ASoC: SOF: Introduce generic (in)firmware tracing infrastructure
[linux-2.6-microblaze.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59               "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;       /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125          member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135         .owner          = THIS_MODULE,
136         .submit_bio     = drbd_submit_bio,
137         .open           = drbd_open,
138         .release        = drbd_release,
139 };
140
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147         int io_allowed;
148
149         atomic_inc(&device->local_cnt);
150         io_allowed = (device->state.disk >= mins);
151         if (!io_allowed) {
152                 if (atomic_dec_and_test(&device->local_cnt))
153                         wake_up(&device->misc_wait);
154         }
155         return io_allowed;
156 }
157
158 #endif
159
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection: DRBD connection.
163  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
164  * @set_size:   Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171                 unsigned int set_size)
172 {
173         struct drbd_request *r;
174         struct drbd_request *req = NULL, *tmp = NULL;
175         int expect_epoch = 0;
176         int expect_size = 0;
177
178         spin_lock_irq(&connection->resource->req_lock);
179
180         /* find oldest not yet barrier-acked write request,
181          * count writes in its epoch. */
182         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183                 const unsigned s = r->rq_state;
184                 if (!req) {
185                         if (!(s & RQ_WRITE))
186                                 continue;
187                         if (!(s & RQ_NET_MASK))
188                                 continue;
189                         if (s & RQ_NET_DONE)
190                                 continue;
191                         req = r;
192                         expect_epoch = req->epoch;
193                         expect_size ++;
194                 } else {
195                         if (r->epoch != expect_epoch)
196                                 break;
197                         if (!(s & RQ_WRITE))
198                                 continue;
199                         /* if (s & RQ_DONE): not expected */
200                         /* if (!(s & RQ_NET_MASK)): not expected */
201                         expect_size++;
202                 }
203         }
204
205         /* first some paranoia code */
206         if (req == NULL) {
207                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208                          barrier_nr);
209                 goto bail;
210         }
211         if (expect_epoch != barrier_nr) {
212                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213                          barrier_nr, expect_epoch);
214                 goto bail;
215         }
216
217         if (expect_size != set_size) {
218                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219                          barrier_nr, set_size, expect_size);
220                 goto bail;
221         }
222
223         /* Clean up list of requests processed during current epoch. */
224         /* this extra list walk restart is paranoia,
225          * to catch requests being barrier-acked "unexpectedly".
226          * It usually should find the same req again, or some READ preceding it. */
227         list_for_each_entry(req, &connection->transfer_log, tl_requests)
228                 if (req->epoch == expect_epoch) {
229                         tmp = req;
230                         break;
231                 }
232         req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
233         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
234                 if (req->epoch != expect_epoch)
235                         break;
236                 _req_mod(req, BARRIER_ACKED);
237         }
238         spin_unlock_irq(&connection->resource->req_lock);
239
240         return;
241
242 bail:
243         spin_unlock_irq(&connection->resource->req_lock);
244         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
245 }
246
247
248 /**
249  * _tl_restart() - Walks the transfer log, and applies an action to all requests
250  * @connection: DRBD connection to operate on.
251  * @what:       The action/event to perform with all request objects
252  *
253  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
254  * RESTART_FROZEN_DISK_IO.
255  */
256 /* must hold resource->req_lock */
257 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
258 {
259         struct drbd_request *req, *r;
260
261         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
262                 _req_mod(req, what);
263 }
264
265 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
266 {
267         spin_lock_irq(&connection->resource->req_lock);
268         _tl_restart(connection, what);
269         spin_unlock_irq(&connection->resource->req_lock);
270 }
271
272 /**
273  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
274  * @connection: DRBD connection.
275  *
276  * This is called after the connection to the peer was lost. The storage covered
277  * by the requests on the transfer gets marked as our of sync. Called from the
278  * receiver thread and the worker thread.
279  */
280 void tl_clear(struct drbd_connection *connection)
281 {
282         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
283 }
284
285 /**
286  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
287  * @device:     DRBD device.
288  */
289 void tl_abort_disk_io(struct drbd_device *device)
290 {
291         struct drbd_connection *connection = first_peer_device(device)->connection;
292         struct drbd_request *req, *r;
293
294         spin_lock_irq(&connection->resource->req_lock);
295         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
296                 if (!(req->rq_state & RQ_LOCAL_PENDING))
297                         continue;
298                 if (req->device != device)
299                         continue;
300                 _req_mod(req, ABORT_DISK_IO);
301         }
302         spin_unlock_irq(&connection->resource->req_lock);
303 }
304
305 static int drbd_thread_setup(void *arg)
306 {
307         struct drbd_thread *thi = (struct drbd_thread *) arg;
308         struct drbd_resource *resource = thi->resource;
309         unsigned long flags;
310         int retval;
311
312         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
313                  thi->name[0],
314                  resource->name);
315
316         allow_kernel_signal(DRBD_SIGKILL);
317         allow_kernel_signal(SIGXCPU);
318 restart:
319         retval = thi->function(thi);
320
321         spin_lock_irqsave(&thi->t_lock, flags);
322
323         /* if the receiver has been "EXITING", the last thing it did
324          * was set the conn state to "StandAlone",
325          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
326          * and receiver thread will be "started".
327          * drbd_thread_start needs to set "RESTARTING" in that case.
328          * t_state check and assignment needs to be within the same spinlock,
329          * so either thread_start sees EXITING, and can remap to RESTARTING,
330          * or thread_start see NONE, and can proceed as normal.
331          */
332
333         if (thi->t_state == RESTARTING) {
334                 drbd_info(resource, "Restarting %s thread\n", thi->name);
335                 thi->t_state = RUNNING;
336                 spin_unlock_irqrestore(&thi->t_lock, flags);
337                 goto restart;
338         }
339
340         thi->task = NULL;
341         thi->t_state = NONE;
342         smp_mb();
343         complete_all(&thi->stop);
344         spin_unlock_irqrestore(&thi->t_lock, flags);
345
346         drbd_info(resource, "Terminating %s\n", current->comm);
347
348         /* Release mod reference taken when thread was started */
349
350         if (thi->connection)
351                 kref_put(&thi->connection->kref, drbd_destroy_connection);
352         kref_put(&resource->kref, drbd_destroy_resource);
353         module_put(THIS_MODULE);
354         return retval;
355 }
356
357 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
358                              int (*func) (struct drbd_thread *), const char *name)
359 {
360         spin_lock_init(&thi->t_lock);
361         thi->task    = NULL;
362         thi->t_state = NONE;
363         thi->function = func;
364         thi->resource = resource;
365         thi->connection = NULL;
366         thi->name = name;
367 }
368
369 int drbd_thread_start(struct drbd_thread *thi)
370 {
371         struct drbd_resource *resource = thi->resource;
372         struct task_struct *nt;
373         unsigned long flags;
374
375         /* is used from state engine doing drbd_thread_stop_nowait,
376          * while holding the req lock irqsave */
377         spin_lock_irqsave(&thi->t_lock, flags);
378
379         switch (thi->t_state) {
380         case NONE:
381                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
382                          thi->name, current->comm, current->pid);
383
384                 /* Get ref on module for thread - this is released when thread exits */
385                 if (!try_module_get(THIS_MODULE)) {
386                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
387                         spin_unlock_irqrestore(&thi->t_lock, flags);
388                         return false;
389                 }
390
391                 kref_get(&resource->kref);
392                 if (thi->connection)
393                         kref_get(&thi->connection->kref);
394
395                 init_completion(&thi->stop);
396                 thi->reset_cpu_mask = 1;
397                 thi->t_state = RUNNING;
398                 spin_unlock_irqrestore(&thi->t_lock, flags);
399                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
400
401                 nt = kthread_create(drbd_thread_setup, (void *) thi,
402                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
403
404                 if (IS_ERR(nt)) {
405                         drbd_err(resource, "Couldn't start thread\n");
406
407                         if (thi->connection)
408                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
409                         kref_put(&resource->kref, drbd_destroy_resource);
410                         module_put(THIS_MODULE);
411                         return false;
412                 }
413                 spin_lock_irqsave(&thi->t_lock, flags);
414                 thi->task = nt;
415                 thi->t_state = RUNNING;
416                 spin_unlock_irqrestore(&thi->t_lock, flags);
417                 wake_up_process(nt);
418                 break;
419         case EXITING:
420                 thi->t_state = RESTARTING;
421                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
422                                 thi->name, current->comm, current->pid);
423                 fallthrough;
424         case RUNNING:
425         case RESTARTING:
426         default:
427                 spin_unlock_irqrestore(&thi->t_lock, flags);
428                 break;
429         }
430
431         return true;
432 }
433
434
435 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
436 {
437         unsigned long flags;
438
439         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
440
441         /* may be called from state engine, holding the req lock irqsave */
442         spin_lock_irqsave(&thi->t_lock, flags);
443
444         if (thi->t_state == NONE) {
445                 spin_unlock_irqrestore(&thi->t_lock, flags);
446                 if (restart)
447                         drbd_thread_start(thi);
448                 return;
449         }
450
451         if (thi->t_state != ns) {
452                 if (thi->task == NULL) {
453                         spin_unlock_irqrestore(&thi->t_lock, flags);
454                         return;
455                 }
456
457                 thi->t_state = ns;
458                 smp_mb();
459                 init_completion(&thi->stop);
460                 if (thi->task != current)
461                         send_sig(DRBD_SIGKILL, thi->task, 1);
462         }
463
464         spin_unlock_irqrestore(&thi->t_lock, flags);
465
466         if (wait)
467                 wait_for_completion(&thi->stop);
468 }
469
470 int conn_lowest_minor(struct drbd_connection *connection)
471 {
472         struct drbd_peer_device *peer_device;
473         int vnr = 0, minor = -1;
474
475         rcu_read_lock();
476         peer_device = idr_get_next(&connection->peer_devices, &vnr);
477         if (peer_device)
478                 minor = device_to_minor(peer_device->device);
479         rcu_read_unlock();
480
481         return minor;
482 }
483
484 #ifdef CONFIG_SMP
485 /*
486  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
487  *
488  * Forces all threads of a resource onto the same CPU. This is beneficial for
489  * DRBD's performance. May be overwritten by user's configuration.
490  */
491 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
492 {
493         unsigned int *resources_per_cpu, min_index = ~0;
494
495         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
496                                     GFP_KERNEL);
497         if (resources_per_cpu) {
498                 struct drbd_resource *resource;
499                 unsigned int cpu, min = ~0;
500
501                 rcu_read_lock();
502                 for_each_resource_rcu(resource, &drbd_resources) {
503                         for_each_cpu(cpu, resource->cpu_mask)
504                                 resources_per_cpu[cpu]++;
505                 }
506                 rcu_read_unlock();
507                 for_each_online_cpu(cpu) {
508                         if (resources_per_cpu[cpu] < min) {
509                                 min = resources_per_cpu[cpu];
510                                 min_index = cpu;
511                         }
512                 }
513                 kfree(resources_per_cpu);
514         }
515         if (min_index == ~0) {
516                 cpumask_setall(*cpu_mask);
517                 return;
518         }
519         cpumask_set_cpu(min_index, *cpu_mask);
520 }
521
522 /**
523  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
524  * @thi:        drbd_thread object
525  *
526  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
527  * prematurely.
528  */
529 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
530 {
531         struct drbd_resource *resource = thi->resource;
532         struct task_struct *p = current;
533
534         if (!thi->reset_cpu_mask)
535                 return;
536         thi->reset_cpu_mask = 0;
537         set_cpus_allowed_ptr(p, resource->cpu_mask);
538 }
539 #else
540 #define drbd_calc_cpu_mask(A) ({})
541 #endif
542
543 /*
544  * drbd_header_size  -  size of a packet header
545  *
546  * The header size is a multiple of 8, so any payload following the header is
547  * word aligned on 64-bit architectures.  (The bitmap send and receive code
548  * relies on this.)
549  */
550 unsigned int drbd_header_size(struct drbd_connection *connection)
551 {
552         if (connection->agreed_pro_version >= 100) {
553                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
554                 return sizeof(struct p_header100);
555         } else {
556                 BUILD_BUG_ON(sizeof(struct p_header80) !=
557                              sizeof(struct p_header95));
558                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
559                 return sizeof(struct p_header80);
560         }
561 }
562
563 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
564 {
565         h->magic   = cpu_to_be32(DRBD_MAGIC);
566         h->command = cpu_to_be16(cmd);
567         h->length  = cpu_to_be16(size);
568         return sizeof(struct p_header80);
569 }
570
571 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
572 {
573         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
574         h->command = cpu_to_be16(cmd);
575         h->length = cpu_to_be32(size);
576         return sizeof(struct p_header95);
577 }
578
579 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
580                                       int size, int vnr)
581 {
582         h->magic = cpu_to_be32(DRBD_MAGIC_100);
583         h->volume = cpu_to_be16(vnr);
584         h->command = cpu_to_be16(cmd);
585         h->length = cpu_to_be32(size);
586         h->pad = 0;
587         return sizeof(struct p_header100);
588 }
589
590 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
591                                    void *buffer, enum drbd_packet cmd, int size)
592 {
593         if (connection->agreed_pro_version >= 100)
594                 return prepare_header100(buffer, cmd, size, vnr);
595         else if (connection->agreed_pro_version >= 95 &&
596                  size > DRBD_MAX_SIZE_H80_PACKET)
597                 return prepare_header95(buffer, cmd, size);
598         else
599                 return prepare_header80(buffer, cmd, size);
600 }
601
602 static void *__conn_prepare_command(struct drbd_connection *connection,
603                                     struct drbd_socket *sock)
604 {
605         if (!sock->socket)
606                 return NULL;
607         return sock->sbuf + drbd_header_size(connection);
608 }
609
610 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
611 {
612         void *p;
613
614         mutex_lock(&sock->mutex);
615         p = __conn_prepare_command(connection, sock);
616         if (!p)
617                 mutex_unlock(&sock->mutex);
618
619         return p;
620 }
621
622 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
623 {
624         return conn_prepare_command(peer_device->connection, sock);
625 }
626
627 static int __send_command(struct drbd_connection *connection, int vnr,
628                           struct drbd_socket *sock, enum drbd_packet cmd,
629                           unsigned int header_size, void *data,
630                           unsigned int size)
631 {
632         int msg_flags;
633         int err;
634
635         /*
636          * Called with @data == NULL and the size of the data blocks in @size
637          * for commands that send data blocks.  For those commands, omit the
638          * MSG_MORE flag: this will increase the likelihood that data blocks
639          * which are page aligned on the sender will end up page aligned on the
640          * receiver.
641          */
642         msg_flags = data ? MSG_MORE : 0;
643
644         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
645                                       header_size + size);
646         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
647                             msg_flags);
648         if (data && !err)
649                 err = drbd_send_all(connection, sock->socket, data, size, 0);
650         /* DRBD protocol "pings" are latency critical.
651          * This is supposed to trigger tcp_push_pending_frames() */
652         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
653                 tcp_sock_set_nodelay(sock->socket->sk);
654
655         return err;
656 }
657
658 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
659                                enum drbd_packet cmd, unsigned int header_size,
660                                void *data, unsigned int size)
661 {
662         return __send_command(connection, 0, sock, cmd, header_size, data, size);
663 }
664
665 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
666                       enum drbd_packet cmd, unsigned int header_size,
667                       void *data, unsigned int size)
668 {
669         int err;
670
671         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
672         mutex_unlock(&sock->mutex);
673         return err;
674 }
675
676 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
677                       enum drbd_packet cmd, unsigned int header_size,
678                       void *data, unsigned int size)
679 {
680         int err;
681
682         err = __send_command(peer_device->connection, peer_device->device->vnr,
683                              sock, cmd, header_size, data, size);
684         mutex_unlock(&sock->mutex);
685         return err;
686 }
687
688 int drbd_send_ping(struct drbd_connection *connection)
689 {
690         struct drbd_socket *sock;
691
692         sock = &connection->meta;
693         if (!conn_prepare_command(connection, sock))
694                 return -EIO;
695         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
696 }
697
698 int drbd_send_ping_ack(struct drbd_connection *connection)
699 {
700         struct drbd_socket *sock;
701
702         sock = &connection->meta;
703         if (!conn_prepare_command(connection, sock))
704                 return -EIO;
705         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
706 }
707
708 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
709 {
710         struct drbd_socket *sock;
711         struct p_rs_param_95 *p;
712         int size;
713         const int apv = peer_device->connection->agreed_pro_version;
714         enum drbd_packet cmd;
715         struct net_conf *nc;
716         struct disk_conf *dc;
717
718         sock = &peer_device->connection->data;
719         p = drbd_prepare_command(peer_device, sock);
720         if (!p)
721                 return -EIO;
722
723         rcu_read_lock();
724         nc = rcu_dereference(peer_device->connection->net_conf);
725
726         size = apv <= 87 ? sizeof(struct p_rs_param)
727                 : apv == 88 ? sizeof(struct p_rs_param)
728                         + strlen(nc->verify_alg) + 1
729                 : apv <= 94 ? sizeof(struct p_rs_param_89)
730                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
731
732         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
733
734         /* initialize verify_alg and csums_alg */
735         BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
736         memset(&p->algs, 0, sizeof(p->algs));
737
738         if (get_ldev(peer_device->device)) {
739                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
740                 p->resync_rate = cpu_to_be32(dc->resync_rate);
741                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
742                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
743                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
744                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
745                 put_ldev(peer_device->device);
746         } else {
747                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
748                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
749                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
750                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
751                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
752         }
753
754         if (apv >= 88)
755                 strcpy(p->verify_alg, nc->verify_alg);
756         if (apv >= 89)
757                 strcpy(p->csums_alg, nc->csums_alg);
758         rcu_read_unlock();
759
760         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
761 }
762
763 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
764 {
765         struct drbd_socket *sock;
766         struct p_protocol *p;
767         struct net_conf *nc;
768         int size, cf;
769
770         sock = &connection->data;
771         p = __conn_prepare_command(connection, sock);
772         if (!p)
773                 return -EIO;
774
775         rcu_read_lock();
776         nc = rcu_dereference(connection->net_conf);
777
778         if (nc->tentative && connection->agreed_pro_version < 92) {
779                 rcu_read_unlock();
780                 drbd_err(connection, "--dry-run is not supported by peer");
781                 return -EOPNOTSUPP;
782         }
783
784         size = sizeof(*p);
785         if (connection->agreed_pro_version >= 87)
786                 size += strlen(nc->integrity_alg) + 1;
787
788         p->protocol      = cpu_to_be32(nc->wire_protocol);
789         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
790         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
791         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
792         p->two_primaries = cpu_to_be32(nc->two_primaries);
793         cf = 0;
794         if (nc->discard_my_data)
795                 cf |= CF_DISCARD_MY_DATA;
796         if (nc->tentative)
797                 cf |= CF_DRY_RUN;
798         p->conn_flags    = cpu_to_be32(cf);
799
800         if (connection->agreed_pro_version >= 87)
801                 strcpy(p->integrity_alg, nc->integrity_alg);
802         rcu_read_unlock();
803
804         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
805 }
806
807 int drbd_send_protocol(struct drbd_connection *connection)
808 {
809         int err;
810
811         mutex_lock(&connection->data.mutex);
812         err = __drbd_send_protocol(connection, P_PROTOCOL);
813         mutex_unlock(&connection->data.mutex);
814
815         return err;
816 }
817
818 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
819 {
820         struct drbd_device *device = peer_device->device;
821         struct drbd_socket *sock;
822         struct p_uuids *p;
823         int i;
824
825         if (!get_ldev_if_state(device, D_NEGOTIATING))
826                 return 0;
827
828         sock = &peer_device->connection->data;
829         p = drbd_prepare_command(peer_device, sock);
830         if (!p) {
831                 put_ldev(device);
832                 return -EIO;
833         }
834         spin_lock_irq(&device->ldev->md.uuid_lock);
835         for (i = UI_CURRENT; i < UI_SIZE; i++)
836                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
837         spin_unlock_irq(&device->ldev->md.uuid_lock);
838
839         device->comm_bm_set = drbd_bm_total_weight(device);
840         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
841         rcu_read_lock();
842         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
843         rcu_read_unlock();
844         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
845         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
846         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
847
848         put_ldev(device);
849         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
850 }
851
852 int drbd_send_uuids(struct drbd_peer_device *peer_device)
853 {
854         return _drbd_send_uuids(peer_device, 0);
855 }
856
857 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
858 {
859         return _drbd_send_uuids(peer_device, 8);
860 }
861
862 void drbd_print_uuids(struct drbd_device *device, const char *text)
863 {
864         if (get_ldev_if_state(device, D_NEGOTIATING)) {
865                 u64 *uuid = device->ldev->md.uuid;
866                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
867                      text,
868                      (unsigned long long)uuid[UI_CURRENT],
869                      (unsigned long long)uuid[UI_BITMAP],
870                      (unsigned long long)uuid[UI_HISTORY_START],
871                      (unsigned long long)uuid[UI_HISTORY_END]);
872                 put_ldev(device);
873         } else {
874                 drbd_info(device, "%s effective data uuid: %016llX\n",
875                                 text,
876                                 (unsigned long long)device->ed_uuid);
877         }
878 }
879
880 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
881 {
882         struct drbd_device *device = peer_device->device;
883         struct drbd_socket *sock;
884         struct p_rs_uuid *p;
885         u64 uuid;
886
887         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
888
889         uuid = device->ldev->md.uuid[UI_BITMAP];
890         if (uuid && uuid != UUID_JUST_CREATED)
891                 uuid = uuid + UUID_NEW_BM_OFFSET;
892         else
893                 get_random_bytes(&uuid, sizeof(u64));
894         drbd_uuid_set(device, UI_BITMAP, uuid);
895         drbd_print_uuids(device, "updated sync UUID");
896         drbd_md_sync(device);
897
898         sock = &peer_device->connection->data;
899         p = drbd_prepare_command(peer_device, sock);
900         if (p) {
901                 p->uuid = cpu_to_be64(uuid);
902                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
903         }
904 }
905
906 /* communicated if (agreed_features & DRBD_FF_WSAME) */
907 static void
908 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
909                                         struct request_queue *q)
910 {
911         if (q) {
912                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
913                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
914                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
915                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
916                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
917                 p->qlim->discard_enabled = blk_queue_discard(q);
918                 p->qlim->write_same_capable = 0;
919         } else {
920                 q = device->rq_queue;
921                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
922                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
923                 p->qlim->alignment_offset = 0;
924                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
925                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
926                 p->qlim->discard_enabled = 0;
927                 p->qlim->write_same_capable = 0;
928         }
929 }
930
931 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
932 {
933         struct drbd_device *device = peer_device->device;
934         struct drbd_socket *sock;
935         struct p_sizes *p;
936         sector_t d_size, u_size;
937         int q_order_type;
938         unsigned int max_bio_size;
939         unsigned int packet_size;
940
941         sock = &peer_device->connection->data;
942         p = drbd_prepare_command(peer_device, sock);
943         if (!p)
944                 return -EIO;
945
946         packet_size = sizeof(*p);
947         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
948                 packet_size += sizeof(p->qlim[0]);
949
950         memset(p, 0, packet_size);
951         if (get_ldev_if_state(device, D_NEGOTIATING)) {
952                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
953                 d_size = drbd_get_max_capacity(device->ldev);
954                 rcu_read_lock();
955                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
956                 rcu_read_unlock();
957                 q_order_type = drbd_queue_order_type(device);
958                 max_bio_size = queue_max_hw_sectors(q) << 9;
959                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
960                 assign_p_sizes_qlim(device, p, q);
961                 put_ldev(device);
962         } else {
963                 d_size = 0;
964                 u_size = 0;
965                 q_order_type = QUEUE_ORDERED_NONE;
966                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
967                 assign_p_sizes_qlim(device, p, NULL);
968         }
969
970         if (peer_device->connection->agreed_pro_version <= 94)
971                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
972         else if (peer_device->connection->agreed_pro_version < 100)
973                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
974
975         p->d_size = cpu_to_be64(d_size);
976         p->u_size = cpu_to_be64(u_size);
977         if (trigger_reply)
978                 p->c_size = 0;
979         else
980                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
981         p->max_bio_size = cpu_to_be32(max_bio_size);
982         p->queue_order_type = cpu_to_be16(q_order_type);
983         p->dds_flags = cpu_to_be16(flags);
984
985         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
986 }
987
988 /**
989  * drbd_send_current_state() - Sends the drbd state to the peer
990  * @peer_device:        DRBD peer device.
991  */
992 int drbd_send_current_state(struct drbd_peer_device *peer_device)
993 {
994         struct drbd_socket *sock;
995         struct p_state *p;
996
997         sock = &peer_device->connection->data;
998         p = drbd_prepare_command(peer_device, sock);
999         if (!p)
1000                 return -EIO;
1001         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1002         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1003 }
1004
1005 /**
1006  * drbd_send_state() - After a state change, sends the new state to the peer
1007  * @peer_device:      DRBD peer device.
1008  * @state:     the state to send, not necessarily the current state.
1009  *
1010  * Each state change queues an "after_state_ch" work, which will eventually
1011  * send the resulting new state to the peer. If more state changes happen
1012  * between queuing and processing of the after_state_ch work, we still
1013  * want to send each intermediary state in the order it occurred.
1014  */
1015 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1016 {
1017         struct drbd_socket *sock;
1018         struct p_state *p;
1019
1020         sock = &peer_device->connection->data;
1021         p = drbd_prepare_command(peer_device, sock);
1022         if (!p)
1023                 return -EIO;
1024         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1025         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1026 }
1027
1028 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1029 {
1030         struct drbd_socket *sock;
1031         struct p_req_state *p;
1032
1033         sock = &peer_device->connection->data;
1034         p = drbd_prepare_command(peer_device, sock);
1035         if (!p)
1036                 return -EIO;
1037         p->mask = cpu_to_be32(mask.i);
1038         p->val = cpu_to_be32(val.i);
1039         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1040 }
1041
1042 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1043 {
1044         enum drbd_packet cmd;
1045         struct drbd_socket *sock;
1046         struct p_req_state *p;
1047
1048         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1049         sock = &connection->data;
1050         p = conn_prepare_command(connection, sock);
1051         if (!p)
1052                 return -EIO;
1053         p->mask = cpu_to_be32(mask.i);
1054         p->val = cpu_to_be32(val.i);
1055         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1056 }
1057
1058 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1059 {
1060         struct drbd_socket *sock;
1061         struct p_req_state_reply *p;
1062
1063         sock = &peer_device->connection->meta;
1064         p = drbd_prepare_command(peer_device, sock);
1065         if (p) {
1066                 p->retcode = cpu_to_be32(retcode);
1067                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1068         }
1069 }
1070
1071 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1072 {
1073         struct drbd_socket *sock;
1074         struct p_req_state_reply *p;
1075         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1076
1077         sock = &connection->meta;
1078         p = conn_prepare_command(connection, sock);
1079         if (p) {
1080                 p->retcode = cpu_to_be32(retcode);
1081                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1082         }
1083 }
1084
1085 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1086 {
1087         BUG_ON(code & ~0xf);
1088         p->encoding = (p->encoding & ~0xf) | code;
1089 }
1090
1091 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1092 {
1093         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1094 }
1095
1096 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1097 {
1098         BUG_ON(n & ~0x7);
1099         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1100 }
1101
1102 static int fill_bitmap_rle_bits(struct drbd_device *device,
1103                          struct p_compressed_bm *p,
1104                          unsigned int size,
1105                          struct bm_xfer_ctx *c)
1106 {
1107         struct bitstream bs;
1108         unsigned long plain_bits;
1109         unsigned long tmp;
1110         unsigned long rl;
1111         unsigned len;
1112         unsigned toggle;
1113         int bits, use_rle;
1114
1115         /* may we use this feature? */
1116         rcu_read_lock();
1117         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1118         rcu_read_unlock();
1119         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1120                 return 0;
1121
1122         if (c->bit_offset >= c->bm_bits)
1123                 return 0; /* nothing to do. */
1124
1125         /* use at most thus many bytes */
1126         bitstream_init(&bs, p->code, size, 0);
1127         memset(p->code, 0, size);
1128         /* plain bits covered in this code string */
1129         plain_bits = 0;
1130
1131         /* p->encoding & 0x80 stores whether the first run length is set.
1132          * bit offset is implicit.
1133          * start with toggle == 2 to be able to tell the first iteration */
1134         toggle = 2;
1135
1136         /* see how much plain bits we can stuff into one packet
1137          * using RLE and VLI. */
1138         do {
1139                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1140                                     : _drbd_bm_find_next(device, c->bit_offset);
1141                 if (tmp == -1UL)
1142                         tmp = c->bm_bits;
1143                 rl = tmp - c->bit_offset;
1144
1145                 if (toggle == 2) { /* first iteration */
1146                         if (rl == 0) {
1147                                 /* the first checked bit was set,
1148                                  * store start value, */
1149                                 dcbp_set_start(p, 1);
1150                                 /* but skip encoding of zero run length */
1151                                 toggle = !toggle;
1152                                 continue;
1153                         }
1154                         dcbp_set_start(p, 0);
1155                 }
1156
1157                 /* paranoia: catch zero runlength.
1158                  * can only happen if bitmap is modified while we scan it. */
1159                 if (rl == 0) {
1160                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1161                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1162                         return -1;
1163                 }
1164
1165                 bits = vli_encode_bits(&bs, rl);
1166                 if (bits == -ENOBUFS) /* buffer full */
1167                         break;
1168                 if (bits <= 0) {
1169                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1170                         return 0;
1171                 }
1172
1173                 toggle = !toggle;
1174                 plain_bits += rl;
1175                 c->bit_offset = tmp;
1176         } while (c->bit_offset < c->bm_bits);
1177
1178         len = bs.cur.b - p->code + !!bs.cur.bit;
1179
1180         if (plain_bits < (len << 3)) {
1181                 /* incompressible with this method.
1182                  * we need to rewind both word and bit position. */
1183                 c->bit_offset -= plain_bits;
1184                 bm_xfer_ctx_bit_to_word_offset(c);
1185                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1186                 return 0;
1187         }
1188
1189         /* RLE + VLI was able to compress it just fine.
1190          * update c->word_offset. */
1191         bm_xfer_ctx_bit_to_word_offset(c);
1192
1193         /* store pad_bits */
1194         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1195
1196         return len;
1197 }
1198
1199 /*
1200  * send_bitmap_rle_or_plain
1201  *
1202  * Return 0 when done, 1 when another iteration is needed, and a negative error
1203  * code upon failure.
1204  */
1205 static int
1206 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1207 {
1208         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1209         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1210         struct p_compressed_bm *p = sock->sbuf + header_size;
1211         int len, err;
1212
1213         len = fill_bitmap_rle_bits(device, p,
1214                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1215         if (len < 0)
1216                 return -EIO;
1217
1218         if (len) {
1219                 dcbp_set_code(p, RLE_VLI_Bits);
1220                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1221                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1222                                      NULL, 0);
1223                 c->packets[0]++;
1224                 c->bytes[0] += header_size + sizeof(*p) + len;
1225
1226                 if (c->bit_offset >= c->bm_bits)
1227                         len = 0; /* DONE */
1228         } else {
1229                 /* was not compressible.
1230                  * send a buffer full of plain text bits instead. */
1231                 unsigned int data_size;
1232                 unsigned long num_words;
1233                 unsigned long *p = sock->sbuf + header_size;
1234
1235                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1236                 num_words = min_t(size_t, data_size / sizeof(*p),
1237                                   c->bm_words - c->word_offset);
1238                 len = num_words * sizeof(*p);
1239                 if (len)
1240                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1241                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1242                 c->word_offset += num_words;
1243                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1244
1245                 c->packets[1]++;
1246                 c->bytes[1] += header_size + len;
1247
1248                 if (c->bit_offset > c->bm_bits)
1249                         c->bit_offset = c->bm_bits;
1250         }
1251         if (!err) {
1252                 if (len == 0) {
1253                         INFO_bm_xfer_stats(device, "send", c);
1254                         return 0;
1255                 } else
1256                         return 1;
1257         }
1258         return -EIO;
1259 }
1260
1261 /* See the comment at receive_bitmap() */
1262 static int _drbd_send_bitmap(struct drbd_device *device)
1263 {
1264         struct bm_xfer_ctx c;
1265         int err;
1266
1267         if (!expect(device->bitmap))
1268                 return false;
1269
1270         if (get_ldev(device)) {
1271                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1272                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1273                         drbd_bm_set_all(device);
1274                         if (drbd_bm_write(device)) {
1275                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1276                                  * but otherwise process as per normal - need to tell other
1277                                  * side that a full resync is required! */
1278                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1279                         } else {
1280                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1281                                 drbd_md_sync(device);
1282                         }
1283                 }
1284                 put_ldev(device);
1285         }
1286
1287         c = (struct bm_xfer_ctx) {
1288                 .bm_bits = drbd_bm_bits(device),
1289                 .bm_words = drbd_bm_words(device),
1290         };
1291
1292         do {
1293                 err = send_bitmap_rle_or_plain(device, &c);
1294         } while (err > 0);
1295
1296         return err == 0;
1297 }
1298
1299 int drbd_send_bitmap(struct drbd_device *device)
1300 {
1301         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1302         int err = -1;
1303
1304         mutex_lock(&sock->mutex);
1305         if (sock->socket)
1306                 err = !_drbd_send_bitmap(device);
1307         mutex_unlock(&sock->mutex);
1308         return err;
1309 }
1310
1311 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1312 {
1313         struct drbd_socket *sock;
1314         struct p_barrier_ack *p;
1315
1316         if (connection->cstate < C_WF_REPORT_PARAMS)
1317                 return;
1318
1319         sock = &connection->meta;
1320         p = conn_prepare_command(connection, sock);
1321         if (!p)
1322                 return;
1323         p->barrier = barrier_nr;
1324         p->set_size = cpu_to_be32(set_size);
1325         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1326 }
1327
1328 /**
1329  * _drbd_send_ack() - Sends an ack packet
1330  * @peer_device:        DRBD peer device.
1331  * @cmd:                Packet command code.
1332  * @sector:             sector, needs to be in big endian byte order
1333  * @blksize:            size in byte, needs to be in big endian byte order
1334  * @block_id:           Id, big endian byte order
1335  */
1336 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1337                           u64 sector, u32 blksize, u64 block_id)
1338 {
1339         struct drbd_socket *sock;
1340         struct p_block_ack *p;
1341
1342         if (peer_device->device->state.conn < C_CONNECTED)
1343                 return -EIO;
1344
1345         sock = &peer_device->connection->meta;
1346         p = drbd_prepare_command(peer_device, sock);
1347         if (!p)
1348                 return -EIO;
1349         p->sector = sector;
1350         p->block_id = block_id;
1351         p->blksize = blksize;
1352         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1353         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1354 }
1355
1356 /* dp->sector and dp->block_id already/still in network byte order,
1357  * data_size is payload size according to dp->head,
1358  * and may need to be corrected for digest size. */
1359 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1360                       struct p_data *dp, int data_size)
1361 {
1362         if (peer_device->connection->peer_integrity_tfm)
1363                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1364         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1365                        dp->block_id);
1366 }
1367
1368 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1369                       struct p_block_req *rp)
1370 {
1371         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1372 }
1373
1374 /**
1375  * drbd_send_ack() - Sends an ack packet
1376  * @peer_device:        DRBD peer device
1377  * @cmd:                packet command code
1378  * @peer_req:           peer request
1379  */
1380 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1381                   struct drbd_peer_request *peer_req)
1382 {
1383         return _drbd_send_ack(peer_device, cmd,
1384                               cpu_to_be64(peer_req->i.sector),
1385                               cpu_to_be32(peer_req->i.size),
1386                               peer_req->block_id);
1387 }
1388
1389 /* This function misuses the block_id field to signal if the blocks
1390  * are is sync or not. */
1391 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1392                      sector_t sector, int blksize, u64 block_id)
1393 {
1394         return _drbd_send_ack(peer_device, cmd,
1395                               cpu_to_be64(sector),
1396                               cpu_to_be32(blksize),
1397                               cpu_to_be64(block_id));
1398 }
1399
1400 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1401                              struct drbd_peer_request *peer_req)
1402 {
1403         struct drbd_socket *sock;
1404         struct p_block_desc *p;
1405
1406         sock = &peer_device->connection->data;
1407         p = drbd_prepare_command(peer_device, sock);
1408         if (!p)
1409                 return -EIO;
1410         p->sector = cpu_to_be64(peer_req->i.sector);
1411         p->blksize = cpu_to_be32(peer_req->i.size);
1412         p->pad = 0;
1413         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1414 }
1415
1416 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1417                        sector_t sector, int size, u64 block_id)
1418 {
1419         struct drbd_socket *sock;
1420         struct p_block_req *p;
1421
1422         sock = &peer_device->connection->data;
1423         p = drbd_prepare_command(peer_device, sock);
1424         if (!p)
1425                 return -EIO;
1426         p->sector = cpu_to_be64(sector);
1427         p->block_id = block_id;
1428         p->blksize = cpu_to_be32(size);
1429         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1430 }
1431
1432 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1433                             void *digest, int digest_size, enum drbd_packet cmd)
1434 {
1435         struct drbd_socket *sock;
1436         struct p_block_req *p;
1437
1438         /* FIXME: Put the digest into the preallocated socket buffer.  */
1439
1440         sock = &peer_device->connection->data;
1441         p = drbd_prepare_command(peer_device, sock);
1442         if (!p)
1443                 return -EIO;
1444         p->sector = cpu_to_be64(sector);
1445         p->block_id = ID_SYNCER /* unused */;
1446         p->blksize = cpu_to_be32(size);
1447         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1448 }
1449
1450 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1451 {
1452         struct drbd_socket *sock;
1453         struct p_block_req *p;
1454
1455         sock = &peer_device->connection->data;
1456         p = drbd_prepare_command(peer_device, sock);
1457         if (!p)
1458                 return -EIO;
1459         p->sector = cpu_to_be64(sector);
1460         p->block_id = ID_SYNCER /* unused */;
1461         p->blksize = cpu_to_be32(size);
1462         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1463 }
1464
1465 /* called on sndtimeo
1466  * returns false if we should retry,
1467  * true if we think connection is dead
1468  */
1469 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1470 {
1471         int drop_it;
1472         /* long elapsed = (long)(jiffies - device->last_received); */
1473
1474         drop_it =   connection->meta.socket == sock
1475                 || !connection->ack_receiver.task
1476                 || get_t_state(&connection->ack_receiver) != RUNNING
1477                 || connection->cstate < C_WF_REPORT_PARAMS;
1478
1479         if (drop_it)
1480                 return true;
1481
1482         drop_it = !--connection->ko_count;
1483         if (!drop_it) {
1484                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1485                          current->comm, current->pid, connection->ko_count);
1486                 request_ping(connection);
1487         }
1488
1489         return drop_it; /* && (device->state == R_PRIMARY) */;
1490 }
1491
1492 static void drbd_update_congested(struct drbd_connection *connection)
1493 {
1494         struct sock *sk = connection->data.socket->sk;
1495         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1496                 set_bit(NET_CONGESTED, &connection->flags);
1497 }
1498
1499 /* The idea of sendpage seems to be to put some kind of reference
1500  * to the page into the skb, and to hand it over to the NIC. In
1501  * this process get_page() gets called.
1502  *
1503  * As soon as the page was really sent over the network put_page()
1504  * gets called by some part of the network layer. [ NIC driver? ]
1505  *
1506  * [ get_page() / put_page() increment/decrement the count. If count
1507  *   reaches 0 the page will be freed. ]
1508  *
1509  * This works nicely with pages from FSs.
1510  * But this means that in protocol A we might signal IO completion too early!
1511  *
1512  * In order not to corrupt data during a resync we must make sure
1513  * that we do not reuse our own buffer pages (EEs) to early, therefore
1514  * we have the net_ee list.
1515  *
1516  * XFS seems to have problems, still, it submits pages with page_count == 0!
1517  * As a workaround, we disable sendpage on pages
1518  * with page_count == 0 or PageSlab.
1519  */
1520 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1521                               int offset, size_t size, unsigned msg_flags)
1522 {
1523         struct socket *socket;
1524         void *addr;
1525         int err;
1526
1527         socket = peer_device->connection->data.socket;
1528         addr = kmap(page) + offset;
1529         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1530         kunmap(page);
1531         if (!err)
1532                 peer_device->device->send_cnt += size >> 9;
1533         return err;
1534 }
1535
1536 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1537                     int offset, size_t size, unsigned msg_flags)
1538 {
1539         struct socket *socket = peer_device->connection->data.socket;
1540         int len = size;
1541         int err = -EIO;
1542
1543         /* e.g. XFS meta- & log-data is in slab pages, which have a
1544          * page_count of 0 and/or have PageSlab() set.
1545          * we cannot use send_page for those, as that does get_page();
1546          * put_page(); and would cause either a VM_BUG directly, or
1547          * __page_cache_release a page that would actually still be referenced
1548          * by someone, leading to some obscure delayed Oops somewhere else. */
1549         if (drbd_disable_sendpage || !sendpage_ok(page))
1550                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1551
1552         msg_flags |= MSG_NOSIGNAL;
1553         drbd_update_congested(peer_device->connection);
1554         do {
1555                 int sent;
1556
1557                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1558                 if (sent <= 0) {
1559                         if (sent == -EAGAIN) {
1560                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1561                                         break;
1562                                 continue;
1563                         }
1564                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1565                              __func__, (int)size, len, sent);
1566                         if (sent < 0)
1567                                 err = sent;
1568                         break;
1569                 }
1570                 len    -= sent;
1571                 offset += sent;
1572         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1573         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1574
1575         if (len == 0) {
1576                 err = 0;
1577                 peer_device->device->send_cnt += size >> 9;
1578         }
1579         return err;
1580 }
1581
1582 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1583 {
1584         struct bio_vec bvec;
1585         struct bvec_iter iter;
1586
1587         /* hint all but last page with MSG_MORE */
1588         bio_for_each_segment(bvec, bio, iter) {
1589                 int err;
1590
1591                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1592                                          bvec.bv_offset, bvec.bv_len,
1593                                          bio_iter_last(bvec, iter)
1594                                          ? 0 : MSG_MORE);
1595                 if (err)
1596                         return err;
1597         }
1598         return 0;
1599 }
1600
1601 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1602 {
1603         struct bio_vec bvec;
1604         struct bvec_iter iter;
1605
1606         /* hint all but last page with MSG_MORE */
1607         bio_for_each_segment(bvec, bio, iter) {
1608                 int err;
1609
1610                 err = _drbd_send_page(peer_device, bvec.bv_page,
1611                                       bvec.bv_offset, bvec.bv_len,
1612                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1613                 if (err)
1614                         return err;
1615         }
1616         return 0;
1617 }
1618
1619 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1620                             struct drbd_peer_request *peer_req)
1621 {
1622         struct page *page = peer_req->pages;
1623         unsigned len = peer_req->i.size;
1624         int err;
1625
1626         /* hint all but last page with MSG_MORE */
1627         page_chain_for_each(page) {
1628                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1629
1630                 err = _drbd_send_page(peer_device, page, 0, l,
1631                                       page_chain_next(page) ? MSG_MORE : 0);
1632                 if (err)
1633                         return err;
1634                 len -= l;
1635         }
1636         return 0;
1637 }
1638
1639 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1640                              struct bio *bio)
1641 {
1642         if (connection->agreed_pro_version >= 95)
1643                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1644                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1645                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1646                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1647                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1648                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1649                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1650                            : DP_DISCARD)
1651                         : 0);
1652         else
1653                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1654 }
1655
1656 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1657  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1658  */
1659 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1660 {
1661         struct drbd_device *device = peer_device->device;
1662         struct drbd_socket *sock;
1663         struct p_data *p;
1664         void *digest_out;
1665         unsigned int dp_flags = 0;
1666         int digest_size;
1667         int err;
1668
1669         sock = &peer_device->connection->data;
1670         p = drbd_prepare_command(peer_device, sock);
1671         digest_size = peer_device->connection->integrity_tfm ?
1672                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1673
1674         if (!p)
1675                 return -EIO;
1676         p->sector = cpu_to_be64(req->i.sector);
1677         p->block_id = (unsigned long)req;
1678         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1679         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1680         if (device->state.conn >= C_SYNC_SOURCE &&
1681             device->state.conn <= C_PAUSED_SYNC_T)
1682                 dp_flags |= DP_MAY_SET_IN_SYNC;
1683         if (peer_device->connection->agreed_pro_version >= 100) {
1684                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1685                         dp_flags |= DP_SEND_RECEIVE_ACK;
1686                 /* During resync, request an explicit write ack,
1687                  * even in protocol != C */
1688                 if (req->rq_state & RQ_EXP_WRITE_ACK
1689                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1690                         dp_flags |= DP_SEND_WRITE_ACK;
1691         }
1692         p->dp_flags = cpu_to_be32(dp_flags);
1693
1694         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1695                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1696                 struct p_trim *t = (struct p_trim*)p;
1697                 t->size = cpu_to_be32(req->i.size);
1698                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1699                 goto out;
1700         }
1701         digest_out = p + 1;
1702
1703         /* our digest is still only over the payload.
1704          * TRIM does not carry any payload. */
1705         if (digest_size)
1706                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1707         err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1708                              sizeof(*p) + digest_size, NULL, req->i.size);
1709         if (!err) {
1710                 /* For protocol A, we have to memcpy the payload into
1711                  * socket buffers, as we may complete right away
1712                  * as soon as we handed it over to tcp, at which point the data
1713                  * pages may become invalid.
1714                  *
1715                  * For data-integrity enabled, we copy it as well, so we can be
1716                  * sure that even if the bio pages may still be modified, it
1717                  * won't change the data on the wire, thus if the digest checks
1718                  * out ok after sending on this side, but does not fit on the
1719                  * receiving side, we sure have detected corruption elsewhere.
1720                  */
1721                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1722                         err = _drbd_send_bio(peer_device, req->master_bio);
1723                 else
1724                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1725
1726                 /* double check digest, sometimes buffers have been modified in flight. */
1727                 if (digest_size > 0 && digest_size <= 64) {
1728                         /* 64 byte, 512 bit, is the largest digest size
1729                          * currently supported in kernel crypto. */
1730                         unsigned char digest[64];
1731                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1732                         if (memcmp(p + 1, digest, digest_size)) {
1733                                 drbd_warn(device,
1734                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1735                                         (unsigned long long)req->i.sector, req->i.size);
1736                         }
1737                 } /* else if (digest_size > 64) {
1738                      ... Be noisy about digest too large ...
1739                 } */
1740         }
1741 out:
1742         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1743
1744         return err;
1745 }
1746
1747 /* answer packet, used to send data back for read requests:
1748  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1749  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1750  */
1751 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1752                     struct drbd_peer_request *peer_req)
1753 {
1754         struct drbd_device *device = peer_device->device;
1755         struct drbd_socket *sock;
1756         struct p_data *p;
1757         int err;
1758         int digest_size;
1759
1760         sock = &peer_device->connection->data;
1761         p = drbd_prepare_command(peer_device, sock);
1762
1763         digest_size = peer_device->connection->integrity_tfm ?
1764                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1765
1766         if (!p)
1767                 return -EIO;
1768         p->sector = cpu_to_be64(peer_req->i.sector);
1769         p->block_id = peer_req->block_id;
1770         p->seq_num = 0;  /* unused */
1771         p->dp_flags = 0;
1772         if (digest_size)
1773                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1774         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1775         if (!err)
1776                 err = _drbd_send_zc_ee(peer_device, peer_req);
1777         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1778
1779         return err;
1780 }
1781
1782 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1783 {
1784         struct drbd_socket *sock;
1785         struct p_block_desc *p;
1786
1787         sock = &peer_device->connection->data;
1788         p = drbd_prepare_command(peer_device, sock);
1789         if (!p)
1790                 return -EIO;
1791         p->sector = cpu_to_be64(req->i.sector);
1792         p->blksize = cpu_to_be32(req->i.size);
1793         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1794 }
1795
1796 /*
1797   drbd_send distinguishes two cases:
1798
1799   Packets sent via the data socket "sock"
1800   and packets sent via the meta data socket "msock"
1801
1802                     sock                      msock
1803   -----------------+-------------------------+------------------------------
1804   timeout           conf.timeout / 2          conf.timeout / 2
1805   timeout action    send a ping via msock     Abort communication
1806                                               and close all sockets
1807 */
1808
1809 /*
1810  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1811  */
1812 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1813               void *buf, size_t size, unsigned msg_flags)
1814 {
1815         struct kvec iov = {.iov_base = buf, .iov_len = size};
1816         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1817         int rv, sent = 0;
1818
1819         if (!sock)
1820                 return -EBADR;
1821
1822         /* THINK  if (signal_pending) return ... ? */
1823
1824         iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1825
1826         if (sock == connection->data.socket) {
1827                 rcu_read_lock();
1828                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1829                 rcu_read_unlock();
1830                 drbd_update_congested(connection);
1831         }
1832         do {
1833                 rv = sock_sendmsg(sock, &msg);
1834                 if (rv == -EAGAIN) {
1835                         if (we_should_drop_the_connection(connection, sock))
1836                                 break;
1837                         else
1838                                 continue;
1839                 }
1840                 if (rv == -EINTR) {
1841                         flush_signals(current);
1842                         rv = 0;
1843                 }
1844                 if (rv < 0)
1845                         break;
1846                 sent += rv;
1847         } while (sent < size);
1848
1849         if (sock == connection->data.socket)
1850                 clear_bit(NET_CONGESTED, &connection->flags);
1851
1852         if (rv <= 0) {
1853                 if (rv != -EAGAIN) {
1854                         drbd_err(connection, "%s_sendmsg returned %d\n",
1855                                  sock == connection->meta.socket ? "msock" : "sock",
1856                                  rv);
1857                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1858                 } else
1859                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1860         }
1861
1862         return sent;
1863 }
1864
1865 /*
1866  * drbd_send_all  -  Send an entire buffer
1867  *
1868  * Returns 0 upon success and a negative error value otherwise.
1869  */
1870 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1871                   size_t size, unsigned msg_flags)
1872 {
1873         int err;
1874
1875         err = drbd_send(connection, sock, buffer, size, msg_flags);
1876         if (err < 0)
1877                 return err;
1878         if (err != size)
1879                 return -EIO;
1880         return 0;
1881 }
1882
1883 static int drbd_open(struct block_device *bdev, fmode_t mode)
1884 {
1885         struct drbd_device *device = bdev->bd_disk->private_data;
1886         unsigned long flags;
1887         int rv = 0;
1888
1889         mutex_lock(&drbd_main_mutex);
1890         spin_lock_irqsave(&device->resource->req_lock, flags);
1891         /* to have a stable device->state.role
1892          * and no race with updating open_cnt */
1893
1894         if (device->state.role != R_PRIMARY) {
1895                 if (mode & FMODE_WRITE)
1896                         rv = -EROFS;
1897                 else if (!drbd_allow_oos)
1898                         rv = -EMEDIUMTYPE;
1899         }
1900
1901         if (!rv)
1902                 device->open_cnt++;
1903         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1904         mutex_unlock(&drbd_main_mutex);
1905
1906         return rv;
1907 }
1908
1909 static void drbd_release(struct gendisk *gd, fmode_t mode)
1910 {
1911         struct drbd_device *device = gd->private_data;
1912         mutex_lock(&drbd_main_mutex);
1913         device->open_cnt--;
1914         mutex_unlock(&drbd_main_mutex);
1915 }
1916
1917 /* need to hold resource->req_lock */
1918 void drbd_queue_unplug(struct drbd_device *device)
1919 {
1920         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1921                 D_ASSERT(device, device->state.role == R_PRIMARY);
1922                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1923                         drbd_queue_work_if_unqueued(
1924                                 &first_peer_device(device)->connection->sender_work,
1925                                 &device->unplug_work);
1926                 }
1927         }
1928 }
1929
1930 static void drbd_set_defaults(struct drbd_device *device)
1931 {
1932         /* Beware! The actual layout differs
1933          * between big endian and little endian */
1934         device->state = (union drbd_dev_state) {
1935                 { .role = R_SECONDARY,
1936                   .peer = R_UNKNOWN,
1937                   .conn = C_STANDALONE,
1938                   .disk = D_DISKLESS,
1939                   .pdsk = D_UNKNOWN,
1940                 } };
1941 }
1942
1943 void drbd_init_set_defaults(struct drbd_device *device)
1944 {
1945         /* the memset(,0,) did most of this.
1946          * note: only assignments, no allocation in here */
1947
1948         drbd_set_defaults(device);
1949
1950         atomic_set(&device->ap_bio_cnt, 0);
1951         atomic_set(&device->ap_actlog_cnt, 0);
1952         atomic_set(&device->ap_pending_cnt, 0);
1953         atomic_set(&device->rs_pending_cnt, 0);
1954         atomic_set(&device->unacked_cnt, 0);
1955         atomic_set(&device->local_cnt, 0);
1956         atomic_set(&device->pp_in_use_by_net, 0);
1957         atomic_set(&device->rs_sect_in, 0);
1958         atomic_set(&device->rs_sect_ev, 0);
1959         atomic_set(&device->ap_in_flight, 0);
1960         atomic_set(&device->md_io.in_use, 0);
1961
1962         mutex_init(&device->own_state_mutex);
1963         device->state_mutex = &device->own_state_mutex;
1964
1965         spin_lock_init(&device->al_lock);
1966         spin_lock_init(&device->peer_seq_lock);
1967
1968         INIT_LIST_HEAD(&device->active_ee);
1969         INIT_LIST_HEAD(&device->sync_ee);
1970         INIT_LIST_HEAD(&device->done_ee);
1971         INIT_LIST_HEAD(&device->read_ee);
1972         INIT_LIST_HEAD(&device->net_ee);
1973         INIT_LIST_HEAD(&device->resync_reads);
1974         INIT_LIST_HEAD(&device->resync_work.list);
1975         INIT_LIST_HEAD(&device->unplug_work.list);
1976         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1977         INIT_LIST_HEAD(&device->pending_master_completion[0]);
1978         INIT_LIST_HEAD(&device->pending_master_completion[1]);
1979         INIT_LIST_HEAD(&device->pending_completion[0]);
1980         INIT_LIST_HEAD(&device->pending_completion[1]);
1981
1982         device->resync_work.cb  = w_resync_timer;
1983         device->unplug_work.cb  = w_send_write_hint;
1984         device->bm_io_work.w.cb = w_bitmap_io;
1985
1986         timer_setup(&device->resync_timer, resync_timer_fn, 0);
1987         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1988         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1989         timer_setup(&device->request_timer, request_timer_fn, 0);
1990
1991         init_waitqueue_head(&device->misc_wait);
1992         init_waitqueue_head(&device->state_wait);
1993         init_waitqueue_head(&device->ee_wait);
1994         init_waitqueue_head(&device->al_wait);
1995         init_waitqueue_head(&device->seq_wait);
1996
1997         device->resync_wenr = LC_FREE;
1998         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1999         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2000 }
2001
2002 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2003 {
2004         char ppb[10];
2005
2006         set_capacity_and_notify(device->vdisk, size);
2007
2008         drbd_info(device, "size = %s (%llu KB)\n",
2009                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2010 }
2011
2012 void drbd_device_cleanup(struct drbd_device *device)
2013 {
2014         int i;
2015         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2016                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2017                                 first_peer_device(device)->connection->receiver.t_state);
2018
2019         device->al_writ_cnt  =
2020         device->bm_writ_cnt  =
2021         device->read_cnt     =
2022         device->recv_cnt     =
2023         device->send_cnt     =
2024         device->writ_cnt     =
2025         device->p_size       =
2026         device->rs_start     =
2027         device->rs_total     =
2028         device->rs_failed    = 0;
2029         device->rs_last_events = 0;
2030         device->rs_last_sect_ev = 0;
2031         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2032                 device->rs_mark_left[i] = 0;
2033                 device->rs_mark_time[i] = 0;
2034         }
2035         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2036
2037         set_capacity_and_notify(device->vdisk, 0);
2038         if (device->bitmap) {
2039                 /* maybe never allocated. */
2040                 drbd_bm_resize(device, 0, 1);
2041                 drbd_bm_cleanup(device);
2042         }
2043
2044         drbd_backing_dev_free(device, device->ldev);
2045         device->ldev = NULL;
2046
2047         clear_bit(AL_SUSPENDED, &device->flags);
2048
2049         D_ASSERT(device, list_empty(&device->active_ee));
2050         D_ASSERT(device, list_empty(&device->sync_ee));
2051         D_ASSERT(device, list_empty(&device->done_ee));
2052         D_ASSERT(device, list_empty(&device->read_ee));
2053         D_ASSERT(device, list_empty(&device->net_ee));
2054         D_ASSERT(device, list_empty(&device->resync_reads));
2055         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2056         D_ASSERT(device, list_empty(&device->resync_work.list));
2057         D_ASSERT(device, list_empty(&device->unplug_work.list));
2058
2059         drbd_set_defaults(device);
2060 }
2061
2062
2063 static void drbd_destroy_mempools(void)
2064 {
2065         struct page *page;
2066
2067         while (drbd_pp_pool) {
2068                 page = drbd_pp_pool;
2069                 drbd_pp_pool = (struct page *)page_private(page);
2070                 __free_page(page);
2071                 drbd_pp_vacant--;
2072         }
2073
2074         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2075
2076         bioset_exit(&drbd_io_bio_set);
2077         bioset_exit(&drbd_md_io_bio_set);
2078         mempool_exit(&drbd_md_io_page_pool);
2079         mempool_exit(&drbd_ee_mempool);
2080         mempool_exit(&drbd_request_mempool);
2081         kmem_cache_destroy(drbd_ee_cache);
2082         kmem_cache_destroy(drbd_request_cache);
2083         kmem_cache_destroy(drbd_bm_ext_cache);
2084         kmem_cache_destroy(drbd_al_ext_cache);
2085
2086         drbd_ee_cache        = NULL;
2087         drbd_request_cache   = NULL;
2088         drbd_bm_ext_cache    = NULL;
2089         drbd_al_ext_cache    = NULL;
2090
2091         return;
2092 }
2093
2094 static int drbd_create_mempools(void)
2095 {
2096         struct page *page;
2097         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2098         int i, ret;
2099
2100         /* caches */
2101         drbd_request_cache = kmem_cache_create(
2102                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2103         if (drbd_request_cache == NULL)
2104                 goto Enomem;
2105
2106         drbd_ee_cache = kmem_cache_create(
2107                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2108         if (drbd_ee_cache == NULL)
2109                 goto Enomem;
2110
2111         drbd_bm_ext_cache = kmem_cache_create(
2112                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2113         if (drbd_bm_ext_cache == NULL)
2114                 goto Enomem;
2115
2116         drbd_al_ext_cache = kmem_cache_create(
2117                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2118         if (drbd_al_ext_cache == NULL)
2119                 goto Enomem;
2120
2121         /* mempools */
2122         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2123         if (ret)
2124                 goto Enomem;
2125
2126         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2127                           BIOSET_NEED_BVECS);
2128         if (ret)
2129                 goto Enomem;
2130
2131         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2132         if (ret)
2133                 goto Enomem;
2134
2135         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2136                                      drbd_request_cache);
2137         if (ret)
2138                 goto Enomem;
2139
2140         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2141         if (ret)
2142                 goto Enomem;
2143
2144         for (i = 0; i < number; i++) {
2145                 page = alloc_page(GFP_HIGHUSER);
2146                 if (!page)
2147                         goto Enomem;
2148                 set_page_private(page, (unsigned long)drbd_pp_pool);
2149                 drbd_pp_pool = page;
2150         }
2151         drbd_pp_vacant = number;
2152
2153         return 0;
2154
2155 Enomem:
2156         drbd_destroy_mempools(); /* in case we allocated some */
2157         return -ENOMEM;
2158 }
2159
2160 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2161 {
2162         int rr;
2163
2164         rr = drbd_free_peer_reqs(device, &device->active_ee);
2165         if (rr)
2166                 drbd_err(device, "%d EEs in active list found!\n", rr);
2167
2168         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2169         if (rr)
2170                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2171
2172         rr = drbd_free_peer_reqs(device, &device->read_ee);
2173         if (rr)
2174                 drbd_err(device, "%d EEs in read list found!\n", rr);
2175
2176         rr = drbd_free_peer_reqs(device, &device->done_ee);
2177         if (rr)
2178                 drbd_err(device, "%d EEs in done list found!\n", rr);
2179
2180         rr = drbd_free_peer_reqs(device, &device->net_ee);
2181         if (rr)
2182                 drbd_err(device, "%d EEs in net list found!\n", rr);
2183 }
2184
2185 /* caution. no locking. */
2186 void drbd_destroy_device(struct kref *kref)
2187 {
2188         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2189         struct drbd_resource *resource = device->resource;
2190         struct drbd_peer_device *peer_device, *tmp_peer_device;
2191
2192         del_timer_sync(&device->request_timer);
2193
2194         /* paranoia asserts */
2195         D_ASSERT(device, device->open_cnt == 0);
2196         /* end paranoia asserts */
2197
2198         /* cleanup stuff that may have been allocated during
2199          * device (re-)configuration or state changes */
2200
2201         drbd_backing_dev_free(device, device->ldev);
2202         device->ldev = NULL;
2203
2204         drbd_release_all_peer_reqs(device);
2205
2206         lc_destroy(device->act_log);
2207         lc_destroy(device->resync);
2208
2209         kfree(device->p_uuid);
2210         /* device->p_uuid = NULL; */
2211
2212         if (device->bitmap) /* should no longer be there. */
2213                 drbd_bm_cleanup(device);
2214         __free_page(device->md_io.page);
2215         blk_cleanup_disk(device->vdisk);
2216         kfree(device->rs_plan_s);
2217
2218         /* not for_each_connection(connection, resource):
2219          * those may have been cleaned up and disassociated already.
2220          */
2221         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2222                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2223                 kfree(peer_device);
2224         }
2225         memset(device, 0xfd, sizeof(*device));
2226         kfree(device);
2227         kref_put(&resource->kref, drbd_destroy_resource);
2228 }
2229
2230 /* One global retry thread, if we need to push back some bio and have it
2231  * reinserted through our make request function.
2232  */
2233 static struct retry_worker {
2234         struct workqueue_struct *wq;
2235         struct work_struct worker;
2236
2237         spinlock_t lock;
2238         struct list_head writes;
2239 } retry;
2240
2241 static void do_retry(struct work_struct *ws)
2242 {
2243         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2244         LIST_HEAD(writes);
2245         struct drbd_request *req, *tmp;
2246
2247         spin_lock_irq(&retry->lock);
2248         list_splice_init(&retry->writes, &writes);
2249         spin_unlock_irq(&retry->lock);
2250
2251         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2252                 struct drbd_device *device = req->device;
2253                 struct bio *bio = req->master_bio;
2254                 bool expected;
2255
2256                 expected =
2257                         expect(atomic_read(&req->completion_ref) == 0) &&
2258                         expect(req->rq_state & RQ_POSTPONED) &&
2259                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2260                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2261
2262                 if (!expected)
2263                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2264                                 req, atomic_read(&req->completion_ref),
2265                                 req->rq_state);
2266
2267                 /* We still need to put one kref associated with the
2268                  * "completion_ref" going zero in the code path that queued it
2269                  * here.  The request object may still be referenced by a
2270                  * frozen local req->private_bio, in case we force-detached.
2271                  */
2272                 kref_put(&req->kref, drbd_req_destroy);
2273
2274                 /* A single suspended or otherwise blocking device may stall
2275                  * all others as well.  Fortunately, this code path is to
2276                  * recover from a situation that "should not happen":
2277                  * concurrent writes in multi-primary setup.
2278                  * In a "normal" lifecycle, this workqueue is supposed to be
2279                  * destroyed without ever doing anything.
2280                  * If it turns out to be an issue anyways, we can do per
2281                  * resource (replication group) or per device (minor) retry
2282                  * workqueues instead.
2283                  */
2284
2285                 /* We are not just doing submit_bio_noacct(),
2286                  * as we want to keep the start_time information. */
2287                 inc_ap_bio(device);
2288                 __drbd_make_request(device, bio);
2289         }
2290 }
2291
2292 /* called via drbd_req_put_completion_ref(),
2293  * holds resource->req_lock */
2294 void drbd_restart_request(struct drbd_request *req)
2295 {
2296         unsigned long flags;
2297         spin_lock_irqsave(&retry.lock, flags);
2298         list_move_tail(&req->tl_requests, &retry.writes);
2299         spin_unlock_irqrestore(&retry.lock, flags);
2300
2301         /* Drop the extra reference that would otherwise
2302          * have been dropped by complete_master_bio.
2303          * do_retry() needs to grab a new one. */
2304         dec_ap_bio(req->device);
2305
2306         queue_work(retry.wq, &retry.worker);
2307 }
2308
2309 void drbd_destroy_resource(struct kref *kref)
2310 {
2311         struct drbd_resource *resource =
2312                 container_of(kref, struct drbd_resource, kref);
2313
2314         idr_destroy(&resource->devices);
2315         free_cpumask_var(resource->cpu_mask);
2316         kfree(resource->name);
2317         memset(resource, 0xf2, sizeof(*resource));
2318         kfree(resource);
2319 }
2320
2321 void drbd_free_resource(struct drbd_resource *resource)
2322 {
2323         struct drbd_connection *connection, *tmp;
2324
2325         for_each_connection_safe(connection, tmp, resource) {
2326                 list_del(&connection->connections);
2327                 drbd_debugfs_connection_cleanup(connection);
2328                 kref_put(&connection->kref, drbd_destroy_connection);
2329         }
2330         drbd_debugfs_resource_cleanup(resource);
2331         kref_put(&resource->kref, drbd_destroy_resource);
2332 }
2333
2334 static void drbd_cleanup(void)
2335 {
2336         unsigned int i;
2337         struct drbd_device *device;
2338         struct drbd_resource *resource, *tmp;
2339
2340         /* first remove proc,
2341          * drbdsetup uses it's presence to detect
2342          * whether DRBD is loaded.
2343          * If we would get stuck in proc removal,
2344          * but have netlink already deregistered,
2345          * some drbdsetup commands may wait forever
2346          * for an answer.
2347          */
2348         if (drbd_proc)
2349                 remove_proc_entry("drbd", NULL);
2350
2351         if (retry.wq)
2352                 destroy_workqueue(retry.wq);
2353
2354         drbd_genl_unregister();
2355
2356         idr_for_each_entry(&drbd_devices, device, i)
2357                 drbd_delete_device(device);
2358
2359         /* not _rcu since, no other updater anymore. Genl already unregistered */
2360         for_each_resource_safe(resource, tmp, &drbd_resources) {
2361                 list_del(&resource->resources);
2362                 drbd_free_resource(resource);
2363         }
2364
2365         drbd_debugfs_cleanup();
2366
2367         drbd_destroy_mempools();
2368         unregister_blkdev(DRBD_MAJOR, "drbd");
2369
2370         idr_destroy(&drbd_devices);
2371
2372         pr_info("module cleanup done.\n");
2373 }
2374
2375 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2376 {
2377         spin_lock_init(&wq->q_lock);
2378         INIT_LIST_HEAD(&wq->q);
2379         init_waitqueue_head(&wq->q_wait);
2380 }
2381
2382 struct completion_work {
2383         struct drbd_work w;
2384         struct completion done;
2385 };
2386
2387 static int w_complete(struct drbd_work *w, int cancel)
2388 {
2389         struct completion_work *completion_work =
2390                 container_of(w, struct completion_work, w);
2391
2392         complete(&completion_work->done);
2393         return 0;
2394 }
2395
2396 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2397 {
2398         struct completion_work completion_work;
2399
2400         completion_work.w.cb = w_complete;
2401         init_completion(&completion_work.done);
2402         drbd_queue_work(work_queue, &completion_work.w);
2403         wait_for_completion(&completion_work.done);
2404 }
2405
2406 struct drbd_resource *drbd_find_resource(const char *name)
2407 {
2408         struct drbd_resource *resource;
2409
2410         if (!name || !name[0])
2411                 return NULL;
2412
2413         rcu_read_lock();
2414         for_each_resource_rcu(resource, &drbd_resources) {
2415                 if (!strcmp(resource->name, name)) {
2416                         kref_get(&resource->kref);
2417                         goto found;
2418                 }
2419         }
2420         resource = NULL;
2421 found:
2422         rcu_read_unlock();
2423         return resource;
2424 }
2425
2426 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2427                                      void *peer_addr, int peer_addr_len)
2428 {
2429         struct drbd_resource *resource;
2430         struct drbd_connection *connection;
2431
2432         rcu_read_lock();
2433         for_each_resource_rcu(resource, &drbd_resources) {
2434                 for_each_connection_rcu(connection, resource) {
2435                         if (connection->my_addr_len == my_addr_len &&
2436                             connection->peer_addr_len == peer_addr_len &&
2437                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2438                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2439                                 kref_get(&connection->kref);
2440                                 goto found;
2441                         }
2442                 }
2443         }
2444         connection = NULL;
2445 found:
2446         rcu_read_unlock();
2447         return connection;
2448 }
2449
2450 static int drbd_alloc_socket(struct drbd_socket *socket)
2451 {
2452         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2453         if (!socket->rbuf)
2454                 return -ENOMEM;
2455         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2456         if (!socket->sbuf)
2457                 return -ENOMEM;
2458         return 0;
2459 }
2460
2461 static void drbd_free_socket(struct drbd_socket *socket)
2462 {
2463         free_page((unsigned long) socket->sbuf);
2464         free_page((unsigned long) socket->rbuf);
2465 }
2466
2467 void conn_free_crypto(struct drbd_connection *connection)
2468 {
2469         drbd_free_sock(connection);
2470
2471         crypto_free_shash(connection->csums_tfm);
2472         crypto_free_shash(connection->verify_tfm);
2473         crypto_free_shash(connection->cram_hmac_tfm);
2474         crypto_free_shash(connection->integrity_tfm);
2475         crypto_free_shash(connection->peer_integrity_tfm);
2476         kfree(connection->int_dig_in);
2477         kfree(connection->int_dig_vv);
2478
2479         connection->csums_tfm = NULL;
2480         connection->verify_tfm = NULL;
2481         connection->cram_hmac_tfm = NULL;
2482         connection->integrity_tfm = NULL;
2483         connection->peer_integrity_tfm = NULL;
2484         connection->int_dig_in = NULL;
2485         connection->int_dig_vv = NULL;
2486 }
2487
2488 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2489 {
2490         struct drbd_connection *connection;
2491         cpumask_var_t new_cpu_mask;
2492         int err;
2493
2494         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2495                 return -ENOMEM;
2496
2497         /* silently ignore cpu mask on UP kernel */
2498         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2499                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2500                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2501                 if (err == -EOVERFLOW) {
2502                         /* So what. mask it out. */
2503                         cpumask_var_t tmp_cpu_mask;
2504                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2505                                 cpumask_setall(tmp_cpu_mask);
2506                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2507                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2508                                         res_opts->cpu_mask,
2509                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2510                                         nr_cpu_ids);
2511                                 free_cpumask_var(tmp_cpu_mask);
2512                                 err = 0;
2513                         }
2514                 }
2515                 if (err) {
2516                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2517                         /* retcode = ERR_CPU_MASK_PARSE; */
2518                         goto fail;
2519                 }
2520         }
2521         resource->res_opts = *res_opts;
2522         if (cpumask_empty(new_cpu_mask))
2523                 drbd_calc_cpu_mask(&new_cpu_mask);
2524         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2525                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2526                 for_each_connection_rcu(connection, resource) {
2527                         connection->receiver.reset_cpu_mask = 1;
2528                         connection->ack_receiver.reset_cpu_mask = 1;
2529                         connection->worker.reset_cpu_mask = 1;
2530                 }
2531         }
2532         err = 0;
2533
2534 fail:
2535         free_cpumask_var(new_cpu_mask);
2536         return err;
2537
2538 }
2539
2540 struct drbd_resource *drbd_create_resource(const char *name)
2541 {
2542         struct drbd_resource *resource;
2543
2544         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2545         if (!resource)
2546                 goto fail;
2547         resource->name = kstrdup(name, GFP_KERNEL);
2548         if (!resource->name)
2549                 goto fail_free_resource;
2550         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2551                 goto fail_free_name;
2552         kref_init(&resource->kref);
2553         idr_init(&resource->devices);
2554         INIT_LIST_HEAD(&resource->connections);
2555         resource->write_ordering = WO_BDEV_FLUSH;
2556         list_add_tail_rcu(&resource->resources, &drbd_resources);
2557         mutex_init(&resource->conf_update);
2558         mutex_init(&resource->adm_mutex);
2559         spin_lock_init(&resource->req_lock);
2560         drbd_debugfs_resource_add(resource);
2561         return resource;
2562
2563 fail_free_name:
2564         kfree(resource->name);
2565 fail_free_resource:
2566         kfree(resource);
2567 fail:
2568         return NULL;
2569 }
2570
2571 /* caller must be under adm_mutex */
2572 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2573 {
2574         struct drbd_resource *resource;
2575         struct drbd_connection *connection;
2576
2577         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2578         if (!connection)
2579                 return NULL;
2580
2581         if (drbd_alloc_socket(&connection->data))
2582                 goto fail;
2583         if (drbd_alloc_socket(&connection->meta))
2584                 goto fail;
2585
2586         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2587         if (!connection->current_epoch)
2588                 goto fail;
2589
2590         INIT_LIST_HEAD(&connection->transfer_log);
2591
2592         INIT_LIST_HEAD(&connection->current_epoch->list);
2593         connection->epochs = 1;
2594         spin_lock_init(&connection->epoch_lock);
2595
2596         connection->send.seen_any_write_yet = false;
2597         connection->send.current_epoch_nr = 0;
2598         connection->send.current_epoch_writes = 0;
2599
2600         resource = drbd_create_resource(name);
2601         if (!resource)
2602                 goto fail;
2603
2604         connection->cstate = C_STANDALONE;
2605         mutex_init(&connection->cstate_mutex);
2606         init_waitqueue_head(&connection->ping_wait);
2607         idr_init(&connection->peer_devices);
2608
2609         drbd_init_workqueue(&connection->sender_work);
2610         mutex_init(&connection->data.mutex);
2611         mutex_init(&connection->meta.mutex);
2612
2613         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2614         connection->receiver.connection = connection;
2615         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2616         connection->worker.connection = connection;
2617         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2618         connection->ack_receiver.connection = connection;
2619
2620         kref_init(&connection->kref);
2621
2622         connection->resource = resource;
2623
2624         if (set_resource_options(resource, res_opts))
2625                 goto fail_resource;
2626
2627         kref_get(&resource->kref);
2628         list_add_tail_rcu(&connection->connections, &resource->connections);
2629         drbd_debugfs_connection_add(connection);
2630         return connection;
2631
2632 fail_resource:
2633         list_del(&resource->resources);
2634         drbd_free_resource(resource);
2635 fail:
2636         kfree(connection->current_epoch);
2637         drbd_free_socket(&connection->meta);
2638         drbd_free_socket(&connection->data);
2639         kfree(connection);
2640         return NULL;
2641 }
2642
2643 void drbd_destroy_connection(struct kref *kref)
2644 {
2645         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2646         struct drbd_resource *resource = connection->resource;
2647
2648         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2649                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2650         kfree(connection->current_epoch);
2651
2652         idr_destroy(&connection->peer_devices);
2653
2654         drbd_free_socket(&connection->meta);
2655         drbd_free_socket(&connection->data);
2656         kfree(connection->int_dig_in);
2657         kfree(connection->int_dig_vv);
2658         memset(connection, 0xfc, sizeof(*connection));
2659         kfree(connection);
2660         kref_put(&resource->kref, drbd_destroy_resource);
2661 }
2662
2663 static int init_submitter(struct drbd_device *device)
2664 {
2665         /* opencoded create_singlethread_workqueue(),
2666          * to be able to say "drbd%d", ..., minor */
2667         device->submit.wq =
2668                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2669         if (!device->submit.wq)
2670                 return -ENOMEM;
2671
2672         INIT_WORK(&device->submit.worker, do_submit);
2673         INIT_LIST_HEAD(&device->submit.writes);
2674         return 0;
2675 }
2676
2677 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2678 {
2679         struct drbd_resource *resource = adm_ctx->resource;
2680         struct drbd_connection *connection;
2681         struct drbd_device *device;
2682         struct drbd_peer_device *peer_device, *tmp_peer_device;
2683         struct gendisk *disk;
2684         int id;
2685         int vnr = adm_ctx->volume;
2686         enum drbd_ret_code err = ERR_NOMEM;
2687
2688         device = minor_to_device(minor);
2689         if (device)
2690                 return ERR_MINOR_OR_VOLUME_EXISTS;
2691
2692         /* GFP_KERNEL, we are outside of all write-out paths */
2693         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2694         if (!device)
2695                 return ERR_NOMEM;
2696         kref_init(&device->kref);
2697
2698         kref_get(&resource->kref);
2699         device->resource = resource;
2700         device->minor = minor;
2701         device->vnr = vnr;
2702
2703         drbd_init_set_defaults(device);
2704
2705         disk = blk_alloc_disk(NUMA_NO_NODE);
2706         if (!disk)
2707                 goto out_no_disk;
2708
2709         device->vdisk = disk;
2710         device->rq_queue = disk->queue;
2711
2712         set_disk_ro(disk, true);
2713
2714         disk->major = DRBD_MAJOR;
2715         disk->first_minor = minor;
2716         disk->minors = 1;
2717         disk->fops = &drbd_ops;
2718         disk->flags |= GENHD_FL_NO_PART;
2719         sprintf(disk->disk_name, "drbd%d", minor);
2720         disk->private_data = device;
2721
2722         blk_queue_write_cache(disk->queue, true, true);
2723         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2724            This triggers a max_bio_size message upon first attach or connect */
2725         blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2726
2727         device->md_io.page = alloc_page(GFP_KERNEL);
2728         if (!device->md_io.page)
2729                 goto out_no_io_page;
2730
2731         if (drbd_bm_init(device))
2732                 goto out_no_bitmap;
2733         device->read_requests = RB_ROOT;
2734         device->write_requests = RB_ROOT;
2735
2736         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2737         if (id < 0) {
2738                 if (id == -ENOSPC)
2739                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2740                 goto out_no_minor_idr;
2741         }
2742         kref_get(&device->kref);
2743
2744         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2745         if (id < 0) {
2746                 if (id == -ENOSPC)
2747                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2748                 goto out_idr_remove_minor;
2749         }
2750         kref_get(&device->kref);
2751
2752         INIT_LIST_HEAD(&device->peer_devices);
2753         INIT_LIST_HEAD(&device->pending_bitmap_io);
2754         for_each_connection(connection, resource) {
2755                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2756                 if (!peer_device)
2757                         goto out_idr_remove_from_resource;
2758                 peer_device->connection = connection;
2759                 peer_device->device = device;
2760
2761                 list_add(&peer_device->peer_devices, &device->peer_devices);
2762                 kref_get(&device->kref);
2763
2764                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2765                 if (id < 0) {
2766                         if (id == -ENOSPC)
2767                                 err = ERR_INVALID_REQUEST;
2768                         goto out_idr_remove_from_resource;
2769                 }
2770                 kref_get(&connection->kref);
2771                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2772         }
2773
2774         if (init_submitter(device)) {
2775                 err = ERR_NOMEM;
2776                 goto out_idr_remove_vol;
2777         }
2778
2779         err = add_disk(disk);
2780         if (err)
2781                 goto out_idr_remove_vol;
2782
2783         /* inherit the connection state */
2784         device->state.conn = first_connection(resource)->cstate;
2785         if (device->state.conn == C_WF_REPORT_PARAMS) {
2786                 for_each_peer_device(peer_device, device)
2787                         drbd_connected(peer_device);
2788         }
2789         /* move to create_peer_device() */
2790         for_each_peer_device(peer_device, device)
2791                 drbd_debugfs_peer_device_add(peer_device);
2792         drbd_debugfs_device_add(device);
2793         return NO_ERROR;
2794
2795 out_idr_remove_vol:
2796         idr_remove(&connection->peer_devices, vnr);
2797 out_idr_remove_from_resource:
2798         for_each_connection(connection, resource) {
2799                 peer_device = idr_remove(&connection->peer_devices, vnr);
2800                 if (peer_device)
2801                         kref_put(&connection->kref, drbd_destroy_connection);
2802         }
2803         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2804                 list_del(&peer_device->peer_devices);
2805                 kfree(peer_device);
2806         }
2807         idr_remove(&resource->devices, vnr);
2808 out_idr_remove_minor:
2809         idr_remove(&drbd_devices, minor);
2810         synchronize_rcu();
2811 out_no_minor_idr:
2812         drbd_bm_cleanup(device);
2813 out_no_bitmap:
2814         __free_page(device->md_io.page);
2815 out_no_io_page:
2816         blk_cleanup_disk(disk);
2817 out_no_disk:
2818         kref_put(&resource->kref, drbd_destroy_resource);
2819         kfree(device);
2820         return err;
2821 }
2822
2823 void drbd_delete_device(struct drbd_device *device)
2824 {
2825         struct drbd_resource *resource = device->resource;
2826         struct drbd_connection *connection;
2827         struct drbd_peer_device *peer_device;
2828
2829         /* move to free_peer_device() */
2830         for_each_peer_device(peer_device, device)
2831                 drbd_debugfs_peer_device_cleanup(peer_device);
2832         drbd_debugfs_device_cleanup(device);
2833         for_each_connection(connection, resource) {
2834                 idr_remove(&connection->peer_devices, device->vnr);
2835                 kref_put(&device->kref, drbd_destroy_device);
2836         }
2837         idr_remove(&resource->devices, device->vnr);
2838         kref_put(&device->kref, drbd_destroy_device);
2839         idr_remove(&drbd_devices, device_to_minor(device));
2840         kref_put(&device->kref, drbd_destroy_device);
2841         del_gendisk(device->vdisk);
2842         synchronize_rcu();
2843         kref_put(&device->kref, drbd_destroy_device);
2844 }
2845
2846 static int __init drbd_init(void)
2847 {
2848         int err;
2849
2850         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2851                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2852 #ifdef MODULE
2853                 return -EINVAL;
2854 #else
2855                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2856 #endif
2857         }
2858
2859         err = register_blkdev(DRBD_MAJOR, "drbd");
2860         if (err) {
2861                 pr_err("unable to register block device major %d\n",
2862                        DRBD_MAJOR);
2863                 return err;
2864         }
2865
2866         /*
2867          * allocate all necessary structs
2868          */
2869         init_waitqueue_head(&drbd_pp_wait);
2870
2871         drbd_proc = NULL; /* play safe for drbd_cleanup */
2872         idr_init(&drbd_devices);
2873
2874         mutex_init(&resources_mutex);
2875         INIT_LIST_HEAD(&drbd_resources);
2876
2877         err = drbd_genl_register();
2878         if (err) {
2879                 pr_err("unable to register generic netlink family\n");
2880                 goto fail;
2881         }
2882
2883         err = drbd_create_mempools();
2884         if (err)
2885                 goto fail;
2886
2887         err = -ENOMEM;
2888         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2889         if (!drbd_proc) {
2890                 pr_err("unable to register proc file\n");
2891                 goto fail;
2892         }
2893
2894         retry.wq = create_singlethread_workqueue("drbd-reissue");
2895         if (!retry.wq) {
2896                 pr_err("unable to create retry workqueue\n");
2897                 goto fail;
2898         }
2899         INIT_WORK(&retry.worker, do_retry);
2900         spin_lock_init(&retry.lock);
2901         INIT_LIST_HEAD(&retry.writes);
2902
2903         drbd_debugfs_init();
2904
2905         pr_info("initialized. "
2906                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2907                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2908         pr_info("%s\n", drbd_buildtag());
2909         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2910         return 0; /* Success! */
2911
2912 fail:
2913         drbd_cleanup();
2914         if (err == -ENOMEM)
2915                 pr_err("ran out of memory\n");
2916         else
2917                 pr_err("initialization failure\n");
2918         return err;
2919 }
2920
2921 static void drbd_free_one_sock(struct drbd_socket *ds)
2922 {
2923         struct socket *s;
2924         mutex_lock(&ds->mutex);
2925         s = ds->socket;
2926         ds->socket = NULL;
2927         mutex_unlock(&ds->mutex);
2928         if (s) {
2929                 /* so debugfs does not need to mutex_lock() */
2930                 synchronize_rcu();
2931                 kernel_sock_shutdown(s, SHUT_RDWR);
2932                 sock_release(s);
2933         }
2934 }
2935
2936 void drbd_free_sock(struct drbd_connection *connection)
2937 {
2938         if (connection->data.socket)
2939                 drbd_free_one_sock(&connection->data);
2940         if (connection->meta.socket)
2941                 drbd_free_one_sock(&connection->meta);
2942 }
2943
2944 /* meta data management */
2945
2946 void conn_md_sync(struct drbd_connection *connection)
2947 {
2948         struct drbd_peer_device *peer_device;
2949         int vnr;
2950
2951         rcu_read_lock();
2952         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2953                 struct drbd_device *device = peer_device->device;
2954
2955                 kref_get(&device->kref);
2956                 rcu_read_unlock();
2957                 drbd_md_sync(device);
2958                 kref_put(&device->kref, drbd_destroy_device);
2959                 rcu_read_lock();
2960         }
2961         rcu_read_unlock();
2962 }
2963
2964 /* aligned 4kByte */
2965 struct meta_data_on_disk {
2966         u64 la_size_sect;      /* last agreed size. */
2967         u64 uuid[UI_SIZE];   /* UUIDs. */
2968         u64 device_uuid;
2969         u64 reserved_u64_1;
2970         u32 flags;             /* MDF */
2971         u32 magic;
2972         u32 md_size_sect;
2973         u32 al_offset;         /* offset to this block */
2974         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2975               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2976         u32 bm_offset;         /* offset to the bitmap, from here */
2977         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2978         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2979
2980         /* see al_tr_number_to_on_disk_sector() */
2981         u32 al_stripes;
2982         u32 al_stripe_size_4k;
2983
2984         u8 reserved_u8[4096 - (7*8 + 10*4)];
2985 } __packed;
2986
2987
2988
2989 void drbd_md_write(struct drbd_device *device, void *b)
2990 {
2991         struct meta_data_on_disk *buffer = b;
2992         sector_t sector;
2993         int i;
2994
2995         memset(buffer, 0, sizeof(*buffer));
2996
2997         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2998         for (i = UI_CURRENT; i < UI_SIZE; i++)
2999                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3000         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3001         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3002
3003         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3004         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3005         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3006         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3007         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3008
3009         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3010         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3011
3012         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3013         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3014
3015         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3016         sector = device->ldev->md.md_offset;
3017
3018         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3019                 /* this was a try anyways ... */
3020                 drbd_err(device, "meta data update failed!\n");
3021                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3022         }
3023 }
3024
3025 /**
3026  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3027  * @device:     DRBD device.
3028  */
3029 void drbd_md_sync(struct drbd_device *device)
3030 {
3031         struct meta_data_on_disk *buffer;
3032
3033         /* Don't accidentally change the DRBD meta data layout. */
3034         BUILD_BUG_ON(UI_SIZE != 4);
3035         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3036
3037         del_timer(&device->md_sync_timer);
3038         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3039         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3040                 return;
3041
3042         /* We use here D_FAILED and not D_ATTACHING because we try to write
3043          * metadata even if we detach due to a disk failure! */
3044         if (!get_ldev_if_state(device, D_FAILED))
3045                 return;
3046
3047         buffer = drbd_md_get_buffer(device, __func__);
3048         if (!buffer)
3049                 goto out;
3050
3051         drbd_md_write(device, buffer);
3052
3053         /* Update device->ldev->md.la_size_sect,
3054          * since we updated it on metadata. */
3055         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3056
3057         drbd_md_put_buffer(device);
3058 out:
3059         put_ldev(device);
3060 }
3061
3062 static int check_activity_log_stripe_size(struct drbd_device *device,
3063                 struct meta_data_on_disk *on_disk,
3064                 struct drbd_md *in_core)
3065 {
3066         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3067         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3068         u64 al_size_4k;
3069
3070         /* both not set: default to old fixed size activity log */
3071         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3072                 al_stripes = 1;
3073                 al_stripe_size_4k = MD_32kB_SECT/8;
3074         }
3075
3076         /* some paranoia plausibility checks */
3077
3078         /* we need both values to be set */
3079         if (al_stripes == 0 || al_stripe_size_4k == 0)
3080                 goto err;
3081
3082         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3083
3084         /* Upper limit of activity log area, to avoid potential overflow
3085          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3086          * than 72 * 4k blocks total only increases the amount of history,
3087          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3088         if (al_size_4k > (16 * 1024 * 1024/4))
3089                 goto err;
3090
3091         /* Lower limit: we need at least 8 transaction slots (32kB)
3092          * to not break existing setups */
3093         if (al_size_4k < MD_32kB_SECT/8)
3094                 goto err;
3095
3096         in_core->al_stripe_size_4k = al_stripe_size_4k;
3097         in_core->al_stripes = al_stripes;
3098         in_core->al_size_4k = al_size_4k;
3099
3100         return 0;
3101 err:
3102         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3103                         al_stripes, al_stripe_size_4k);
3104         return -EINVAL;
3105 }
3106
3107 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3108 {
3109         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3110         struct drbd_md *in_core = &bdev->md;
3111         s32 on_disk_al_sect;
3112         s32 on_disk_bm_sect;
3113
3114         /* The on-disk size of the activity log, calculated from offsets, and
3115          * the size of the activity log calculated from the stripe settings,
3116          * should match.
3117          * Though we could relax this a bit: it is ok, if the striped activity log
3118          * fits in the available on-disk activity log size.
3119          * Right now, that would break how resize is implemented.
3120          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3121          * of possible unused padding space in the on disk layout. */
3122         if (in_core->al_offset < 0) {
3123                 if (in_core->bm_offset > in_core->al_offset)
3124                         goto err;
3125                 on_disk_al_sect = -in_core->al_offset;
3126                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3127         } else {
3128                 if (in_core->al_offset != MD_4kB_SECT)
3129                         goto err;
3130                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3131                         goto err;
3132
3133                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3134                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3135         }
3136
3137         /* old fixed size meta data is exactly that: fixed. */
3138         if (in_core->meta_dev_idx >= 0) {
3139                 if (in_core->md_size_sect != MD_128MB_SECT
3140                 ||  in_core->al_offset != MD_4kB_SECT
3141                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3142                 ||  in_core->al_stripes != 1
3143                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3144                         goto err;
3145         }
3146
3147         if (capacity < in_core->md_size_sect)
3148                 goto err;
3149         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3150                 goto err;
3151
3152         /* should be aligned, and at least 32k */
3153         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3154                 goto err;
3155
3156         /* should fit (for now: exactly) into the available on-disk space;
3157          * overflow prevention is in check_activity_log_stripe_size() above. */
3158         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3159                 goto err;
3160
3161         /* again, should be aligned */
3162         if (in_core->bm_offset & 7)
3163                 goto err;
3164
3165         /* FIXME check for device grow with flex external meta data? */
3166
3167         /* can the available bitmap space cover the last agreed device size? */
3168         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3169                 goto err;
3170
3171         return 0;
3172
3173 err:
3174         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3175                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3176                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3177                         in_core->meta_dev_idx,
3178                         in_core->al_stripes, in_core->al_stripe_size_4k,
3179                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3180                         (unsigned long long)in_core->la_size_sect,
3181                         (unsigned long long)capacity);
3182
3183         return -EINVAL;
3184 }
3185
3186
3187 /**
3188  * drbd_md_read() - Reads in the meta data super block
3189  * @device:     DRBD device.
3190  * @bdev:       Device from which the meta data should be read in.
3191  *
3192  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3193  * something goes wrong.
3194  *
3195  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3196  * even before @bdev is assigned to @device->ldev.
3197  */
3198 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3199 {
3200         struct meta_data_on_disk *buffer;
3201         u32 magic, flags;
3202         int i, rv = NO_ERROR;
3203
3204         if (device->state.disk != D_DISKLESS)
3205                 return ERR_DISK_CONFIGURED;
3206
3207         buffer = drbd_md_get_buffer(device, __func__);
3208         if (!buffer)
3209                 return ERR_NOMEM;
3210
3211         /* First, figure out where our meta data superblock is located,
3212          * and read it. */
3213         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3214         bdev->md.md_offset = drbd_md_ss(bdev);
3215         /* Even for (flexible or indexed) external meta data,
3216          * initially restrict us to the 4k superblock for now.
3217          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3218         bdev->md.md_size_sect = 8;
3219
3220         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3221                                  REQ_OP_READ)) {
3222                 /* NOTE: can't do normal error processing here as this is
3223                    called BEFORE disk is attached */
3224                 drbd_err(device, "Error while reading metadata.\n");
3225                 rv = ERR_IO_MD_DISK;
3226                 goto err;
3227         }
3228
3229         magic = be32_to_cpu(buffer->magic);
3230         flags = be32_to_cpu(buffer->flags);
3231         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3232             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3233                         /* btw: that's Activity Log clean, not "all" clean. */
3234                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3235                 rv = ERR_MD_UNCLEAN;
3236                 goto err;
3237         }
3238
3239         rv = ERR_MD_INVALID;
3240         if (magic != DRBD_MD_MAGIC_08) {
3241                 if (magic == DRBD_MD_MAGIC_07)
3242                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3243                 else
3244                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3245                 goto err;
3246         }
3247
3248         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3249                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3250                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3251                 goto err;
3252         }
3253
3254
3255         /* convert to in_core endian */
3256         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3257         for (i = UI_CURRENT; i < UI_SIZE; i++)
3258                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3259         bdev->md.flags = be32_to_cpu(buffer->flags);
3260         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3261
3262         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3263         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3264         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3265
3266         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3267                 goto err;
3268         if (check_offsets_and_sizes(device, bdev))
3269                 goto err;
3270
3271         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3272                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3273                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3274                 goto err;
3275         }
3276         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3277                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3278                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3279                 goto err;
3280         }
3281
3282         rv = NO_ERROR;
3283
3284         spin_lock_irq(&device->resource->req_lock);
3285         if (device->state.conn < C_CONNECTED) {
3286                 unsigned int peer;
3287                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3288                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3289                 device->peer_max_bio_size = peer;
3290         }
3291         spin_unlock_irq(&device->resource->req_lock);
3292
3293  err:
3294         drbd_md_put_buffer(device);
3295
3296         return rv;
3297 }
3298
3299 /**
3300  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3301  * @device:     DRBD device.
3302  *
3303  * Call this function if you change anything that should be written to
3304  * the meta-data super block. This function sets MD_DIRTY, and starts a
3305  * timer that ensures that within five seconds you have to call drbd_md_sync().
3306  */
3307 void drbd_md_mark_dirty(struct drbd_device *device)
3308 {
3309         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3310                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3311 }
3312
3313 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3314 {
3315         int i;
3316
3317         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3318                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3319 }
3320
3321 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3322 {
3323         if (idx == UI_CURRENT) {
3324                 if (device->state.role == R_PRIMARY)
3325                         val |= 1;
3326                 else
3327                         val &= ~((u64)1);
3328
3329                 drbd_set_ed_uuid(device, val);
3330         }
3331
3332         device->ldev->md.uuid[idx] = val;
3333         drbd_md_mark_dirty(device);
3334 }
3335
3336 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3337 {
3338         unsigned long flags;
3339         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3340         __drbd_uuid_set(device, idx, val);
3341         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3342 }
3343
3344 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3345 {
3346         unsigned long flags;
3347         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3348         if (device->ldev->md.uuid[idx]) {
3349                 drbd_uuid_move_history(device);
3350                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3351         }
3352         __drbd_uuid_set(device, idx, val);
3353         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3354 }
3355
3356 /**
3357  * drbd_uuid_new_current() - Creates a new current UUID
3358  * @device:     DRBD device.
3359  *
3360  * Creates a new current UUID, and rotates the old current UUID into
3361  * the bitmap slot. Causes an incremental resync upon next connect.
3362  */
3363 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3364 {
3365         u64 val;
3366         unsigned long long bm_uuid;
3367
3368         get_random_bytes(&val, sizeof(u64));
3369
3370         spin_lock_irq(&device->ldev->md.uuid_lock);
3371         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3372
3373         if (bm_uuid)
3374                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3375
3376         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3377         __drbd_uuid_set(device, UI_CURRENT, val);
3378         spin_unlock_irq(&device->ldev->md.uuid_lock);
3379
3380         drbd_print_uuids(device, "new current UUID");
3381         /* get it to stable storage _now_ */
3382         drbd_md_sync(device);
3383 }
3384
3385 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3386 {
3387         unsigned long flags;
3388         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3389                 return;
3390
3391         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3392         if (val == 0) {
3393                 drbd_uuid_move_history(device);
3394                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3395                 device->ldev->md.uuid[UI_BITMAP] = 0;
3396         } else {
3397                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3398                 if (bm_uuid)
3399                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3400
3401                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3402         }
3403         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3404
3405         drbd_md_mark_dirty(device);
3406 }
3407
3408 /**
3409  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3410  * @device:     DRBD device.
3411  *
3412  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3413  */
3414 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3415 {
3416         int rv = -EIO;
3417
3418         drbd_md_set_flag(device, MDF_FULL_SYNC);
3419         drbd_md_sync(device);
3420         drbd_bm_set_all(device);
3421
3422         rv = drbd_bm_write(device);
3423
3424         if (!rv) {
3425                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3426                 drbd_md_sync(device);
3427         }
3428
3429         return rv;
3430 }
3431
3432 /**
3433  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3434  * @device:     DRBD device.
3435  *
3436  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3437  */
3438 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3439 {
3440         drbd_resume_al(device);
3441         drbd_bm_clear_all(device);
3442         return drbd_bm_write(device);
3443 }
3444
3445 static int w_bitmap_io(struct drbd_work *w, int unused)
3446 {
3447         struct drbd_device *device =
3448                 container_of(w, struct drbd_device, bm_io_work.w);
3449         struct bm_io_work *work = &device->bm_io_work;
3450         int rv = -EIO;
3451
3452         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3453                 int cnt = atomic_read(&device->ap_bio_cnt);
3454                 if (cnt)
3455                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3456                                         cnt, work->why);
3457         }
3458
3459         if (get_ldev(device)) {
3460                 drbd_bm_lock(device, work->why, work->flags);
3461                 rv = work->io_fn(device);
3462                 drbd_bm_unlock(device);
3463                 put_ldev(device);
3464         }
3465
3466         clear_bit_unlock(BITMAP_IO, &device->flags);
3467         wake_up(&device->misc_wait);
3468
3469         if (work->done)
3470                 work->done(device, rv);
3471
3472         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3473         work->why = NULL;
3474         work->flags = 0;
3475
3476         return 0;
3477 }
3478
3479 /**
3480  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3481  * @device:     DRBD device.
3482  * @io_fn:      IO callback to be called when bitmap IO is possible
3483  * @done:       callback to be called after the bitmap IO was performed
3484  * @why:        Descriptive text of the reason for doing the IO
3485  * @flags:      Bitmap flags
3486  *
3487  * While IO on the bitmap happens we freeze application IO thus we ensure
3488  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3489  * called from worker context. It MUST NOT be used while a previous such
3490  * work is still pending!
3491  *
3492  * Its worker function encloses the call of io_fn() by get_ldev() and
3493  * put_ldev().
3494  */
3495 void drbd_queue_bitmap_io(struct drbd_device *device,
3496                           int (*io_fn)(struct drbd_device *),
3497                           void (*done)(struct drbd_device *, int),
3498                           char *why, enum bm_flag flags)
3499 {
3500         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3501
3502         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3503         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3504         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3505         if (device->bm_io_work.why)
3506                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3507                         why, device->bm_io_work.why);
3508
3509         device->bm_io_work.io_fn = io_fn;
3510         device->bm_io_work.done = done;
3511         device->bm_io_work.why = why;
3512         device->bm_io_work.flags = flags;
3513
3514         spin_lock_irq(&device->resource->req_lock);
3515         set_bit(BITMAP_IO, &device->flags);
3516         /* don't wait for pending application IO if the caller indicates that
3517          * application IO does not conflict anyways. */
3518         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3519                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3520                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3521                                         &device->bm_io_work.w);
3522         }
3523         spin_unlock_irq(&device->resource->req_lock);
3524 }
3525
3526 /**
3527  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3528  * @device:     DRBD device.
3529  * @io_fn:      IO callback to be called when bitmap IO is possible
3530  * @why:        Descriptive text of the reason for doing the IO
3531  * @flags:      Bitmap flags
3532  *
3533  * freezes application IO while that the actual IO operations runs. This
3534  * functions MAY NOT be called from worker context.
3535  */
3536 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3537                 char *why, enum bm_flag flags)
3538 {
3539         /* Only suspend io, if some operation is supposed to be locked out */
3540         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3541         int rv;
3542
3543         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3544
3545         if (do_suspend_io)
3546                 drbd_suspend_io(device);
3547
3548         drbd_bm_lock(device, why, flags);
3549         rv = io_fn(device);
3550         drbd_bm_unlock(device);
3551
3552         if (do_suspend_io)
3553                 drbd_resume_io(device);
3554
3555         return rv;
3556 }
3557
3558 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3559 {
3560         if ((device->ldev->md.flags & flag) != flag) {
3561                 drbd_md_mark_dirty(device);
3562                 device->ldev->md.flags |= flag;
3563         }
3564 }
3565
3566 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3567 {
3568         if ((device->ldev->md.flags & flag) != 0) {
3569                 drbd_md_mark_dirty(device);
3570                 device->ldev->md.flags &= ~flag;
3571         }
3572 }
3573 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3574 {
3575         return (bdev->md.flags & flag) != 0;
3576 }
3577
3578 static void md_sync_timer_fn(struct timer_list *t)
3579 {
3580         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3581         drbd_device_post_work(device, MD_SYNC);
3582 }
3583
3584 const char *cmdname(enum drbd_packet cmd)
3585 {
3586         /* THINK may need to become several global tables
3587          * when we want to support more than
3588          * one PRO_VERSION */
3589         static const char *cmdnames[] = {
3590                 [P_DATA]                = "Data",
3591                 [P_WSAME]               = "WriteSame",
3592                 [P_TRIM]                = "Trim",
3593                 [P_DATA_REPLY]          = "DataReply",
3594                 [P_RS_DATA_REPLY]       = "RSDataReply",
3595                 [P_BARRIER]             = "Barrier",
3596                 [P_BITMAP]              = "ReportBitMap",
3597                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3598                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3599                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3600                 [P_DATA_REQUEST]        = "DataRequest",
3601                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3602                 [P_SYNC_PARAM]          = "SyncParam",
3603                 [P_SYNC_PARAM89]        = "SyncParam89",
3604                 [P_PROTOCOL]            = "ReportProtocol",
3605                 [P_UUIDS]               = "ReportUUIDs",
3606                 [P_SIZES]               = "ReportSizes",
3607                 [P_STATE]               = "ReportState",
3608                 [P_SYNC_UUID]           = "ReportSyncUUID",
3609                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3610                 [P_AUTH_RESPONSE]       = "AuthResponse",
3611                 [P_PING]                = "Ping",
3612                 [P_PING_ACK]            = "PingAck",
3613                 [P_RECV_ACK]            = "RecvAck",
3614                 [P_WRITE_ACK]           = "WriteAck",
3615                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3616                 [P_SUPERSEDED]          = "Superseded",
3617                 [P_NEG_ACK]             = "NegAck",
3618                 [P_NEG_DREPLY]          = "NegDReply",
3619                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3620                 [P_BARRIER_ACK]         = "BarrierAck",
3621                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3622                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3623                 [P_OV_REQUEST]          = "OVRequest",
3624                 [P_OV_REPLY]            = "OVReply",
3625                 [P_OV_RESULT]           = "OVResult",
3626                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3627                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3628                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3629                 [P_DELAY_PROBE]         = "DelayProbe",
3630                 [P_OUT_OF_SYNC]         = "OutOfSync",
3631                 [P_RETRY_WRITE]         = "RetryWrite",
3632                 [P_RS_CANCEL]           = "RSCancel",
3633                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3634                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3635                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3636                 [P_RS_THIN_REQ]         = "rs_thin_req",
3637                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3638
3639                 /* enum drbd_packet, but not commands - obsoleted flags:
3640                  *      P_MAY_IGNORE
3641                  *      P_MAX_OPT_CMD
3642                  */
3643         };
3644
3645         /* too big for the array: 0xfffX */
3646         if (cmd == P_INITIAL_META)
3647                 return "InitialMeta";
3648         if (cmd == P_INITIAL_DATA)
3649                 return "InitialData";
3650         if (cmd == P_CONNECTION_FEATURES)
3651                 return "ConnectionFeatures";
3652         if (cmd >= ARRAY_SIZE(cmdnames))
3653                 return "Unknown";
3654         return cmdnames[cmd];
3655 }
3656
3657 /**
3658  * drbd_wait_misc  -  wait for a request to make progress
3659  * @device:     device associated with the request
3660  * @i:          the struct drbd_interval embedded in struct drbd_request or
3661  *              struct drbd_peer_request
3662  */
3663 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3664 {
3665         struct net_conf *nc;
3666         DEFINE_WAIT(wait);
3667         long timeout;
3668
3669         rcu_read_lock();
3670         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3671         if (!nc) {
3672                 rcu_read_unlock();
3673                 return -ETIMEDOUT;
3674         }
3675         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3676         rcu_read_unlock();
3677
3678         /* Indicate to wake up device->misc_wait on progress.  */
3679         i->waiting = true;
3680         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3681         spin_unlock_irq(&device->resource->req_lock);
3682         timeout = schedule_timeout(timeout);
3683         finish_wait(&device->misc_wait, &wait);
3684         spin_lock_irq(&device->resource->req_lock);
3685         if (!timeout || device->state.conn < C_CONNECTED)
3686                 return -ETIMEDOUT;
3687         if (signal_pending(current))
3688                 return -ERESTARTSYS;
3689         return 0;
3690 }
3691
3692 void lock_all_resources(void)
3693 {
3694         struct drbd_resource *resource;
3695         int __maybe_unused i = 0;
3696
3697         mutex_lock(&resources_mutex);
3698         local_irq_disable();
3699         for_each_resource(resource, &drbd_resources)
3700                 spin_lock_nested(&resource->req_lock, i++);
3701 }
3702
3703 void unlock_all_resources(void)
3704 {
3705         struct drbd_resource *resource;
3706
3707         for_each_resource(resource, &drbd_resources)
3708                 spin_unlock(&resource->req_lock);
3709         local_irq_enable();
3710         mutex_unlock(&resources_mutex);
3711 }
3712
3713 #ifdef CONFIG_DRBD_FAULT_INJECTION
3714 /* Fault insertion support including random number generator shamelessly
3715  * stolen from kernel/rcutorture.c */
3716 struct fault_random_state {
3717         unsigned long state;
3718         unsigned long count;
3719 };
3720
3721 #define FAULT_RANDOM_MULT 39916801  /* prime */
3722 #define FAULT_RANDOM_ADD        479001701 /* prime */
3723 #define FAULT_RANDOM_REFRESH 10000
3724
3725 /*
3726  * Crude but fast random-number generator.  Uses a linear congruential
3727  * generator, with occasional help from get_random_bytes().
3728  */
3729 static unsigned long
3730 _drbd_fault_random(struct fault_random_state *rsp)
3731 {
3732         long refresh;
3733
3734         if (!rsp->count--) {
3735                 get_random_bytes(&refresh, sizeof(refresh));
3736                 rsp->state += refresh;
3737                 rsp->count = FAULT_RANDOM_REFRESH;
3738         }
3739         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3740         return swahw32(rsp->state);
3741 }
3742
3743 static char *
3744 _drbd_fault_str(unsigned int type) {
3745         static char *_faults[] = {
3746                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3747                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3748                 [DRBD_FAULT_RS_WR] = "Resync write",
3749                 [DRBD_FAULT_RS_RD] = "Resync read",
3750                 [DRBD_FAULT_DT_WR] = "Data write",
3751                 [DRBD_FAULT_DT_RD] = "Data read",
3752                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3753                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3754                 [DRBD_FAULT_AL_EE] = "EE allocation",
3755                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3756         };
3757
3758         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3759 }
3760
3761 unsigned int
3762 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3763 {
3764         static struct fault_random_state rrs = {0, 0};
3765
3766         unsigned int ret = (
3767                 (drbd_fault_devs == 0 ||
3768                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3769                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3770
3771         if (ret) {
3772                 drbd_fault_count++;
3773
3774                 if (__ratelimit(&drbd_ratelimit_state))
3775                         drbd_warn(device, "***Simulating %s failure\n",
3776                                 _drbd_fault_str(type));
3777         }
3778
3779         return ret;
3780 }
3781 #endif
3782
3783 const char *drbd_buildtag(void)
3784 {
3785         /* DRBD built from external sources has here a reference to the
3786            git hash of the source code. */
3787
3788         static char buildtag[38] = "\0uilt-in";
3789
3790         if (buildtag[0] == 0) {
3791 #ifdef MODULE
3792                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3793 #else
3794                 buildtag[0] = 'b';
3795 #endif
3796         }
3797
3798         return buildtag;
3799 }
3800
3801 module_init(drbd_init)
3802 module_exit(drbd_cleanup)
3803
3804 EXPORT_SYMBOL(drbd_conn_str);
3805 EXPORT_SYMBOL(drbd_role_str);
3806 EXPORT_SYMBOL(drbd_disk_str);
3807 EXPORT_SYMBOL(drbd_set_st_err_str);