block: remove i_bdev
[linux-2.6-microblaze.git] / drivers / block / null_blk_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK             (PAGE_SECTORS - 1)
17
18 #define FREE_BATCH              16
19
20 #define TICKS_PER_SEC           50ULL
21 #define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
22
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27 #endif
28
29 static inline u64 mb_per_tick(int mbps)
30 {
31         return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32 }
33
34 /*
35  * Status flags for nullb_device.
36  *
37  * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
38  * UP:          Device is currently on and visible in userspace.
39  * THROTTLED:   Device is being throttled.
40  * CACHE:       Device is using a write-back cache.
41  */
42 enum nullb_device_flags {
43         NULLB_DEV_FL_CONFIGURED = 0,
44         NULLB_DEV_FL_UP         = 1,
45         NULLB_DEV_FL_THROTTLED  = 2,
46         NULLB_DEV_FL_CACHE      = 3,
47 };
48
49 #define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50 /*
51  * nullb_page is a page in memory for nullb devices.
52  *
53  * @page:       The page holding the data.
54  * @bitmap:     The bitmap represents which sector in the page has data.
55  *              Each bit represents one block size. For example, sector 8
56  *              will use the 7th bit
57  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58  * page is being flushing to storage. FREE means the cache page is freed and
59  * should be skipped from flushing to storage. Please see
60  * null_make_cache_space
61  */
62 struct nullb_page {
63         struct page *page;
64         DECLARE_BITMAP(bitmap, MAP_SZ);
65 };
66 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
67 #define NULLB_PAGE_FREE (MAP_SZ - 2)
68
69 static LIST_HEAD(nullb_list);
70 static struct mutex lock;
71 static int null_major;
72 static DEFINE_IDA(nullb_indexes);
73 static struct blk_mq_tag_set tag_set;
74
75 enum {
76         NULL_IRQ_NONE           = 0,
77         NULL_IRQ_SOFTIRQ        = 1,
78         NULL_IRQ_TIMER          = 2,
79 };
80
81 enum {
82         NULL_Q_BIO              = 0,
83         NULL_Q_RQ               = 1,
84         NULL_Q_MQ               = 2,
85 };
86
87 static int g_no_sched;
88 module_param_named(no_sched, g_no_sched, int, 0444);
89 MODULE_PARM_DESC(no_sched, "No io scheduler");
90
91 static int g_submit_queues = 1;
92 module_param_named(submit_queues, g_submit_queues, int, 0444);
93 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94
95 static int g_home_node = NUMA_NO_NODE;
96 module_param_named(home_node, g_home_node, int, 0444);
97 MODULE_PARM_DESC(home_node, "Home node for the device");
98
99 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100 /*
101  * For more details about fault injection, please refer to
102  * Documentation/fault-injection/fault-injection.rst.
103  */
104 static char g_timeout_str[80];
105 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107
108 static char g_requeue_str[80];
109 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111
112 static char g_init_hctx_str[80];
113 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115 #endif
116
117 static int g_queue_mode = NULL_Q_MQ;
118
119 static int null_param_store_val(const char *str, int *val, int min, int max)
120 {
121         int ret, new_val;
122
123         ret = kstrtoint(str, 10, &new_val);
124         if (ret)
125                 return -EINVAL;
126
127         if (new_val < min || new_val > max)
128                 return -EINVAL;
129
130         *val = new_val;
131         return 0;
132 }
133
134 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135 {
136         return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137 }
138
139 static const struct kernel_param_ops null_queue_mode_param_ops = {
140         .set    = null_set_queue_mode,
141         .get    = param_get_int,
142 };
143
144 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146
147 static int g_gb = 250;
148 module_param_named(gb, g_gb, int, 0444);
149 MODULE_PARM_DESC(gb, "Size in GB");
150
151 static int g_bs = 512;
152 module_param_named(bs, g_bs, int, 0444);
153 MODULE_PARM_DESC(bs, "Block size (in bytes)");
154
155 static unsigned int nr_devices = 1;
156 module_param(nr_devices, uint, 0444);
157 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
158
159 static bool g_blocking;
160 module_param_named(blocking, g_blocking, bool, 0444);
161 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
162
163 static bool shared_tags;
164 module_param(shared_tags, bool, 0444);
165 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
166
167 static bool g_shared_tag_bitmap;
168 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
169 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
170
171 static int g_irqmode = NULL_IRQ_SOFTIRQ;
172
173 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
174 {
175         return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
176                                         NULL_IRQ_TIMER);
177 }
178
179 static const struct kernel_param_ops null_irqmode_param_ops = {
180         .set    = null_set_irqmode,
181         .get    = param_get_int,
182 };
183
184 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
185 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
186
187 static unsigned long g_completion_nsec = 10000;
188 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
189 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
190
191 static int g_hw_queue_depth = 64;
192 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
193 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
194
195 static bool g_use_per_node_hctx;
196 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
197 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
198
199 static bool g_zoned;
200 module_param_named(zoned, g_zoned, bool, S_IRUGO);
201 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
202
203 static unsigned long g_zone_size = 256;
204 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
205 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
206
207 static unsigned long g_zone_capacity;
208 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
209 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
210
211 static unsigned int g_zone_nr_conv;
212 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
213 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
214
215 static unsigned int g_zone_max_open;
216 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
217 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
218
219 static unsigned int g_zone_max_active;
220 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
221 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
222
223 static struct nullb_device *null_alloc_dev(void);
224 static void null_free_dev(struct nullb_device *dev);
225 static void null_del_dev(struct nullb *nullb);
226 static int null_add_dev(struct nullb_device *dev);
227 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
228
229 static inline struct nullb_device *to_nullb_device(struct config_item *item)
230 {
231         return item ? container_of(item, struct nullb_device, item) : NULL;
232 }
233
234 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
235 {
236         return snprintf(page, PAGE_SIZE, "%u\n", val);
237 }
238
239 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
240         char *page)
241 {
242         return snprintf(page, PAGE_SIZE, "%lu\n", val);
243 }
244
245 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
246 {
247         return snprintf(page, PAGE_SIZE, "%u\n", val);
248 }
249
250 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
251         const char *page, size_t count)
252 {
253         unsigned int tmp;
254         int result;
255
256         result = kstrtouint(page, 0, &tmp);
257         if (result < 0)
258                 return result;
259
260         *val = tmp;
261         return count;
262 }
263
264 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
265         const char *page, size_t count)
266 {
267         int result;
268         unsigned long tmp;
269
270         result = kstrtoul(page, 0, &tmp);
271         if (result < 0)
272                 return result;
273
274         *val = tmp;
275         return count;
276 }
277
278 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
279         size_t count)
280 {
281         bool tmp;
282         int result;
283
284         result = kstrtobool(page,  &tmp);
285         if (result < 0)
286                 return result;
287
288         *val = tmp;
289         return count;
290 }
291
292 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
293 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)                            \
294 static ssize_t                                                          \
295 nullb_device_##NAME##_show(struct config_item *item, char *page)        \
296 {                                                                       \
297         return nullb_device_##TYPE##_attr_show(                         \
298                                 to_nullb_device(item)->NAME, page);     \
299 }                                                                       \
300 static ssize_t                                                          \
301 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
302                             size_t count)                               \
303 {                                                                       \
304         int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
305         struct nullb_device *dev = to_nullb_device(item);               \
306         TYPE new_value = 0;                                             \
307         int ret;                                                        \
308                                                                         \
309         ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
310         if (ret < 0)                                                    \
311                 return ret;                                             \
312         if (apply_fn)                                                   \
313                 ret = apply_fn(dev, new_value);                         \
314         else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags))        \
315                 ret = -EBUSY;                                           \
316         if (ret < 0)                                                    \
317                 return ret;                                             \
318         dev->NAME = new_value;                                          \
319         return count;                                                   \
320 }                                                                       \
321 CONFIGFS_ATTR(nullb_device_, NAME);
322
323 static int nullb_apply_submit_queues(struct nullb_device *dev,
324                                      unsigned int submit_queues)
325 {
326         struct nullb *nullb = dev->nullb;
327         struct blk_mq_tag_set *set;
328
329         if (!nullb)
330                 return 0;
331
332         /*
333          * Make sure that null_init_hctx() does not access nullb->queues[] past
334          * the end of that array.
335          */
336         if (submit_queues > nr_cpu_ids)
337                 return -EINVAL;
338         set = nullb->tag_set;
339         blk_mq_update_nr_hw_queues(set, submit_queues);
340         return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
341 }
342
343 NULLB_DEVICE_ATTR(size, ulong, NULL);
344 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
345 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
346 NULLB_DEVICE_ATTR(home_node, uint, NULL);
347 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
348 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
349 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
350 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
351 NULLB_DEVICE_ATTR(index, uint, NULL);
352 NULLB_DEVICE_ATTR(blocking, bool, NULL);
353 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
354 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
355 NULLB_DEVICE_ATTR(discard, bool, NULL);
356 NULLB_DEVICE_ATTR(mbps, uint, NULL);
357 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
358 NULLB_DEVICE_ATTR(zoned, bool, NULL);
359 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
360 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
361 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
362 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
363 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
364
365 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
366 {
367         return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
368 }
369
370 static ssize_t nullb_device_power_store(struct config_item *item,
371                                      const char *page, size_t count)
372 {
373         struct nullb_device *dev = to_nullb_device(item);
374         bool newp = false;
375         ssize_t ret;
376
377         ret = nullb_device_bool_attr_store(&newp, page, count);
378         if (ret < 0)
379                 return ret;
380
381         if (!dev->power && newp) {
382                 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
383                         return count;
384                 if (null_add_dev(dev)) {
385                         clear_bit(NULLB_DEV_FL_UP, &dev->flags);
386                         return -ENOMEM;
387                 }
388
389                 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
390                 dev->power = newp;
391         } else if (dev->power && !newp) {
392                 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
393                         mutex_lock(&lock);
394                         dev->power = newp;
395                         null_del_dev(dev->nullb);
396                         mutex_unlock(&lock);
397                 }
398                 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
399         }
400
401         return count;
402 }
403
404 CONFIGFS_ATTR(nullb_device_, power);
405
406 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
407 {
408         struct nullb_device *t_dev = to_nullb_device(item);
409
410         return badblocks_show(&t_dev->badblocks, page, 0);
411 }
412
413 static ssize_t nullb_device_badblocks_store(struct config_item *item,
414                                      const char *page, size_t count)
415 {
416         struct nullb_device *t_dev = to_nullb_device(item);
417         char *orig, *buf, *tmp;
418         u64 start, end;
419         int ret;
420
421         orig = kstrndup(page, count, GFP_KERNEL);
422         if (!orig)
423                 return -ENOMEM;
424
425         buf = strstrip(orig);
426
427         ret = -EINVAL;
428         if (buf[0] != '+' && buf[0] != '-')
429                 goto out;
430         tmp = strchr(&buf[1], '-');
431         if (!tmp)
432                 goto out;
433         *tmp = '\0';
434         ret = kstrtoull(buf + 1, 0, &start);
435         if (ret)
436                 goto out;
437         ret = kstrtoull(tmp + 1, 0, &end);
438         if (ret)
439                 goto out;
440         ret = -EINVAL;
441         if (start > end)
442                 goto out;
443         /* enable badblocks */
444         cmpxchg(&t_dev->badblocks.shift, -1, 0);
445         if (buf[0] == '+')
446                 ret = badblocks_set(&t_dev->badblocks, start,
447                         end - start + 1, 1);
448         else
449                 ret = badblocks_clear(&t_dev->badblocks, start,
450                         end - start + 1);
451         if (ret == 0)
452                 ret = count;
453 out:
454         kfree(orig);
455         return ret;
456 }
457 CONFIGFS_ATTR(nullb_device_, badblocks);
458
459 static struct configfs_attribute *nullb_device_attrs[] = {
460         &nullb_device_attr_size,
461         &nullb_device_attr_completion_nsec,
462         &nullb_device_attr_submit_queues,
463         &nullb_device_attr_home_node,
464         &nullb_device_attr_queue_mode,
465         &nullb_device_attr_blocksize,
466         &nullb_device_attr_irqmode,
467         &nullb_device_attr_hw_queue_depth,
468         &nullb_device_attr_index,
469         &nullb_device_attr_blocking,
470         &nullb_device_attr_use_per_node_hctx,
471         &nullb_device_attr_power,
472         &nullb_device_attr_memory_backed,
473         &nullb_device_attr_discard,
474         &nullb_device_attr_mbps,
475         &nullb_device_attr_cache_size,
476         &nullb_device_attr_badblocks,
477         &nullb_device_attr_zoned,
478         &nullb_device_attr_zone_size,
479         &nullb_device_attr_zone_capacity,
480         &nullb_device_attr_zone_nr_conv,
481         &nullb_device_attr_zone_max_open,
482         &nullb_device_attr_zone_max_active,
483         NULL,
484 };
485
486 static void nullb_device_release(struct config_item *item)
487 {
488         struct nullb_device *dev = to_nullb_device(item);
489
490         null_free_device_storage(dev, false);
491         null_free_dev(dev);
492 }
493
494 static struct configfs_item_operations nullb_device_ops = {
495         .release        = nullb_device_release,
496 };
497
498 static const struct config_item_type nullb_device_type = {
499         .ct_item_ops    = &nullb_device_ops,
500         .ct_attrs       = nullb_device_attrs,
501         .ct_owner       = THIS_MODULE,
502 };
503
504 static struct
505 config_item *nullb_group_make_item(struct config_group *group, const char *name)
506 {
507         struct nullb_device *dev;
508
509         dev = null_alloc_dev();
510         if (!dev)
511                 return ERR_PTR(-ENOMEM);
512
513         config_item_init_type_name(&dev->item, name, &nullb_device_type);
514
515         return &dev->item;
516 }
517
518 static void
519 nullb_group_drop_item(struct config_group *group, struct config_item *item)
520 {
521         struct nullb_device *dev = to_nullb_device(item);
522
523         if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
524                 mutex_lock(&lock);
525                 dev->power = false;
526                 null_del_dev(dev->nullb);
527                 mutex_unlock(&lock);
528         }
529
530         config_item_put(item);
531 }
532
533 static ssize_t memb_group_features_show(struct config_item *item, char *page)
534 {
535         return snprintf(page, PAGE_SIZE,
536                         "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active\n");
537 }
538
539 CONFIGFS_ATTR_RO(memb_group_, features);
540
541 static struct configfs_attribute *nullb_group_attrs[] = {
542         &memb_group_attr_features,
543         NULL,
544 };
545
546 static struct configfs_group_operations nullb_group_ops = {
547         .make_item      = nullb_group_make_item,
548         .drop_item      = nullb_group_drop_item,
549 };
550
551 static const struct config_item_type nullb_group_type = {
552         .ct_group_ops   = &nullb_group_ops,
553         .ct_attrs       = nullb_group_attrs,
554         .ct_owner       = THIS_MODULE,
555 };
556
557 static struct configfs_subsystem nullb_subsys = {
558         .su_group = {
559                 .cg_item = {
560                         .ci_namebuf = "nullb",
561                         .ci_type = &nullb_group_type,
562                 },
563         },
564 };
565
566 static inline int null_cache_active(struct nullb *nullb)
567 {
568         return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
569 }
570
571 static struct nullb_device *null_alloc_dev(void)
572 {
573         struct nullb_device *dev;
574
575         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
576         if (!dev)
577                 return NULL;
578         INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
579         INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
580         if (badblocks_init(&dev->badblocks, 0)) {
581                 kfree(dev);
582                 return NULL;
583         }
584
585         dev->size = g_gb * 1024;
586         dev->completion_nsec = g_completion_nsec;
587         dev->submit_queues = g_submit_queues;
588         dev->home_node = g_home_node;
589         dev->queue_mode = g_queue_mode;
590         dev->blocksize = g_bs;
591         dev->irqmode = g_irqmode;
592         dev->hw_queue_depth = g_hw_queue_depth;
593         dev->blocking = g_blocking;
594         dev->use_per_node_hctx = g_use_per_node_hctx;
595         dev->zoned = g_zoned;
596         dev->zone_size = g_zone_size;
597         dev->zone_capacity = g_zone_capacity;
598         dev->zone_nr_conv = g_zone_nr_conv;
599         dev->zone_max_open = g_zone_max_open;
600         dev->zone_max_active = g_zone_max_active;
601         return dev;
602 }
603
604 static void null_free_dev(struct nullb_device *dev)
605 {
606         if (!dev)
607                 return;
608
609         null_free_zoned_dev(dev);
610         badblocks_exit(&dev->badblocks);
611         kfree(dev);
612 }
613
614 static void put_tag(struct nullb_queue *nq, unsigned int tag)
615 {
616         clear_bit_unlock(tag, nq->tag_map);
617
618         if (waitqueue_active(&nq->wait))
619                 wake_up(&nq->wait);
620 }
621
622 static unsigned int get_tag(struct nullb_queue *nq)
623 {
624         unsigned int tag;
625
626         do {
627                 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
628                 if (tag >= nq->queue_depth)
629                         return -1U;
630         } while (test_and_set_bit_lock(tag, nq->tag_map));
631
632         return tag;
633 }
634
635 static void free_cmd(struct nullb_cmd *cmd)
636 {
637         put_tag(cmd->nq, cmd->tag);
638 }
639
640 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
641
642 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
643 {
644         struct nullb_cmd *cmd;
645         unsigned int tag;
646
647         tag = get_tag(nq);
648         if (tag != -1U) {
649                 cmd = &nq->cmds[tag];
650                 cmd->tag = tag;
651                 cmd->error = BLK_STS_OK;
652                 cmd->nq = nq;
653                 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
654                         hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
655                                      HRTIMER_MODE_REL);
656                         cmd->timer.function = null_cmd_timer_expired;
657                 }
658                 return cmd;
659         }
660
661         return NULL;
662 }
663
664 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
665 {
666         struct nullb_cmd *cmd;
667         DEFINE_WAIT(wait);
668
669         cmd = __alloc_cmd(nq);
670         if (cmd || !can_wait)
671                 return cmd;
672
673         do {
674                 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
675                 cmd = __alloc_cmd(nq);
676                 if (cmd)
677                         break;
678
679                 io_schedule();
680         } while (1);
681
682         finish_wait(&nq->wait, &wait);
683         return cmd;
684 }
685
686 static void end_cmd(struct nullb_cmd *cmd)
687 {
688         int queue_mode = cmd->nq->dev->queue_mode;
689
690         switch (queue_mode)  {
691         case NULL_Q_MQ:
692                 blk_mq_end_request(cmd->rq, cmd->error);
693                 return;
694         case NULL_Q_BIO:
695                 cmd->bio->bi_status = cmd->error;
696                 bio_endio(cmd->bio);
697                 break;
698         }
699
700         free_cmd(cmd);
701 }
702
703 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
704 {
705         end_cmd(container_of(timer, struct nullb_cmd, timer));
706
707         return HRTIMER_NORESTART;
708 }
709
710 static void null_cmd_end_timer(struct nullb_cmd *cmd)
711 {
712         ktime_t kt = cmd->nq->dev->completion_nsec;
713
714         hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
715 }
716
717 static void null_complete_rq(struct request *rq)
718 {
719         end_cmd(blk_mq_rq_to_pdu(rq));
720 }
721
722 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
723 {
724         struct nullb_page *t_page;
725
726         t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
727         if (!t_page)
728                 goto out;
729
730         t_page->page = alloc_pages(gfp_flags, 0);
731         if (!t_page->page)
732                 goto out_freepage;
733
734         memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
735         return t_page;
736 out_freepage:
737         kfree(t_page);
738 out:
739         return NULL;
740 }
741
742 static void null_free_page(struct nullb_page *t_page)
743 {
744         __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
745         if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
746                 return;
747         __free_page(t_page->page);
748         kfree(t_page);
749 }
750
751 static bool null_page_empty(struct nullb_page *page)
752 {
753         int size = MAP_SZ - 2;
754
755         return find_first_bit(page->bitmap, size) == size;
756 }
757
758 static void null_free_sector(struct nullb *nullb, sector_t sector,
759         bool is_cache)
760 {
761         unsigned int sector_bit;
762         u64 idx;
763         struct nullb_page *t_page, *ret;
764         struct radix_tree_root *root;
765
766         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
767         idx = sector >> PAGE_SECTORS_SHIFT;
768         sector_bit = (sector & SECTOR_MASK);
769
770         t_page = radix_tree_lookup(root, idx);
771         if (t_page) {
772                 __clear_bit(sector_bit, t_page->bitmap);
773
774                 if (null_page_empty(t_page)) {
775                         ret = radix_tree_delete_item(root, idx, t_page);
776                         WARN_ON(ret != t_page);
777                         null_free_page(ret);
778                         if (is_cache)
779                                 nullb->dev->curr_cache -= PAGE_SIZE;
780                 }
781         }
782 }
783
784 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
785         struct nullb_page *t_page, bool is_cache)
786 {
787         struct radix_tree_root *root;
788
789         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
790
791         if (radix_tree_insert(root, idx, t_page)) {
792                 null_free_page(t_page);
793                 t_page = radix_tree_lookup(root, idx);
794                 WARN_ON(!t_page || t_page->page->index != idx);
795         } else if (is_cache)
796                 nullb->dev->curr_cache += PAGE_SIZE;
797
798         return t_page;
799 }
800
801 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
802 {
803         unsigned long pos = 0;
804         int nr_pages;
805         struct nullb_page *ret, *t_pages[FREE_BATCH];
806         struct radix_tree_root *root;
807
808         root = is_cache ? &dev->cache : &dev->data;
809
810         do {
811                 int i;
812
813                 nr_pages = radix_tree_gang_lookup(root,
814                                 (void **)t_pages, pos, FREE_BATCH);
815
816                 for (i = 0; i < nr_pages; i++) {
817                         pos = t_pages[i]->page->index;
818                         ret = radix_tree_delete_item(root, pos, t_pages[i]);
819                         WARN_ON(ret != t_pages[i]);
820                         null_free_page(ret);
821                 }
822
823                 pos++;
824         } while (nr_pages == FREE_BATCH);
825
826         if (is_cache)
827                 dev->curr_cache = 0;
828 }
829
830 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
831         sector_t sector, bool for_write, bool is_cache)
832 {
833         unsigned int sector_bit;
834         u64 idx;
835         struct nullb_page *t_page;
836         struct radix_tree_root *root;
837
838         idx = sector >> PAGE_SECTORS_SHIFT;
839         sector_bit = (sector & SECTOR_MASK);
840
841         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
842         t_page = radix_tree_lookup(root, idx);
843         WARN_ON(t_page && t_page->page->index != idx);
844
845         if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
846                 return t_page;
847
848         return NULL;
849 }
850
851 static struct nullb_page *null_lookup_page(struct nullb *nullb,
852         sector_t sector, bool for_write, bool ignore_cache)
853 {
854         struct nullb_page *page = NULL;
855
856         if (!ignore_cache)
857                 page = __null_lookup_page(nullb, sector, for_write, true);
858         if (page)
859                 return page;
860         return __null_lookup_page(nullb, sector, for_write, false);
861 }
862
863 static struct nullb_page *null_insert_page(struct nullb *nullb,
864                                            sector_t sector, bool ignore_cache)
865         __releases(&nullb->lock)
866         __acquires(&nullb->lock)
867 {
868         u64 idx;
869         struct nullb_page *t_page;
870
871         t_page = null_lookup_page(nullb, sector, true, ignore_cache);
872         if (t_page)
873                 return t_page;
874
875         spin_unlock_irq(&nullb->lock);
876
877         t_page = null_alloc_page(GFP_NOIO);
878         if (!t_page)
879                 goto out_lock;
880
881         if (radix_tree_preload(GFP_NOIO))
882                 goto out_freepage;
883
884         spin_lock_irq(&nullb->lock);
885         idx = sector >> PAGE_SECTORS_SHIFT;
886         t_page->page->index = idx;
887         t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
888         radix_tree_preload_end();
889
890         return t_page;
891 out_freepage:
892         null_free_page(t_page);
893 out_lock:
894         spin_lock_irq(&nullb->lock);
895         return null_lookup_page(nullb, sector, true, ignore_cache);
896 }
897
898 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
899 {
900         int i;
901         unsigned int offset;
902         u64 idx;
903         struct nullb_page *t_page, *ret;
904         void *dst, *src;
905
906         idx = c_page->page->index;
907
908         t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
909
910         __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
911         if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
912                 null_free_page(c_page);
913                 if (t_page && null_page_empty(t_page)) {
914                         ret = radix_tree_delete_item(&nullb->dev->data,
915                                 idx, t_page);
916                         null_free_page(t_page);
917                 }
918                 return 0;
919         }
920
921         if (!t_page)
922                 return -ENOMEM;
923
924         src = kmap_atomic(c_page->page);
925         dst = kmap_atomic(t_page->page);
926
927         for (i = 0; i < PAGE_SECTORS;
928                         i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
929                 if (test_bit(i, c_page->bitmap)) {
930                         offset = (i << SECTOR_SHIFT);
931                         memcpy(dst + offset, src + offset,
932                                 nullb->dev->blocksize);
933                         __set_bit(i, t_page->bitmap);
934                 }
935         }
936
937         kunmap_atomic(dst);
938         kunmap_atomic(src);
939
940         ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
941         null_free_page(ret);
942         nullb->dev->curr_cache -= PAGE_SIZE;
943
944         return 0;
945 }
946
947 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
948 {
949         int i, err, nr_pages;
950         struct nullb_page *c_pages[FREE_BATCH];
951         unsigned long flushed = 0, one_round;
952
953 again:
954         if ((nullb->dev->cache_size * 1024 * 1024) >
955              nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
956                 return 0;
957
958         nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
959                         (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
960         /*
961          * nullb_flush_cache_page could unlock before using the c_pages. To
962          * avoid race, we don't allow page free
963          */
964         for (i = 0; i < nr_pages; i++) {
965                 nullb->cache_flush_pos = c_pages[i]->page->index;
966                 /*
967                  * We found the page which is being flushed to disk by other
968                  * threads
969                  */
970                 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
971                         c_pages[i] = NULL;
972                 else
973                         __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
974         }
975
976         one_round = 0;
977         for (i = 0; i < nr_pages; i++) {
978                 if (c_pages[i] == NULL)
979                         continue;
980                 err = null_flush_cache_page(nullb, c_pages[i]);
981                 if (err)
982                         return err;
983                 one_round++;
984         }
985         flushed += one_round << PAGE_SHIFT;
986
987         if (n > flushed) {
988                 if (nr_pages == 0)
989                         nullb->cache_flush_pos = 0;
990                 if (one_round == 0) {
991                         /* give other threads a chance */
992                         spin_unlock_irq(&nullb->lock);
993                         spin_lock_irq(&nullb->lock);
994                 }
995                 goto again;
996         }
997         return 0;
998 }
999
1000 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1001         unsigned int off, sector_t sector, size_t n, bool is_fua)
1002 {
1003         size_t temp, count = 0;
1004         unsigned int offset;
1005         struct nullb_page *t_page;
1006         void *dst, *src;
1007
1008         while (count < n) {
1009                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1010
1011                 if (null_cache_active(nullb) && !is_fua)
1012                         null_make_cache_space(nullb, PAGE_SIZE);
1013
1014                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1015                 t_page = null_insert_page(nullb, sector,
1016                         !null_cache_active(nullb) || is_fua);
1017                 if (!t_page)
1018                         return -ENOSPC;
1019
1020                 src = kmap_atomic(source);
1021                 dst = kmap_atomic(t_page->page);
1022                 memcpy(dst + offset, src + off + count, temp);
1023                 kunmap_atomic(dst);
1024                 kunmap_atomic(src);
1025
1026                 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1027
1028                 if (is_fua)
1029                         null_free_sector(nullb, sector, true);
1030
1031                 count += temp;
1032                 sector += temp >> SECTOR_SHIFT;
1033         }
1034         return 0;
1035 }
1036
1037 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1038         unsigned int off, sector_t sector, size_t n)
1039 {
1040         size_t temp, count = 0;
1041         unsigned int offset;
1042         struct nullb_page *t_page;
1043         void *dst, *src;
1044
1045         while (count < n) {
1046                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1047
1048                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1049                 t_page = null_lookup_page(nullb, sector, false,
1050                         !null_cache_active(nullb));
1051
1052                 dst = kmap_atomic(dest);
1053                 if (!t_page) {
1054                         memset(dst + off + count, 0, temp);
1055                         goto next;
1056                 }
1057                 src = kmap_atomic(t_page->page);
1058                 memcpy(dst + off + count, src + offset, temp);
1059                 kunmap_atomic(src);
1060 next:
1061                 kunmap_atomic(dst);
1062
1063                 count += temp;
1064                 sector += temp >> SECTOR_SHIFT;
1065         }
1066         return 0;
1067 }
1068
1069 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1070                                unsigned int len, unsigned int off)
1071 {
1072         void *dst;
1073
1074         dst = kmap_atomic(page);
1075         memset(dst + off, 0xFF, len);
1076         kunmap_atomic(dst);
1077 }
1078
1079 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1080 {
1081         size_t temp;
1082
1083         spin_lock_irq(&nullb->lock);
1084         while (n > 0) {
1085                 temp = min_t(size_t, n, nullb->dev->blocksize);
1086                 null_free_sector(nullb, sector, false);
1087                 if (null_cache_active(nullb))
1088                         null_free_sector(nullb, sector, true);
1089                 sector += temp >> SECTOR_SHIFT;
1090                 n -= temp;
1091         }
1092         spin_unlock_irq(&nullb->lock);
1093 }
1094
1095 static int null_handle_flush(struct nullb *nullb)
1096 {
1097         int err;
1098
1099         if (!null_cache_active(nullb))
1100                 return 0;
1101
1102         spin_lock_irq(&nullb->lock);
1103         while (true) {
1104                 err = null_make_cache_space(nullb,
1105                         nullb->dev->cache_size * 1024 * 1024);
1106                 if (err || nullb->dev->curr_cache == 0)
1107                         break;
1108         }
1109
1110         WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1111         spin_unlock_irq(&nullb->lock);
1112         return err;
1113 }
1114
1115 static int null_transfer(struct nullb *nullb, struct page *page,
1116         unsigned int len, unsigned int off, bool is_write, sector_t sector,
1117         bool is_fua)
1118 {
1119         struct nullb_device *dev = nullb->dev;
1120         unsigned int valid_len = len;
1121         int err = 0;
1122
1123         if (!is_write) {
1124                 if (dev->zoned)
1125                         valid_len = null_zone_valid_read_len(nullb,
1126                                 sector, len);
1127
1128                 if (valid_len) {
1129                         err = copy_from_nullb(nullb, page, off,
1130                                 sector, valid_len);
1131                         off += valid_len;
1132                         len -= valid_len;
1133                 }
1134
1135                 if (len)
1136                         nullb_fill_pattern(nullb, page, len, off);
1137                 flush_dcache_page(page);
1138         } else {
1139                 flush_dcache_page(page);
1140                 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1141         }
1142
1143         return err;
1144 }
1145
1146 static int null_handle_rq(struct nullb_cmd *cmd)
1147 {
1148         struct request *rq = cmd->rq;
1149         struct nullb *nullb = cmd->nq->dev->nullb;
1150         int err;
1151         unsigned int len;
1152         sector_t sector;
1153         struct req_iterator iter;
1154         struct bio_vec bvec;
1155
1156         sector = blk_rq_pos(rq);
1157
1158         if (req_op(rq) == REQ_OP_DISCARD) {
1159                 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1160                 return 0;
1161         }
1162
1163         spin_lock_irq(&nullb->lock);
1164         rq_for_each_segment(bvec, rq, iter) {
1165                 len = bvec.bv_len;
1166                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1167                                      op_is_write(req_op(rq)), sector,
1168                                      rq->cmd_flags & REQ_FUA);
1169                 if (err) {
1170                         spin_unlock_irq(&nullb->lock);
1171                         return err;
1172                 }
1173                 sector += len >> SECTOR_SHIFT;
1174         }
1175         spin_unlock_irq(&nullb->lock);
1176
1177         return 0;
1178 }
1179
1180 static int null_handle_bio(struct nullb_cmd *cmd)
1181 {
1182         struct bio *bio = cmd->bio;
1183         struct nullb *nullb = cmd->nq->dev->nullb;
1184         int err;
1185         unsigned int len;
1186         sector_t sector;
1187         struct bio_vec bvec;
1188         struct bvec_iter iter;
1189
1190         sector = bio->bi_iter.bi_sector;
1191
1192         if (bio_op(bio) == REQ_OP_DISCARD) {
1193                 null_handle_discard(nullb, sector,
1194                         bio_sectors(bio) << SECTOR_SHIFT);
1195                 return 0;
1196         }
1197
1198         spin_lock_irq(&nullb->lock);
1199         bio_for_each_segment(bvec, bio, iter) {
1200                 len = bvec.bv_len;
1201                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1202                                      op_is_write(bio_op(bio)), sector,
1203                                      bio->bi_opf & REQ_FUA);
1204                 if (err) {
1205                         spin_unlock_irq(&nullb->lock);
1206                         return err;
1207                 }
1208                 sector += len >> SECTOR_SHIFT;
1209         }
1210         spin_unlock_irq(&nullb->lock);
1211         return 0;
1212 }
1213
1214 static void null_stop_queue(struct nullb *nullb)
1215 {
1216         struct request_queue *q = nullb->q;
1217
1218         if (nullb->dev->queue_mode == NULL_Q_MQ)
1219                 blk_mq_stop_hw_queues(q);
1220 }
1221
1222 static void null_restart_queue_async(struct nullb *nullb)
1223 {
1224         struct request_queue *q = nullb->q;
1225
1226         if (nullb->dev->queue_mode == NULL_Q_MQ)
1227                 blk_mq_start_stopped_hw_queues(q, true);
1228 }
1229
1230 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1231 {
1232         struct nullb_device *dev = cmd->nq->dev;
1233         struct nullb *nullb = dev->nullb;
1234         blk_status_t sts = BLK_STS_OK;
1235         struct request *rq = cmd->rq;
1236
1237         if (!hrtimer_active(&nullb->bw_timer))
1238                 hrtimer_restart(&nullb->bw_timer);
1239
1240         if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1241                 null_stop_queue(nullb);
1242                 /* race with timer */
1243                 if (atomic_long_read(&nullb->cur_bytes) > 0)
1244                         null_restart_queue_async(nullb);
1245                 /* requeue request */
1246                 sts = BLK_STS_DEV_RESOURCE;
1247         }
1248         return sts;
1249 }
1250
1251 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1252                                                  sector_t sector,
1253                                                  sector_t nr_sectors)
1254 {
1255         struct badblocks *bb = &cmd->nq->dev->badblocks;
1256         sector_t first_bad;
1257         int bad_sectors;
1258
1259         if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1260                 return BLK_STS_IOERR;
1261
1262         return BLK_STS_OK;
1263 }
1264
1265 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1266                                                      enum req_opf op)
1267 {
1268         struct nullb_device *dev = cmd->nq->dev;
1269         int err;
1270
1271         if (dev->queue_mode == NULL_Q_BIO)
1272                 err = null_handle_bio(cmd);
1273         else
1274                 err = null_handle_rq(cmd);
1275
1276         return errno_to_blk_status(err);
1277 }
1278
1279 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1280 {
1281         struct nullb_device *dev = cmd->nq->dev;
1282         struct bio *bio;
1283
1284         if (dev->memory_backed)
1285                 return;
1286
1287         if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1288                 zero_fill_bio(cmd->bio);
1289         } else if (req_op(cmd->rq) == REQ_OP_READ) {
1290                 __rq_for_each_bio(bio, cmd->rq)
1291                         zero_fill_bio(bio);
1292         }
1293 }
1294
1295 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1296 {
1297         /*
1298          * Since root privileges are required to configure the null_blk
1299          * driver, it is fine that this driver does not initialize the
1300          * data buffers of read commands. Zero-initialize these buffers
1301          * anyway if KMSAN is enabled to prevent that KMSAN complains
1302          * about null_blk not initializing read data buffers.
1303          */
1304         if (IS_ENABLED(CONFIG_KMSAN))
1305                 nullb_zero_read_cmd_buffer(cmd);
1306
1307         /* Complete IO by inline, softirq or timer */
1308         switch (cmd->nq->dev->irqmode) {
1309         case NULL_IRQ_SOFTIRQ:
1310                 switch (cmd->nq->dev->queue_mode) {
1311                 case NULL_Q_MQ:
1312                         if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1313                                 blk_mq_complete_request(cmd->rq);
1314                         break;
1315                 case NULL_Q_BIO:
1316                         /*
1317                          * XXX: no proper submitting cpu information available.
1318                          */
1319                         end_cmd(cmd);
1320                         break;
1321                 }
1322                 break;
1323         case NULL_IRQ_NONE:
1324                 end_cmd(cmd);
1325                 break;
1326         case NULL_IRQ_TIMER:
1327                 null_cmd_end_timer(cmd);
1328                 break;
1329         }
1330 }
1331
1332 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1333                               enum req_opf op, sector_t sector,
1334                               unsigned int nr_sectors)
1335 {
1336         struct nullb_device *dev = cmd->nq->dev;
1337         blk_status_t ret;
1338
1339         if (dev->badblocks.shift != -1) {
1340                 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1341                 if (ret != BLK_STS_OK)
1342                         return ret;
1343         }
1344
1345         if (dev->memory_backed)
1346                 return null_handle_memory_backed(cmd, op);
1347
1348         return BLK_STS_OK;
1349 }
1350
1351 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1352                                     sector_t nr_sectors, enum req_opf op)
1353 {
1354         struct nullb_device *dev = cmd->nq->dev;
1355         struct nullb *nullb = dev->nullb;
1356         blk_status_t sts;
1357
1358         if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1359                 sts = null_handle_throttled(cmd);
1360                 if (sts != BLK_STS_OK)
1361                         return sts;
1362         }
1363
1364         if (op == REQ_OP_FLUSH) {
1365                 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1366                 goto out;
1367         }
1368
1369         if (dev->zoned)
1370                 cmd->error = null_process_zoned_cmd(cmd, op,
1371                                                     sector, nr_sectors);
1372         else
1373                 cmd->error = null_process_cmd(cmd, op, sector, nr_sectors);
1374
1375 out:
1376         nullb_complete_cmd(cmd);
1377         return BLK_STS_OK;
1378 }
1379
1380 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1381 {
1382         struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1383         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1384         unsigned int mbps = nullb->dev->mbps;
1385
1386         if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1387                 return HRTIMER_NORESTART;
1388
1389         atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1390         null_restart_queue_async(nullb);
1391
1392         hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1393
1394         return HRTIMER_RESTART;
1395 }
1396
1397 static void nullb_setup_bwtimer(struct nullb *nullb)
1398 {
1399         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1400
1401         hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1402         nullb->bw_timer.function = nullb_bwtimer_fn;
1403         atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1404         hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1405 }
1406
1407 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1408 {
1409         int index = 0;
1410
1411         if (nullb->nr_queues != 1)
1412                 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1413
1414         return &nullb->queues[index];
1415 }
1416
1417 static blk_qc_t null_submit_bio(struct bio *bio)
1418 {
1419         sector_t sector = bio->bi_iter.bi_sector;
1420         sector_t nr_sectors = bio_sectors(bio);
1421         struct nullb *nullb = bio->bi_disk->private_data;
1422         struct nullb_queue *nq = nullb_to_queue(nullb);
1423         struct nullb_cmd *cmd;
1424
1425         cmd = alloc_cmd(nq, 1);
1426         cmd->bio = bio;
1427
1428         null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1429         return BLK_QC_T_NONE;
1430 }
1431
1432 static bool should_timeout_request(struct request *rq)
1433 {
1434 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1435         if (g_timeout_str[0])
1436                 return should_fail(&null_timeout_attr, 1);
1437 #endif
1438         return false;
1439 }
1440
1441 static bool should_requeue_request(struct request *rq)
1442 {
1443 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1444         if (g_requeue_str[0])
1445                 return should_fail(&null_requeue_attr, 1);
1446 #endif
1447         return false;
1448 }
1449
1450 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1451 {
1452         pr_info("rq %p timed out\n", rq);
1453         blk_mq_complete_request(rq);
1454         return BLK_EH_DONE;
1455 }
1456
1457 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1458                          const struct blk_mq_queue_data *bd)
1459 {
1460         struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1461         struct nullb_queue *nq = hctx->driver_data;
1462         sector_t nr_sectors = blk_rq_sectors(bd->rq);
1463         sector_t sector = blk_rq_pos(bd->rq);
1464
1465         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1466
1467         if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1468                 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1469                 cmd->timer.function = null_cmd_timer_expired;
1470         }
1471         cmd->rq = bd->rq;
1472         cmd->error = BLK_STS_OK;
1473         cmd->nq = nq;
1474
1475         blk_mq_start_request(bd->rq);
1476
1477         if (should_requeue_request(bd->rq)) {
1478                 /*
1479                  * Alternate between hitting the core BUSY path, and the
1480                  * driver driven requeue path
1481                  */
1482                 nq->requeue_selection++;
1483                 if (nq->requeue_selection & 1)
1484                         return BLK_STS_RESOURCE;
1485                 else {
1486                         blk_mq_requeue_request(bd->rq, true);
1487                         return BLK_STS_OK;
1488                 }
1489         }
1490         if (should_timeout_request(bd->rq))
1491                 return BLK_STS_OK;
1492
1493         return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1494 }
1495
1496 static void cleanup_queue(struct nullb_queue *nq)
1497 {
1498         kfree(nq->tag_map);
1499         kfree(nq->cmds);
1500 }
1501
1502 static void cleanup_queues(struct nullb *nullb)
1503 {
1504         int i;
1505
1506         for (i = 0; i < nullb->nr_queues; i++)
1507                 cleanup_queue(&nullb->queues[i]);
1508
1509         kfree(nullb->queues);
1510 }
1511
1512 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1513 {
1514         struct nullb_queue *nq = hctx->driver_data;
1515         struct nullb *nullb = nq->dev->nullb;
1516
1517         nullb->nr_queues--;
1518 }
1519
1520 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1521 {
1522         init_waitqueue_head(&nq->wait);
1523         nq->queue_depth = nullb->queue_depth;
1524         nq->dev = nullb->dev;
1525 }
1526
1527 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1528                           unsigned int hctx_idx)
1529 {
1530         struct nullb *nullb = hctx->queue->queuedata;
1531         struct nullb_queue *nq;
1532
1533 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1534         if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1535                 return -EFAULT;
1536 #endif
1537
1538         nq = &nullb->queues[hctx_idx];
1539         hctx->driver_data = nq;
1540         null_init_queue(nullb, nq);
1541         nullb->nr_queues++;
1542
1543         return 0;
1544 }
1545
1546 static const struct blk_mq_ops null_mq_ops = {
1547         .queue_rq       = null_queue_rq,
1548         .complete       = null_complete_rq,
1549         .timeout        = null_timeout_rq,
1550         .init_hctx      = null_init_hctx,
1551         .exit_hctx      = null_exit_hctx,
1552 };
1553
1554 static void null_del_dev(struct nullb *nullb)
1555 {
1556         struct nullb_device *dev;
1557
1558         if (!nullb)
1559                 return;
1560
1561         dev = nullb->dev;
1562
1563         ida_simple_remove(&nullb_indexes, nullb->index);
1564
1565         list_del_init(&nullb->list);
1566
1567         del_gendisk(nullb->disk);
1568
1569         if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1570                 hrtimer_cancel(&nullb->bw_timer);
1571                 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1572                 null_restart_queue_async(nullb);
1573         }
1574
1575         blk_cleanup_queue(nullb->q);
1576         if (dev->queue_mode == NULL_Q_MQ &&
1577             nullb->tag_set == &nullb->__tag_set)
1578                 blk_mq_free_tag_set(nullb->tag_set);
1579         put_disk(nullb->disk);
1580         cleanup_queues(nullb);
1581         if (null_cache_active(nullb))
1582                 null_free_device_storage(nullb->dev, true);
1583         kfree(nullb);
1584         dev->nullb = NULL;
1585 }
1586
1587 static void null_config_discard(struct nullb *nullb)
1588 {
1589         if (nullb->dev->discard == false)
1590                 return;
1591
1592         if (nullb->dev->zoned) {
1593                 nullb->dev->discard = false;
1594                 pr_info("discard option is ignored in zoned mode\n");
1595                 return;
1596         }
1597
1598         nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1599         nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1600         blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1601         blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1602 }
1603
1604 static const struct block_device_operations null_bio_ops = {
1605         .owner          = THIS_MODULE,
1606         .submit_bio     = null_submit_bio,
1607         .report_zones   = null_report_zones,
1608 };
1609
1610 static const struct block_device_operations null_rq_ops = {
1611         .owner          = THIS_MODULE,
1612         .report_zones   = null_report_zones,
1613 };
1614
1615 static int setup_commands(struct nullb_queue *nq)
1616 {
1617         struct nullb_cmd *cmd;
1618         int i, tag_size;
1619
1620         nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1621         if (!nq->cmds)
1622                 return -ENOMEM;
1623
1624         tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1625         nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1626         if (!nq->tag_map) {
1627                 kfree(nq->cmds);
1628                 return -ENOMEM;
1629         }
1630
1631         for (i = 0; i < nq->queue_depth; i++) {
1632                 cmd = &nq->cmds[i];
1633                 cmd->tag = -1U;
1634         }
1635
1636         return 0;
1637 }
1638
1639 static int setup_queues(struct nullb *nullb)
1640 {
1641         nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1642                                 GFP_KERNEL);
1643         if (!nullb->queues)
1644                 return -ENOMEM;
1645
1646         nullb->queue_depth = nullb->dev->hw_queue_depth;
1647
1648         return 0;
1649 }
1650
1651 static int init_driver_queues(struct nullb *nullb)
1652 {
1653         struct nullb_queue *nq;
1654         int i, ret = 0;
1655
1656         for (i = 0; i < nullb->dev->submit_queues; i++) {
1657                 nq = &nullb->queues[i];
1658
1659                 null_init_queue(nullb, nq);
1660
1661                 ret = setup_commands(nq);
1662                 if (ret)
1663                         return ret;
1664                 nullb->nr_queues++;
1665         }
1666         return 0;
1667 }
1668
1669 static int null_gendisk_register(struct nullb *nullb)
1670 {
1671         sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1672         struct gendisk *disk;
1673
1674         disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1675         if (!disk)
1676                 return -ENOMEM;
1677         set_capacity(disk, size);
1678
1679         disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1680         disk->major             = null_major;
1681         disk->first_minor       = nullb->index;
1682         if (queue_is_mq(nullb->q))
1683                 disk->fops              = &null_rq_ops;
1684         else
1685                 disk->fops              = &null_bio_ops;
1686         disk->private_data      = nullb;
1687         disk->queue             = nullb->q;
1688         strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1689
1690         if (nullb->dev->zoned) {
1691                 int ret = null_register_zoned_dev(nullb);
1692
1693                 if (ret)
1694                         return ret;
1695         }
1696
1697         add_disk(disk);
1698         return 0;
1699 }
1700
1701 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1702 {
1703         set->ops = &null_mq_ops;
1704         set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1705                                                 g_submit_queues;
1706         set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1707                                                 g_hw_queue_depth;
1708         set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1709         set->cmd_size   = sizeof(struct nullb_cmd);
1710         set->flags = BLK_MQ_F_SHOULD_MERGE;
1711         if (g_no_sched)
1712                 set->flags |= BLK_MQ_F_NO_SCHED;
1713         if (g_shared_tag_bitmap)
1714                 set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1715         set->driver_data = NULL;
1716
1717         if ((nullb && nullb->dev->blocking) || g_blocking)
1718                 set->flags |= BLK_MQ_F_BLOCKING;
1719
1720         return blk_mq_alloc_tag_set(set);
1721 }
1722
1723 static int null_validate_conf(struct nullb_device *dev)
1724 {
1725         dev->blocksize = round_down(dev->blocksize, 512);
1726         dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1727
1728         if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1729                 if (dev->submit_queues != nr_online_nodes)
1730                         dev->submit_queues = nr_online_nodes;
1731         } else if (dev->submit_queues > nr_cpu_ids)
1732                 dev->submit_queues = nr_cpu_ids;
1733         else if (dev->submit_queues == 0)
1734                 dev->submit_queues = 1;
1735
1736         dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1737         dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1738
1739         /* Do memory allocation, so set blocking */
1740         if (dev->memory_backed)
1741                 dev->blocking = true;
1742         else /* cache is meaningless */
1743                 dev->cache_size = 0;
1744         dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1745                                                 dev->cache_size);
1746         dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1747         /* can not stop a queue */
1748         if (dev->queue_mode == NULL_Q_BIO)
1749                 dev->mbps = 0;
1750
1751         if (dev->zoned &&
1752             (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1753                 pr_err("zone_size must be power-of-two\n");
1754                 return -EINVAL;
1755         }
1756
1757         return 0;
1758 }
1759
1760 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1761 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1762 {
1763         if (!str[0])
1764                 return true;
1765
1766         if (!setup_fault_attr(attr, str))
1767                 return false;
1768
1769         attr->verbose = 0;
1770         return true;
1771 }
1772 #endif
1773
1774 static bool null_setup_fault(void)
1775 {
1776 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1777         if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1778                 return false;
1779         if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1780                 return false;
1781         if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1782                 return false;
1783 #endif
1784         return true;
1785 }
1786
1787 static int null_add_dev(struct nullb_device *dev)
1788 {
1789         struct nullb *nullb;
1790         int rv;
1791
1792         rv = null_validate_conf(dev);
1793         if (rv)
1794                 return rv;
1795
1796         nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1797         if (!nullb) {
1798                 rv = -ENOMEM;
1799                 goto out;
1800         }
1801         nullb->dev = dev;
1802         dev->nullb = nullb;
1803
1804         spin_lock_init(&nullb->lock);
1805
1806         rv = setup_queues(nullb);
1807         if (rv)
1808                 goto out_free_nullb;
1809
1810         if (dev->queue_mode == NULL_Q_MQ) {
1811                 if (shared_tags) {
1812                         nullb->tag_set = &tag_set;
1813                         rv = 0;
1814                 } else {
1815                         nullb->tag_set = &nullb->__tag_set;
1816                         rv = null_init_tag_set(nullb, nullb->tag_set);
1817                 }
1818
1819                 if (rv)
1820                         goto out_cleanup_queues;
1821
1822                 if (!null_setup_fault())
1823                         goto out_cleanup_queues;
1824
1825                 nullb->tag_set->timeout = 5 * HZ;
1826                 nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1827                 if (IS_ERR(nullb->q)) {
1828                         rv = -ENOMEM;
1829                         goto out_cleanup_tags;
1830                 }
1831         } else if (dev->queue_mode == NULL_Q_BIO) {
1832                 nullb->q = blk_alloc_queue(dev->home_node);
1833                 if (!nullb->q) {
1834                         rv = -ENOMEM;
1835                         goto out_cleanup_queues;
1836                 }
1837                 rv = init_driver_queues(nullb);
1838                 if (rv)
1839                         goto out_cleanup_blk_queue;
1840         }
1841
1842         if (dev->mbps) {
1843                 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1844                 nullb_setup_bwtimer(nullb);
1845         }
1846
1847         if (dev->cache_size > 0) {
1848                 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1849                 blk_queue_write_cache(nullb->q, true, true);
1850         }
1851
1852         if (dev->zoned) {
1853                 rv = null_init_zoned_dev(dev, nullb->q);
1854                 if (rv)
1855                         goto out_cleanup_blk_queue;
1856         }
1857
1858         nullb->q->queuedata = nullb;
1859         blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1860         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1861
1862         mutex_lock(&lock);
1863         nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1864         dev->index = nullb->index;
1865         mutex_unlock(&lock);
1866
1867         blk_queue_logical_block_size(nullb->q, dev->blocksize);
1868         blk_queue_physical_block_size(nullb->q, dev->blocksize);
1869
1870         null_config_discard(nullb);
1871
1872         sprintf(nullb->disk_name, "nullb%d", nullb->index);
1873
1874         rv = null_gendisk_register(nullb);
1875         if (rv)
1876                 goto out_cleanup_zone;
1877
1878         mutex_lock(&lock);
1879         list_add_tail(&nullb->list, &nullb_list);
1880         mutex_unlock(&lock);
1881
1882         return 0;
1883 out_cleanup_zone:
1884         null_free_zoned_dev(dev);
1885 out_cleanup_blk_queue:
1886         blk_cleanup_queue(nullb->q);
1887 out_cleanup_tags:
1888         if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1889                 blk_mq_free_tag_set(nullb->tag_set);
1890 out_cleanup_queues:
1891         cleanup_queues(nullb);
1892 out_free_nullb:
1893         kfree(nullb);
1894         dev->nullb = NULL;
1895 out:
1896         return rv;
1897 }
1898
1899 static int __init null_init(void)
1900 {
1901         int ret = 0;
1902         unsigned int i;
1903         struct nullb *nullb;
1904         struct nullb_device *dev;
1905
1906         if (g_bs > PAGE_SIZE) {
1907                 pr_warn("invalid block size\n");
1908                 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1909                 g_bs = PAGE_SIZE;
1910         }
1911
1912         if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1913                 pr_err("invalid home_node value\n");
1914                 g_home_node = NUMA_NO_NODE;
1915         }
1916
1917         if (g_queue_mode == NULL_Q_RQ) {
1918                 pr_err("legacy IO path no longer available\n");
1919                 return -EINVAL;
1920         }
1921         if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1922                 if (g_submit_queues != nr_online_nodes) {
1923                         pr_warn("submit_queues param is set to %u.\n",
1924                                                         nr_online_nodes);
1925                         g_submit_queues = nr_online_nodes;
1926                 }
1927         } else if (g_submit_queues > nr_cpu_ids)
1928                 g_submit_queues = nr_cpu_ids;
1929         else if (g_submit_queues <= 0)
1930                 g_submit_queues = 1;
1931
1932         if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1933                 ret = null_init_tag_set(NULL, &tag_set);
1934                 if (ret)
1935                         return ret;
1936         }
1937
1938         config_group_init(&nullb_subsys.su_group);
1939         mutex_init(&nullb_subsys.su_mutex);
1940
1941         ret = configfs_register_subsystem(&nullb_subsys);
1942         if (ret)
1943                 goto err_tagset;
1944
1945         mutex_init(&lock);
1946
1947         null_major = register_blkdev(0, "nullb");
1948         if (null_major < 0) {
1949                 ret = null_major;
1950                 goto err_conf;
1951         }
1952
1953         for (i = 0; i < nr_devices; i++) {
1954                 dev = null_alloc_dev();
1955                 if (!dev) {
1956                         ret = -ENOMEM;
1957                         goto err_dev;
1958                 }
1959                 ret = null_add_dev(dev);
1960                 if (ret) {
1961                         null_free_dev(dev);
1962                         goto err_dev;
1963                 }
1964         }
1965
1966         pr_info("module loaded\n");
1967         return 0;
1968
1969 err_dev:
1970         while (!list_empty(&nullb_list)) {
1971                 nullb = list_entry(nullb_list.next, struct nullb, list);
1972                 dev = nullb->dev;
1973                 null_del_dev(nullb);
1974                 null_free_dev(dev);
1975         }
1976         unregister_blkdev(null_major, "nullb");
1977 err_conf:
1978         configfs_unregister_subsystem(&nullb_subsys);
1979 err_tagset:
1980         if (g_queue_mode == NULL_Q_MQ && shared_tags)
1981                 blk_mq_free_tag_set(&tag_set);
1982         return ret;
1983 }
1984
1985 static void __exit null_exit(void)
1986 {
1987         struct nullb *nullb;
1988
1989         configfs_unregister_subsystem(&nullb_subsys);
1990
1991         unregister_blkdev(null_major, "nullb");
1992
1993         mutex_lock(&lock);
1994         while (!list_empty(&nullb_list)) {
1995                 struct nullb_device *dev;
1996
1997                 nullb = list_entry(nullb_list.next, struct nullb, list);
1998                 dev = nullb->dev;
1999                 null_del_dev(nullb);
2000                 null_free_dev(dev);
2001         }
2002         mutex_unlock(&lock);
2003
2004         if (g_queue_mode == NULL_Q_MQ && shared_tags)
2005                 blk_mq_free_tag_set(&tag_set);
2006 }
2007
2008 module_init(null_init);
2009 module_exit(null_exit);
2010
2011 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2012 MODULE_LICENSE("GPL");