Merge tag 'for-linus-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[linux-2.6-microblaze.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33
34 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
35 ACPI_MODULE_NAME("processor_idle");
36
37 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
38
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
45
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
48
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
50
51 struct cpuidle_driver acpi_idle_driver = {
52         .name =         "acpi_idle",
53         .owner =        THIS_MODULE,
54 };
55
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
59
60 static int disabled_by_idle_boot_param(void)
61 {
62         return boot_option_idle_override == IDLE_POLL ||
63                 boot_option_idle_override == IDLE_HALT;
64 }
65
66 /*
67  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68  * For now disable this. Probably a bug somewhere else.
69  *
70  * To skip this limit, boot/load with a large max_cstate limit.
71  */
72 static int set_max_cstate(const struct dmi_system_id *id)
73 {
74         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75                 return 0;
76
77         pr_notice("%s detected - limiting to C%ld max_cstate."
78                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
79                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
80
81         max_cstate = (long)id->driver_data;
82
83         return 0;
84 }
85
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87         { set_max_cstate, "Clevo 5600D", {
88           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90          (void *)2},
91         { set_max_cstate, "Pavilion zv5000", {
92           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94          (void *)1},
95         { set_max_cstate, "Asus L8400B", {
96           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98          (void *)1},
99         {},
100 };
101
102
103 /*
104  * Callers should disable interrupts before the call and enable
105  * interrupts after return.
106  */
107 static void __cpuidle acpi_safe_halt(void)
108 {
109         if (!tif_need_resched()) {
110                 safe_halt();
111                 local_irq_disable();
112         }
113 }
114
115 #ifdef ARCH_APICTIMER_STOPS_ON_C3
116
117 /*
118  * Some BIOS implementations switch to C3 in the published C2 state.
119  * This seems to be a common problem on AMD boxen, but other vendors
120  * are affected too. We pick the most conservative approach: we assume
121  * that the local APIC stops in both C2 and C3.
122  */
123 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
124                                    struct acpi_processor_cx *cx)
125 {
126         struct acpi_processor_power *pwr = &pr->power;
127         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
128
129         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
130                 return;
131
132         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
133                 type = ACPI_STATE_C1;
134
135         /*
136          * Check, if one of the previous states already marked the lapic
137          * unstable
138          */
139         if (pwr->timer_broadcast_on_state < state)
140                 return;
141
142         if (cx->type >= type)
143                 pr->power.timer_broadcast_on_state = state;
144 }
145
146 static void __lapic_timer_propagate_broadcast(void *arg)
147 {
148         struct acpi_processor *pr = (struct acpi_processor *) arg;
149
150         if (pr->power.timer_broadcast_on_state < INT_MAX)
151                 tick_broadcast_enable();
152         else
153                 tick_broadcast_disable();
154 }
155
156 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
157 {
158         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
159                                  (void *)pr, 1);
160 }
161
162 /* Power(C) State timer broadcast control */
163 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
164                                         struct acpi_processor_cx *cx)
165 {
166         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
167 }
168
169 #else
170
171 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
172                                    struct acpi_processor_cx *cstate) { }
173 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
174
175 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
176                                         struct acpi_processor_cx *cx)
177 {
178         return false;
179 }
180
181 #endif
182
183 #if defined(CONFIG_X86)
184 static void tsc_check_state(int state)
185 {
186         switch (boot_cpu_data.x86_vendor) {
187         case X86_VENDOR_HYGON:
188         case X86_VENDOR_AMD:
189         case X86_VENDOR_INTEL:
190         case X86_VENDOR_CENTAUR:
191         case X86_VENDOR_ZHAOXIN:
192                 /*
193                  * AMD Fam10h TSC will tick in all
194                  * C/P/S0/S1 states when this bit is set.
195                  */
196                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
197                         return;
198                 fallthrough;
199         default:
200                 /* TSC could halt in idle, so notify users */
201                 if (state > ACPI_STATE_C1)
202                         mark_tsc_unstable("TSC halts in idle");
203         }
204 }
205 #else
206 static void tsc_check_state(int state) { return; }
207 #endif
208
209 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
210 {
211
212         if (!pr->pblk)
213                 return -ENODEV;
214
215         /* if info is obtained from pblk/fadt, type equals state */
216         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
217         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
218
219 #ifndef CONFIG_HOTPLUG_CPU
220         /*
221          * Check for P_LVL2_UP flag before entering C2 and above on
222          * an SMP system.
223          */
224         if ((num_online_cpus() > 1) &&
225             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
226                 return -ENODEV;
227 #endif
228
229         /* determine C2 and C3 address from pblk */
230         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
231         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
232
233         /* determine latencies from FADT */
234         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
235         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
236
237         /*
238          * FADT specified C2 latency must be less than or equal to
239          * 100 microseconds.
240          */
241         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
242                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
243                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
244                 /* invalidate C2 */
245                 pr->power.states[ACPI_STATE_C2].address = 0;
246         }
247
248         /*
249          * FADT supplied C3 latency must be less than or equal to
250          * 1000 microseconds.
251          */
252         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
253                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
254                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
255                 /* invalidate C3 */
256                 pr->power.states[ACPI_STATE_C3].address = 0;
257         }
258
259         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
260                           "lvl2[0x%08x] lvl3[0x%08x]\n",
261                           pr->power.states[ACPI_STATE_C2].address,
262                           pr->power.states[ACPI_STATE_C3].address));
263
264         snprintf(pr->power.states[ACPI_STATE_C2].desc,
265                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266                          pr->power.states[ACPI_STATE_C2].address);
267         snprintf(pr->power.states[ACPI_STATE_C3].desc,
268                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269                          pr->power.states[ACPI_STATE_C3].address);
270
271         return 0;
272 }
273
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
275 {
276         if (!pr->power.states[ACPI_STATE_C1].valid) {
277                 /* set the first C-State to C1 */
278                 /* all processors need to support C1 */
279                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280                 pr->power.states[ACPI_STATE_C1].valid = 1;
281                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
282
283                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
284                          ACPI_CX_DESC_LEN, "ACPI HLT");
285         }
286         /* the C0 state only exists as a filler in our array */
287         pr->power.states[ACPI_STATE_C0].valid = 1;
288         return 0;
289 }
290
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
292 {
293         int ret;
294
295         if (nocst)
296                 return -ENODEV;
297
298         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
299         if (ret)
300                 return ret;
301
302         if (!pr->power.count)
303                 return -EFAULT;
304
305         pr->flags.has_cst = 1;
306         return 0;
307 }
308
309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
310                                            struct acpi_processor_cx *cx)
311 {
312         static int bm_check_flag = -1;
313         static int bm_control_flag = -1;
314
315
316         if (!cx->address)
317                 return;
318
319         /*
320          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321          * DMA transfers are used by any ISA device to avoid livelock.
322          * Note that we could disable Type-F DMA (as recommended by
323          * the erratum), but this is known to disrupt certain ISA
324          * devices thus we take the conservative approach.
325          */
326         else if (errata.piix4.fdma) {
327                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
328                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
329                 return;
330         }
331
332         /* All the logic here assumes flags.bm_check is same across all CPUs */
333         if (bm_check_flag == -1) {
334                 /* Determine whether bm_check is needed based on CPU  */
335                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
336                 bm_check_flag = pr->flags.bm_check;
337                 bm_control_flag = pr->flags.bm_control;
338         } else {
339                 pr->flags.bm_check = bm_check_flag;
340                 pr->flags.bm_control = bm_control_flag;
341         }
342
343         if (pr->flags.bm_check) {
344                 if (!pr->flags.bm_control) {
345                         if (pr->flags.has_cst != 1) {
346                                 /* bus mastering control is necessary */
347                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
348                                         "C3 support requires BM control\n"));
349                                 return;
350                         } else {
351                                 /* Here we enter C3 without bus mastering */
352                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
353                                         "C3 support without BM control\n"));
354                         }
355                 }
356         } else {
357                 /*
358                  * WBINVD should be set in fadt, for C3 state to be
359                  * supported on when bm_check is not required.
360                  */
361                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
362                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
363                                           "Cache invalidation should work properly"
364                                           " for C3 to be enabled on SMP systems\n"));
365                         return;
366                 }
367         }
368
369         /*
370          * Otherwise we've met all of our C3 requirements.
371          * Normalize the C3 latency to expidite policy.  Enable
372          * checking of bus mastering status (bm_check) so we can
373          * use this in our C3 policy
374          */
375         cx->valid = 1;
376
377         /*
378          * On older chipsets, BM_RLD needs to be set
379          * in order for Bus Master activity to wake the
380          * system from C3.  Newer chipsets handle DMA
381          * during C3 automatically and BM_RLD is a NOP.
382          * In either case, the proper way to
383          * handle BM_RLD is to set it and leave it set.
384          */
385         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
386
387         return;
388 }
389
390 static int acpi_processor_power_verify(struct acpi_processor *pr)
391 {
392         unsigned int i;
393         unsigned int working = 0;
394
395         pr->power.timer_broadcast_on_state = INT_MAX;
396
397         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
398                 struct acpi_processor_cx *cx = &pr->power.states[i];
399
400                 switch (cx->type) {
401                 case ACPI_STATE_C1:
402                         cx->valid = 1;
403                         break;
404
405                 case ACPI_STATE_C2:
406                         if (!cx->address)
407                                 break;
408                         cx->valid = 1;
409                         break;
410
411                 case ACPI_STATE_C3:
412                         acpi_processor_power_verify_c3(pr, cx);
413                         break;
414                 }
415                 if (!cx->valid)
416                         continue;
417
418                 lapic_timer_check_state(i, pr, cx);
419                 tsc_check_state(cx->type);
420                 working++;
421         }
422
423         lapic_timer_propagate_broadcast(pr);
424
425         return (working);
426 }
427
428 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
429 {
430         unsigned int i;
431         int result;
432
433
434         /* NOTE: the idle thread may not be running while calling
435          * this function */
436
437         /* Zero initialize all the C-states info. */
438         memset(pr->power.states, 0, sizeof(pr->power.states));
439
440         result = acpi_processor_get_power_info_cst(pr);
441         if (result == -ENODEV)
442                 result = acpi_processor_get_power_info_fadt(pr);
443
444         if (result)
445                 return result;
446
447         acpi_processor_get_power_info_default(pr);
448
449         pr->power.count = acpi_processor_power_verify(pr);
450
451         /*
452          * if one state of type C2 or C3 is available, mark this
453          * CPU as being "idle manageable"
454          */
455         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
456                 if (pr->power.states[i].valid) {
457                         pr->power.count = i;
458                         pr->flags.power = 1;
459                 }
460         }
461
462         return 0;
463 }
464
465 /**
466  * acpi_idle_bm_check - checks if bus master activity was detected
467  */
468 static int acpi_idle_bm_check(void)
469 {
470         u32 bm_status = 0;
471
472         if (bm_check_disable)
473                 return 0;
474
475         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
476         if (bm_status)
477                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
478         /*
479          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
480          * the true state of bus mastering activity; forcing us to
481          * manually check the BMIDEA bit of each IDE channel.
482          */
483         else if (errata.piix4.bmisx) {
484                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
485                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
486                         bm_status = 1;
487         }
488         return bm_status;
489 }
490
491 static void wait_for_freeze(void)
492 {
493 #ifdef  CONFIG_X86
494         /* No delay is needed if we are in guest */
495         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
496                 return;
497 #endif
498         /* Dummy wait op - must do something useless after P_LVL2 read
499            because chipsets cannot guarantee that STPCLK# signal
500            gets asserted in time to freeze execution properly. */
501         inl(acpi_gbl_FADT.xpm_timer_block.address);
502 }
503
504 /**
505  * acpi_idle_do_entry - enter idle state using the appropriate method
506  * @cx: cstate data
507  *
508  * Caller disables interrupt before call and enables interrupt after return.
509  */
510 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
511 {
512         if (cx->entry_method == ACPI_CSTATE_FFH) {
513                 /* Call into architectural FFH based C-state */
514                 acpi_processor_ffh_cstate_enter(cx);
515         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
516                 acpi_safe_halt();
517         } else {
518                 /* IO port based C-state */
519                 inb(cx->address);
520                 wait_for_freeze();
521         }
522 }
523
524 /**
525  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
526  * @dev: the target CPU
527  * @index: the index of suggested state
528  */
529 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
530 {
531         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
532
533         ACPI_FLUSH_CPU_CACHE();
534
535         while (1) {
536
537                 if (cx->entry_method == ACPI_CSTATE_HALT)
538                         safe_halt();
539                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
540                         inb(cx->address);
541                         wait_for_freeze();
542                 } else
543                         return -ENODEV;
544         }
545
546         /* Never reached */
547         return 0;
548 }
549
550 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
551 {
552         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
553                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
554 }
555
556 static int c3_cpu_count;
557 static DEFINE_RAW_SPINLOCK(c3_lock);
558
559 /**
560  * acpi_idle_enter_bm - enters C3 with proper BM handling
561  * @drv: cpuidle driver
562  * @pr: Target processor
563  * @cx: Target state context
564  * @index: index of target state
565  */
566 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
567                                struct acpi_processor *pr,
568                                struct acpi_processor_cx *cx,
569                                int index)
570 {
571         static struct acpi_processor_cx safe_cx = {
572                 .entry_method = ACPI_CSTATE_HALT,
573         };
574
575         /*
576          * disable bus master
577          * bm_check implies we need ARB_DIS
578          * bm_control implies whether we can do ARB_DIS
579          *
580          * That leaves a case where bm_check is set and bm_control is not set.
581          * In that case we cannot do much, we enter C3 without doing anything.
582          */
583         bool dis_bm = pr->flags.bm_control;
584
585         /* If we can skip BM, demote to a safe state. */
586         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
587                 dis_bm = false;
588                 index = drv->safe_state_index;
589                 if (index >= 0) {
590                         cx = this_cpu_read(acpi_cstate[index]);
591                 } else {
592                         cx = &safe_cx;
593                         index = -EBUSY;
594                 }
595         }
596
597         if (dis_bm) {
598                 raw_spin_lock(&c3_lock);
599                 c3_cpu_count++;
600                 /* Disable bus master arbitration when all CPUs are in C3 */
601                 if (c3_cpu_count == num_online_cpus())
602                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
603                 raw_spin_unlock(&c3_lock);
604         }
605
606         rcu_idle_enter();
607
608         acpi_idle_do_entry(cx);
609
610         rcu_idle_exit();
611
612         /* Re-enable bus master arbitration */
613         if (dis_bm) {
614                 raw_spin_lock(&c3_lock);
615                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
616                 c3_cpu_count--;
617                 raw_spin_unlock(&c3_lock);
618         }
619
620         return index;
621 }
622
623 static int acpi_idle_enter(struct cpuidle_device *dev,
624                            struct cpuidle_driver *drv, int index)
625 {
626         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
627         struct acpi_processor *pr;
628
629         pr = __this_cpu_read(processors);
630         if (unlikely(!pr))
631                 return -EINVAL;
632
633         if (cx->type != ACPI_STATE_C1) {
634                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
635                         return acpi_idle_enter_bm(drv, pr, cx, index);
636
637                 /* C2 to C1 demotion. */
638                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
639                         index = ACPI_IDLE_STATE_START;
640                         cx = per_cpu(acpi_cstate[index], dev->cpu);
641                 }
642         }
643
644         if (cx->type == ACPI_STATE_C3)
645                 ACPI_FLUSH_CPU_CACHE();
646
647         acpi_idle_do_entry(cx);
648
649         return index;
650 }
651
652 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
653                                   struct cpuidle_driver *drv, int index)
654 {
655         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
656
657         if (cx->type == ACPI_STATE_C3) {
658                 struct acpi_processor *pr = __this_cpu_read(processors);
659
660                 if (unlikely(!pr))
661                         return 0;
662
663                 if (pr->flags.bm_check) {
664                         u8 bm_sts_skip = cx->bm_sts_skip;
665
666                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
667                         cx->bm_sts_skip = 1;
668                         acpi_idle_enter_bm(drv, pr, cx, index);
669                         cx->bm_sts_skip = bm_sts_skip;
670
671                         return 0;
672                 } else {
673                         ACPI_FLUSH_CPU_CACHE();
674                 }
675         }
676         acpi_idle_do_entry(cx);
677
678         return 0;
679 }
680
681 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
682                                            struct cpuidle_device *dev)
683 {
684         int i, count = ACPI_IDLE_STATE_START;
685         struct acpi_processor_cx *cx;
686         struct cpuidle_state *state;
687
688         if (max_cstate == 0)
689                 max_cstate = 1;
690
691         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
692                 state = &acpi_idle_driver.states[count];
693                 cx = &pr->power.states[i];
694
695                 if (!cx->valid)
696                         continue;
697
698                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
699
700                 if (lapic_timer_needs_broadcast(pr, cx))
701                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
702
703                 if (cx->type == ACPI_STATE_C3) {
704                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
705                         if (pr->flags.bm_check)
706                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
707                 }
708
709                 count++;
710                 if (count == CPUIDLE_STATE_MAX)
711                         break;
712         }
713
714         if (!count)
715                 return -EINVAL;
716
717         return 0;
718 }
719
720 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
721 {
722         int i, count;
723         struct acpi_processor_cx *cx;
724         struct cpuidle_state *state;
725         struct cpuidle_driver *drv = &acpi_idle_driver;
726
727         if (max_cstate == 0)
728                 max_cstate = 1;
729
730         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
731                 cpuidle_poll_state_init(drv);
732                 count = 1;
733         } else {
734                 count = 0;
735         }
736
737         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
738                 cx = &pr->power.states[i];
739
740                 if (!cx->valid)
741                         continue;
742
743                 state = &drv->states[count];
744                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
745                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
746                 state->exit_latency = cx->latency;
747                 state->target_residency = cx->latency * latency_factor;
748                 state->enter = acpi_idle_enter;
749
750                 state->flags = 0;
751                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
752                         state->enter_dead = acpi_idle_play_dead;
753                         drv->safe_state_index = count;
754                 }
755                 /*
756                  * Halt-induced C1 is not good for ->enter_s2idle, because it
757                  * re-enables interrupts on exit.  Moreover, C1 is generally not
758                  * particularly interesting from the suspend-to-idle angle, so
759                  * avoid C1 and the situations in which we may need to fall back
760                  * to it altogether.
761                  */
762                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
763                         state->enter_s2idle = acpi_idle_enter_s2idle;
764
765                 count++;
766                 if (count == CPUIDLE_STATE_MAX)
767                         break;
768         }
769
770         drv->state_count = count;
771
772         if (!count)
773                 return -EINVAL;
774
775         return 0;
776 }
777
778 static inline void acpi_processor_cstate_first_run_checks(void)
779 {
780         static int first_run;
781
782         if (first_run)
783                 return;
784         dmi_check_system(processor_power_dmi_table);
785         max_cstate = acpi_processor_cstate_check(max_cstate);
786         if (max_cstate < ACPI_C_STATES_MAX)
787                 pr_notice("ACPI: processor limited to max C-state %d\n",
788                           max_cstate);
789         first_run++;
790
791         if (nocst)
792                 return;
793
794         acpi_processor_claim_cst_control();
795 }
796 #else
797
798 static inline int disabled_by_idle_boot_param(void) { return 0; }
799 static inline void acpi_processor_cstate_first_run_checks(void) { }
800 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
801 {
802         return -ENODEV;
803 }
804
805 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
806                                            struct cpuidle_device *dev)
807 {
808         return -EINVAL;
809 }
810
811 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
812 {
813         return -EINVAL;
814 }
815
816 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
817
818 struct acpi_lpi_states_array {
819         unsigned int size;
820         unsigned int composite_states_size;
821         struct acpi_lpi_state *entries;
822         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
823 };
824
825 static int obj_get_integer(union acpi_object *obj, u32 *value)
826 {
827         if (obj->type != ACPI_TYPE_INTEGER)
828                 return -EINVAL;
829
830         *value = obj->integer.value;
831         return 0;
832 }
833
834 static int acpi_processor_evaluate_lpi(acpi_handle handle,
835                                        struct acpi_lpi_states_array *info)
836 {
837         acpi_status status;
838         int ret = 0;
839         int pkg_count, state_idx = 1, loop;
840         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
841         union acpi_object *lpi_data;
842         struct acpi_lpi_state *lpi_state;
843
844         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
845         if (ACPI_FAILURE(status)) {
846                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
847                 return -ENODEV;
848         }
849
850         lpi_data = buffer.pointer;
851
852         /* There must be at least 4 elements = 3 elements + 1 package */
853         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
854             lpi_data->package.count < 4) {
855                 pr_debug("not enough elements in _LPI\n");
856                 ret = -ENODATA;
857                 goto end;
858         }
859
860         pkg_count = lpi_data->package.elements[2].integer.value;
861
862         /* Validate number of power states. */
863         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
864                 pr_debug("count given by _LPI is not valid\n");
865                 ret = -ENODATA;
866                 goto end;
867         }
868
869         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
870         if (!lpi_state) {
871                 ret = -ENOMEM;
872                 goto end;
873         }
874
875         info->size = pkg_count;
876         info->entries = lpi_state;
877
878         /* LPI States start at index 3 */
879         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
880                 union acpi_object *element, *pkg_elem, *obj;
881
882                 element = &lpi_data->package.elements[loop];
883                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
884                         continue;
885
886                 pkg_elem = element->package.elements;
887
888                 obj = pkg_elem + 6;
889                 if (obj->type == ACPI_TYPE_BUFFER) {
890                         struct acpi_power_register *reg;
891
892                         reg = (struct acpi_power_register *)obj->buffer.pointer;
893                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
894                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
895                                 continue;
896
897                         lpi_state->address = reg->address;
898                         lpi_state->entry_method =
899                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
900                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
901                 } else if (obj->type == ACPI_TYPE_INTEGER) {
902                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
903                         lpi_state->address = obj->integer.value;
904                 } else {
905                         continue;
906                 }
907
908                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
909
910                 obj = pkg_elem + 9;
911                 if (obj->type == ACPI_TYPE_STRING)
912                         strlcpy(lpi_state->desc, obj->string.pointer,
913                                 ACPI_CX_DESC_LEN);
914
915                 lpi_state->index = state_idx;
916                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
917                         pr_debug("No min. residency found, assuming 10 us\n");
918                         lpi_state->min_residency = 10;
919                 }
920
921                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
922                         pr_debug("No wakeup residency found, assuming 10 us\n");
923                         lpi_state->wake_latency = 10;
924                 }
925
926                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
927                         lpi_state->flags = 0;
928
929                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
930                         lpi_state->arch_flags = 0;
931
932                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
933                         lpi_state->res_cnt_freq = 1;
934
935                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
936                         lpi_state->enable_parent_state = 0;
937         }
938
939         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
940 end:
941         kfree(buffer.pointer);
942         return ret;
943 }
944
945 /*
946  * flat_state_cnt - the number of composite LPI states after the process of flattening
947  */
948 static int flat_state_cnt;
949
950 /**
951  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
952  *
953  * @local: local LPI state
954  * @parent: parent LPI state
955  * @result: composite LPI state
956  */
957 static bool combine_lpi_states(struct acpi_lpi_state *local,
958                                struct acpi_lpi_state *parent,
959                                struct acpi_lpi_state *result)
960 {
961         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
962                 if (!parent->address) /* 0 means autopromotable */
963                         return false;
964                 result->address = local->address + parent->address;
965         } else {
966                 result->address = parent->address;
967         }
968
969         result->min_residency = max(local->min_residency, parent->min_residency);
970         result->wake_latency = local->wake_latency + parent->wake_latency;
971         result->enable_parent_state = parent->enable_parent_state;
972         result->entry_method = local->entry_method;
973
974         result->flags = parent->flags;
975         result->arch_flags = parent->arch_flags;
976         result->index = parent->index;
977
978         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
979         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
980         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
981         return true;
982 }
983
984 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
985
986 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
987                                   struct acpi_lpi_state *t)
988 {
989         curr_level->composite_states[curr_level->composite_states_size++] = t;
990 }
991
992 static int flatten_lpi_states(struct acpi_processor *pr,
993                               struct acpi_lpi_states_array *curr_level,
994                               struct acpi_lpi_states_array *prev_level)
995 {
996         int i, j, state_count = curr_level->size;
997         struct acpi_lpi_state *p, *t = curr_level->entries;
998
999         curr_level->composite_states_size = 0;
1000         for (j = 0; j < state_count; j++, t++) {
1001                 struct acpi_lpi_state *flpi;
1002
1003                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1004                         continue;
1005
1006                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1007                         pr_warn("Limiting number of LPI states to max (%d)\n",
1008                                 ACPI_PROCESSOR_MAX_POWER);
1009                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1010                         break;
1011                 }
1012
1013                 flpi = &pr->power.lpi_states[flat_state_cnt];
1014
1015                 if (!prev_level) { /* leaf/processor node */
1016                         memcpy(flpi, t, sizeof(*t));
1017                         stash_composite_state(curr_level, flpi);
1018                         flat_state_cnt++;
1019                         continue;
1020                 }
1021
1022                 for (i = 0; i < prev_level->composite_states_size; i++) {
1023                         p = prev_level->composite_states[i];
1024                         if (t->index <= p->enable_parent_state &&
1025                             combine_lpi_states(p, t, flpi)) {
1026                                 stash_composite_state(curr_level, flpi);
1027                                 flat_state_cnt++;
1028                                 flpi++;
1029                         }
1030                 }
1031         }
1032
1033         kfree(curr_level->entries);
1034         return 0;
1035 }
1036
1037 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1038 {
1039         int ret, i;
1040         acpi_status status;
1041         acpi_handle handle = pr->handle, pr_ahandle;
1042         struct acpi_device *d = NULL;
1043         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1044
1045         if (!osc_pc_lpi_support_confirmed)
1046                 return -EOPNOTSUPP;
1047
1048         if (!acpi_has_method(handle, "_LPI"))
1049                 return -EINVAL;
1050
1051         flat_state_cnt = 0;
1052         prev = &info[0];
1053         curr = &info[1];
1054         handle = pr->handle;
1055         ret = acpi_processor_evaluate_lpi(handle, prev);
1056         if (ret)
1057                 return ret;
1058         flatten_lpi_states(pr, prev, NULL);
1059
1060         status = acpi_get_parent(handle, &pr_ahandle);
1061         while (ACPI_SUCCESS(status)) {
1062                 acpi_bus_get_device(pr_ahandle, &d);
1063                 handle = pr_ahandle;
1064
1065                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1066                         break;
1067
1068                 /* can be optional ? */
1069                 if (!acpi_has_method(handle, "_LPI"))
1070                         break;
1071
1072                 ret = acpi_processor_evaluate_lpi(handle, curr);
1073                 if (ret)
1074                         break;
1075
1076                 /* flatten all the LPI states in this level of hierarchy */
1077                 flatten_lpi_states(pr, curr, prev);
1078
1079                 tmp = prev, prev = curr, curr = tmp;
1080
1081                 status = acpi_get_parent(handle, &pr_ahandle);
1082         }
1083
1084         pr->power.count = flat_state_cnt;
1085         /* reset the index after flattening */
1086         for (i = 0; i < pr->power.count; i++)
1087                 pr->power.lpi_states[i].index = i;
1088
1089         /* Tell driver that _LPI is supported. */
1090         pr->flags.has_lpi = 1;
1091         pr->flags.power = 1;
1092
1093         return 0;
1094 }
1095
1096 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1097 {
1098         return -ENODEV;
1099 }
1100
1101 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1102 {
1103         return -ENODEV;
1104 }
1105
1106 /**
1107  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1108  * @dev: the target CPU
1109  * @drv: cpuidle driver containing cpuidle state info
1110  * @index: index of target state
1111  *
1112  * Return: 0 for success or negative value for error
1113  */
1114 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1115                                struct cpuidle_driver *drv, int index)
1116 {
1117         struct acpi_processor *pr;
1118         struct acpi_lpi_state *lpi;
1119
1120         pr = __this_cpu_read(processors);
1121
1122         if (unlikely(!pr))
1123                 return -EINVAL;
1124
1125         lpi = &pr->power.lpi_states[index];
1126         if (lpi->entry_method == ACPI_CSTATE_FFH)
1127                 return acpi_processor_ffh_lpi_enter(lpi);
1128
1129         return -EINVAL;
1130 }
1131
1132 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1133 {
1134         int i;
1135         struct acpi_lpi_state *lpi;
1136         struct cpuidle_state *state;
1137         struct cpuidle_driver *drv = &acpi_idle_driver;
1138
1139         if (!pr->flags.has_lpi)
1140                 return -EOPNOTSUPP;
1141
1142         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1143                 lpi = &pr->power.lpi_states[i];
1144
1145                 state = &drv->states[i];
1146                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1147                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1148                 state->exit_latency = lpi->wake_latency;
1149                 state->target_residency = lpi->min_residency;
1150                 if (lpi->arch_flags)
1151                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1152                 state->enter = acpi_idle_lpi_enter;
1153                 drv->safe_state_index = i;
1154         }
1155
1156         drv->state_count = i;
1157
1158         return 0;
1159 }
1160
1161 /**
1162  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1163  * global state data i.e. idle routines
1164  *
1165  * @pr: the ACPI processor
1166  */
1167 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1168 {
1169         int i;
1170         struct cpuidle_driver *drv = &acpi_idle_driver;
1171
1172         if (!pr->flags.power_setup_done || !pr->flags.power)
1173                 return -EINVAL;
1174
1175         drv->safe_state_index = -1;
1176         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1177                 drv->states[i].name[0] = '\0';
1178                 drv->states[i].desc[0] = '\0';
1179         }
1180
1181         if (pr->flags.has_lpi)
1182                 return acpi_processor_setup_lpi_states(pr);
1183
1184         return acpi_processor_setup_cstates(pr);
1185 }
1186
1187 /**
1188  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1189  * device i.e. per-cpu data
1190  *
1191  * @pr: the ACPI processor
1192  * @dev : the cpuidle device
1193  */
1194 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1195                                             struct cpuidle_device *dev)
1196 {
1197         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1198                 return -EINVAL;
1199
1200         dev->cpu = pr->id;
1201         if (pr->flags.has_lpi)
1202                 return acpi_processor_ffh_lpi_probe(pr->id);
1203
1204         return acpi_processor_setup_cpuidle_cx(pr, dev);
1205 }
1206
1207 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1208 {
1209         int ret;
1210
1211         ret = acpi_processor_get_lpi_info(pr);
1212         if (ret)
1213                 ret = acpi_processor_get_cstate_info(pr);
1214
1215         return ret;
1216 }
1217
1218 int acpi_processor_hotplug(struct acpi_processor *pr)
1219 {
1220         int ret = 0;
1221         struct cpuidle_device *dev;
1222
1223         if (disabled_by_idle_boot_param())
1224                 return 0;
1225
1226         if (!pr->flags.power_setup_done)
1227                 return -ENODEV;
1228
1229         dev = per_cpu(acpi_cpuidle_device, pr->id);
1230         cpuidle_pause_and_lock();
1231         cpuidle_disable_device(dev);
1232         ret = acpi_processor_get_power_info(pr);
1233         if (!ret && pr->flags.power) {
1234                 acpi_processor_setup_cpuidle_dev(pr, dev);
1235                 ret = cpuidle_enable_device(dev);
1236         }
1237         cpuidle_resume_and_unlock();
1238
1239         return ret;
1240 }
1241
1242 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1243 {
1244         int cpu;
1245         struct acpi_processor *_pr;
1246         struct cpuidle_device *dev;
1247
1248         if (disabled_by_idle_boot_param())
1249                 return 0;
1250
1251         if (!pr->flags.power_setup_done)
1252                 return -ENODEV;
1253
1254         /*
1255          * FIXME:  Design the ACPI notification to make it once per
1256          * system instead of once per-cpu.  This condition is a hack
1257          * to make the code that updates C-States be called once.
1258          */
1259
1260         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1261
1262                 /* Protect against cpu-hotplug */
1263                 get_online_cpus();
1264                 cpuidle_pause_and_lock();
1265
1266                 /* Disable all cpuidle devices */
1267                 for_each_online_cpu(cpu) {
1268                         _pr = per_cpu(processors, cpu);
1269                         if (!_pr || !_pr->flags.power_setup_done)
1270                                 continue;
1271                         dev = per_cpu(acpi_cpuidle_device, cpu);
1272                         cpuidle_disable_device(dev);
1273                 }
1274
1275                 /* Populate Updated C-state information */
1276                 acpi_processor_get_power_info(pr);
1277                 acpi_processor_setup_cpuidle_states(pr);
1278
1279                 /* Enable all cpuidle devices */
1280                 for_each_online_cpu(cpu) {
1281                         _pr = per_cpu(processors, cpu);
1282                         if (!_pr || !_pr->flags.power_setup_done)
1283                                 continue;
1284                         acpi_processor_get_power_info(_pr);
1285                         if (_pr->flags.power) {
1286                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1287                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1288                                 cpuidle_enable_device(dev);
1289                         }
1290                 }
1291                 cpuidle_resume_and_unlock();
1292                 put_online_cpus();
1293         }
1294
1295         return 0;
1296 }
1297
1298 static int acpi_processor_registered;
1299
1300 int acpi_processor_power_init(struct acpi_processor *pr)
1301 {
1302         int retval;
1303         struct cpuidle_device *dev;
1304
1305         if (disabled_by_idle_boot_param())
1306                 return 0;
1307
1308         acpi_processor_cstate_first_run_checks();
1309
1310         if (!acpi_processor_get_power_info(pr))
1311                 pr->flags.power_setup_done = 1;
1312
1313         /*
1314          * Install the idle handler if processor power management is supported.
1315          * Note that we use previously set idle handler will be used on
1316          * platforms that only support C1.
1317          */
1318         if (pr->flags.power) {
1319                 /* Register acpi_idle_driver if not already registered */
1320                 if (!acpi_processor_registered) {
1321                         acpi_processor_setup_cpuidle_states(pr);
1322                         retval = cpuidle_register_driver(&acpi_idle_driver);
1323                         if (retval)
1324                                 return retval;
1325                         pr_debug("%s registered with cpuidle\n",
1326                                  acpi_idle_driver.name);
1327                 }
1328
1329                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1330                 if (!dev)
1331                         return -ENOMEM;
1332                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1333
1334                 acpi_processor_setup_cpuidle_dev(pr, dev);
1335
1336                 /* Register per-cpu cpuidle_device. Cpuidle driver
1337                  * must already be registered before registering device
1338                  */
1339                 retval = cpuidle_register_device(dev);
1340                 if (retval) {
1341                         if (acpi_processor_registered == 0)
1342                                 cpuidle_unregister_driver(&acpi_idle_driver);
1343                         return retval;
1344                 }
1345                 acpi_processor_registered++;
1346         }
1347         return 0;
1348 }
1349
1350 int acpi_processor_power_exit(struct acpi_processor *pr)
1351 {
1352         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1353
1354         if (disabled_by_idle_boot_param())
1355                 return 0;
1356
1357         if (pr->flags.power) {
1358                 cpuidle_unregister_device(dev);
1359                 acpi_processor_registered--;
1360                 if (acpi_processor_registered == 0)
1361                         cpuidle_unregister_driver(&acpi_idle_driver);
1362         }
1363
1364         pr->flags.power_setup_done = 0;
1365         return 0;
1366 }