Merge tag 'seccomp-v5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / drivers / atm / fore200e.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   A FORE Systems 200E-series driver for ATM on Linux.
4   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8   This driver simultaneously supports PCA-200E and SBA-200E adapters
9   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11 */
12
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/atm_suni.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/delay.h>
27 #include <linux/firmware.h>
28 #include <linux/pgtable.h>
29 #include <asm/io.h>
30 #include <asm/string.h>
31 #include <asm/page.h>
32 #include <asm/irq.h>
33 #include <asm/dma.h>
34 #include <asm/byteorder.h>
35 #include <linux/uaccess.h>
36 #include <linux/atomic.h>
37
38 #ifdef CONFIG_SBUS
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <asm/idprom.h>
42 #include <asm/openprom.h>
43 #include <asm/oplib.h>
44 #endif
45
46 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47 #define FORE200E_USE_TASKLET
48 #endif
49
50 #if 0 /* enable the debugging code of the buffer supply queues */
51 #define FORE200E_BSQ_DEBUG
52 #endif
53
54 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55 #define FORE200E_52BYTE_AAL0_SDU
56 #endif
57
58 #include "fore200e.h"
59 #include "suni.h"
60
61 #define FORE200E_VERSION "0.3e"
62
63 #define FORE200E         "fore200e: "
64
65 #if 0 /* override .config */
66 #define CONFIG_ATM_FORE200E_DEBUG 1
67 #endif
68 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70                                                   printk(FORE200E format, ##args); } while (0)
71 #else
72 #define DPRINTK(level, format, args...)  do {} while (0)
73 #endif
74
75
76 #define FORE200E_ALIGN(addr, alignment) \
77         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78
79 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
80
81 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
82
83 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
84
85 #if 1
86 #define ASSERT(expr)     if (!(expr)) { \
87                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88                                     __func__, __LINE__, #expr); \
89                              panic(FORE200E "%s", __func__); \
90                          }
91 #else
92 #define ASSERT(expr)     do {} while (0)
93 #endif
94
95
96 static const struct atmdev_ops   fore200e_ops;
97
98 static LIST_HEAD(fore200e_boards);
99
100
101 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104
105
106 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107     { BUFFER_S1_NBR, BUFFER_L1_NBR },
108     { BUFFER_S2_NBR, BUFFER_L2_NBR }
109 };
110
111 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114 };
115
116
117 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119 #endif
120
121
122 #if 0 /* currently unused */
123 static int 
124 fore200e_fore2atm_aal(enum fore200e_aal aal)
125 {
126     switch(aal) {
127     case FORE200E_AAL0:  return ATM_AAL0;
128     case FORE200E_AAL34: return ATM_AAL34;
129     case FORE200E_AAL5:  return ATM_AAL5;
130     }
131
132     return -EINVAL;
133 }
134 #endif
135
136
137 static enum fore200e_aal
138 fore200e_atm2fore_aal(int aal)
139 {
140     switch(aal) {
141     case ATM_AAL0:  return FORE200E_AAL0;
142     case ATM_AAL34: return FORE200E_AAL34;
143     case ATM_AAL1:
144     case ATM_AAL2:
145     case ATM_AAL5:  return FORE200E_AAL5;
146     }
147
148     return -EINVAL;
149 }
150
151
152 static char*
153 fore200e_irq_itoa(int irq)
154 {
155     static char str[8];
156     sprintf(str, "%d", irq);
157     return str;
158 }
159
160
161 /* allocate and align a chunk of memory intended to hold the data behing exchanged
162    between the driver and the adapter (using streaming DVMA) */
163
164 static int
165 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166 {
167     unsigned long offset = 0;
168
169     if (alignment <= sizeof(int))
170         alignment = 0;
171
172     chunk->alloc_size = size + alignment;
173     chunk->direction  = direction;
174
175     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176     if (chunk->alloc_addr == NULL)
177         return -ENOMEM;
178
179     if (alignment > 0)
180         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
181     
182     chunk->align_addr = chunk->alloc_addr + offset;
183
184     chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185                                      size, direction);
186     if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187         kfree(chunk->alloc_addr);
188         return -ENOMEM;
189     }
190     return 0;
191 }
192
193
194 /* free a chunk of memory */
195
196 static void
197 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198 {
199     dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200                      chunk->direction);
201     kfree(chunk->alloc_addr);
202 }
203
204 /*
205  * Allocate a DMA consistent chunk of memory intended to act as a communication
206  * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207  * and the adapter.
208  */
209 static int
210 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211                 int size, int nbr, int alignment)
212 {
213         /* returned chunks are page-aligned */
214         chunk->alloc_size = size * nbr;
215         chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216                                                &chunk->dma_addr, GFP_KERNEL);
217         if (!chunk->alloc_addr)
218                 return -ENOMEM;
219         chunk->align_addr = chunk->alloc_addr;
220         return 0;
221 }
222
223 /*
224  * Free a DMA consistent chunk of memory.
225  */
226 static void
227 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228 {
229         dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230                           chunk->dma_addr);
231 }
232
233 static void
234 fore200e_spin(int msecs)
235 {
236     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237     while (time_before(jiffies, timeout));
238 }
239
240
241 static int
242 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243 {
244     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245     int           ok;
246
247     mb();
248     do {
249         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250             break;
251
252     } while (time_before(jiffies, timeout));
253
254 #if 1
255     if (!ok) {
256         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257                *addr, val);
258     }
259 #endif
260
261     return ok;
262 }
263
264
265 static int
266 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267 {
268     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269     int           ok;
270
271     do {
272         if ((ok = (fore200e->bus->read(addr) == val)))
273             break;
274
275     } while (time_before(jiffies, timeout));
276
277 #if 1
278     if (!ok) {
279         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280                fore200e->bus->read(addr), val);
281     }
282 #endif
283
284     return ok;
285 }
286
287
288 static void
289 fore200e_free_rx_buf(struct fore200e* fore200e)
290 {
291     int scheme, magn, nbr;
292     struct buffer* buffer;
293
294     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296
297             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298
299                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300
301                     struct chunk* data = &buffer[ nbr ].data;
302
303                     if (data->alloc_addr != NULL)
304                         fore200e_chunk_free(fore200e, data);
305                 }
306             }
307         }
308     }
309 }
310
311
312 static void
313 fore200e_uninit_bs_queue(struct fore200e* fore200e)
314 {
315     int scheme, magn;
316     
317     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319
320             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
321             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322             
323             if (status->alloc_addr)
324                 fore200e_dma_chunk_free(fore200e, status);
325             
326             if (rbd_block->alloc_addr)
327                 fore200e_dma_chunk_free(fore200e, rbd_block);
328         }
329     }
330 }
331
332
333 static int
334 fore200e_reset(struct fore200e* fore200e, int diag)
335 {
336     int ok;
337
338     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339     
340     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341
342     fore200e->bus->reset(fore200e);
343
344     if (diag) {
345         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346         if (ok == 0) {
347             
348             printk(FORE200E "device %s self-test failed\n", fore200e->name);
349             return -ENODEV;
350         }
351
352         printk(FORE200E "device %s self-test passed\n", fore200e->name);
353         
354         fore200e->state = FORE200E_STATE_RESET;
355     }
356
357     return 0;
358 }
359
360
361 static void
362 fore200e_shutdown(struct fore200e* fore200e)
363 {
364     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365            fore200e->name, fore200e->phys_base, 
366            fore200e_irq_itoa(fore200e->irq));
367     
368     if (fore200e->state > FORE200E_STATE_RESET) {
369         /* first, reset the board to prevent further interrupts or data transfers */
370         fore200e_reset(fore200e, 0);
371     }
372     
373     /* then, release all allocated resources */
374     switch(fore200e->state) {
375
376     case FORE200E_STATE_COMPLETE:
377         kfree(fore200e->stats);
378
379         fallthrough;
380     case FORE200E_STATE_IRQ:
381         free_irq(fore200e->irq, fore200e->atm_dev);
382
383         fallthrough;
384     case FORE200E_STATE_ALLOC_BUF:
385         fore200e_free_rx_buf(fore200e);
386
387         fallthrough;
388     case FORE200E_STATE_INIT_BSQ:
389         fore200e_uninit_bs_queue(fore200e);
390
391         fallthrough;
392     case FORE200E_STATE_INIT_RXQ:
393         fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394         fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395
396         fallthrough;
397     case FORE200E_STATE_INIT_TXQ:
398         fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399         fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400
401         fallthrough;
402     case FORE200E_STATE_INIT_CMDQ:
403         fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404
405         fallthrough;
406     case FORE200E_STATE_INITIALIZE:
407         /* nothing to do for that state */
408
409     case FORE200E_STATE_START_FW:
410         /* nothing to do for that state */
411
412     case FORE200E_STATE_RESET:
413         /* nothing to do for that state */
414
415     case FORE200E_STATE_MAP:
416         fore200e->bus->unmap(fore200e);
417
418         fallthrough;
419     case FORE200E_STATE_CONFIGURE:
420         /* nothing to do for that state */
421
422     case FORE200E_STATE_REGISTER:
423         /* XXX shouldn't we *start* by deregistering the device? */
424         atm_dev_deregister(fore200e->atm_dev);
425
426     case FORE200E_STATE_BLANK:
427         /* nothing to do for that state */
428         break;
429     }
430 }
431
432
433 #ifdef CONFIG_PCI
434
435 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436 {
437     /* on big-endian hosts, the board is configured to convert
438        the endianess of slave RAM accesses  */
439     return le32_to_cpu(readl(addr));
440 }
441
442
443 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444 {
445     /* on big-endian hosts, the board is configured to convert
446        the endianess of slave RAM accesses  */
447     writel(cpu_to_le32(val), addr);
448 }
449
450 static int
451 fore200e_pca_irq_check(struct fore200e* fore200e)
452 {
453     /* this is a 1 bit register */
454     int irq_posted = readl(fore200e->regs.pca.psr);
455
456 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459     }
460 #endif
461
462     return irq_posted;
463 }
464
465
466 static void
467 fore200e_pca_irq_ack(struct fore200e* fore200e)
468 {
469     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470 }
471
472
473 static void
474 fore200e_pca_reset(struct fore200e* fore200e)
475 {
476     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477     fore200e_spin(10);
478     writel(0, fore200e->regs.pca.hcr);
479 }
480
481
482 static int fore200e_pca_map(struct fore200e* fore200e)
483 {
484     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485
486     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487     
488     if (fore200e->virt_base == NULL) {
489         printk(FORE200E "can't map device %s\n", fore200e->name);
490         return -EFAULT;
491     }
492
493     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494
495     /* gain access to the PCA specific registers  */
496     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499
500     fore200e->state = FORE200E_STATE_MAP;
501     return 0;
502 }
503
504
505 static void
506 fore200e_pca_unmap(struct fore200e* fore200e)
507 {
508     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509
510     if (fore200e->virt_base != NULL)
511         iounmap(fore200e->virt_base);
512 }
513
514
515 static int fore200e_pca_configure(struct fore200e *fore200e)
516 {
517     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518     u8              master_ctrl, latency;
519
520     DPRINTK(2, "device %s being configured\n", fore200e->name);
521
522     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524         return -EIO;
525     }
526
527     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528
529     master_ctrl = master_ctrl
530 #if defined(__BIG_ENDIAN)
531         /* request the PCA board to convert the endianess of slave RAM accesses */
532         | PCA200E_CTRL_CONVERT_ENDIAN
533 #endif
534 #if 0
535         | PCA200E_CTRL_DIS_CACHE_RD
536         | PCA200E_CTRL_DIS_WRT_INVAL
537         | PCA200E_CTRL_ENA_CONT_REQ_MODE
538         | PCA200E_CTRL_2_CACHE_WRT_INVAL
539 #endif
540         | PCA200E_CTRL_LARGE_PCI_BURSTS;
541     
542     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543
544     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546        this may impact the performances of other PCI devices on the same bus, though */
547     latency = 192;
548     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549
550     fore200e->state = FORE200E_STATE_CONFIGURE;
551     return 0;
552 }
553
554
555 static int __init
556 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557 {
558     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
559     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560     struct prom_opcode      opcode;
561     int                     ok;
562     u32                     prom_dma;
563
564     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565
566     opcode.opcode = OPCODE_GET_PROM;
567     opcode.pad    = 0;
568
569     prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570                               DMA_FROM_DEVICE);
571     if (dma_mapping_error(fore200e->dev, prom_dma))
572         return -ENOMEM;
573
574     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575     
576     *entry->status = STATUS_PENDING;
577
578     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579
580     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581
582     *entry->status = STATUS_FREE;
583
584     dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585
586     if (ok == 0) {
587         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588         return -EIO;
589     }
590
591 #if defined(__BIG_ENDIAN)
592     
593 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594
595     /* MAC address is stored as little-endian */
596     swap_here(&prom->mac_addr[0]);
597     swap_here(&prom->mac_addr[4]);
598 #endif
599     
600     return 0;
601 }
602
603
604 static int
605 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606 {
607     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608
609     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
610                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611 }
612
613 static const struct fore200e_bus fore200e_pci_ops = {
614         .model_name             = "PCA-200E",
615         .proc_name              = "pca200e",
616         .descr_alignment        = 32,
617         .buffer_alignment       = 4,
618         .status_alignment       = 32,
619         .read                   = fore200e_pca_read,
620         .write                  = fore200e_pca_write,
621         .configure              = fore200e_pca_configure,
622         .map                    = fore200e_pca_map,
623         .reset                  = fore200e_pca_reset,
624         .prom_read              = fore200e_pca_prom_read,
625         .unmap                  = fore200e_pca_unmap,
626         .irq_check              = fore200e_pca_irq_check,
627         .irq_ack                = fore200e_pca_irq_ack,
628         .proc_read              = fore200e_pca_proc_read,
629 };
630 #endif /* CONFIG_PCI */
631
632 #ifdef CONFIG_SBUS
633
634 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635 {
636     return sbus_readl(addr);
637 }
638
639 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640 {
641     sbus_writel(val, addr);
642 }
643
644 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645 {
646         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648 }
649
650 static int fore200e_sba_irq_check(struct fore200e *fore200e)
651 {
652         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653 }
654
655 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656 {
657         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659 }
660
661 static void fore200e_sba_reset(struct fore200e *fore200e)
662 {
663         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664         fore200e_spin(10);
665         fore200e->bus->write(0, fore200e->regs.sba.hcr);
666 }
667
668 static int __init fore200e_sba_map(struct fore200e *fore200e)
669 {
670         struct platform_device *op = to_platform_device(fore200e->dev);
671         unsigned int bursts;
672
673         /* gain access to the SBA specific registers  */
674         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678
679         if (!fore200e->virt_base) {
680                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681                 return -EFAULT;
682         }
683
684         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685     
686         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687
688         /* get the supported DVMA burst sizes */
689         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690
691         if (sbus_can_dma_64bit())
692                 sbus_set_sbus64(&op->dev, bursts);
693
694         fore200e->state = FORE200E_STATE_MAP;
695         return 0;
696 }
697
698 static void fore200e_sba_unmap(struct fore200e *fore200e)
699 {
700         struct platform_device *op = to_platform_device(fore200e->dev);
701
702         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
706 }
707
708 static int __init fore200e_sba_configure(struct fore200e *fore200e)
709 {
710         fore200e->state = FORE200E_STATE_CONFIGURE;
711         return 0;
712 }
713
714 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715 {
716         struct platform_device *op = to_platform_device(fore200e->dev);
717         const u8 *prop;
718         int len;
719
720         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721         if (!prop)
722                 return -ENODEV;
723         memcpy(&prom->mac_addr[4], prop, 4);
724
725         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726         if (!prop)
727                 return -ENODEV;
728         memcpy(&prom->mac_addr[2], prop, 4);
729
730         prom->serial_number = of_getintprop_default(op->dev.of_node,
731                                                     "serialnumber", 0);
732         prom->hw_revision = of_getintprop_default(op->dev.of_node,
733                                                   "promversion", 0);
734     
735         return 0;
736 }
737
738 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739 {
740         struct platform_device *op = to_platform_device(fore200e->dev);
741         const struct linux_prom_registers *regs;
742
743         regs = of_get_property(op->dev.of_node, "reg", NULL);
744
745         return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
746                        (regs ? regs->which_io : 0), op->dev.of_node);
747 }
748
749 static const struct fore200e_bus fore200e_sbus_ops = {
750         .model_name             = "SBA-200E",
751         .proc_name              = "sba200e",
752         .descr_alignment        = 32,
753         .buffer_alignment       = 64,
754         .status_alignment       = 32,
755         .read                   = fore200e_sba_read,
756         .write                  = fore200e_sba_write,
757         .configure              = fore200e_sba_configure,
758         .map                    = fore200e_sba_map,
759         .reset                  = fore200e_sba_reset,
760         .prom_read              = fore200e_sba_prom_read,
761         .unmap                  = fore200e_sba_unmap,
762         .irq_enable             = fore200e_sba_irq_enable,
763         .irq_check              = fore200e_sba_irq_check,
764         .irq_ack                = fore200e_sba_irq_ack,
765         .proc_read              = fore200e_sba_proc_read,
766 };
767 #endif /* CONFIG_SBUS */
768
769 static void
770 fore200e_tx_irq(struct fore200e* fore200e)
771 {
772     struct host_txq*        txq = &fore200e->host_txq;
773     struct host_txq_entry*  entry;
774     struct atm_vcc*         vcc;
775     struct fore200e_vc_map* vc_map;
776
777     if (fore200e->host_txq.txing == 0)
778         return;
779
780     for (;;) {
781         
782         entry = &txq->host_entry[ txq->tail ];
783
784         if ((*entry->status & STATUS_COMPLETE) == 0) {
785             break;
786         }
787
788         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
789                 entry, txq->tail, entry->vc_map, entry->skb);
790
791         /* free copy of misaligned data */
792         kfree(entry->data);
793         
794         /* remove DMA mapping */
795         dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796                                  DMA_TO_DEVICE);
797
798         vc_map = entry->vc_map;
799
800         /* vcc closed since the time the entry was submitted for tx? */
801         if ((vc_map->vcc == NULL) ||
802             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803
804             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805                     fore200e->atm_dev->number);
806
807             dev_kfree_skb_any(entry->skb);
808         }
809         else {
810             ASSERT(vc_map->vcc);
811
812             /* vcc closed then immediately re-opened? */
813             if (vc_map->incarn != entry->incarn) {
814
815                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
816                    if the same vcc is immediately re-opened, those pending PDUs must
817                    not be popped after the completion of their emission, as they refer
818                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819                    would be decremented by the size of the (unrelated) skb, possibly
820                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821                    we thus bind the tx entry to the current incarnation of the vcc
822                    when the entry is submitted for tx. When the tx later completes,
823                    if the incarnation number of the tx entry does not match the one
824                    of the vcc, then this implies that the vcc has been closed then re-opened.
825                    we thus just drop the skb here. */
826
827                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828                         fore200e->atm_dev->number);
829
830                 dev_kfree_skb_any(entry->skb);
831             }
832             else {
833                 vcc = vc_map->vcc;
834                 ASSERT(vcc);
835
836                 /* notify tx completion */
837                 if (vcc->pop) {
838                     vcc->pop(vcc, entry->skb);
839                 }
840                 else {
841                     dev_kfree_skb_any(entry->skb);
842                 }
843
844                 /* check error condition */
845                 if (*entry->status & STATUS_ERROR)
846                     atomic_inc(&vcc->stats->tx_err);
847                 else
848                     atomic_inc(&vcc->stats->tx);
849             }
850         }
851
852         *entry->status = STATUS_FREE;
853
854         fore200e->host_txq.txing--;
855
856         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857     }
858 }
859
860
861 #ifdef FORE200E_BSQ_DEBUG
862 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863 {
864     struct buffer* buffer;
865     int count = 0;
866
867     buffer = bsq->freebuf;
868     while (buffer) {
869
870         if (buffer->supplied) {
871             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872                    where, scheme, magn, buffer->index);
873         }
874
875         if (buffer->magn != magn) {
876             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877                    where, scheme, magn, buffer->index, buffer->magn);
878         }
879
880         if (buffer->scheme != scheme) {
881             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882                    where, scheme, magn, buffer->index, buffer->scheme);
883         }
884
885         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887                    where, scheme, magn, buffer->index);
888         }
889
890         count++;
891         buffer = buffer->next;
892     }
893
894     if (count != bsq->freebuf_count) {
895         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896                where, scheme, magn, count, bsq->freebuf_count);
897     }
898     return 0;
899 }
900 #endif
901
902
903 static void
904 fore200e_supply(struct fore200e* fore200e)
905 {
906     int  scheme, magn, i;
907
908     struct host_bsq*       bsq;
909     struct host_bsq_entry* entry;
910     struct buffer*         buffer;
911
912     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914
915             bsq = &fore200e->host_bsq[ scheme ][ magn ];
916
917 #ifdef FORE200E_BSQ_DEBUG
918             bsq_audit(1, bsq, scheme, magn);
919 #endif
920             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921
922                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924
925                 entry = &bsq->host_entry[ bsq->head ];
926
927                 for (i = 0; i < RBD_BLK_SIZE; i++) {
928
929                     /* take the first buffer in the free buffer list */
930                     buffer = bsq->freebuf;
931                     if (!buffer) {
932                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933                                scheme, magn, bsq->freebuf_count);
934                         return;
935                     }
936                     bsq->freebuf = buffer->next;
937                     
938 #ifdef FORE200E_BSQ_DEBUG
939                     if (buffer->supplied)
940                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941                                scheme, magn, buffer->index);
942                     buffer->supplied = 1;
943 #endif
944                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
946                 }
947
948                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949
950                 /* decrease accordingly the number of free rx buffers */
951                 bsq->freebuf_count -= RBD_BLK_SIZE;
952
953                 *entry->status = STATUS_PENDING;
954                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955             }
956         }
957     }
958 }
959
960
961 static int
962 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963 {
964     struct sk_buff*      skb;
965     struct buffer*       buffer;
966     struct fore200e_vcc* fore200e_vcc;
967     int                  i, pdu_len = 0;
968 #ifdef FORE200E_52BYTE_AAL0_SDU
969     u32                  cell_header = 0;
970 #endif
971
972     ASSERT(vcc);
973     
974     fore200e_vcc = FORE200E_VCC(vcc);
975     ASSERT(fore200e_vcc);
976
977 #ifdef FORE200E_52BYTE_AAL0_SDU
978     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979
980         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
984                        rpd->atm_header.clp;
985         pdu_len = 4;
986     }
987 #endif
988     
989     /* compute total PDU length */
990     for (i = 0; i < rpd->nseg; i++)
991         pdu_len += rpd->rsd[ i ].length;
992     
993     skb = alloc_skb(pdu_len, GFP_ATOMIC);
994     if (skb == NULL) {
995         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996
997         atomic_inc(&vcc->stats->rx_drop);
998         return -ENOMEM;
999     } 
1000
1001     __net_timestamp(skb);
1002     
1003 #ifdef FORE200E_52BYTE_AAL0_SDU
1004     if (cell_header) {
1005         *((u32*)skb_put(skb, 4)) = cell_header;
1006     }
1007 #endif
1008
1009     /* reassemble segments */
1010     for (i = 0; i < rpd->nseg; i++) {
1011         
1012         /* rebuild rx buffer address from rsd handle */
1013         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014         
1015         /* Make device DMA transfer visible to CPU.  */
1016         dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017                                 rpd->rsd[i].length, DMA_FROM_DEVICE);
1018         
1019         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021         /* Now let the device get at it again.  */
1022         dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023                                    rpd->rsd[i].length, DMA_FROM_DEVICE);
1024     }
1025
1026     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027     
1028     if (pdu_len < fore200e_vcc->rx_min_pdu)
1029         fore200e_vcc->rx_min_pdu = pdu_len;
1030     if (pdu_len > fore200e_vcc->rx_max_pdu)
1031         fore200e_vcc->rx_max_pdu = pdu_len;
1032     fore200e_vcc->rx_pdu++;
1033
1034     /* push PDU */
1035     if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038                 vcc->itf, vcc->vpi, vcc->vci);
1039
1040         dev_kfree_skb_any(skb);
1041
1042         atomic_inc(&vcc->stats->rx_drop);
1043         return -ENOMEM;
1044     }
1045
1046     vcc->push(vcc, skb);
1047     atomic_inc(&vcc->stats->rx);
1048
1049     return 0;
1050 }
1051
1052
1053 static void
1054 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055 {
1056     struct host_bsq* bsq;
1057     struct buffer*   buffer;
1058     int              i;
1059     
1060     for (i = 0; i < rpd->nseg; i++) {
1061
1062         /* rebuild rx buffer address from rsd handle */
1063         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067 #ifdef FORE200E_BSQ_DEBUG
1068         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070         if (buffer->supplied == 0)
1071             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072                    buffer->scheme, buffer->magn, buffer->index);
1073         buffer->supplied = 0;
1074 #endif
1075
1076         /* re-insert the buffer into the free buffer list */
1077         buffer->next = bsq->freebuf;
1078         bsq->freebuf = buffer;
1079
1080         /* then increment the number of free rx buffers */
1081         bsq->freebuf_count++;
1082     }
1083 }
1084
1085
1086 static void
1087 fore200e_rx_irq(struct fore200e* fore200e)
1088 {
1089     struct host_rxq*        rxq = &fore200e->host_rxq;
1090     struct host_rxq_entry*  entry;
1091     struct atm_vcc*         vcc;
1092     struct fore200e_vc_map* vc_map;
1093
1094     for (;;) {
1095         
1096         entry = &rxq->host_entry[ rxq->head ];
1097
1098         /* no more received PDUs */
1099         if ((*entry->status & STATUS_COMPLETE) == 0)
1100             break;
1101
1102         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104         if ((vc_map->vcc == NULL) ||
1105             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108                     fore200e->atm_dev->number,
1109                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110         }
1111         else {
1112             vcc = vc_map->vcc;
1113             ASSERT(vcc);
1114
1115             if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118             }
1119             else {
1120                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121                         fore200e->atm_dev->number,
1122                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123                 atomic_inc(&vcc->stats->rx_err);
1124             }
1125         }
1126
1127         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129         fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131         /* rewrite the rpd address to ack the received PDU */
1132         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133         *entry->status = STATUS_FREE;
1134
1135         fore200e_supply(fore200e);
1136     }
1137 }
1138
1139
1140 #ifndef FORE200E_USE_TASKLET
1141 static void
1142 fore200e_irq(struct fore200e* fore200e)
1143 {
1144     unsigned long flags;
1145
1146     spin_lock_irqsave(&fore200e->q_lock, flags);
1147     fore200e_rx_irq(fore200e);
1148     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150     spin_lock_irqsave(&fore200e->q_lock, flags);
1151     fore200e_tx_irq(fore200e);
1152     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153 }
1154 #endif
1155
1156
1157 static irqreturn_t
1158 fore200e_interrupt(int irq, void* dev)
1159 {
1160     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162     if (fore200e->bus->irq_check(fore200e) == 0) {
1163         
1164         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165         return IRQ_NONE;
1166     }
1167     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169 #ifdef FORE200E_USE_TASKLET
1170     tasklet_schedule(&fore200e->tx_tasklet);
1171     tasklet_schedule(&fore200e->rx_tasklet);
1172 #else
1173     fore200e_irq(fore200e);
1174 #endif
1175     
1176     fore200e->bus->irq_ack(fore200e);
1177     return IRQ_HANDLED;
1178 }
1179
1180
1181 #ifdef FORE200E_USE_TASKLET
1182 static void
1183 fore200e_tx_tasklet(unsigned long data)
1184 {
1185     struct fore200e* fore200e = (struct fore200e*) data;
1186     unsigned long flags;
1187
1188     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190     spin_lock_irqsave(&fore200e->q_lock, flags);
1191     fore200e_tx_irq(fore200e);
1192     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193 }
1194
1195
1196 static void
1197 fore200e_rx_tasklet(unsigned long data)
1198 {
1199     struct fore200e* fore200e = (struct fore200e*) data;
1200     unsigned long    flags;
1201
1202     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204     spin_lock_irqsave(&fore200e->q_lock, flags);
1205     fore200e_rx_irq((struct fore200e*) data);
1206     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207 }
1208 #endif
1209
1210
1211 static int
1212 fore200e_select_scheme(struct atm_vcc* vcc)
1213 {
1214     /* fairly balance the VCs over (identical) buffer schemes */
1215     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218             vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220     return scheme;
1221 }
1222
1223
1224 static int 
1225 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226 {
1227     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229     struct activate_opcode   activ_opcode;
1230     struct deactivate_opcode deactiv_opcode;
1231     struct vpvc              vpvc;
1232     int                      ok;
1233     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236     
1237     if (activate) {
1238         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239         
1240         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241         activ_opcode.aal    = aal;
1242         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243         activ_opcode.pad    = 0;
1244     }
1245     else {
1246         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247         deactiv_opcode.pad    = 0;
1248     }
1249
1250     vpvc.vci = vcc->vci;
1251     vpvc.vpi = vcc->vpi;
1252
1253     *entry->status = STATUS_PENDING;
1254
1255     if (activate) {
1256
1257 #ifdef FORE200E_52BYTE_AAL0_SDU
1258         mtu = 48;
1259 #endif
1260         /* the MTU is not used by the cp, except in the case of AAL0 */
1261         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264     }
1265     else {
1266         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268     }
1269
1270     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272     *entry->status = STATUS_FREE;
1273
1274     if (ok == 0) {
1275         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277         return -EIO;
1278     }
1279
1280     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281             activate ? "open" : "clos");
1282
1283     return 0;
1284 }
1285
1286
1287 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289 static void
1290 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291 {
1292     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293     
1294         /* compute the data cells to idle cells ratio from the tx PCR */
1295         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297     }
1298     else {
1299         /* disable rate control */
1300         rate->data_cells = rate->idle_cells = 0;
1301     }
1302 }
1303
1304
1305 static int
1306 fore200e_open(struct atm_vcc *vcc)
1307 {
1308     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309     struct fore200e_vcc*    fore200e_vcc;
1310     struct fore200e_vc_map* vc_map;
1311     unsigned long           flags;
1312     int                     vci = vcc->vci;
1313     short                   vpi = vcc->vpi;
1314
1315     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318     spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321     if (vc_map->vcc) {
1322
1323         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325         printk(FORE200E "VC %d.%d.%d already in use\n",
1326                fore200e->atm_dev->number, vpi, vci);
1327
1328         return -EINVAL;
1329     }
1330
1331     vc_map->vcc = vcc;
1332
1333     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336     if (fore200e_vcc == NULL) {
1337         vc_map->vcc = NULL;
1338         return -ENOMEM;
1339     }
1340
1341     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348     
1349     /* pseudo-CBR bandwidth requested? */
1350     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351         
1352         mutex_lock(&fore200e->rate_mtx);
1353         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354             mutex_unlock(&fore200e->rate_mtx);
1355
1356             kfree(fore200e_vcc);
1357             vc_map->vcc = NULL;
1358             return -EAGAIN;
1359         }
1360
1361         /* reserve bandwidth */
1362         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363         mutex_unlock(&fore200e->rate_mtx);
1364     }
1365     
1366     vcc->itf = vcc->dev->number;
1367
1368     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369     set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371     vcc->dev_data = fore200e_vcc;
1372     
1373     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375         vc_map->vcc = NULL;
1376
1377         clear_bit(ATM_VF_ADDR, &vcc->flags);
1378         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380         vcc->dev_data = NULL;
1381
1382         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384         kfree(fore200e_vcc);
1385         return -EINVAL;
1386     }
1387     
1388     /* compute rate control parameters */
1389     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390         
1391         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392         set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398     }
1399     
1400     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404     /* new incarnation of the vcc */
1405     vc_map->incarn = ++fore200e->incarn_count;
1406
1407     /* VC unusable before this flag is set */
1408     set_bit(ATM_VF_READY, &vcc->flags);
1409
1410     return 0;
1411 }
1412
1413
1414 static void
1415 fore200e_close(struct atm_vcc* vcc)
1416 {
1417     struct fore200e_vcc*    fore200e_vcc;
1418     struct fore200e*        fore200e;
1419     struct fore200e_vc_map* vc_map;
1420     unsigned long           flags;
1421
1422     ASSERT(vcc);
1423     fore200e = FORE200E_DEV(vcc->dev);
1424
1425     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430     clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434     spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438     /* the vc is no longer considered as "in use" by fore200e_open() */
1439     vc_map->vcc = NULL;
1440
1441     vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443     fore200e_vcc = FORE200E_VCC(vcc);
1444     vcc->dev_data = NULL;
1445
1446     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448     /* release reserved bandwidth, if any */
1449     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451         mutex_lock(&fore200e->rate_mtx);
1452         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453         mutex_unlock(&fore200e->rate_mtx);
1454
1455         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456     }
1457
1458     clear_bit(ATM_VF_ADDR, &vcc->flags);
1459     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461     ASSERT(fore200e_vcc);
1462     kfree(fore200e_vcc);
1463 }
1464
1465
1466 static int
1467 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468 {
1469     struct fore200e*        fore200e;
1470     struct fore200e_vcc*    fore200e_vcc;
1471     struct fore200e_vc_map* vc_map;
1472     struct host_txq*        txq;
1473     struct host_txq_entry*  entry;
1474     struct tpd*             tpd;
1475     struct tpd_haddr        tpd_haddr;
1476     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477     int                     tx_copy      = 0;
1478     int                     tx_len       = skb->len;
1479     u32*                    cell_header  = NULL;
1480     unsigned char*          skb_data;
1481     int                     skb_len;
1482     unsigned char*          data;
1483     unsigned long           flags;
1484
1485     if (!vcc)
1486         return -EINVAL;
1487
1488     fore200e = FORE200E_DEV(vcc->dev);
1489     fore200e_vcc = FORE200E_VCC(vcc);
1490
1491     if (!fore200e)
1492         return -EINVAL;
1493
1494     txq = &fore200e->host_txq;
1495     if (!fore200e_vcc)
1496         return -EINVAL;
1497
1498     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500         dev_kfree_skb_any(skb);
1501         return -EINVAL;
1502     }
1503
1504 #ifdef FORE200E_52BYTE_AAL0_SDU
1505     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506         cell_header = (u32*) skb->data;
1507         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508         skb_len     = tx_len = skb->len  - 4;
1509
1510         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511     }
1512     else 
1513 #endif
1514     {
1515         skb_data = skb->data;
1516         skb_len  = skb->len;
1517     }
1518     
1519     if (((unsigned long)skb_data) & 0x3) {
1520
1521         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522         tx_copy = 1;
1523         tx_len  = skb_len;
1524     }
1525
1526     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528         /* this simply NUKES the PCA board */
1529         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530         tx_copy = 1;
1531         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532     }
1533     
1534     if (tx_copy) {
1535         data = kmalloc(tx_len, GFP_ATOMIC);
1536         if (data == NULL) {
1537             if (vcc->pop) {
1538                 vcc->pop(vcc, skb);
1539             }
1540             else {
1541                 dev_kfree_skb_any(skb);
1542             }
1543             return -ENOMEM;
1544         }
1545
1546         memcpy(data, skb_data, skb_len);
1547         if (skb_len < tx_len)
1548             memset(data + skb_len, 0x00, tx_len - skb_len);
1549     }
1550     else {
1551         data = skb_data;
1552     }
1553
1554     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555     ASSERT(vc_map->vcc == vcc);
1556
1557   retry_here:
1558
1559     spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561     entry = &txq->host_entry[ txq->head ];
1562
1563     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565         /* try to free completed tx queue entries */
1566         fore200e_tx_irq(fore200e);
1567
1568         if (*entry->status != STATUS_FREE) {
1569
1570             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572             /* retry once again? */
1573             if (--retry > 0) {
1574                 udelay(50);
1575                 goto retry_here;
1576             }
1577
1578             atomic_inc(&vcc->stats->tx_err);
1579
1580             fore200e->tx_sat++;
1581             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582                     fore200e->name, fore200e->cp_queues->heartbeat);
1583             if (vcc->pop) {
1584                 vcc->pop(vcc, skb);
1585             }
1586             else {
1587                 dev_kfree_skb_any(skb);
1588             }
1589
1590             if (tx_copy)
1591                 kfree(data);
1592
1593             return -ENOBUFS;
1594         }
1595     }
1596
1597     entry->incarn = vc_map->incarn;
1598     entry->vc_map = vc_map;
1599     entry->skb    = skb;
1600     entry->data   = tx_copy ? data : NULL;
1601
1602     tpd = entry->tpd;
1603     tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604                                           DMA_TO_DEVICE);
1605     if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606         if (tx_copy)
1607             kfree(data);
1608         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609         return -ENOMEM;
1610     }
1611     tpd->tsd[ 0 ].length = tx_len;
1612
1613     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614     txq->txing++;
1615
1616     /* The dma_map call above implies a dma_sync so the device can use it,
1617      * thus no explicit dma_sync call is necessary here.
1618      */
1619     
1620     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1621             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622             tpd->tsd[0].length, skb_len);
1623
1624     if (skb_len < fore200e_vcc->tx_min_pdu)
1625         fore200e_vcc->tx_min_pdu = skb_len;
1626     if (skb_len > fore200e_vcc->tx_max_pdu)
1627         fore200e_vcc->tx_max_pdu = skb_len;
1628     fore200e_vcc->tx_pdu++;
1629
1630     /* set tx rate control information */
1631     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634     if (cell_header) {
1635         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640     }
1641     else {
1642         /* set the ATM header, common to all cells conveying the PDU */
1643         tpd->atm_header.clp = 0;
1644         tpd->atm_header.plt = 0;
1645         tpd->atm_header.vci = vcc->vci;
1646         tpd->atm_header.vpi = vcc->vpi;
1647         tpd->atm_header.gfc = 0;
1648     }
1649
1650     tpd->spec.length = tx_len;
1651     tpd->spec.nseg   = 1;
1652     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653     tpd->spec.intr   = 1;
1654
1655     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656     tpd_haddr.pad   = 0;
1657     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659     *entry->status = STATUS_PENDING;
1660     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664     return 0;
1665 }
1666
1667
1668 static int
1669 fore200e_getstats(struct fore200e* fore200e)
1670 {
1671     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673     struct stats_opcode     opcode;
1674     int                     ok;
1675     u32                     stats_dma_addr;
1676
1677     if (fore200e->stats == NULL) {
1678         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679         if (fore200e->stats == NULL)
1680             return -ENOMEM;
1681     }
1682     
1683     stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684                                     sizeof(struct stats), DMA_FROM_DEVICE);
1685     if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686         return -ENOMEM;
1687     
1688     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690     opcode.opcode = OPCODE_GET_STATS;
1691     opcode.pad    = 0;
1692
1693     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694     
1695     *entry->status = STATUS_PENDING;
1696
1697     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701     *entry->status = STATUS_FREE;
1702
1703     dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704     
1705     if (ok == 0) {
1706         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707         return -EIO;
1708     }
1709
1710     return 0;
1711 }
1712
1713 #if 0 /* currently unused */
1714 static int
1715 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716 {
1717     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719     struct oc3_opcode       opcode;
1720     int                     ok;
1721     u32                     oc3_regs_dma_addr;
1722
1723     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727     opcode.opcode = OPCODE_GET_OC3;
1728     opcode.reg    = 0;
1729     opcode.value  = 0;
1730     opcode.mask   = 0;
1731
1732     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733     
1734     *entry->status = STATUS_PENDING;
1735
1736     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740     *entry->status = STATUS_FREE;
1741
1742     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743     
1744     if (ok == 0) {
1745         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746         return -EIO;
1747     }
1748
1749     return 0;
1750 }
1751 #endif
1752
1753
1754 static int
1755 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756 {
1757     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759     struct oc3_opcode       opcode;
1760     int                     ok;
1761
1762     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766     opcode.opcode = OPCODE_SET_OC3;
1767     opcode.reg    = reg;
1768     opcode.value  = value;
1769     opcode.mask   = mask;
1770
1771     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772     
1773     *entry->status = STATUS_PENDING;
1774
1775     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779     *entry->status = STATUS_FREE;
1780
1781     if (ok == 0) {
1782         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783         return -EIO;
1784     }
1785
1786     return 0;
1787 }
1788
1789
1790 static int
1791 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792 {
1793     u32 mct_value, mct_mask;
1794     int error;
1795
1796     if (!capable(CAP_NET_ADMIN))
1797         return -EPERM;
1798     
1799     switch (loop_mode) {
1800
1801     case ATM_LM_NONE:
1802         mct_value = 0; 
1803         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804         break;
1805         
1806     case ATM_LM_LOC_PHY:
1807         mct_value = mct_mask = SUNI_MCT_DLE;
1808         break;
1809
1810     case ATM_LM_RMT_PHY:
1811         mct_value = mct_mask = SUNI_MCT_LLE;
1812         break;
1813
1814     default:
1815         return -EINVAL;
1816     }
1817
1818     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819     if (error == 0)
1820         fore200e->loop_mode = loop_mode;
1821
1822     return error;
1823 }
1824
1825
1826 static int
1827 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828 {
1829     struct sonet_stats tmp;
1830
1831     if (fore200e_getstats(fore200e) < 0)
1832         return -EIO;
1833
1834     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848     if (arg)
1849         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1850     
1851     return 0;
1852 }
1853
1854
1855 static int
1856 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857 {
1858     struct fore200e* fore200e = FORE200E_DEV(dev);
1859     
1860     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862     switch (cmd) {
1863
1864     case SONET_GETSTAT:
1865         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867     case SONET_GETDIAG:
1868         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870     case ATM_SETLOOP:
1871         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873     case ATM_GETLOOP:
1874         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876     case ATM_QUERYLOOP:
1877         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878     }
1879
1880     return -ENOSYS; /* not implemented */
1881 }
1882
1883
1884 static int
1885 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886 {
1887     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892         return -EINVAL;
1893     }
1894
1895     DPRINTK(2, "change_qos %d.%d.%d, "
1896             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898             "available_cell_rate = %u",
1899             vcc->itf, vcc->vpi, vcc->vci,
1900             fore200e_traffic_class[ qos->txtp.traffic_class ],
1901             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902             fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904             flags, fore200e->available_cell_rate);
1905
1906     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908         mutex_lock(&fore200e->rate_mtx);
1909         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910             mutex_unlock(&fore200e->rate_mtx);
1911             return -EAGAIN;
1912         }
1913
1914         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915         fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917         mutex_unlock(&fore200e->rate_mtx);
1918         
1919         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920         
1921         /* update rate control parameters */
1922         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924         set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926         return 0;
1927     }
1928     
1929     return -EINVAL;
1930 }
1931     
1932
1933 static int fore200e_irq_request(struct fore200e *fore200e)
1934 {
1935     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938                fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939         return -EBUSY;
1940     }
1941
1942     printk(FORE200E "IRQ %s reserved for device %s\n",
1943            fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945 #ifdef FORE200E_USE_TASKLET
1946     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948 #endif
1949
1950     fore200e->state = FORE200E_STATE_IRQ;
1951     return 0;
1952 }
1953
1954
1955 static int fore200e_get_esi(struct fore200e *fore200e)
1956 {
1957     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958     int ok, i;
1959
1960     if (!prom)
1961         return -ENOMEM;
1962
1963     ok = fore200e->bus->prom_read(fore200e, prom);
1964     if (ok < 0) {
1965         kfree(prom);
1966         return -EBUSY;
1967     }
1968         
1969     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970            fore200e->name, 
1971            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973         
1974     for (i = 0; i < ESI_LEN; i++) {
1975         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976     }
1977     
1978     kfree(prom);
1979
1980     return 0;
1981 }
1982
1983
1984 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985 {
1986     int scheme, magn, nbr, size, i;
1987
1988     struct host_bsq* bsq;
1989     struct buffer*   buffer;
1990
1991     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997             size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001             /* allocate the array of receive buffers */
2002             buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                            GFP_KERNEL);
2004
2005             if (buffer == NULL)
2006                 return -ENOMEM;
2007
2008             bsq->freebuf = NULL;
2009
2010             for (i = 0; i < nbr; i++) {
2011
2012                 buffer[ i ].scheme = scheme;
2013                 buffer[ i ].magn   = magn;
2014 #ifdef FORE200E_BSQ_DEBUG
2015                 buffer[ i ].index  = i;
2016                 buffer[ i ].supplied = 0;
2017 #endif
2018
2019                 /* allocate the receive buffer body */
2020                 if (fore200e_chunk_alloc(fore200e,
2021                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022                                          DMA_FROM_DEVICE) < 0) {
2023                     
2024                     while (i > 0)
2025                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026                     kfree(buffer);
2027                     
2028                     return -ENOMEM;
2029                 }
2030
2031                 /* insert the buffer into the free buffer list */
2032                 buffer[ i ].next = bsq->freebuf;
2033                 bsq->freebuf = &buffer[ i ];
2034             }
2035             /* all the buffers are free, initially */
2036             bsq->freebuf_count = nbr;
2037
2038 #ifdef FORE200E_BSQ_DEBUG
2039             bsq_audit(3, bsq, scheme, magn);
2040 #endif
2041         }
2042     }
2043
2044     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045     return 0;
2046 }
2047
2048
2049 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050 {
2051     int scheme, magn, i;
2052
2053     struct host_bsq*     bsq;
2054     struct cp_bsq_entry __iomem * cp_entry;
2055
2056     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063             /* allocate and align the array of status words */
2064             if (fore200e_dma_chunk_alloc(fore200e,
2065                                                &bsq->status,
2066                                                sizeof(enum status), 
2067                                                QUEUE_SIZE_BS,
2068                                                fore200e->bus->status_alignment) < 0) {
2069                 return -ENOMEM;
2070             }
2071
2072             /* allocate and align the array of receive buffer descriptors */
2073             if (fore200e_dma_chunk_alloc(fore200e,
2074                                                &bsq->rbd_block,
2075                                                sizeof(struct rbd_block),
2076                                                QUEUE_SIZE_BS,
2077                                                fore200e->bus->descr_alignment) < 0) {
2078                 
2079                 fore200e_dma_chunk_free(fore200e, &bsq->status);
2080                 return -ENOMEM;
2081             }
2082             
2083             /* get the base address of the cp resident buffer supply queue entries */
2084             cp_entry = fore200e->virt_base + 
2085                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086             
2087             /* fill the host resident and cp resident buffer supply queue entries */
2088             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089                 
2090                 bsq->host_entry[ i ].status = 
2091                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092                 bsq->host_entry[ i ].rbd_block =
2093                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094                 bsq->host_entry[ i ].rbd_block_dma =
2095                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097                 
2098                 *bsq->host_entry[ i ].status = STATUS_FREE;
2099                 
2100                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2101                                      &cp_entry[ i ].status_haddr);
2102             }
2103         }
2104     }
2105
2106     fore200e->state = FORE200E_STATE_INIT_BSQ;
2107     return 0;
2108 }
2109
2110
2111 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112 {
2113     struct host_rxq*     rxq =  &fore200e->host_rxq;
2114     struct cp_rxq_entry __iomem * cp_entry;
2115     int i;
2116
2117     DPRINTK(2, "receive queue is being initialized\n");
2118
2119     /* allocate and align the array of status words */
2120     if (fore200e_dma_chunk_alloc(fore200e,
2121                                        &rxq->status,
2122                                        sizeof(enum status), 
2123                                        QUEUE_SIZE_RX,
2124                                        fore200e->bus->status_alignment) < 0) {
2125         return -ENOMEM;
2126     }
2127
2128     /* allocate and align the array of receive PDU descriptors */
2129     if (fore200e_dma_chunk_alloc(fore200e,
2130                                        &rxq->rpd,
2131                                        sizeof(struct rpd), 
2132                                        QUEUE_SIZE_RX,
2133                                        fore200e->bus->descr_alignment) < 0) {
2134         
2135         fore200e_dma_chunk_free(fore200e, &rxq->status);
2136         return -ENOMEM;
2137     }
2138
2139     /* get the base address of the cp resident rx queue entries */
2140     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142     /* fill the host resident and cp resident rx entries */
2143     for (i=0; i < QUEUE_SIZE_RX; i++) {
2144         
2145         rxq->host_entry[ i ].status = 
2146                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147         rxq->host_entry[ i ].rpd = 
2148                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149         rxq->host_entry[ i ].rpd_dma = 
2150                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153         *rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2156                              &cp_entry[ i ].status_haddr);
2157
2158         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159                              &cp_entry[ i ].rpd_haddr);
2160     }
2161
2162     /* set the head entry of the queue */
2163     rxq->head = 0;
2164
2165     fore200e->state = FORE200E_STATE_INIT_RXQ;
2166     return 0;
2167 }
2168
2169
2170 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171 {
2172     struct host_txq*     txq =  &fore200e->host_txq;
2173     struct cp_txq_entry __iomem * cp_entry;
2174     int i;
2175
2176     DPRINTK(2, "transmit queue is being initialized\n");
2177
2178     /* allocate and align the array of status words */
2179     if (fore200e_dma_chunk_alloc(fore200e,
2180                                        &txq->status,
2181                                        sizeof(enum status), 
2182                                        QUEUE_SIZE_TX,
2183                                        fore200e->bus->status_alignment) < 0) {
2184         return -ENOMEM;
2185     }
2186
2187     /* allocate and align the array of transmit PDU descriptors */
2188     if (fore200e_dma_chunk_alloc(fore200e,
2189                                        &txq->tpd,
2190                                        sizeof(struct tpd), 
2191                                        QUEUE_SIZE_TX,
2192                                        fore200e->bus->descr_alignment) < 0) {
2193         
2194         fore200e_dma_chunk_free(fore200e, &txq->status);
2195         return -ENOMEM;
2196     }
2197
2198     /* get the base address of the cp resident tx queue entries */
2199     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201     /* fill the host resident and cp resident tx entries */
2202     for (i=0; i < QUEUE_SIZE_TX; i++) {
2203         
2204         txq->host_entry[ i ].status = 
2205                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206         txq->host_entry[ i ].tpd = 
2207                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208         txq->host_entry[ i ].tpd_dma  = 
2209                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212         *txq->host_entry[ i ].status = STATUS_FREE;
2213         
2214         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2215                              &cp_entry[ i ].status_haddr);
2216         
2217         /* although there is a one-to-one mapping of tx queue entries and tpds,
2218            we do not write here the DMA (physical) base address of each tpd into
2219            the related cp resident entry, because the cp relies on this write
2220            operation to detect that a new pdu has been submitted for tx */
2221     }
2222
2223     /* set the head and tail entries of the queue */
2224     txq->head = 0;
2225     txq->tail = 0;
2226
2227     fore200e->state = FORE200E_STATE_INIT_TXQ;
2228     return 0;
2229 }
2230
2231
2232 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233 {
2234     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235     struct cp_cmdq_entry __iomem * cp_entry;
2236     int i;
2237
2238     DPRINTK(2, "command queue is being initialized\n");
2239
2240     /* allocate and align the array of status words */
2241     if (fore200e_dma_chunk_alloc(fore200e,
2242                                        &cmdq->status,
2243                                        sizeof(enum status), 
2244                                        QUEUE_SIZE_CMD,
2245                                        fore200e->bus->status_alignment) < 0) {
2246         return -ENOMEM;
2247     }
2248     
2249     /* get the base address of the cp resident cmd queue entries */
2250     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252     /* fill the host resident and cp resident cmd entries */
2253     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254         
2255         cmdq->host_entry[ i ].status   = 
2256                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259         *cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2262                              &cp_entry[ i ].status_haddr);
2263     }
2264
2265     /* set the head entry of the queue */
2266     cmdq->head = 0;
2267
2268     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269     return 0;
2270 }
2271
2272
2273 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274                                     enum buffer_scheme scheme,
2275                                     enum buffer_magn magn, int queue_length,
2276                                     int pool_size, int supply_blksize)
2277 {
2278     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284 }
2285
2286
2287 static int fore200e_initialize(struct fore200e *fore200e)
2288 {
2289     struct cp_queues __iomem * cpq;
2290     int               ok, scheme, magn;
2291
2292     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294     mutex_init(&fore200e->rate_mtx);
2295     spin_lock_init(&fore200e->q_lock);
2296
2297     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299     /* enable cp to host interrupts */
2300     fore200e->bus->write(1, &cpq->imask);
2301
2302     if (fore200e->bus->irq_enable)
2303         fore200e->bus->irq_enable(fore200e);
2304     
2305     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316             fore200e_param_bs_queue(fore200e, scheme, magn,
2317                                     QUEUE_SIZE_BS, 
2318                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2319                                     RBD_BLK_SIZE);
2320
2321     /* issue the initialize command */
2322     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326     if (ok == 0) {
2327         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328         return -ENODEV;
2329     }
2330
2331     printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333     fore200e->state = FORE200E_STATE_INITIALIZE;
2334     return 0;
2335 }
2336
2337
2338 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339 {
2340     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342 #if 0
2343     printk("%c", c);
2344 #endif
2345     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346 }
2347
2348
2349 static int fore200e_monitor_getc(struct fore200e *fore200e)
2350 {
2351     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353     int                c;
2354
2355     while (time_before(jiffies, timeout)) {
2356
2357         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362 #if 0
2363             printk("%c", c & 0xFF);
2364 #endif
2365             return c & 0xFF;
2366         }
2367     }
2368
2369     return -1;
2370 }
2371
2372
2373 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374 {
2375     while (*str) {
2376
2377         /* the i960 monitor doesn't accept any new character if it has something to say */
2378         while (fore200e_monitor_getc(fore200e) >= 0);
2379         
2380         fore200e_monitor_putc(fore200e, *str++);
2381     }
2382
2383     while (fore200e_monitor_getc(fore200e) >= 0);
2384 }
2385
2386 #ifdef __LITTLE_ENDIAN
2387 #define FW_EXT ".bin"
2388 #else
2389 #define FW_EXT "_ecd.bin2"
2390 #endif
2391
2392 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393 {
2394     const struct firmware *firmware;
2395     const struct fw_header *fw_header;
2396     const __le32 *fw_data;
2397     u32 fw_size;
2398     u32 __iomem *load_addr;
2399     char buf[48];
2400     int err;
2401
2402     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403     if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405         return err;
2406     }
2407
2408     fw_data = (const __le32 *)firmware->data;
2409     fw_size = firmware->size / sizeof(u32);
2410     fw_header = (const struct fw_header *)firmware->data;
2411     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414             fore200e->name, load_addr, fw_size);
2415
2416     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418         goto release;
2419     }
2420
2421     for (; fw_size--; fw_data++, load_addr++)
2422         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426 #if defined(__sparc_v9__)
2427     /* reported to be required by SBA cards on some sparc64 hosts */
2428     fore200e_spin(100);
2429 #endif
2430
2431     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432     fore200e_monitor_puts(fore200e, buf);
2433
2434     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436         goto release;
2437     }
2438
2439     printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441     fore200e->state = FORE200E_STATE_START_FW;
2442     err = 0;
2443
2444 release:
2445     release_firmware(firmware);
2446     return err;
2447 }
2448
2449
2450 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451 {
2452     struct atm_dev* atm_dev;
2453
2454     DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                                -1, NULL);
2458     if (atm_dev == NULL) {
2459         printk(FORE200E "unable to register device %s\n", fore200e->name);
2460         return -ENODEV;
2461     }
2462
2463     atm_dev->dev_data = fore200e;
2464     fore200e->atm_dev = atm_dev;
2465
2466     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469     fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471     fore200e->state = FORE200E_STATE_REGISTER;
2472     return 0;
2473 }
2474
2475
2476 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477 {
2478     if (fore200e_register(fore200e, parent) < 0)
2479         return -ENODEV;
2480     
2481     if (fore200e->bus->configure(fore200e) < 0)
2482         return -ENODEV;
2483
2484     if (fore200e->bus->map(fore200e) < 0)
2485         return -ENODEV;
2486
2487     if (fore200e_reset(fore200e, 1) < 0)
2488         return -ENODEV;
2489
2490     if (fore200e_load_and_start_fw(fore200e) < 0)
2491         return -ENODEV;
2492
2493     if (fore200e_initialize(fore200e) < 0)
2494         return -ENODEV;
2495
2496     if (fore200e_init_cmd_queue(fore200e) < 0)
2497         return -ENOMEM;
2498
2499     if (fore200e_init_tx_queue(fore200e) < 0)
2500         return -ENOMEM;
2501
2502     if (fore200e_init_rx_queue(fore200e) < 0)
2503         return -ENOMEM;
2504
2505     if (fore200e_init_bs_queue(fore200e) < 0)
2506         return -ENOMEM;
2507
2508     if (fore200e_alloc_rx_buf(fore200e) < 0)
2509         return -ENOMEM;
2510
2511     if (fore200e_get_esi(fore200e) < 0)
2512         return -EIO;
2513
2514     if (fore200e_irq_request(fore200e) < 0)
2515         return -EBUSY;
2516
2517     fore200e_supply(fore200e);
2518
2519     /* all done, board initialization is now complete */
2520     fore200e->state = FORE200E_STATE_COMPLETE;
2521     return 0;
2522 }
2523
2524 #ifdef CONFIG_SBUS
2525 static const struct of_device_id fore200e_sba_match[];
2526 static int fore200e_sba_probe(struct platform_device *op)
2527 {
2528         const struct of_device_id *match;
2529         struct fore200e *fore200e;
2530         static int index = 0;
2531         int err;
2532
2533         match = of_match_device(fore200e_sba_match, &op->dev);
2534         if (!match)
2535                 return -EINVAL;
2536
2537         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538         if (!fore200e)
2539                 return -ENOMEM;
2540
2541         fore200e->bus = &fore200e_sbus_ops;
2542         fore200e->dev = &op->dev;
2543         fore200e->irq = op->archdata.irqs[0];
2544         fore200e->phys_base = op->resource[0].start;
2545
2546         sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548         err = fore200e_init(fore200e, &op->dev);
2549         if (err < 0) {
2550                 fore200e_shutdown(fore200e);
2551                 kfree(fore200e);
2552                 return err;
2553         }
2554
2555         index++;
2556         dev_set_drvdata(&op->dev, fore200e);
2557
2558         return 0;
2559 }
2560
2561 static int fore200e_sba_remove(struct platform_device *op)
2562 {
2563         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565         fore200e_shutdown(fore200e);
2566         kfree(fore200e);
2567
2568         return 0;
2569 }
2570
2571 static const struct of_device_id fore200e_sba_match[] = {
2572         {
2573                 .name = SBA200E_PROM_NAME,
2574         },
2575         {},
2576 };
2577 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579 static struct platform_driver fore200e_sba_driver = {
2580         .driver = {
2581                 .name = "fore_200e",
2582                 .of_match_table = fore200e_sba_match,
2583         },
2584         .probe          = fore200e_sba_probe,
2585         .remove         = fore200e_sba_remove,
2586 };
2587 #endif
2588
2589 #ifdef CONFIG_PCI
2590 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591                                const struct pci_device_id *pci_ent)
2592 {
2593     struct fore200e* fore200e;
2594     int err = 0;
2595     static int index = 0;
2596
2597     if (pci_enable_device(pci_dev)) {
2598         err = -EINVAL;
2599         goto out;
2600     }
2601
2602     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603         err = -EINVAL;
2604         goto out;
2605     }
2606     
2607     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608     if (fore200e == NULL) {
2609         err = -ENOMEM;
2610         goto out_disable;
2611     }
2612
2613     fore200e->bus       = &fore200e_pci_ops;
2614     fore200e->dev       = &pci_dev->dev;
2615     fore200e->irq       = pci_dev->irq;
2616     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618     sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620     pci_set_master(pci_dev);
2621
2622     printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625     sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627     err = fore200e_init(fore200e, &pci_dev->dev);
2628     if (err < 0) {
2629         fore200e_shutdown(fore200e);
2630         goto out_free;
2631     }
2632
2633     ++index;
2634     pci_set_drvdata(pci_dev, fore200e);
2635
2636 out:
2637     return err;
2638
2639 out_free:
2640     kfree(fore200e);
2641 out_disable:
2642     pci_disable_device(pci_dev);
2643     goto out;
2644 }
2645
2646
2647 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648 {
2649     struct fore200e *fore200e;
2650
2651     fore200e = pci_get_drvdata(pci_dev);
2652
2653     fore200e_shutdown(fore200e);
2654     kfree(fore200e);
2655     pci_disable_device(pci_dev);
2656 }
2657
2658
2659 static const struct pci_device_id fore200e_pca_tbl[] = {
2660     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661     { 0, }
2662 };
2663
2664 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666 static struct pci_driver fore200e_pca_driver = {
2667     .name =     "fore_200e",
2668     .probe =    fore200e_pca_detect,
2669     .remove =   fore200e_pca_remove_one,
2670     .id_table = fore200e_pca_tbl,
2671 };
2672 #endif
2673
2674 static int __init fore200e_module_init(void)
2675 {
2676         int err = 0;
2677
2678         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680 #ifdef CONFIG_SBUS
2681         err = platform_driver_register(&fore200e_sba_driver);
2682         if (err)
2683                 return err;
2684 #endif
2685
2686 #ifdef CONFIG_PCI
2687         err = pci_register_driver(&fore200e_pca_driver);
2688 #endif
2689
2690 #ifdef CONFIG_SBUS
2691         if (err)
2692                 platform_driver_unregister(&fore200e_sba_driver);
2693 #endif
2694
2695         return err;
2696 }
2697
2698 static void __exit fore200e_module_cleanup(void)
2699 {
2700 #ifdef CONFIG_PCI
2701         pci_unregister_driver(&fore200e_pca_driver);
2702 #endif
2703 #ifdef CONFIG_SBUS
2704         platform_driver_unregister(&fore200e_sba_driver);
2705 #endif
2706 }
2707
2708 static int
2709 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710 {
2711     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712     struct fore200e_vcc* fore200e_vcc;
2713     struct atm_vcc*      vcc;
2714     int                  i, len, left = *pos;
2715     unsigned long        flags;
2716
2717     if (!left--) {
2718
2719         if (fore200e_getstats(fore200e) < 0)
2720             return -EIO;
2721
2722         len = sprintf(page,"\n"
2723                        " device:\n"
2724                        "   internal name:\t\t%s\n", fore200e->name);
2725
2726         /* print bus-specific information */
2727         if (fore200e->bus->proc_read)
2728             len += fore200e->bus->proc_read(fore200e, page + len);
2729         
2730         len += sprintf(page + len,
2731                 "   interrupt line:\t\t%s\n"
2732                 "   physical base address:\t0x%p\n"
2733                 "   virtual base address:\t0x%p\n"
2734                 "   factory address (ESI):\t%pM\n"
2735                 "   board serial number:\t\t%d\n\n",
2736                 fore200e_irq_itoa(fore200e->irq),
2737                 (void*)fore200e->phys_base,
2738                 fore200e->virt_base,
2739                 fore200e->esi,
2740                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742         return len;
2743     }
2744
2745     if (!left--)
2746         return sprintf(page,
2747                        "   free small bufs, scheme 1:\t%d\n"
2748                        "   free large bufs, scheme 1:\t%d\n"
2749                        "   free small bufs, scheme 2:\t%d\n"
2750                        "   free large bufs, scheme 2:\t%d\n",
2751                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756     if (!left--) {
2757         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759         len = sprintf(page,"\n\n"
2760                       " cell processor:\n"
2761                       "   heartbeat state:\t\t");
2762         
2763         if (hb >> 16 != 0xDEAD)
2764             len += sprintf(page + len, "0x%08x\n", hb);
2765         else
2766             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768         return len;
2769     }
2770
2771     if (!left--) {
2772         static const char* media_name[] = {
2773             "unshielded twisted pair",
2774             "multimode optical fiber ST",
2775             "multimode optical fiber SC",
2776             "single-mode optical fiber ST",
2777             "single-mode optical fiber SC",
2778             "unknown"
2779         };
2780
2781         static const char* oc3_mode[] = {
2782             "normal operation",
2783             "diagnostic loopback",
2784             "line loopback",
2785             "unknown"
2786         };
2787
2788         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792         u32 oc3_index;
2793
2794         if (media_index > 4)
2795                 media_index = 5;
2796         
2797         switch (fore200e->loop_mode) {
2798             case ATM_LM_NONE:    oc3_index = 0;
2799                                  break;
2800             case ATM_LM_LOC_PHY: oc3_index = 1;
2801                                  break;
2802             case ATM_LM_RMT_PHY: oc3_index = 2;
2803                                  break;
2804             default:             oc3_index = 3;
2805         }
2806
2807         return sprintf(page,
2808                        "   firmware release:\t\t%d.%d.%d\n"
2809                        "   monitor release:\t\t%d.%d\n"
2810                        "   media type:\t\t\t%s\n"
2811                        "   OC-3 revision:\t\t0x%x\n"
2812                        "   OC-3 mode:\t\t\t%s",
2813                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814                        mon960_release >> 16, mon960_release << 16 >> 16,
2815                        media_name[ media_index ],
2816                        oc3_revision,
2817                        oc3_mode[ oc3_index ]);
2818     }
2819
2820     if (!left--) {
2821         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823         return sprintf(page,
2824                        "\n\n"
2825                        " monitor:\n"
2826                        "   version number:\t\t%d\n"
2827                        "   boot status word:\t\t0x%08x\n",
2828                        fore200e->bus->read(&cp_monitor->mon_version),
2829                        fore200e->bus->read(&cp_monitor->bstat));
2830     }
2831
2832     if (!left--)
2833         return sprintf(page,
2834                        "\n"
2835                        " device statistics:\n"
2836                        "  4b5b:\n"
2837                        "     crc_header_errors:\t\t%10u\n"
2838                        "     framing_errors:\t\t%10u\n",
2839                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2841     
2842     if (!left--)
2843         return sprintf(page, "\n"
2844                        "  OC-3:\n"
2845                        "     section_bip8_errors:\t%10u\n"
2846                        "     path_bip8_errors:\t\t%10u\n"
2847                        "     line_bip24_errors:\t\t%10u\n"
2848                        "     line_febe_errors:\t\t%10u\n"
2849                        "     path_febe_errors:\t\t%10u\n"
2850                        "     corr_hcs_errors:\t\t%10u\n"
2851                        "     ucorr_hcs_errors:\t\t%10u\n",
2852                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860     if (!left--)
2861         return sprintf(page,"\n"
2862                        "   ATM:\t\t\t\t     cells\n"
2863                        "     TX:\t\t\t%10u\n"
2864                        "     RX:\t\t\t%10u\n"
2865                        "     vpi out of range:\t\t%10u\n"
2866                        "     vpi no conn:\t\t%10u\n"
2867                        "     vci out of range:\t\t%10u\n"
2868                        "     vci no conn:\t\t%10u\n",
2869                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870                        be32_to_cpu(fore200e->stats->atm.cells_received),
2871                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875     
2876     if (!left--)
2877         return sprintf(page,"\n"
2878                        "   AAL0:\t\t\t     cells\n"
2879                        "     TX:\t\t\t%10u\n"
2880                        "     RX:\t\t\t%10u\n"
2881                        "     dropped:\t\t\t%10u\n",
2882                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883                        be32_to_cpu(fore200e->stats->aal0.cells_received),
2884                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885     
2886     if (!left--)
2887         return sprintf(page,"\n"
2888                        "   AAL3/4:\n"
2889                        "     SAR sublayer:\t\t     cells\n"
2890                        "       TX:\t\t\t%10u\n"
2891                        "       RX:\t\t\t%10u\n"
2892                        "       dropped:\t\t\t%10u\n"
2893                        "       CRC errors:\t\t%10u\n"
2894                        "       protocol errors:\t\t%10u\n\n"
2895                        "     CS  sublayer:\t\t      PDUs\n"
2896                        "       TX:\t\t\t%10u\n"
2897                        "       RX:\t\t\t%10u\n"
2898                        "       dropped:\t\t\t%10u\n"
2899                        "       protocol errors:\t\t%10u\n",
2900                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901                        be32_to_cpu(fore200e->stats->aal34.cells_received),
2902                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909     
2910     if (!left--)
2911         return sprintf(page,"\n"
2912                        "   AAL5:\n"
2913                        "     SAR sublayer:\t\t     cells\n"
2914                        "       TX:\t\t\t%10u\n"
2915                        "       RX:\t\t\t%10u\n"
2916                        "       dropped:\t\t\t%10u\n"
2917                        "       congestions:\t\t%10u\n\n"
2918                        "     CS  sublayer:\t\t      PDUs\n"
2919                        "       TX:\t\t\t%10u\n"
2920                        "       RX:\t\t\t%10u\n"
2921                        "       dropped:\t\t\t%10u\n"
2922                        "       CRC errors:\t\t%10u\n"
2923                        "       protocol errors:\t\t%10u\n",
2924                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925                        be32_to_cpu(fore200e->stats->aal5.cells_received),
2926                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933     
2934     if (!left--)
2935         return sprintf(page,"\n"
2936                        "   AUX:\t\t       allocation failures\n"
2937                        "     small b1:\t\t\t%10u\n"
2938                        "     large b1:\t\t\t%10u\n"
2939                        "     small b2:\t\t\t%10u\n"
2940                        "     large b2:\t\t\t%10u\n"
2941                        "     RX PDUs:\t\t\t%10u\n"
2942                        "     TX PDUs:\t\t\t%10lu\n",
2943                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948                        fore200e->tx_sat);
2949     
2950     if (!left--)
2951         return sprintf(page,"\n"
2952                        " receive carrier:\t\t\t%s\n",
2953                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954     
2955     if (!left--) {
2956         return sprintf(page,"\n"
2957                        " VCCs:\n  address   VPI VCI   AAL "
2958                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959     }
2960
2961     for (i = 0; i < NBR_CONNECT; i++) {
2962
2963         vcc = fore200e->vc_map[i].vcc;
2964
2965         if (vcc == NULL)
2966             continue;
2967
2968         spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972             fore200e_vcc = FORE200E_VCC(vcc);
2973             ASSERT(fore200e_vcc);
2974
2975             len = sprintf(page,
2976                           "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977                           vcc,
2978                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979                           fore200e_vcc->tx_pdu,
2980                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981                           fore200e_vcc->tx_max_pdu,
2982                           fore200e_vcc->rx_pdu,
2983                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984                           fore200e_vcc->rx_max_pdu);
2985
2986             spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987             return len;
2988         }
2989
2990         spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991     }
2992     
2993     return 0;
2994 }
2995
2996 module_init(fore200e_module_init);
2997 module_exit(fore200e_module_cleanup);
2998
2999
3000 static const struct atmdev_ops fore200e_ops = {
3001         .open       = fore200e_open,
3002         .close      = fore200e_close,
3003         .ioctl      = fore200e_ioctl,
3004         .send       = fore200e_send,
3005         .change_qos = fore200e_change_qos,
3006         .proc_read  = fore200e_proc_read,
3007         .owner      = THIS_MODULE
3008 };
3009
3010 MODULE_LICENSE("GPL");
3011 #ifdef CONFIG_PCI
3012 #ifdef __LITTLE_ENDIAN__
3013 MODULE_FIRMWARE("pca200e.bin");
3014 #else
3015 MODULE_FIRMWARE("pca200e_ecd.bin2");
3016 #endif
3017 #endif /* CONFIG_PCI */
3018 #ifdef CONFIG_SBUS
3019 MODULE_FIRMWARE("sba200e_ecd.bin2");
3020 #endif