882         struct rbd_spec *spec = rbd_dev->spec;
6883         int ret;
6884
6885         /* Record the header object name for this rbd image. */
6886
6887         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6888         if (rbd_dev->image_format == 1)
6889                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6890                                        spec->image_name, RBD_SUFFIX);
6891         else
6892                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6893                                        RBD_HEADER_PREFIX, spec->image_id);
6894
6895         return ret;
6896 }
6897
6898 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6899 {
6900         if (!is_snap) {
6901                 pr_info("image %s/%s%s%s does not exist\n",
6902                         rbd_dev->spec->pool_name,
6903                         rbd_dev->spec->pool_ns ?: "",
6904                         rbd_dev->spec->pool_ns ? "/" : "",
6905                         rbd_dev->spec->image_name);
6906         } else {
6907                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6908                         rbd_dev->spec->pool_name,
6909                         rbd_dev->spec->pool_ns ?: "",
6910                         rbd_dev->spec->pool_ns ? "/" : "",
6911                         rbd_dev->spec->image_name,
6912                         rbd_dev->spec->snap_name);
6913         }
6914 }
6915
6916 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6917 {
6918         if (!rbd_is_ro(rbd_dev))
6919                 rbd_unregister_watch(rbd_dev);
6920
6921         rbd_dev_unprobe(rbd_dev);
6922         rbd_dev->image_format = 0;
6923         kfree(rbd_dev->spec->image_id);
6924         rbd_dev->spec->image_id = NULL;
6925 }
6926
6927 /*
6928  * Probe for the existence of the header object for the given rbd
6929  * device.  If this image is the one being mapped (i.e., not a
6930  * parent), initiate a watch on its header object before using that
6931  * object to get detailed information about the rbd image.
6932  *
6933  * On success, returns with header_rwsem held for write if called
6934  * with @depth == 0.
6935  */
6936 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6937 {
6938         bool need_watch = !rbd_is_ro(rbd_dev);
6939         int ret;
6940
6941         /*
6942          * Get the id from the image id object.  Unless there's an
6943          * error, rbd_dev->spec->image_id will be filled in with
6944          * a dynamically-allocated string, and rbd_dev->image_format
6945          * will be set to either 1 or 2.
6946          */
6947         ret = rbd_dev_image_id(rbd_dev);
6948         if (ret)
6949                 return ret;
6950
6951         ret = rbd_dev_header_name(rbd_dev);
6952         if (ret)
6953                 goto err_out_format;
6954
6955         if (need_watch) {
6956                 ret = rbd_register_watch(rbd_dev);
6957                 if (ret) {
6958                         if (ret == -ENOENT)
6959                                 rbd_print_dne(rbd_dev, false);
6960                         goto err_out_format;
6961                 }
6962         }
6963
6964         if (!depth)
6965                 down_write(&rbd_dev->header_rwsem);
6966
6967         ret = rbd_dev_header_info(rbd_dev);
6968         if (ret) {
6969                 if (ret == -ENOENT && !need_watch)
6970                         rbd_print_dne(rbd_dev, false);
6971                 goto err_out_probe;
6972         }
6973
6974         /*
6975          * If this image is the one being mapped, we have pool name and
6976          * id, image name and id, and snap name - need to fill snap id.
6977          * Otherwise this is a parent image, identified by pool, image
6978          * and snap ids - need to fill in names for those ids.
6979          */
6980         if (!depth)
6981                 ret = rbd_spec_fill_snap_id(rbd_dev);
6982         else
6983                 ret = rbd_spec_fill_names(rbd_dev);
6984         if (ret) {
6985                 if (ret == -ENOENT)
6986                         rbd_print_dne(rbd_dev, true);
6987                 goto err_out_probe;
6988         }
6989
6990         ret = rbd_dev_mapping_set(rbd_dev);
6991         if (ret)
6992                 goto err_out_probe;
6993
6994         if (rbd_is_snap(rbd_dev) &&
6995             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6996                 ret = rbd_object_map_load(rbd_dev);
6997                 if (ret)
6998                         goto err_out_probe;
6999         }
7000
7001         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7002                 ret = rbd_dev_v2_parent_info(rbd_dev);
7003                 if (ret)
7004                         goto err_out_probe;
7005         }
7006
7007         ret = rbd_dev_probe_parent(rbd_dev, depth);
7008         if (ret)
7009                 goto err_out_probe;
7010
7011         dout("discovered format %u image, header name is %s\n",
7012                 rbd_dev->image_format, rbd_dev->header_oid.name);
7013         return 0;
7014
7015 err_out_probe:
7016         if (!depth)
7017                 up_write(&rbd_dev->header_rwsem);
7018         if (need_watch)
7019                 rbd_unregister_watch(rbd_dev);
7020         rbd_dev_unprobe(rbd_dev);
7021 err_out_format:
7022         rbd_dev->image_format = 0;
7023         kfree(rbd_dev->spec->image_id);
7024         rbd_dev->spec->image_id = NULL;
7025         return ret;
7026 }
7027
7028 static ssize_t do_rbd_add(struct bus_type *bus,
7029                           const char *buf,
7030                           size_t count)
7031 {
7032         struct rbd_device *rbd_dev = NULL;
7033         struct ceph_options *ceph_opts = NULL;
7034         struct rbd_options *rbd_opts = NULL;
7035         struct rbd_spec *spec = NULL;
7036         struct rbd_client *rbdc;
7037         int rc;
7038
7039         if (!capable(CAP_SYS_ADMIN))
7040                 return -EPERM;
7041
7042         if (!try_module_get(THIS_MODULE))
7043                 return -ENODEV;
7044
7045         /* parse add command */
7046         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7047         if (rc < 0)
7048                 goto out;
7049
7050         rbdc = rbd_get_client(ceph_opts);
7051         if (IS_ERR(rbdc)) {
7052                 rc = PTR_ERR(rbdc);
7053                 goto err_out_args;
7054         }
7055
7056         /* pick the pool */
7057         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7058         if (rc < 0) {
7059                 if (rc == -ENOENT)
7060                         pr_info("pool %s does not exist\n", spec->pool_name);
7061                 goto err_out_client;
7062         }
7063         spec->pool_id = (u64)rc;
7064
7065         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7066         if (!rbd_dev) {
7067                 rc = -ENOMEM;
7068                 goto err_out_client;
7069         }
7070         rbdc = NULL;            /* rbd_dev now owns this */
7071         spec = NULL;            /* rbd_dev now owns this */
7072         rbd_opts = NULL;        /* rbd_dev now owns this */
7073
7074         /* if we are mapping a snapshot it will be a read-only mapping */
7075         if (rbd_dev->opts->read_only ||
7076             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7077                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7078
7079         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7080         if (!rbd_dev->config_info) {
7081                 rc = -ENOMEM;
7082                 goto err_out_rbd_dev;
7083         }
7084
7085         rc = rbd_dev_image_probe(rbd_dev, 0);
7086         if (rc < 0)
7087                 goto err_out_rbd_dev;
7088
7089         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7090                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7091                          rbd_dev->layout.object_size);
7092                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7093         }
7094
7095         rc = rbd_dev_device_setup(rbd_dev);
7096         if (rc)
7097                 goto err_out_image_probe;
7098
7099         rc = rbd_add_acquire_lock(rbd_dev);
7100         if (rc)
7101                 goto err_out_image_lock;
7102
7103         /* Everything's ready.  Announce the disk to the world. */
7104
7105         rc = device_add(&rbd_dev->dev);
7106         if (rc)
7107                 goto err_out_image_lock;
7108
7109         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7110         /* see rbd_init_disk() */
7111         blk_put_queue(rbd_dev->disk->queue);
7112
7113         spin_lock(&rbd_dev_list_lock);
7114         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7115         spin_unlock(&rbd_dev_list_lock);
7116
7117         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7118                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7119                 rbd_dev->header.features);
7120         rc = count;
7121 out:
7122         module_put(THIS_MODULE);
7123         return rc;
7124
7125 err_out_image_lock:
7126         rbd_dev_image_unlock(rbd_dev);
7127         rbd_dev_device_release(rbd_dev);
7128 err_out_image_probe:
7129         rbd_dev_image_release(rbd_dev);
7130 err_out_rbd_dev:
7131         rbd_dev_destroy(rbd_dev);
7132 err_out_client:
7133         rbd_put_client(rbdc);
7134 err_out_args:
7135         rbd_spec_put(spec);
7136         kfree(rbd_opts);
7137         goto out;
7138 }
7139
7140 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7141 {
7142         if (single_major)
7143                 return -EINVAL;
7144
7145         return do_rbd_add(bus, buf, count);
7146 }
7147
7148 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7149                                       size_t count)
7150 {
7151         return do_rbd_add(bus, buf, count);
7152 }
7153
7154 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7155 {
7156         while (rbd_dev->parent) {
7157                 struct rbd_device *first = rbd_dev;
7158                 struct rbd_device *second = first->parent;
7159                 struct rbd_device *third;
7160
7161                 /*
7162                  * Follow to the parent with no grandparent and
7163                  * remove it.
7164                  */
7165                 while (second && (third = second->parent)) {
7166                         first = second;
7167                         second = third;
7168                 }
7169                 rbd_assert(second);
7170                 rbd_dev_image_release(second);
7171                 rbd_dev_destroy(second);
7172                 first->parent = NULL;
7173                 first->parent_overlap = 0;
7174
7175                 rbd_assert(first->parent_spec);
7176                 rbd_spec_put(first->parent_spec);
7177                 first->parent_spec = NULL;
7178         }
7179 }
7180
7181 static ssize_t do_rbd_remove(struct bus_type *bus,
7182                              const char *buf,
7183                              size_t count)
7184 {
7185         struct rbd_device *rbd_dev = NULL;
7186         struct list_head *tmp;
7187         int dev_id;
7188         char opt_buf[6];
7189         bool force = false;
7190         int ret;
7191
7192         if (!capable(CAP_SYS_ADMIN))
7193                 return -EPERM;
7194
7195         dev_id = -1;
7196         opt_buf[0] = '\0';
7197         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7198         if (dev_id < 0) {
7199                 pr_err("dev_id out of range\n");
7200                 return -EINVAL;
7201         }
7202         if (opt_buf[0] != '\0') {
7203                 if (!strcmp(opt_buf, "force")) {
7204                         force = true;
7205                 } else {
7206                         pr_err("bad remove option at '%s'\n", opt_buf);
7207                         return -EINVAL;
7208                 }
7209         }
7210
7211         ret = -ENOENT;
7212         spin_lock(&rbd_dev_list_lock);
7213         list_for_each(tmp, &rbd_dev_list) {
7214                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7215                 if (rbd_dev->dev_id == dev_id) {
7216                         ret = 0;
7217                         break;
7218                 }
7219         }
7220         if (!ret) {
7221                 spin_lock_irq(&rbd_dev->lock);
7222                 if (rbd_dev->open_count && !force)
7223                         ret = -EBUSY;
7224                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7225                                           &rbd_dev->flags))
7226                         ret = -EINPROGRESS;
7227                 spin_unlock_irq(&rbd_dev->lock);
7228         }
7229         spin_unlock(&rbd_dev_list_lock);
7230         if (ret)
7231                 return ret;
7232
7233         if (force) {
7234                 /*
7235                  * Prevent new IO from being queued and wait for existing
7236                  * IO to complete/fail.
7237                  */
7238                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7239                 blk_set_queue_dying(rbd_dev->disk->queue);
7240         }
7241
7242         del_gendisk(rbd_dev->disk);
7243         spin_lock(&rbd_dev_list_lock);
7244         list_del_init(&rbd_dev->node);
7245         spin_unlock(&rbd_dev_list_lock);
7246         device_del(&rbd_dev->dev);
7247
7248         rbd_dev_image_unlock(rbd_dev);
7249         rbd_dev_device_release(rbd_dev);
7250         rbd_dev_image_release(rbd_dev);
7251         rbd_dev_destroy(rbd_dev);
7252         return count;
7253 }
7254
7255 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7256 {
7257         if (single_major)
7258                 return -EINVAL;
7259
7260         return do_rbd_remove(bus, buf, count);
7261 }
7262
7263 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7264                                          size_t count)
7265 {
7266         return do_rbd_remove(bus, buf, count);
7267 }
7268
7269 /*
7270  * create control files in sysfs
7271  * /sys/bus/rbd/...
7272  */
7273 static int __init rbd_sysfs_init(void)
7274 {
7275         int ret;
7276
7277         ret = device_register(&rbd_root_dev);
7278         if (ret < 0)
7279                 return ret;
7280
7281         ret = bus_register(&rbd_bus_type);
7282         if (ret < 0)
7283                 device_unregister(&rbd_root_dev);
7284
7285         return ret;
7286 }
7287
7288 static void __exit rbd_sysfs_cleanup(void)
7289 {
7290         bus_unregister(&rbd_bus_type);
7291         device_unregister(&rbd_root_dev);
7292 }
7293
7294 static int __init rbd_slab_init(void)
7295 {
7296         rbd_assert(!rbd_img_request_cache);
7297         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7298         if (!rbd_img_request_cache)
7299                 return -ENOMEM;
7300
7301         rbd_assert(!rbd_obj_request_cache);
7302         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7303         if (!rbd_obj_request_cache)
7304                 goto out_err;
7305
7306         return 0;
7307
7308 out_err:
7309         kmem_cache_destroy(rbd_img_request_cache);
7310         rbd_img_request_cache = NULL;
7311         return -ENOMEM;
7312 }
7313
7314 static void rbd_slab_exit(void)
7315 {
7316         rbd_assert(rbd_obj_request_cache);
7317         kmem_cache_destroy(rbd_obj_request_cache);
7318         rbd_obj_request_cache = NULL;
7319
7320         rbd_assert(rbd_img_request_cache);
7321         kmem_cache_destroy(rbd_img_request_cache);
7322         rbd_img_request_cache = NULL;
7323 }
7324
7325 static int __init rbd_init(void)
7326 {
7327         int rc;
7328
7329         if (!libceph_compatible(NULL)) {
7330                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7331                 return -EINVAL;
7332         }
7333
7334         rc = rbd_slab_init();
7335         if (rc)
7336                 return rc;
7337
7338         /*
7339          * The number of active work items is limited by the number of
7340          * rbd devices * queue depth, so leave @max_active at default.
7341          */
7342         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7343         if (!rbd_wq) {
7344                 rc = -ENOMEM;
7345                 goto err_out_slab;
7346         }
7347
7348         if (single_major) {
7349                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7350                 if (rbd_major < 0) {
7351                         rc = rbd_major;
7352                         goto err_out_wq;
7353                 }
7354         }
7355
7356         rc = rbd_sysfs_init();
7357         if (rc)
7358                 goto err_out_blkdev;
7359
7360         if (single_major)
7361                 pr_info("loaded (major %d)\n", rbd_major);
7362         else
7363                 pr_info("loaded\n");
7364
7365         return 0;
7366
7367 err_out_blkdev:
7368         if (single_major)
7369                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7370 err_out_wq:
7371         destroy_workqueue(rbd_wq);
7372 err_out_slab:
7373         rbd_slab_exit();
7374         return rc;
7375 }
7376
7377 static void __exit rbd_exit(void)
7378 {
7379         ida_destroy(&rbd_dev_id_ida);
7380         rbd_sysfs_cleanup();
7381         if (single_major)
7382                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7383         destroy_workqueue(rbd_wq);
7384         rbd_slab_exit();
7385 }
7386
7387 module_init(rbd_init);
7388 module_exit(rbd_exit);
7389
7390 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7391 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7392 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7393 /* following authorship retained from original osdblk.c */
7394 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7395
7396 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7397 MODULE_LICENSE("GPL");