Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / base / firmware_loader / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/driver-api/firmware/ for more information.
8  *
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/xz.h>
39
40 #include <generated/utsrelease.h>
41
42 #include "../base.h"
43 #include "firmware.h"
44 #include "fallback.h"
45
46 MODULE_AUTHOR("Manuel Estrada Sainz");
47 MODULE_DESCRIPTION("Multi purpose firmware loading support");
48 MODULE_LICENSE("GPL");
49
50 struct firmware_cache {
51         /* firmware_buf instance will be added into the below list */
52         spinlock_t lock;
53         struct list_head head;
54         int state;
55
56 #ifdef CONFIG_FW_CACHE
57         /*
58          * Names of firmware images which have been cached successfully
59          * will be added into the below list so that device uncache
60          * helper can trace which firmware images have been cached
61          * before.
62          */
63         spinlock_t name_lock;
64         struct list_head fw_names;
65
66         struct delayed_work work;
67
68         struct notifier_block   pm_notify;
69 #endif
70 };
71
72 struct fw_cache_entry {
73         struct list_head list;
74         const char *name;
75 };
76
77 struct fw_name_devm {
78         unsigned long magic;
79         const char *name;
80 };
81
82 static inline struct fw_priv *to_fw_priv(struct kref *ref)
83 {
84         return container_of(ref, struct fw_priv, ref);
85 }
86
87 #define FW_LOADER_NO_CACHE      0
88 #define FW_LOADER_START_CACHE   1
89
90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
91  * guarding for corner cases a global lock should be OK */
92 DEFINE_MUTEX(fw_lock);
93
94 static struct firmware_cache fw_cache;
95
96 /* Builtin firmware support */
97
98 #ifdef CONFIG_FW_LOADER
99
100 extern struct builtin_fw __start_builtin_fw[];
101 extern struct builtin_fw __end_builtin_fw[];
102
103 static void fw_copy_to_prealloc_buf(struct firmware *fw,
104                                     void *buf, size_t size)
105 {
106         if (!buf || size < fw->size)
107                 return;
108         memcpy(buf, fw->data, fw->size);
109 }
110
111 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
112                                     void *buf, size_t size)
113 {
114         struct builtin_fw *b_fw;
115
116         for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
117                 if (strcmp(name, b_fw->name) == 0) {
118                         fw->size = b_fw->size;
119                         fw->data = b_fw->data;
120                         fw_copy_to_prealloc_buf(fw, buf, size);
121
122                         return true;
123                 }
124         }
125
126         return false;
127 }
128
129 static bool fw_is_builtin_firmware(const struct firmware *fw)
130 {
131         struct builtin_fw *b_fw;
132
133         for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134                 if (fw->data == b_fw->data)
135                         return true;
136
137         return false;
138 }
139
140 #else /* Module case - no builtin firmware support */
141
142 static inline bool fw_get_builtin_firmware(struct firmware *fw,
143                                            const char *name, void *buf,
144                                            size_t size)
145 {
146         return false;
147 }
148
149 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150 {
151         return false;
152 }
153 #endif
154
155 static void fw_state_init(struct fw_priv *fw_priv)
156 {
157         struct fw_state *fw_st = &fw_priv->fw_st;
158
159         init_completion(&fw_st->completion);
160         fw_st->status = FW_STATUS_UNKNOWN;
161 }
162
163 static inline int fw_state_wait(struct fw_priv *fw_priv)
164 {
165         return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166 }
167
168 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
169
170 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171                                           struct firmware_cache *fwc,
172                                           void *dbuf,
173                                           size_t size,
174                                           size_t offset,
175                                           u32 opt_flags)
176 {
177         struct fw_priv *fw_priv;
178
179         /* For a partial read, the buffer must be preallocated. */
180         if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181                 return NULL;
182
183         /* Only partial reads are allowed to use an offset. */
184         if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185                 return NULL;
186
187         fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188         if (!fw_priv)
189                 return NULL;
190
191         fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192         if (!fw_priv->fw_name) {
193                 kfree(fw_priv);
194                 return NULL;
195         }
196
197         kref_init(&fw_priv->ref);
198         fw_priv->fwc = fwc;
199         fw_priv->data = dbuf;
200         fw_priv->allocated_size = size;
201         fw_priv->offset = offset;
202         fw_priv->opt_flags = opt_flags;
203         fw_state_init(fw_priv);
204 #ifdef CONFIG_FW_LOADER_USER_HELPER
205         INIT_LIST_HEAD(&fw_priv->pending_list);
206 #endif
207
208         pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209
210         return fw_priv;
211 }
212
213 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214 {
215         struct fw_priv *tmp;
216         struct firmware_cache *fwc = &fw_cache;
217
218         list_for_each_entry(tmp, &fwc->head, list)
219                 if (!strcmp(tmp->fw_name, fw_name))
220                         return tmp;
221         return NULL;
222 }
223
224 /* Returns 1 for batching firmware requests with the same name */
225 static int alloc_lookup_fw_priv(const char *fw_name,
226                                 struct firmware_cache *fwc,
227                                 struct fw_priv **fw_priv,
228                                 void *dbuf,
229                                 size_t size,
230                                 size_t offset,
231                                 u32 opt_flags)
232 {
233         struct fw_priv *tmp;
234
235         spin_lock(&fwc->lock);
236         /*
237          * Do not merge requests that are marked to be non-cached or
238          * are performing partial reads.
239          */
240         if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241                 tmp = __lookup_fw_priv(fw_name);
242                 if (tmp) {
243                         kref_get(&tmp->ref);
244                         spin_unlock(&fwc->lock);
245                         *fw_priv = tmp;
246                         pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247                         return 1;
248                 }
249         }
250
251         tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252         if (tmp) {
253                 INIT_LIST_HEAD(&tmp->list);
254                 if (!(opt_flags & FW_OPT_NOCACHE))
255                         list_add(&tmp->list, &fwc->head);
256         }
257         spin_unlock(&fwc->lock);
258
259         *fw_priv = tmp;
260
261         return tmp ? 0 : -ENOMEM;
262 }
263
264 static void __free_fw_priv(struct kref *ref)
265         __releases(&fwc->lock)
266 {
267         struct fw_priv *fw_priv = to_fw_priv(ref);
268         struct firmware_cache *fwc = fw_priv->fwc;
269
270         pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271                  __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272                  (unsigned int)fw_priv->size);
273
274         list_del(&fw_priv->list);
275         spin_unlock(&fwc->lock);
276
277         if (fw_is_paged_buf(fw_priv))
278                 fw_free_paged_buf(fw_priv);
279         else if (!fw_priv->allocated_size)
280                 vfree(fw_priv->data);
281
282         kfree_const(fw_priv->fw_name);
283         kfree(fw_priv);
284 }
285
286 static void free_fw_priv(struct fw_priv *fw_priv)
287 {
288         struct firmware_cache *fwc = fw_priv->fwc;
289         spin_lock(&fwc->lock);
290         if (!kref_put(&fw_priv->ref, __free_fw_priv))
291                 spin_unlock(&fwc->lock);
292 }
293
294 #ifdef CONFIG_FW_LOADER_PAGED_BUF
295 bool fw_is_paged_buf(struct fw_priv *fw_priv)
296 {
297         return fw_priv->is_paged_buf;
298 }
299
300 void fw_free_paged_buf(struct fw_priv *fw_priv)
301 {
302         int i;
303
304         if (!fw_priv->pages)
305                 return;
306
307         vunmap(fw_priv->data);
308
309         for (i = 0; i < fw_priv->nr_pages; i++)
310                 __free_page(fw_priv->pages[i]);
311         kvfree(fw_priv->pages);
312         fw_priv->pages = NULL;
313         fw_priv->page_array_size = 0;
314         fw_priv->nr_pages = 0;
315 }
316
317 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318 {
319         /* If the array of pages is too small, grow it */
320         if (fw_priv->page_array_size < pages_needed) {
321                 int new_array_size = max(pages_needed,
322                                          fw_priv->page_array_size * 2);
323                 struct page **new_pages;
324
325                 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326                                            GFP_KERNEL);
327                 if (!new_pages)
328                         return -ENOMEM;
329                 memcpy(new_pages, fw_priv->pages,
330                        fw_priv->page_array_size * sizeof(void *));
331                 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332                        (new_array_size - fw_priv->page_array_size));
333                 kvfree(fw_priv->pages);
334                 fw_priv->pages = new_pages;
335                 fw_priv->page_array_size = new_array_size;
336         }
337
338         while (fw_priv->nr_pages < pages_needed) {
339                 fw_priv->pages[fw_priv->nr_pages] =
340                         alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341
342                 if (!fw_priv->pages[fw_priv->nr_pages])
343                         return -ENOMEM;
344                 fw_priv->nr_pages++;
345         }
346
347         return 0;
348 }
349
350 int fw_map_paged_buf(struct fw_priv *fw_priv)
351 {
352         /* one pages buffer should be mapped/unmapped only once */
353         if (!fw_priv->pages)
354                 return 0;
355
356         vunmap(fw_priv->data);
357         fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358                              PAGE_KERNEL_RO);
359         if (!fw_priv->data)
360                 return -ENOMEM;
361
362         return 0;
363 }
364 #endif
365
366 /*
367  * XZ-compressed firmware support
368  */
369 #ifdef CONFIG_FW_LOADER_COMPRESS
370 /* show an error and return the standard error code */
371 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372 {
373         if (xz_ret != XZ_STREAM_END) {
374                 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375                 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376         }
377         return 0;
378 }
379
380 /* single-shot decompression onto the pre-allocated buffer */
381 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382                                    size_t in_size, const void *in_buffer)
383 {
384         struct xz_dec *xz_dec;
385         struct xz_buf xz_buf;
386         enum xz_ret xz_ret;
387
388         xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389         if (!xz_dec)
390                 return -ENOMEM;
391
392         xz_buf.in_size = in_size;
393         xz_buf.in = in_buffer;
394         xz_buf.in_pos = 0;
395         xz_buf.out_size = fw_priv->allocated_size;
396         xz_buf.out = fw_priv->data;
397         xz_buf.out_pos = 0;
398
399         xz_ret = xz_dec_run(xz_dec, &xz_buf);
400         xz_dec_end(xz_dec);
401
402         fw_priv->size = xz_buf.out_pos;
403         return fw_decompress_xz_error(dev, xz_ret);
404 }
405
406 /* decompression on paged buffer and map it */
407 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408                                   size_t in_size, const void *in_buffer)
409 {
410         struct xz_dec *xz_dec;
411         struct xz_buf xz_buf;
412         enum xz_ret xz_ret;
413         struct page *page;
414         int err = 0;
415
416         xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417         if (!xz_dec)
418                 return -ENOMEM;
419
420         xz_buf.in_size = in_size;
421         xz_buf.in = in_buffer;
422         xz_buf.in_pos = 0;
423
424         fw_priv->is_paged_buf = true;
425         fw_priv->size = 0;
426         do {
427                 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428                         err = -ENOMEM;
429                         goto out;
430                 }
431
432                 /* decompress onto the new allocated page */
433                 page = fw_priv->pages[fw_priv->nr_pages - 1];
434                 xz_buf.out = kmap(page);
435                 xz_buf.out_pos = 0;
436                 xz_buf.out_size = PAGE_SIZE;
437                 xz_ret = xz_dec_run(xz_dec, &xz_buf);
438                 kunmap(page);
439                 fw_priv->size += xz_buf.out_pos;
440                 /* partial decompression means either end or error */
441                 if (xz_buf.out_pos != PAGE_SIZE)
442                         break;
443         } while (xz_ret == XZ_OK);
444
445         err = fw_decompress_xz_error(dev, xz_ret);
446         if (!err)
447                 err = fw_map_paged_buf(fw_priv);
448
449  out:
450         xz_dec_end(xz_dec);
451         return err;
452 }
453
454 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455                             size_t in_size, const void *in_buffer)
456 {
457         /* if the buffer is pre-allocated, we can perform in single-shot mode */
458         if (fw_priv->data)
459                 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460         else
461                 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462 }
463 #endif /* CONFIG_FW_LOADER_COMPRESS */
464
465 /* direct firmware loading support */
466 static char fw_path_para[256];
467 static const char * const fw_path[] = {
468         fw_path_para,
469         "/lib/firmware/updates/" UTS_RELEASE,
470         "/lib/firmware/updates",
471         "/lib/firmware/" UTS_RELEASE,
472         "/lib/firmware"
473 };
474
475 /*
476  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477  * from kernel command line because firmware_class is generally built in
478  * kernel instead of module.
479  */
480 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482
483 static int
484 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485                            const char *suffix,
486                            int (*decompress)(struct device *dev,
487                                              struct fw_priv *fw_priv,
488                                              size_t in_size,
489                                              const void *in_buffer))
490 {
491         size_t size;
492         int i, len;
493         int rc = -ENOENT;
494         char *path;
495         size_t msize = INT_MAX;
496         void *buffer = NULL;
497
498         /* Already populated data member means we're loading into a buffer */
499         if (!decompress && fw_priv->data) {
500                 buffer = fw_priv->data;
501                 msize = fw_priv->allocated_size;
502         }
503
504         path = __getname();
505         if (!path)
506                 return -ENOMEM;
507
508         wait_for_initramfs();
509         for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
510                 size_t file_size = 0;
511                 size_t *file_size_ptr = NULL;
512
513                 /* skip the unset customized path */
514                 if (!fw_path[i][0])
515                         continue;
516
517                 len = snprintf(path, PATH_MAX, "%s/%s%s",
518                                fw_path[i], fw_priv->fw_name, suffix);
519                 if (len >= PATH_MAX) {
520                         rc = -ENAMETOOLONG;
521                         break;
522                 }
523
524                 fw_priv->size = 0;
525
526                 /*
527                  * The total file size is only examined when doing a partial
528                  * read; the "full read" case needs to fail if the whole
529                  * firmware was not completely loaded.
530                  */
531                 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
532                         file_size_ptr = &file_size;
533
534                 /* load firmware files from the mount namespace of init */
535                 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
536                                                        &buffer, msize,
537                                                        file_size_ptr,
538                                                        READING_FIRMWARE);
539                 if (rc < 0) {
540                         if (rc != -ENOENT)
541                                 dev_warn(device, "loading %s failed with error %d\n",
542                                          path, rc);
543                         else
544                                 dev_dbg(device, "loading %s failed for no such file or directory.\n",
545                                          path);
546                         continue;
547                 }
548                 size = rc;
549                 rc = 0;
550
551                 dev_dbg(device, "Loading firmware from %s\n", path);
552                 if (decompress) {
553                         dev_dbg(device, "f/w decompressing %s\n",
554                                 fw_priv->fw_name);
555                         rc = decompress(device, fw_priv, size, buffer);
556                         /* discard the superfluous original content */
557                         vfree(buffer);
558                         buffer = NULL;
559                         if (rc) {
560                                 fw_free_paged_buf(fw_priv);
561                                 continue;
562                         }
563                 } else {
564                         dev_dbg(device, "direct-loading %s\n",
565                                 fw_priv->fw_name);
566                         if (!fw_priv->data)
567                                 fw_priv->data = buffer;
568                         fw_priv->size = size;
569                 }
570                 fw_state_done(fw_priv);
571                 break;
572         }
573         __putname(path);
574
575         return rc;
576 }
577
578 /* firmware holds the ownership of pages */
579 static void firmware_free_data(const struct firmware *fw)
580 {
581         /* Loaded directly? */
582         if (!fw->priv) {
583                 vfree(fw->data);
584                 return;
585         }
586         free_fw_priv(fw->priv);
587 }
588
589 /* store the pages buffer info firmware from buf */
590 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
591 {
592         fw->priv = fw_priv;
593         fw->size = fw_priv->size;
594         fw->data = fw_priv->data;
595
596         pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
597                  __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
598                  (unsigned int)fw_priv->size);
599 }
600
601 #ifdef CONFIG_FW_CACHE
602 static void fw_name_devm_release(struct device *dev, void *res)
603 {
604         struct fw_name_devm *fwn = res;
605
606         if (fwn->magic == (unsigned long)&fw_cache)
607                 pr_debug("%s: fw_name-%s devm-%p released\n",
608                                 __func__, fwn->name, res);
609         kfree_const(fwn->name);
610 }
611
612 static int fw_devm_match(struct device *dev, void *res,
613                 void *match_data)
614 {
615         struct fw_name_devm *fwn = res;
616
617         return (fwn->magic == (unsigned long)&fw_cache) &&
618                 !strcmp(fwn->name, match_data);
619 }
620
621 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
622                 const char *name)
623 {
624         struct fw_name_devm *fwn;
625
626         fwn = devres_find(dev, fw_name_devm_release,
627                           fw_devm_match, (void *)name);
628         return fwn;
629 }
630
631 static bool fw_cache_is_setup(struct device *dev, const char *name)
632 {
633         struct fw_name_devm *fwn;
634
635         fwn = fw_find_devm_name(dev, name);
636         if (fwn)
637                 return true;
638
639         return false;
640 }
641
642 /* add firmware name into devres list */
643 static int fw_add_devm_name(struct device *dev, const char *name)
644 {
645         struct fw_name_devm *fwn;
646
647         if (fw_cache_is_setup(dev, name))
648                 return 0;
649
650         fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
651                            GFP_KERNEL);
652         if (!fwn)
653                 return -ENOMEM;
654         fwn->name = kstrdup_const(name, GFP_KERNEL);
655         if (!fwn->name) {
656                 devres_free(fwn);
657                 return -ENOMEM;
658         }
659
660         fwn->magic = (unsigned long)&fw_cache;
661         devres_add(dev, fwn);
662
663         return 0;
664 }
665 #else
666 static bool fw_cache_is_setup(struct device *dev, const char *name)
667 {
668         return false;
669 }
670
671 static int fw_add_devm_name(struct device *dev, const char *name)
672 {
673         return 0;
674 }
675 #endif
676
677 int assign_fw(struct firmware *fw, struct device *device)
678 {
679         struct fw_priv *fw_priv = fw->priv;
680         int ret;
681
682         mutex_lock(&fw_lock);
683         if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
684                 mutex_unlock(&fw_lock);
685                 return -ENOENT;
686         }
687
688         /*
689          * add firmware name into devres list so that we can auto cache
690          * and uncache firmware for device.
691          *
692          * device may has been deleted already, but the problem
693          * should be fixed in devres or driver core.
694          */
695         /* don't cache firmware handled without uevent */
696         if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
697             !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
698                 ret = fw_add_devm_name(device, fw_priv->fw_name);
699                 if (ret) {
700                         mutex_unlock(&fw_lock);
701                         return ret;
702                 }
703         }
704
705         /*
706          * After caching firmware image is started, let it piggyback
707          * on request firmware.
708          */
709         if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
710             fw_priv->fwc->state == FW_LOADER_START_CACHE)
711                 fw_cache_piggyback_on_request(fw_priv);
712
713         /* pass the pages buffer to driver at the last minute */
714         fw_set_page_data(fw_priv, fw);
715         mutex_unlock(&fw_lock);
716         return 0;
717 }
718
719 /* prepare firmware and firmware_buf structs;
720  * return 0 if a firmware is already assigned, 1 if need to load one,
721  * or a negative error code
722  */
723 static int
724 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
725                           struct device *device, void *dbuf, size_t size,
726                           size_t offset, u32 opt_flags)
727 {
728         struct firmware *firmware;
729         struct fw_priv *fw_priv;
730         int ret;
731
732         *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
733         if (!firmware) {
734                 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
735                         __func__);
736                 return -ENOMEM;
737         }
738
739         if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
740                 dev_dbg(device, "using built-in %s\n", name);
741                 return 0; /* assigned */
742         }
743
744         ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
745                                    offset, opt_flags);
746
747         /*
748          * bind with 'priv' now to avoid warning in failure path
749          * of requesting firmware.
750          */
751         firmware->priv = fw_priv;
752
753         if (ret > 0) {
754                 ret = fw_state_wait(fw_priv);
755                 if (!ret) {
756                         fw_set_page_data(fw_priv, firmware);
757                         return 0; /* assigned */
758                 }
759         }
760
761         if (ret < 0)
762                 return ret;
763         return 1; /* need to load */
764 }
765
766 /*
767  * Batched requests need only one wake, we need to do this step last due to the
768  * fallback mechanism. The buf is protected with kref_get(), and it won't be
769  * released until the last user calls release_firmware().
770  *
771  * Failed batched requests are possible as well, in such cases we just share
772  * the struct fw_priv and won't release it until all requests are woken
773  * and have gone through this same path.
774  */
775 static void fw_abort_batch_reqs(struct firmware *fw)
776 {
777         struct fw_priv *fw_priv;
778
779         /* Loaded directly? */
780         if (!fw || !fw->priv)
781                 return;
782
783         fw_priv = fw->priv;
784         mutex_lock(&fw_lock);
785         if (!fw_state_is_aborted(fw_priv))
786                 fw_state_aborted(fw_priv);
787         mutex_unlock(&fw_lock);
788 }
789
790 /* called from request_firmware() and request_firmware_work_func() */
791 static int
792 _request_firmware(const struct firmware **firmware_p, const char *name,
793                   struct device *device, void *buf, size_t size,
794                   size_t offset, u32 opt_flags)
795 {
796         struct firmware *fw = NULL;
797         bool nondirect = false;
798         int ret;
799
800         if (!firmware_p)
801                 return -EINVAL;
802
803         if (!name || name[0] == '\0') {
804                 ret = -EINVAL;
805                 goto out;
806         }
807
808         ret = _request_firmware_prepare(&fw, name, device, buf, size,
809                                         offset, opt_flags);
810         if (ret <= 0) /* error or already assigned */
811                 goto out;
812
813         ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
814
815         /* Only full reads can support decompression, platform, and sysfs. */
816         if (!(opt_flags & FW_OPT_PARTIAL))
817                 nondirect = true;
818
819 #ifdef CONFIG_FW_LOADER_COMPRESS
820         if (ret == -ENOENT && nondirect)
821                 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
822                                                  fw_decompress_xz);
823 #endif
824         if (ret == -ENOENT && nondirect)
825                 ret = firmware_fallback_platform(fw->priv);
826
827         if (ret) {
828                 if (!(opt_flags & FW_OPT_NO_WARN))
829                         dev_warn(device,
830                                  "Direct firmware load for %s failed with error %d\n",
831                                  name, ret);
832                 if (nondirect)
833                         ret = firmware_fallback_sysfs(fw, name, device,
834                                                       opt_flags, ret);
835         } else
836                 ret = assign_fw(fw, device);
837
838  out:
839         if (ret < 0) {
840                 fw_abort_batch_reqs(fw);
841                 release_firmware(fw);
842                 fw = NULL;
843         }
844
845         *firmware_p = fw;
846         return ret;
847 }
848
849 /**
850  * request_firmware() - send firmware request and wait for it
851  * @firmware_p: pointer to firmware image
852  * @name: name of firmware file
853  * @device: device for which firmware is being loaded
854  *
855  *      @firmware_p will be used to return a firmware image by the name
856  *      of @name for device @device.
857  *
858  *      Should be called from user context where sleeping is allowed.
859  *
860  *      @name will be used as $FIRMWARE in the uevent environment and
861  *      should be distinctive enough not to be confused with any other
862  *      firmware image for this or any other device.
863  *
864  *      Caller must hold the reference count of @device.
865  *
866  *      The function can be called safely inside device's suspend and
867  *      resume callback.
868  **/
869 int
870 request_firmware(const struct firmware **firmware_p, const char *name,
871                  struct device *device)
872 {
873         int ret;
874
875         /* Need to pin this module until return */
876         __module_get(THIS_MODULE);
877         ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
878                                 FW_OPT_UEVENT);
879         module_put(THIS_MODULE);
880         return ret;
881 }
882 EXPORT_SYMBOL(request_firmware);
883
884 /**
885  * firmware_request_nowarn() - request for an optional fw module
886  * @firmware: pointer to firmware image
887  * @name: name of firmware file
888  * @device: device for which firmware is being loaded
889  *
890  * This function is similar in behaviour to request_firmware(), except it
891  * doesn't produce warning messages when the file is not found. The sysfs
892  * fallback mechanism is enabled if direct filesystem lookup fails. However,
893  * failures to find the firmware file with it are still suppressed. It is
894  * therefore up to the driver to check for the return value of this call and to
895  * decide when to inform the users of errors.
896  **/
897 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
898                             struct device *device)
899 {
900         int ret;
901
902         /* Need to pin this module until return */
903         __module_get(THIS_MODULE);
904         ret = _request_firmware(firmware, name, device, NULL, 0, 0,
905                                 FW_OPT_UEVENT | FW_OPT_NO_WARN);
906         module_put(THIS_MODULE);
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
910
911 /**
912  * request_firmware_direct() - load firmware directly without usermode helper
913  * @firmware_p: pointer to firmware image
914  * @name: name of firmware file
915  * @device: device for which firmware is being loaded
916  *
917  * This function works pretty much like request_firmware(), but this doesn't
918  * fall back to usermode helper even if the firmware couldn't be loaded
919  * directly from fs.  Hence it's useful for loading optional firmwares, which
920  * aren't always present, without extra long timeouts of udev.
921  **/
922 int request_firmware_direct(const struct firmware **firmware_p,
923                             const char *name, struct device *device)
924 {
925         int ret;
926
927         __module_get(THIS_MODULE);
928         ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
929                                 FW_OPT_UEVENT | FW_OPT_NO_WARN |
930                                 FW_OPT_NOFALLBACK_SYSFS);
931         module_put(THIS_MODULE);
932         return ret;
933 }
934 EXPORT_SYMBOL_GPL(request_firmware_direct);
935
936 /**
937  * firmware_request_platform() - request firmware with platform-fw fallback
938  * @firmware: pointer to firmware image
939  * @name: name of firmware file
940  * @device: device for which firmware is being loaded
941  *
942  * This function is similar in behaviour to request_firmware, except that if
943  * direct filesystem lookup fails, it will fallback to looking for a copy of the
944  * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
945  **/
946 int firmware_request_platform(const struct firmware **firmware,
947                               const char *name, struct device *device)
948 {
949         int ret;
950
951         /* Need to pin this module until return */
952         __module_get(THIS_MODULE);
953         ret = _request_firmware(firmware, name, device, NULL, 0, 0,
954                                 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
955         module_put(THIS_MODULE);
956         return ret;
957 }
958 EXPORT_SYMBOL_GPL(firmware_request_platform);
959
960 /**
961  * firmware_request_cache() - cache firmware for suspend so resume can use it
962  * @name: name of firmware file
963  * @device: device for which firmware should be cached for
964  *
965  * There are some devices with an optimization that enables the device to not
966  * require loading firmware on system reboot. This optimization may still
967  * require the firmware present on resume from suspend. This routine can be
968  * used to ensure the firmware is present on resume from suspend in these
969  * situations. This helper is not compatible with drivers which use
970  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
971  **/
972 int firmware_request_cache(struct device *device, const char *name)
973 {
974         int ret;
975
976         mutex_lock(&fw_lock);
977         ret = fw_add_devm_name(device, name);
978         mutex_unlock(&fw_lock);
979
980         return ret;
981 }
982 EXPORT_SYMBOL_GPL(firmware_request_cache);
983
984 /**
985  * request_firmware_into_buf() - load firmware into a previously allocated buffer
986  * @firmware_p: pointer to firmware image
987  * @name: name of firmware file
988  * @device: device for which firmware is being loaded and DMA region allocated
989  * @buf: address of buffer to load firmware into
990  * @size: size of buffer
991  *
992  * This function works pretty much like request_firmware(), but it doesn't
993  * allocate a buffer to hold the firmware data. Instead, the firmware
994  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
995  * data member is pointed at @buf.
996  *
997  * This function doesn't cache firmware either.
998  */
999 int
1000 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1001                           struct device *device, void *buf, size_t size)
1002 {
1003         int ret;
1004
1005         if (fw_cache_is_setup(device, name))
1006                 return -EOPNOTSUPP;
1007
1008         __module_get(THIS_MODULE);
1009         ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1010                                 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1011         module_put(THIS_MODULE);
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(request_firmware_into_buf);
1015
1016 /**
1017  * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1018  * @firmware_p: pointer to firmware image
1019  * @name: name of firmware file
1020  * @device: device for which firmware is being loaded and DMA region allocated
1021  * @buf: address of buffer to load firmware into
1022  * @size: size of buffer
1023  * @offset: offset into file to read
1024  *
1025  * This function works pretty much like request_firmware_into_buf except
1026  * it allows a partial read of the file.
1027  */
1028 int
1029 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1030                                   const char *name, struct device *device,
1031                                   void *buf, size_t size, size_t offset)
1032 {
1033         int ret;
1034
1035         if (fw_cache_is_setup(device, name))
1036                 return -EOPNOTSUPP;
1037
1038         __module_get(THIS_MODULE);
1039         ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1040                                 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1041                                 FW_OPT_PARTIAL);
1042         module_put(THIS_MODULE);
1043         return ret;
1044 }
1045 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1046
1047 /**
1048  * release_firmware() - release the resource associated with a firmware image
1049  * @fw: firmware resource to release
1050  **/
1051 void release_firmware(const struct firmware *fw)
1052 {
1053         if (fw) {
1054                 if (!fw_is_builtin_firmware(fw))
1055                         firmware_free_data(fw);
1056                 kfree(fw);
1057         }
1058 }
1059 EXPORT_SYMBOL(release_firmware);
1060
1061 /* Async support */
1062 struct firmware_work {
1063         struct work_struct work;
1064         struct module *module;
1065         const char *name;
1066         struct device *device;
1067         void *context;
1068         void (*cont)(const struct firmware *fw, void *context);
1069         u32 opt_flags;
1070 };
1071
1072 static void request_firmware_work_func(struct work_struct *work)
1073 {
1074         struct firmware_work *fw_work;
1075         const struct firmware *fw;
1076
1077         fw_work = container_of(work, struct firmware_work, work);
1078
1079         _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1080                           fw_work->opt_flags);
1081         fw_work->cont(fw, fw_work->context);
1082         put_device(fw_work->device); /* taken in request_firmware_nowait() */
1083
1084         module_put(fw_work->module);
1085         kfree_const(fw_work->name);
1086         kfree(fw_work);
1087 }
1088
1089 /**
1090  * request_firmware_nowait() - asynchronous version of request_firmware
1091  * @module: module requesting the firmware
1092  * @uevent: sends uevent to copy the firmware image if this flag
1093  *      is non-zero else the firmware copy must be done manually.
1094  * @name: name of firmware file
1095  * @device: device for which firmware is being loaded
1096  * @gfp: allocation flags
1097  * @context: will be passed over to @cont, and
1098  *      @fw may be %NULL if firmware request fails.
1099  * @cont: function will be called asynchronously when the firmware
1100  *      request is over.
1101  *
1102  *      Caller must hold the reference count of @device.
1103  *
1104  *      Asynchronous variant of request_firmware() for user contexts:
1105  *              - sleep for as small periods as possible since it may
1106  *                increase kernel boot time of built-in device drivers
1107  *                requesting firmware in their ->probe() methods, if
1108  *                @gfp is GFP_KERNEL.
1109  *
1110  *              - can't sleep at all if @gfp is GFP_ATOMIC.
1111  **/
1112 int
1113 request_firmware_nowait(
1114         struct module *module, bool uevent,
1115         const char *name, struct device *device, gfp_t gfp, void *context,
1116         void (*cont)(const struct firmware *fw, void *context))
1117 {
1118         struct firmware_work *fw_work;
1119
1120         fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1121         if (!fw_work)
1122                 return -ENOMEM;
1123
1124         fw_work->module = module;
1125         fw_work->name = kstrdup_const(name, gfp);
1126         if (!fw_work->name) {
1127                 kfree(fw_work);
1128                 return -ENOMEM;
1129         }
1130         fw_work->device = device;
1131         fw_work->context = context;
1132         fw_work->cont = cont;
1133         fw_work->opt_flags = FW_OPT_NOWAIT |
1134                 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1135
1136         if (!uevent && fw_cache_is_setup(device, name)) {
1137                 kfree_const(fw_work->name);
1138                 kfree(fw_work);
1139                 return -EOPNOTSUPP;
1140         }
1141
1142         if (!try_module_get(module)) {
1143                 kfree_const(fw_work->name);
1144                 kfree(fw_work);
1145                 return -EFAULT;
1146         }
1147
1148         get_device(fw_work->device);
1149         INIT_WORK(&fw_work->work, request_firmware_work_func);
1150         schedule_work(&fw_work->work);
1151         return 0;
1152 }
1153 EXPORT_SYMBOL(request_firmware_nowait);
1154
1155 #ifdef CONFIG_FW_CACHE
1156 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1157
1158 /**
1159  * cache_firmware() - cache one firmware image in kernel memory space
1160  * @fw_name: the firmware image name
1161  *
1162  * Cache firmware in kernel memory so that drivers can use it when
1163  * system isn't ready for them to request firmware image from userspace.
1164  * Once it returns successfully, driver can use request_firmware or its
1165  * nowait version to get the cached firmware without any interacting
1166  * with userspace
1167  *
1168  * Return 0 if the firmware image has been cached successfully
1169  * Return !0 otherwise
1170  *
1171  */
1172 static int cache_firmware(const char *fw_name)
1173 {
1174         int ret;
1175         const struct firmware *fw;
1176
1177         pr_debug("%s: %s\n", __func__, fw_name);
1178
1179         ret = request_firmware(&fw, fw_name, NULL);
1180         if (!ret)
1181                 kfree(fw);
1182
1183         pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1184
1185         return ret;
1186 }
1187
1188 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1189 {
1190         struct fw_priv *tmp;
1191         struct firmware_cache *fwc = &fw_cache;
1192
1193         spin_lock(&fwc->lock);
1194         tmp = __lookup_fw_priv(fw_name);
1195         spin_unlock(&fwc->lock);
1196
1197         return tmp;
1198 }
1199
1200 /**
1201  * uncache_firmware() - remove one cached firmware image
1202  * @fw_name: the firmware image name
1203  *
1204  * Uncache one firmware image which has been cached successfully
1205  * before.
1206  *
1207  * Return 0 if the firmware cache has been removed successfully
1208  * Return !0 otherwise
1209  *
1210  */
1211 static int uncache_firmware(const char *fw_name)
1212 {
1213         struct fw_priv *fw_priv;
1214         struct firmware fw;
1215
1216         pr_debug("%s: %s\n", __func__, fw_name);
1217
1218         if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1219                 return 0;
1220
1221         fw_priv = lookup_fw_priv(fw_name);
1222         if (fw_priv) {
1223                 free_fw_priv(fw_priv);
1224                 return 0;
1225         }
1226
1227         return -EINVAL;
1228 }
1229
1230 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1231 {
1232         struct fw_cache_entry *fce;
1233
1234         fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1235         if (!fce)
1236                 goto exit;
1237
1238         fce->name = kstrdup_const(name, GFP_ATOMIC);
1239         if (!fce->name) {
1240                 kfree(fce);
1241                 fce = NULL;
1242                 goto exit;
1243         }
1244 exit:
1245         return fce;
1246 }
1247
1248 static int __fw_entry_found(const char *name)
1249 {
1250         struct firmware_cache *fwc = &fw_cache;
1251         struct fw_cache_entry *fce;
1252
1253         list_for_each_entry(fce, &fwc->fw_names, list) {
1254                 if (!strcmp(fce->name, name))
1255                         return 1;
1256         }
1257         return 0;
1258 }
1259
1260 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1261 {
1262         const char *name = fw_priv->fw_name;
1263         struct firmware_cache *fwc = fw_priv->fwc;
1264         struct fw_cache_entry *fce;
1265
1266         spin_lock(&fwc->name_lock);
1267         if (__fw_entry_found(name))
1268                 goto found;
1269
1270         fce = alloc_fw_cache_entry(name);
1271         if (fce) {
1272                 list_add(&fce->list, &fwc->fw_names);
1273                 kref_get(&fw_priv->ref);
1274                 pr_debug("%s: fw: %s\n", __func__, name);
1275         }
1276 found:
1277         spin_unlock(&fwc->name_lock);
1278 }
1279
1280 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1281 {
1282         kfree_const(fce->name);
1283         kfree(fce);
1284 }
1285
1286 static void __async_dev_cache_fw_image(void *fw_entry,
1287                                        async_cookie_t cookie)
1288 {
1289         struct fw_cache_entry *fce = fw_entry;
1290         struct firmware_cache *fwc = &fw_cache;
1291         int ret;
1292
1293         ret = cache_firmware(fce->name);
1294         if (ret) {
1295                 spin_lock(&fwc->name_lock);
1296                 list_del(&fce->list);
1297                 spin_unlock(&fwc->name_lock);
1298
1299                 free_fw_cache_entry(fce);
1300         }
1301 }
1302
1303 /* called with dev->devres_lock held */
1304 static void dev_create_fw_entry(struct device *dev, void *res,
1305                                 void *data)
1306 {
1307         struct fw_name_devm *fwn = res;
1308         const char *fw_name = fwn->name;
1309         struct list_head *head = data;
1310         struct fw_cache_entry *fce;
1311
1312         fce = alloc_fw_cache_entry(fw_name);
1313         if (fce)
1314                 list_add(&fce->list, head);
1315 }
1316
1317 static int devm_name_match(struct device *dev, void *res,
1318                            void *match_data)
1319 {
1320         struct fw_name_devm *fwn = res;
1321         return (fwn->magic == (unsigned long)match_data);
1322 }
1323
1324 static void dev_cache_fw_image(struct device *dev, void *data)
1325 {
1326         LIST_HEAD(todo);
1327         struct fw_cache_entry *fce;
1328         struct fw_cache_entry *fce_next;
1329         struct firmware_cache *fwc = &fw_cache;
1330
1331         devres_for_each_res(dev, fw_name_devm_release,
1332                             devm_name_match, &fw_cache,
1333                             dev_create_fw_entry, &todo);
1334
1335         list_for_each_entry_safe(fce, fce_next, &todo, list) {
1336                 list_del(&fce->list);
1337
1338                 spin_lock(&fwc->name_lock);
1339                 /* only one cache entry for one firmware */
1340                 if (!__fw_entry_found(fce->name)) {
1341                         list_add(&fce->list, &fwc->fw_names);
1342                 } else {
1343                         free_fw_cache_entry(fce);
1344                         fce = NULL;
1345                 }
1346                 spin_unlock(&fwc->name_lock);
1347
1348                 if (fce)
1349                         async_schedule_domain(__async_dev_cache_fw_image,
1350                                               (void *)fce,
1351                                               &fw_cache_domain);
1352         }
1353 }
1354
1355 static void __device_uncache_fw_images(void)
1356 {
1357         struct firmware_cache *fwc = &fw_cache;
1358         struct fw_cache_entry *fce;
1359
1360         spin_lock(&fwc->name_lock);
1361         while (!list_empty(&fwc->fw_names)) {
1362                 fce = list_entry(fwc->fw_names.next,
1363                                 struct fw_cache_entry, list);
1364                 list_del(&fce->list);
1365                 spin_unlock(&fwc->name_lock);
1366
1367                 uncache_firmware(fce->name);
1368                 free_fw_cache_entry(fce);
1369
1370                 spin_lock(&fwc->name_lock);
1371         }
1372         spin_unlock(&fwc->name_lock);
1373 }
1374
1375 /**
1376  * device_cache_fw_images() - cache devices' firmware
1377  *
1378  * If one device called request_firmware or its nowait version
1379  * successfully before, the firmware names are recored into the
1380  * device's devres link list, so device_cache_fw_images can call
1381  * cache_firmware() to cache these firmwares for the device,
1382  * then the device driver can load its firmwares easily at
1383  * time when system is not ready to complete loading firmware.
1384  */
1385 static void device_cache_fw_images(void)
1386 {
1387         struct firmware_cache *fwc = &fw_cache;
1388         DEFINE_WAIT(wait);
1389
1390         pr_debug("%s\n", __func__);
1391
1392         /* cancel uncache work */
1393         cancel_delayed_work_sync(&fwc->work);
1394
1395         fw_fallback_set_cache_timeout();
1396
1397         mutex_lock(&fw_lock);
1398         fwc->state = FW_LOADER_START_CACHE;
1399         dpm_for_each_dev(NULL, dev_cache_fw_image);
1400         mutex_unlock(&fw_lock);
1401
1402         /* wait for completion of caching firmware for all devices */
1403         async_synchronize_full_domain(&fw_cache_domain);
1404
1405         fw_fallback_set_default_timeout();
1406 }
1407
1408 /**
1409  * device_uncache_fw_images() - uncache devices' firmware
1410  *
1411  * uncache all firmwares which have been cached successfully
1412  * by device_uncache_fw_images earlier
1413  */
1414 static void device_uncache_fw_images(void)
1415 {
1416         pr_debug("%s\n", __func__);
1417         __device_uncache_fw_images();
1418 }
1419
1420 static void device_uncache_fw_images_work(struct work_struct *work)
1421 {
1422         device_uncache_fw_images();
1423 }
1424
1425 /**
1426  * device_uncache_fw_images_delay() - uncache devices firmwares
1427  * @delay: number of milliseconds to delay uncache device firmwares
1428  *
1429  * uncache all devices's firmwares which has been cached successfully
1430  * by device_cache_fw_images after @delay milliseconds.
1431  */
1432 static void device_uncache_fw_images_delay(unsigned long delay)
1433 {
1434         queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1435                            msecs_to_jiffies(delay));
1436 }
1437
1438 static int fw_pm_notify(struct notifier_block *notify_block,
1439                         unsigned long mode, void *unused)
1440 {
1441         switch (mode) {
1442         case PM_HIBERNATION_PREPARE:
1443         case PM_SUSPEND_PREPARE:
1444         case PM_RESTORE_PREPARE:
1445                 /*
1446                  * kill pending fallback requests with a custom fallback
1447                  * to avoid stalling suspend.
1448                  */
1449                 kill_pending_fw_fallback_reqs(true);
1450                 device_cache_fw_images();
1451                 break;
1452
1453         case PM_POST_SUSPEND:
1454         case PM_POST_HIBERNATION:
1455         case PM_POST_RESTORE:
1456                 /*
1457                  * In case that system sleep failed and syscore_suspend is
1458                  * not called.
1459                  */
1460                 mutex_lock(&fw_lock);
1461                 fw_cache.state = FW_LOADER_NO_CACHE;
1462                 mutex_unlock(&fw_lock);
1463
1464                 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1465                 break;
1466         }
1467
1468         return 0;
1469 }
1470
1471 /* stop caching firmware once syscore_suspend is reached */
1472 static int fw_suspend(void)
1473 {
1474         fw_cache.state = FW_LOADER_NO_CACHE;
1475         return 0;
1476 }
1477
1478 static struct syscore_ops fw_syscore_ops = {
1479         .suspend = fw_suspend,
1480 };
1481
1482 static int __init register_fw_pm_ops(void)
1483 {
1484         int ret;
1485
1486         spin_lock_init(&fw_cache.name_lock);
1487         INIT_LIST_HEAD(&fw_cache.fw_names);
1488
1489         INIT_DELAYED_WORK(&fw_cache.work,
1490                           device_uncache_fw_images_work);
1491
1492         fw_cache.pm_notify.notifier_call = fw_pm_notify;
1493         ret = register_pm_notifier(&fw_cache.pm_notify);
1494         if (ret)
1495                 return ret;
1496
1497         register_syscore_ops(&fw_syscore_ops);
1498
1499         return ret;
1500 }
1501
1502 static inline void unregister_fw_pm_ops(void)
1503 {
1504         unregister_syscore_ops(&fw_syscore_ops);
1505         unregister_pm_notifier(&fw_cache.pm_notify);
1506 }
1507 #else
1508 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1509 {
1510 }
1511 static inline int register_fw_pm_ops(void)
1512 {
1513         return 0;
1514 }
1515 static inline void unregister_fw_pm_ops(void)
1516 {
1517 }
1518 #endif
1519
1520 static void __init fw_cache_init(void)
1521 {
1522         spin_lock_init(&fw_cache.lock);
1523         INIT_LIST_HEAD(&fw_cache.head);
1524         fw_cache.state = FW_LOADER_NO_CACHE;
1525 }
1526
1527 static int fw_shutdown_notify(struct notifier_block *unused1,
1528                               unsigned long unused2, void *unused3)
1529 {
1530         /*
1531          * Kill all pending fallback requests to avoid both stalling shutdown,
1532          * and avoid a deadlock with the usermode_lock.
1533          */
1534         kill_pending_fw_fallback_reqs(false);
1535
1536         return NOTIFY_DONE;
1537 }
1538
1539 static struct notifier_block fw_shutdown_nb = {
1540         .notifier_call = fw_shutdown_notify,
1541 };
1542
1543 static int __init firmware_class_init(void)
1544 {
1545         int ret;
1546
1547         /* No need to unfold these on exit */
1548         fw_cache_init();
1549
1550         ret = register_fw_pm_ops();
1551         if (ret)
1552                 return ret;
1553
1554         ret = register_reboot_notifier(&fw_shutdown_nb);
1555         if (ret)
1556                 goto out;
1557
1558         return register_sysfs_loader();
1559
1560 out:
1561         unregister_fw_pm_ops();
1562         return ret;
1563 }
1564
1565 static void __exit firmware_class_exit(void)
1566 {
1567         unregister_fw_pm_ops();
1568         unregister_reboot_notifier(&fw_shutdown_nb);
1569         unregister_sysfs_loader();
1570 }
1571
1572 fs_initcall(firmware_class_init);
1573 module_exit(firmware_class_exit);