sched: Prevent balance_push() on remote runqueues
[linux-2.6-microblaze.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24
25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
26 static struct cpumask scale_freq_counters_mask;
27 static bool scale_freq_invariant;
28
29 static bool supports_scale_freq_counters(const struct cpumask *cpus)
30 {
31         return cpumask_subset(cpus, &scale_freq_counters_mask);
32 }
33
34 bool topology_scale_freq_invariant(void)
35 {
36         return cpufreq_supports_freq_invariance() ||
37                supports_scale_freq_counters(cpu_online_mask);
38 }
39
40 static void update_scale_freq_invariant(bool status)
41 {
42         if (scale_freq_invariant == status)
43                 return;
44
45         /*
46          * Task scheduler behavior depends on frequency invariance support,
47          * either cpufreq or counter driven. If the support status changes as
48          * a result of counter initialisation and use, retrigger the build of
49          * scheduling domains to ensure the information is propagated properly.
50          */
51         if (topology_scale_freq_invariant() == status) {
52                 scale_freq_invariant = status;
53                 rebuild_sched_domains_energy();
54         }
55 }
56
57 void topology_set_scale_freq_source(struct scale_freq_data *data,
58                                     const struct cpumask *cpus)
59 {
60         struct scale_freq_data *sfd;
61         int cpu;
62
63         /*
64          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
65          * supported by cpufreq.
66          */
67         if (cpumask_empty(&scale_freq_counters_mask))
68                 scale_freq_invariant = topology_scale_freq_invariant();
69
70         rcu_read_lock();
71
72         for_each_cpu(cpu, cpus) {
73                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
74
75                 /* Use ARCH provided counters whenever possible */
76                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
77                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
78                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
79                 }
80         }
81
82         rcu_read_unlock();
83
84         update_scale_freq_invariant(true);
85 }
86 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
87
88 void topology_clear_scale_freq_source(enum scale_freq_source source,
89                                       const struct cpumask *cpus)
90 {
91         struct scale_freq_data *sfd;
92         int cpu;
93
94         rcu_read_lock();
95
96         for_each_cpu(cpu, cpus) {
97                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
98
99                 if (sfd && sfd->source == source) {
100                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102                 }
103         }
104
105         rcu_read_unlock();
106
107         /*
108          * Make sure all references to previous sft_data are dropped to avoid
109          * use-after-free races.
110          */
111         synchronize_rcu();
112
113         update_scale_freq_invariant(false);
114 }
115 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116
117 void topology_scale_freq_tick(void)
118 {
119         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120
121         if (sfd)
122                 sfd->set_freq_scale();
123 }
124
125 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127
128 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129                              unsigned long max_freq)
130 {
131         unsigned long scale;
132         int i;
133
134         if (WARN_ON_ONCE(!cur_freq || !max_freq))
135                 return;
136
137         /*
138          * If the use of counters for FIE is enabled, just return as we don't
139          * want to update the scale factor with information from CPUFREQ.
140          * Instead the scale factor will be updated from arch_scale_freq_tick.
141          */
142         if (supports_scale_freq_counters(cpus))
143                 return;
144
145         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146
147         for_each_cpu(i, cpus)
148                 per_cpu(arch_freq_scale, i) = scale;
149 }
150
151 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
152
153 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
154 {
155         per_cpu(cpu_scale, cpu) = capacity;
156 }
157
158 DEFINE_PER_CPU(unsigned long, thermal_pressure);
159
160 void topology_set_thermal_pressure(const struct cpumask *cpus,
161                                unsigned long th_pressure)
162 {
163         int cpu;
164
165         for_each_cpu(cpu, cpus)
166                 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
167 }
168
169 static ssize_t cpu_capacity_show(struct device *dev,
170                                  struct device_attribute *attr,
171                                  char *buf)
172 {
173         struct cpu *cpu = container_of(dev, struct cpu, dev);
174
175         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
176 }
177
178 static void update_topology_flags_workfn(struct work_struct *work);
179 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
180
181 static DEVICE_ATTR_RO(cpu_capacity);
182
183 static int register_cpu_capacity_sysctl(void)
184 {
185         int i;
186         struct device *cpu;
187
188         for_each_possible_cpu(i) {
189                 cpu = get_cpu_device(i);
190                 if (!cpu) {
191                         pr_err("%s: too early to get CPU%d device!\n",
192                                __func__, i);
193                         continue;
194                 }
195                 device_create_file(cpu, &dev_attr_cpu_capacity);
196         }
197
198         return 0;
199 }
200 subsys_initcall(register_cpu_capacity_sysctl);
201
202 static int update_topology;
203
204 int topology_update_cpu_topology(void)
205 {
206         return update_topology;
207 }
208
209 /*
210  * Updating the sched_domains can't be done directly from cpufreq callbacks
211  * due to locking, so queue the work for later.
212  */
213 static void update_topology_flags_workfn(struct work_struct *work)
214 {
215         update_topology = 1;
216         rebuild_sched_domains();
217         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
218         update_topology = 0;
219 }
220
221 static DEFINE_PER_CPU(u32, freq_factor) = 1;
222 static u32 *raw_capacity;
223
224 static int free_raw_capacity(void)
225 {
226         kfree(raw_capacity);
227         raw_capacity = NULL;
228
229         return 0;
230 }
231
232 void topology_normalize_cpu_scale(void)
233 {
234         u64 capacity;
235         u64 capacity_scale;
236         int cpu;
237
238         if (!raw_capacity)
239                 return;
240
241         capacity_scale = 1;
242         for_each_possible_cpu(cpu) {
243                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
244                 capacity_scale = max(capacity, capacity_scale);
245         }
246
247         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
248         for_each_possible_cpu(cpu) {
249                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
250                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
251                         capacity_scale);
252                 topology_set_cpu_scale(cpu, capacity);
253                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
254                         cpu, topology_get_cpu_scale(cpu));
255         }
256 }
257
258 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
259 {
260         struct clk *cpu_clk;
261         static bool cap_parsing_failed;
262         int ret;
263         u32 cpu_capacity;
264
265         if (cap_parsing_failed)
266                 return false;
267
268         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
269                                    &cpu_capacity);
270         if (!ret) {
271                 if (!raw_capacity) {
272                         raw_capacity = kcalloc(num_possible_cpus(),
273                                                sizeof(*raw_capacity),
274                                                GFP_KERNEL);
275                         if (!raw_capacity) {
276                                 cap_parsing_failed = true;
277                                 return false;
278                         }
279                 }
280                 raw_capacity[cpu] = cpu_capacity;
281                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
282                         cpu_node, raw_capacity[cpu]);
283
284                 /*
285                  * Update freq_factor for calculating early boot cpu capacities.
286                  * For non-clk CPU DVFS mechanism, there's no way to get the
287                  * frequency value now, assuming they are running at the same
288                  * frequency (by keeping the initial freq_factor value).
289                  */
290                 cpu_clk = of_clk_get(cpu_node, 0);
291                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
292                         per_cpu(freq_factor, cpu) =
293                                 clk_get_rate(cpu_clk) / 1000;
294                         clk_put(cpu_clk);
295                 }
296         } else {
297                 if (raw_capacity) {
298                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
299                                 cpu_node);
300                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
301                 }
302                 cap_parsing_failed = true;
303                 free_raw_capacity();
304         }
305
306         return !ret;
307 }
308
309 #ifdef CONFIG_CPU_FREQ
310 static cpumask_var_t cpus_to_visit;
311 static void parsing_done_workfn(struct work_struct *work);
312 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
313
314 static int
315 init_cpu_capacity_callback(struct notifier_block *nb,
316                            unsigned long val,
317                            void *data)
318 {
319         struct cpufreq_policy *policy = data;
320         int cpu;
321
322         if (!raw_capacity)
323                 return 0;
324
325         if (val != CPUFREQ_CREATE_POLICY)
326                 return 0;
327
328         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
329                  cpumask_pr_args(policy->related_cpus),
330                  cpumask_pr_args(cpus_to_visit));
331
332         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
333
334         for_each_cpu(cpu, policy->related_cpus)
335                 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
336
337         if (cpumask_empty(cpus_to_visit)) {
338                 topology_normalize_cpu_scale();
339                 schedule_work(&update_topology_flags_work);
340                 free_raw_capacity();
341                 pr_debug("cpu_capacity: parsing done\n");
342                 schedule_work(&parsing_done_work);
343         }
344
345         return 0;
346 }
347
348 static struct notifier_block init_cpu_capacity_notifier = {
349         .notifier_call = init_cpu_capacity_callback,
350 };
351
352 static int __init register_cpufreq_notifier(void)
353 {
354         int ret;
355
356         /*
357          * on ACPI-based systems we need to use the default cpu capacity
358          * until we have the necessary code to parse the cpu capacity, so
359          * skip registering cpufreq notifier.
360          */
361         if (!acpi_disabled || !raw_capacity)
362                 return -EINVAL;
363
364         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
365                 return -ENOMEM;
366
367         cpumask_copy(cpus_to_visit, cpu_possible_mask);
368
369         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
370                                         CPUFREQ_POLICY_NOTIFIER);
371
372         if (ret)
373                 free_cpumask_var(cpus_to_visit);
374
375         return ret;
376 }
377 core_initcall(register_cpufreq_notifier);
378
379 static void parsing_done_workfn(struct work_struct *work)
380 {
381         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
382                                          CPUFREQ_POLICY_NOTIFIER);
383         free_cpumask_var(cpus_to_visit);
384 }
385
386 #else
387 core_initcall(free_raw_capacity);
388 #endif
389
390 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
391 /*
392  * This function returns the logic cpu number of the node.
393  * There are basically three kinds of return values:
394  * (1) logic cpu number which is > 0.
395  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
396  * there is no possible logical CPU in the kernel to match. This happens
397  * when CONFIG_NR_CPUS is configure to be smaller than the number of
398  * CPU nodes in DT. We need to just ignore this case.
399  * (3) -1 if the node does not exist in the device tree
400  */
401 static int __init get_cpu_for_node(struct device_node *node)
402 {
403         struct device_node *cpu_node;
404         int cpu;
405
406         cpu_node = of_parse_phandle(node, "cpu", 0);
407         if (!cpu_node)
408                 return -1;
409
410         cpu = of_cpu_node_to_id(cpu_node);
411         if (cpu >= 0)
412                 topology_parse_cpu_capacity(cpu_node, cpu);
413         else
414                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
415                         cpu_node, cpumask_pr_args(cpu_possible_mask));
416
417         of_node_put(cpu_node);
418         return cpu;
419 }
420
421 static int __init parse_core(struct device_node *core, int package_id,
422                              int core_id)
423 {
424         char name[20];
425         bool leaf = true;
426         int i = 0;
427         int cpu;
428         struct device_node *t;
429
430         do {
431                 snprintf(name, sizeof(name), "thread%d", i);
432                 t = of_get_child_by_name(core, name);
433                 if (t) {
434                         leaf = false;
435                         cpu = get_cpu_for_node(t);
436                         if (cpu >= 0) {
437                                 cpu_topology[cpu].package_id = package_id;
438                                 cpu_topology[cpu].core_id = core_id;
439                                 cpu_topology[cpu].thread_id = i;
440                         } else if (cpu != -ENODEV) {
441                                 pr_err("%pOF: Can't get CPU for thread\n", t);
442                                 of_node_put(t);
443                                 return -EINVAL;
444                         }
445                         of_node_put(t);
446                 }
447                 i++;
448         } while (t);
449
450         cpu = get_cpu_for_node(core);
451         if (cpu >= 0) {
452                 if (!leaf) {
453                         pr_err("%pOF: Core has both threads and CPU\n",
454                                core);
455                         return -EINVAL;
456                 }
457
458                 cpu_topology[cpu].package_id = package_id;
459                 cpu_topology[cpu].core_id = core_id;
460         } else if (leaf && cpu != -ENODEV) {
461                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
462                 return -EINVAL;
463         }
464
465         return 0;
466 }
467
468 static int __init parse_cluster(struct device_node *cluster, int depth)
469 {
470         char name[20];
471         bool leaf = true;
472         bool has_cores = false;
473         struct device_node *c;
474         static int package_id __initdata;
475         int core_id = 0;
476         int i, ret;
477
478         /*
479          * First check for child clusters; we currently ignore any
480          * information about the nesting of clusters and present the
481          * scheduler with a flat list of them.
482          */
483         i = 0;
484         do {
485                 snprintf(name, sizeof(name), "cluster%d", i);
486                 c = of_get_child_by_name(cluster, name);
487                 if (c) {
488                         leaf = false;
489                         ret = parse_cluster(c, depth + 1);
490                         of_node_put(c);
491                         if (ret != 0)
492                                 return ret;
493                 }
494                 i++;
495         } while (c);
496
497         /* Now check for cores */
498         i = 0;
499         do {
500                 snprintf(name, sizeof(name), "core%d", i);
501                 c = of_get_child_by_name(cluster, name);
502                 if (c) {
503                         has_cores = true;
504
505                         if (depth == 0) {
506                                 pr_err("%pOF: cpu-map children should be clusters\n",
507                                        c);
508                                 of_node_put(c);
509                                 return -EINVAL;
510                         }
511
512                         if (leaf) {
513                                 ret = parse_core(c, package_id, core_id++);
514                         } else {
515                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
516                                        cluster, name);
517                                 ret = -EINVAL;
518                         }
519
520                         of_node_put(c);
521                         if (ret != 0)
522                                 return ret;
523                 }
524                 i++;
525         } while (c);
526
527         if (leaf && !has_cores)
528                 pr_warn("%pOF: empty cluster\n", cluster);
529
530         if (leaf)
531                 package_id++;
532
533         return 0;
534 }
535
536 static int __init parse_dt_topology(void)
537 {
538         struct device_node *cn, *map;
539         int ret = 0;
540         int cpu;
541
542         cn = of_find_node_by_path("/cpus");
543         if (!cn) {
544                 pr_err("No CPU information found in DT\n");
545                 return 0;
546         }
547
548         /*
549          * When topology is provided cpu-map is essentially a root
550          * cluster with restricted subnodes.
551          */
552         map = of_get_child_by_name(cn, "cpu-map");
553         if (!map)
554                 goto out;
555
556         ret = parse_cluster(map, 0);
557         if (ret != 0)
558                 goto out_map;
559
560         topology_normalize_cpu_scale();
561
562         /*
563          * Check that all cores are in the topology; the SMP code will
564          * only mark cores described in the DT as possible.
565          */
566         for_each_possible_cpu(cpu)
567                 if (cpu_topology[cpu].package_id == -1)
568                         ret = -EINVAL;
569
570 out_map:
571         of_node_put(map);
572 out:
573         of_node_put(cn);
574         return ret;
575 }
576 #endif
577
578 /*
579  * cpu topology table
580  */
581 struct cpu_topology cpu_topology[NR_CPUS];
582 EXPORT_SYMBOL_GPL(cpu_topology);
583
584 const struct cpumask *cpu_coregroup_mask(int cpu)
585 {
586         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
587
588         /* Find the smaller of NUMA, core or LLC siblings */
589         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
590                 /* not numa in package, lets use the package siblings */
591                 core_mask = &cpu_topology[cpu].core_sibling;
592         }
593         if (cpu_topology[cpu].llc_id != -1) {
594                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
595                         core_mask = &cpu_topology[cpu].llc_sibling;
596         }
597
598         return core_mask;
599 }
600
601 void update_siblings_masks(unsigned int cpuid)
602 {
603         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
604         int cpu;
605
606         /* update core and thread sibling masks */
607         for_each_online_cpu(cpu) {
608                 cpu_topo = &cpu_topology[cpu];
609
610                 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
611                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
612                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
613                 }
614
615                 if (cpuid_topo->package_id != cpu_topo->package_id)
616                         continue;
617
618                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
619                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
620
621                 if (cpuid_topo->core_id != cpu_topo->core_id)
622                         continue;
623
624                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
625                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
626         }
627 }
628
629 static void clear_cpu_topology(int cpu)
630 {
631         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
632
633         cpumask_clear(&cpu_topo->llc_sibling);
634         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
635
636         cpumask_clear(&cpu_topo->core_sibling);
637         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
638         cpumask_clear(&cpu_topo->thread_sibling);
639         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
640 }
641
642 void __init reset_cpu_topology(void)
643 {
644         unsigned int cpu;
645
646         for_each_possible_cpu(cpu) {
647                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
648
649                 cpu_topo->thread_id = -1;
650                 cpu_topo->core_id = -1;
651                 cpu_topo->package_id = -1;
652                 cpu_topo->llc_id = -1;
653
654                 clear_cpu_topology(cpu);
655         }
656 }
657
658 void remove_cpu_topology(unsigned int cpu)
659 {
660         int sibling;
661
662         for_each_cpu(sibling, topology_core_cpumask(cpu))
663                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
664         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
665                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
666         for_each_cpu(sibling, topology_llc_cpumask(cpu))
667                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
668
669         clear_cpu_topology(cpu);
670 }
671
672 __weak int __init parse_acpi_topology(void)
673 {
674         return 0;
675 }
676
677 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
678 void __init init_cpu_topology(void)
679 {
680         reset_cpu_topology();
681
682         /*
683          * Discard anything that was parsed if we hit an error so we
684          * don't use partial information.
685          */
686         if (parse_acpi_topology())
687                 reset_cpu_topology();
688         else if (of_have_populated_dt() && parse_dt_topology())
689                 reset_cpu_topology();
690 }
691 #endif