Merge tag 'fsnotify_for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE   0x04
38 #define LPSS_LTR_SIZE   0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
42 #define LPSS_RESETS                     0x04
43 #define LPSS_RESETS_RESET_FUNC          BIT(0)
44 #define LPSS_RESETS_RESET_APB           BIT(1)
45 #define LPSS_GENERAL                    0x08
46 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
48 #define LPSS_SW_LTR                     0x10
49 #define LPSS_AUTO_LTR                   0x14
50 #define LPSS_LTR_SNOOP_REQ              BIT(15)
51 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US          0x800
53 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
56 #define LPSS_LTR_MAX_VAL                0x3FF
57 #define LPSS_TX_INT                     0x20
58 #define LPSS_TX_INT_MASK                BIT(1)
59
60 #define LPSS_PRV_REG_COUNT              9
61
62 /* LPSS Flags */
63 #define LPSS_CLK                        BIT(0)
64 #define LPSS_CLK_GATE                   BIT(1)
65 #define LPSS_CLK_DIVIDER                BIT(2)
66 #define LPSS_LTR                        BIT(3)
67 #define LPSS_SAVE_CTX                   BIT(4)
68 /*
69  * For some devices the DSDT AML code for another device turns off the device
70  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71  * as ctx register values.
72  * Luckily these devices always use the same ctx register values, so we can
73  * work around this by saving the ctx registers once on activation.
74  */
75 #define LPSS_SAVE_CTX_ONCE              BIT(5)
76 #define LPSS_NO_D3_DELAY                BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81         unsigned int flags;
82         const char *clk_con_id;
83         unsigned int prv_offset;
84         size_t prv_size_override;
85         struct property_entry *properties;
86         void (*setup)(struct lpss_private_data *pdata);
87         bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91         .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95         struct acpi_device *adev;
96         void __iomem *mmio_base;
97         resource_size_t mmio_size;
98         unsigned int fixed_clk_rate;
99         struct clk *clk;
100         const struct lpss_device_desc *dev_desc;
101         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR                   0xF4
126 #define LPSS_UART_CPR_AFCE              BIT(4)
127
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130         unsigned int offset;
131         u32 val;
132
133         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134         val = readl(pdata->mmio_base + offset);
135         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137         val = readl(pdata->mmio_base + LPSS_UART_CPR);
138         if (!(val & LPSS_UART_CPR_AFCE)) {
139                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140                 val = readl(pdata->mmio_base + offset);
141                 val |= LPSS_GENERAL_UART_RTS_OVRD;
142                 writel(val, pdata->mmio_base + offset);
143         }
144 }
145
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148         unsigned int offset;
149         u32 val;
150
151         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152         val = readl(pdata->mmio_base + offset);
153         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154         writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164                                "pwm-lpss-platform"),
165 };
166
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169         struct acpi_device *adev = pdata->adev;
170
171         /* Only call pwm_add_table for the first PWM controller */
172         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173                 return;
174
175         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE                 0x6c
179
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182         const char *uid_str = acpi_device_uid(pdata->adev);
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         long uid = 0;
187
188         /* Expected to always be true, but better safe then sorry */
189         if (uid_str)
190                 uid = simple_strtol(uid_str, NULL, 10);
191
192         /* Detect I2C bus shared with PUNIT and ignore its d3 status */
193         status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194         if (ACPI_SUCCESS(status) && shared_host && uid)
195                 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196
197         lpss_deassert_reset(pdata);
198
199         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200                 pdata->fixed_clk_rate = 133000000;
201
202         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209                                "pwm-lpss-platform"),
210 };
211
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214         struct acpi_device *adev = pdata->adev;
215
216         /* Only call pwm_add_table for the first PWM controller */
217         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218                 return;
219
220         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222
223 static const struct lpss_device_desc lpt_dev_desc = {
224         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225                         | LPSS_SAVE_CTX,
226         .prv_offset = 0x800,
227 };
228
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231         .prv_offset = 0x800,
232 };
233
234 static struct property_entry uart_properties[] = {
235         PROPERTY_ENTRY_U32("reg-io-width", 4),
236         PROPERTY_ENTRY_U32("reg-shift", 2),
237         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238         { },
239 };
240
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243                         | LPSS_SAVE_CTX,
244         .clk_con_id = "baudclk",
245         .prv_offset = 0x800,
246         .setup = lpss_uart_setup,
247         .properties = uart_properties,
248 };
249
250 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251         .flags = LPSS_LTR,
252         .prv_offset = 0x1000,
253         .prv_size_override = 0x1018,
254 };
255
256 static const struct lpss_device_desc byt_pwm_dev_desc = {
257         .flags = LPSS_SAVE_CTX,
258         .prv_offset = 0x800,
259         .setup = byt_pwm_setup,
260 };
261
262 static const struct lpss_device_desc bsw_pwm_dev_desc = {
263         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264         .prv_offset = 0x800,
265         .setup = bsw_pwm_setup,
266         .resume_from_noirq = true,
267 };
268
269 static const struct lpss_device_desc byt_uart_dev_desc = {
270         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271         .clk_con_id = "baudclk",
272         .prv_offset = 0x800,
273         .setup = lpss_uart_setup,
274         .properties = uart_properties,
275 };
276
277 static const struct lpss_device_desc bsw_uart_dev_desc = {
278         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279                         | LPSS_NO_D3_DELAY,
280         .clk_con_id = "baudclk",
281         .prv_offset = 0x800,
282         .setup = lpss_uart_setup,
283         .properties = uart_properties,
284 };
285
286 static const struct lpss_device_desc byt_spi_dev_desc = {
287         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288         .prv_offset = 0x400,
289 };
290
291 static const struct lpss_device_desc byt_sdio_dev_desc = {
292         .flags = LPSS_CLK,
293 };
294
295 static const struct lpss_device_desc byt_i2c_dev_desc = {
296         .flags = LPSS_CLK | LPSS_SAVE_CTX,
297         .prv_offset = 0x800,
298         .setup = byt_i2c_setup,
299         .resume_from_noirq = true,
300 };
301
302 static const struct lpss_device_desc bsw_i2c_dev_desc = {
303         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304         .prv_offset = 0x800,
305         .setup = byt_i2c_setup,
306         .resume_from_noirq = true,
307 };
308
309 static const struct lpss_device_desc bsw_spi_dev_desc = {
310         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311                         | LPSS_NO_D3_DELAY,
312         .prv_offset = 0x400,
313         .setup = lpss_deassert_reset,
314 };
315
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
318         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
319         {}
320 };
321
322 #else
323
324 #define LPSS_ADDR(desc) (0UL)
325
326 #endif /* CONFIG_X86_INTEL_LPSS */
327
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329         /* Generic LPSS devices */
330         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332         /* Lynxpoint LPSS devices */
333         { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334         { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340         { "INT33C7", },
341
342         /* BayTrail LPSS devices */
343         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348         { "INT33B2", },
349         { "INT33FC", },
350
351         /* Braswell LPSS devices */
352         { "80862286", LPSS_ADDR(lpss_dma_desc) },
353         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359         /* Broadwell LPSS devices */
360         { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361         { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367         { "INT3437", },
368
369         /* Wildcat Point LPSS devices */
370         { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372         { }
373 };
374
375 #ifdef CONFIG_X86_INTEL_LPSS
376
377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379         struct resource r;
380
381         return !acpi_dev_resource_memory(res, &r);
382 }
383
384 /* LPSS main clock device. */
385 static struct platform_device *lpss_clk_dev;
386
387 static inline void lpt_register_clock_device(void)
388 {
389         lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
390 }
391
392 static int register_device_clock(struct acpi_device *adev,
393                                  struct lpss_private_data *pdata)
394 {
395         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
396         const char *devname = dev_name(&adev->dev);
397         struct clk *clk;
398         struct lpss_clk_data *clk_data;
399         const char *parent, *clk_name;
400         void __iomem *prv_base;
401
402         if (!lpss_clk_dev)
403                 lpt_register_clock_device();
404
405         clk_data = platform_get_drvdata(lpss_clk_dev);
406         if (!clk_data)
407                 return -ENODEV;
408         clk = clk_data->clk;
409
410         if (!pdata->mmio_base
411             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
412                 return -ENODATA;
413
414         parent = clk_data->name;
415         prv_base = pdata->mmio_base + dev_desc->prv_offset;
416
417         if (pdata->fixed_clk_rate) {
418                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
419                                               pdata->fixed_clk_rate);
420                 goto out;
421         }
422
423         if (dev_desc->flags & LPSS_CLK_GATE) {
424                 clk = clk_register_gate(NULL, devname, parent, 0,
425                                         prv_base, 0, 0, NULL);
426                 parent = devname;
427         }
428
429         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
430                 /* Prevent division by zero */
431                 if (!readl(prv_base))
432                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
433
434                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
435                 if (!clk_name)
436                         return -ENOMEM;
437                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
438                                                       0, prv_base,
439                                                       1, 15, 16, 15, 0, NULL);
440                 parent = clk_name;
441
442                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
443                 if (!clk_name) {
444                         kfree(parent);
445                         return -ENOMEM;
446                 }
447                 clk = clk_register_gate(NULL, clk_name, parent,
448                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
449                                         prv_base, 31, 0, NULL);
450                 kfree(parent);
451                 kfree(clk_name);
452         }
453 out:
454         if (IS_ERR(clk))
455                 return PTR_ERR(clk);
456
457         pdata->clk = clk;
458         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
459         return 0;
460 }
461
462 struct lpss_device_links {
463         const char *supplier_hid;
464         const char *supplier_uid;
465         const char *consumer_hid;
466         const char *consumer_uid;
467         u32 flags;
468         const struct dmi_system_id *dep_missing_ids;
469 };
470
471 /* Please keep this list sorted alphabetically by vendor and model */
472 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
473         {
474                 .matches = {
475                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
476                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
477                 },
478         },
479         {}
480 };
481
482 /*
483  * The _DEP method is used to identify dependencies but instead of creating
484  * device links for every handle in _DEP, only links in the following list are
485  * created. That is necessary because, in the general case, _DEP can refer to
486  * devices that might not have drivers, or that are on different buses, or where
487  * the supplier is not enumerated until after the consumer is probed.
488  */
489 static const struct lpss_device_links lpss_device_links[] = {
490         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
491         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
492         /* CHT iGPU depends on PMIC I2C controller */
493         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
494         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
495         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
496          i2c1_dep_missing_dmi_ids},
497         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
498         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
499         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
500         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501 };
502
503 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
504                                   const struct lpss_device_links *link)
505 {
506         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
507 }
508
509 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
510                                   const struct lpss_device_links *link)
511 {
512         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
513 }
514
515 struct hid_uid {
516         const char *hid;
517         const char *uid;
518 };
519
520 static int match_hid_uid(struct device *dev, const void *data)
521 {
522         struct acpi_device *adev = ACPI_COMPANION(dev);
523         const struct hid_uid *id = data;
524
525         if (!adev)
526                 return 0;
527
528         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
529 }
530
531 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
532 {
533         struct device *dev;
534
535         struct hid_uid data = {
536                 .hid = hid,
537                 .uid = uid,
538         };
539
540         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
541         if (dev)
542                 return dev;
543
544         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
545 }
546
547 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
548 {
549         struct acpi_handle_list dep_devices;
550         acpi_status status;
551         int i;
552
553         if (!acpi_has_method(adev->handle, "_DEP"))
554                 return false;
555
556         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
557                                          &dep_devices);
558         if (ACPI_FAILURE(status)) {
559                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
560                 return false;
561         }
562
563         for (i = 0; i < dep_devices.count; i++) {
564                 if (dep_devices.handles[i] == handle)
565                         return true;
566         }
567
568         return false;
569 }
570
571 static void acpi_lpss_link_consumer(struct device *dev1,
572                                     const struct lpss_device_links *link)
573 {
574         struct device *dev2;
575
576         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
577         if (!dev2)
578                 return;
579
580         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
581             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
582                 device_link_add(dev2, dev1, link->flags);
583
584         put_device(dev2);
585 }
586
587 static void acpi_lpss_link_supplier(struct device *dev1,
588                                     const struct lpss_device_links *link)
589 {
590         struct device *dev2;
591
592         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
593         if (!dev2)
594                 return;
595
596         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
597             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
598                 device_link_add(dev1, dev2, link->flags);
599
600         put_device(dev2);
601 }
602
603 static void acpi_lpss_create_device_links(struct acpi_device *adev,
604                                           struct platform_device *pdev)
605 {
606         int i;
607
608         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
609                 const struct lpss_device_links *link = &lpss_device_links[i];
610
611                 if (acpi_lpss_is_supplier(adev, link))
612                         acpi_lpss_link_consumer(&pdev->dev, link);
613
614                 if (acpi_lpss_is_consumer(adev, link))
615                         acpi_lpss_link_supplier(&pdev->dev, link);
616         }
617 }
618
619 static int acpi_lpss_create_device(struct acpi_device *adev,
620                                    const struct acpi_device_id *id)
621 {
622         const struct lpss_device_desc *dev_desc;
623         struct lpss_private_data *pdata;
624         struct resource_entry *rentry;
625         struct list_head resource_list;
626         struct platform_device *pdev;
627         int ret;
628
629         dev_desc = (const struct lpss_device_desc *)id->driver_data;
630         if (!dev_desc) {
631                 pdev = acpi_create_platform_device(adev, NULL);
632                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
633         }
634         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
635         if (!pdata)
636                 return -ENOMEM;
637
638         INIT_LIST_HEAD(&resource_list);
639         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
640         if (ret < 0)
641                 goto err_out;
642
643         list_for_each_entry(rentry, &resource_list, node)
644                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
645                         if (dev_desc->prv_size_override)
646                                 pdata->mmio_size = dev_desc->prv_size_override;
647                         else
648                                 pdata->mmio_size = resource_size(rentry->res);
649                         pdata->mmio_base = ioremap(rentry->res->start,
650                                                    pdata->mmio_size);
651                         break;
652                 }
653
654         acpi_dev_free_resource_list(&resource_list);
655
656         if (!pdata->mmio_base) {
657                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
658                 adev->pnp.type.platform_id = 0;
659                 /* Skip the device, but continue the namespace scan. */
660                 ret = 0;
661                 goto err_out;
662         }
663
664         pdata->adev = adev;
665         pdata->dev_desc = dev_desc;
666
667         if (dev_desc->setup)
668                 dev_desc->setup(pdata);
669
670         if (dev_desc->flags & LPSS_CLK) {
671                 ret = register_device_clock(adev, pdata);
672                 if (ret) {
673                         /* Skip the device, but continue the namespace scan. */
674                         ret = 0;
675                         goto err_out;
676                 }
677         }
678
679         /*
680          * This works around a known issue in ACPI tables where LPSS devices
681          * have _PS0 and _PS3 without _PSC (and no power resources), so
682          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
683          */
684         acpi_device_fix_up_power(adev);
685
686         adev->driver_data = pdata;
687         pdev = acpi_create_platform_device(adev, dev_desc->properties);
688         if (!IS_ERR_OR_NULL(pdev)) {
689                 acpi_lpss_create_device_links(adev, pdev);
690                 return 1;
691         }
692
693         ret = PTR_ERR(pdev);
694         adev->driver_data = NULL;
695
696  err_out:
697         kfree(pdata);
698         return ret;
699 }
700
701 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
702 {
703         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
704 }
705
706 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
707                              unsigned int reg)
708 {
709         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
710 }
711
712 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
713 {
714         struct acpi_device *adev;
715         struct lpss_private_data *pdata;
716         unsigned long flags;
717         int ret;
718
719         ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
720         if (WARN_ON(ret))
721                 return ret;
722
723         spin_lock_irqsave(&dev->power.lock, flags);
724         if (pm_runtime_suspended(dev)) {
725                 ret = -EAGAIN;
726                 goto out;
727         }
728         pdata = acpi_driver_data(adev);
729         if (WARN_ON(!pdata || !pdata->mmio_base)) {
730                 ret = -ENODEV;
731                 goto out;
732         }
733         *val = __lpss_reg_read(pdata, reg);
734
735  out:
736         spin_unlock_irqrestore(&dev->power.lock, flags);
737         return ret;
738 }
739
740 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
741                              char *buf)
742 {
743         u32 ltr_value = 0;
744         unsigned int reg;
745         int ret;
746
747         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
748         ret = lpss_reg_read(dev, reg, &ltr_value);
749         if (ret)
750                 return ret;
751
752         return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
753 }
754
755 static ssize_t lpss_ltr_mode_show(struct device *dev,
756                                   struct device_attribute *attr, char *buf)
757 {
758         u32 ltr_mode = 0;
759         char *outstr;
760         int ret;
761
762         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
763         if (ret)
764                 return ret;
765
766         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
767         return sprintf(buf, "%s\n", outstr);
768 }
769
770 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
771 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
772 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
773
774 static struct attribute *lpss_attrs[] = {
775         &dev_attr_auto_ltr.attr,
776         &dev_attr_sw_ltr.attr,
777         &dev_attr_ltr_mode.attr,
778         NULL,
779 };
780
781 static const struct attribute_group lpss_attr_group = {
782         .attrs = lpss_attrs,
783         .name = "lpss_ltr",
784 };
785
786 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
787 {
788         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
789         u32 ltr_mode, ltr_val;
790
791         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
792         if (val < 0) {
793                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
794                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
795                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
796                 }
797                 return;
798         }
799         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
800         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
801                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
802                 val = LPSS_LTR_MAX_VAL;
803         } else if (val > LPSS_LTR_MAX_VAL) {
804                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
805                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
806         } else {
807                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
808         }
809         ltr_val |= val;
810         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
811         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
812                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
813                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
814         }
815 }
816
817 #ifdef CONFIG_PM
818 /**
819  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
820  * @dev: LPSS device
821  * @pdata: pointer to the private data of the LPSS device
822  *
823  * Most LPSS devices have private registers which may loose their context when
824  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
825  * prv_reg_ctx array.
826  */
827 static void acpi_lpss_save_ctx(struct device *dev,
828                                struct lpss_private_data *pdata)
829 {
830         unsigned int i;
831
832         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
833                 unsigned long offset = i * sizeof(u32);
834
835                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
836                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
837                         pdata->prv_reg_ctx[i], offset);
838         }
839 }
840
841 /**
842  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
843  * @dev: LPSS device
844  * @pdata: pointer to the private data of the LPSS device
845  *
846  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
847  */
848 static void acpi_lpss_restore_ctx(struct device *dev,
849                                   struct lpss_private_data *pdata)
850 {
851         unsigned int i;
852
853         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
854                 unsigned long offset = i * sizeof(u32);
855
856                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
857                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
858                         pdata->prv_reg_ctx[i], offset);
859         }
860 }
861
862 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
863 {
864         /*
865          * The following delay is needed or the subsequent write operations may
866          * fail. The LPSS devices are actually PCI devices and the PCI spec
867          * expects 10ms delay before the device can be accessed after D3 to D0
868          * transition. However some platforms like BSW does not need this delay.
869          */
870         unsigned int delay = 10;        /* default 10ms delay */
871
872         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
873                 delay = 0;
874
875         msleep(delay);
876 }
877
878 static int acpi_lpss_activate(struct device *dev)
879 {
880         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
881         int ret;
882
883         ret = acpi_dev_resume(dev);
884         if (ret)
885                 return ret;
886
887         acpi_lpss_d3_to_d0_delay(pdata);
888
889         /*
890          * This is called only on ->probe() stage where a device is either in
891          * known state defined by BIOS or most likely powered off. Due to this
892          * we have to deassert reset line to be sure that ->probe() will
893          * recognize the device.
894          */
895         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
896                 lpss_deassert_reset(pdata);
897
898 #ifdef CONFIG_PM
899         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
900                 acpi_lpss_save_ctx(dev, pdata);
901 #endif
902
903         return 0;
904 }
905
906 static void acpi_lpss_dismiss(struct device *dev)
907 {
908         acpi_dev_suspend(dev, false);
909 }
910
911 /* IOSF SB for LPSS island */
912 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
913 #define LPSS_IOSF_UNIT_LPIO1            0xAB
914 #define LPSS_IOSF_UNIT_LPIO2            0xAC
915
916 #define LPSS_IOSF_PMCSR                 0x84
917 #define LPSS_PMCSR_D0                   0
918 #define LPSS_PMCSR_D3hot                3
919 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
920
921 #define LPSS_IOSF_GPIODEF0              0x154
922 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
923 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
924 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
925 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
926
927 static DEFINE_MUTEX(lpss_iosf_mutex);
928 static bool lpss_iosf_d3_entered = true;
929
930 static void lpss_iosf_enter_d3_state(void)
931 {
932         u32 value1 = 0;
933         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
934         u32 value2 = LPSS_PMCSR_D3hot;
935         u32 mask2 = LPSS_PMCSR_Dx_MASK;
936         /*
937          * PMC provides an information about actual status of the LPSS devices.
938          * Here we read the values related to LPSS power island, i.e. LPSS
939          * devices, excluding both LPSS DMA controllers, along with SCC domain.
940          */
941         u32 func_dis, d3_sts_0, pmc_status;
942         int ret;
943
944         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
945         if (ret)
946                 return;
947
948         mutex_lock(&lpss_iosf_mutex);
949
950         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
951         if (ret)
952                 goto exit;
953
954         /*
955          * Get the status of entire LPSS power island per device basis.
956          * Shutdown both LPSS DMA controllers if and only if all other devices
957          * are already in D3hot.
958          */
959         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
960         if (pmc_status)
961                 goto exit;
962
963         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
964                         LPSS_IOSF_PMCSR, value2, mask2);
965
966         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
967                         LPSS_IOSF_PMCSR, value2, mask2);
968
969         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
970                         LPSS_IOSF_GPIODEF0, value1, mask1);
971
972         lpss_iosf_d3_entered = true;
973
974 exit:
975         mutex_unlock(&lpss_iosf_mutex);
976 }
977
978 static void lpss_iosf_exit_d3_state(void)
979 {
980         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
981                      LPSS_GPIODEF0_DMA_LLP;
982         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
983         u32 value2 = LPSS_PMCSR_D0;
984         u32 mask2 = LPSS_PMCSR_Dx_MASK;
985
986         mutex_lock(&lpss_iosf_mutex);
987
988         if (!lpss_iosf_d3_entered)
989                 goto exit;
990
991         lpss_iosf_d3_entered = false;
992
993         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
994                         LPSS_IOSF_GPIODEF0, value1, mask1);
995
996         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
997                         LPSS_IOSF_PMCSR, value2, mask2);
998
999         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1000                         LPSS_IOSF_PMCSR, value2, mask2);
1001
1002 exit:
1003         mutex_unlock(&lpss_iosf_mutex);
1004 }
1005
1006 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1007 {
1008         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1009         int ret;
1010
1011         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1012                 acpi_lpss_save_ctx(dev, pdata);
1013
1014         ret = acpi_dev_suspend(dev, wakeup);
1015
1016         /*
1017          * This call must be last in the sequence, otherwise PMC will return
1018          * wrong status for devices being about to be powered off. See
1019          * lpss_iosf_enter_d3_state() for further information.
1020          */
1021         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1022             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1023                 lpss_iosf_enter_d3_state();
1024
1025         return ret;
1026 }
1027
1028 static int acpi_lpss_resume(struct device *dev)
1029 {
1030         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1031         int ret;
1032
1033         /*
1034          * This call is kept first to be in symmetry with
1035          * acpi_lpss_runtime_suspend() one.
1036          */
1037         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1038                 lpss_iosf_exit_d3_state();
1039
1040         ret = acpi_dev_resume(dev);
1041         if (ret)
1042                 return ret;
1043
1044         acpi_lpss_d3_to_d0_delay(pdata);
1045
1046         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1047                 acpi_lpss_restore_ctx(dev, pdata);
1048
1049         return 0;
1050 }
1051
1052 #ifdef CONFIG_PM_SLEEP
1053 static int acpi_lpss_do_suspend_late(struct device *dev)
1054 {
1055         int ret;
1056
1057         if (dev_pm_skip_suspend(dev))
1058                 return 0;
1059
1060         ret = pm_generic_suspend_late(dev);
1061         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1062 }
1063
1064 static int acpi_lpss_suspend_late(struct device *dev)
1065 {
1066         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1067
1068         if (pdata->dev_desc->resume_from_noirq)
1069                 return 0;
1070
1071         return acpi_lpss_do_suspend_late(dev);
1072 }
1073
1074 static int acpi_lpss_suspend_noirq(struct device *dev)
1075 {
1076         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1077         int ret;
1078
1079         if (pdata->dev_desc->resume_from_noirq) {
1080                 /*
1081                  * The driver's ->suspend_late callback will be invoked by
1082                  * acpi_lpss_do_suspend_late(), with the assumption that the
1083                  * driver really wanted to run that code in ->suspend_noirq, but
1084                  * it could not run after acpi_dev_suspend() and the driver
1085                  * expected the latter to be called in the "late" phase.
1086                  */
1087                 ret = acpi_lpss_do_suspend_late(dev);
1088                 if (ret)
1089                         return ret;
1090         }
1091
1092         return acpi_subsys_suspend_noirq(dev);
1093 }
1094
1095 static int acpi_lpss_do_resume_early(struct device *dev)
1096 {
1097         int ret = acpi_lpss_resume(dev);
1098
1099         return ret ? ret : pm_generic_resume_early(dev);
1100 }
1101
1102 static int acpi_lpss_resume_early(struct device *dev)
1103 {
1104         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105
1106         if (pdata->dev_desc->resume_from_noirq)
1107                 return 0;
1108
1109         if (dev_pm_skip_resume(dev))
1110                 return 0;
1111
1112         return acpi_lpss_do_resume_early(dev);
1113 }
1114
1115 static int acpi_lpss_resume_noirq(struct device *dev)
1116 {
1117         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1118         int ret;
1119
1120         /* Follow acpi_subsys_resume_noirq(). */
1121         if (dev_pm_skip_resume(dev))
1122                 return 0;
1123
1124         ret = pm_generic_resume_noirq(dev);
1125         if (ret)
1126                 return ret;
1127
1128         if (!pdata->dev_desc->resume_from_noirq)
1129                 return 0;
1130
1131         /*
1132          * The driver's ->resume_early callback will be invoked by
1133          * acpi_lpss_do_resume_early(), with the assumption that the driver
1134          * really wanted to run that code in ->resume_noirq, but it could not
1135          * run before acpi_dev_resume() and the driver expected the latter to be
1136          * called in the "early" phase.
1137          */
1138         return acpi_lpss_do_resume_early(dev);
1139 }
1140
1141 static int acpi_lpss_do_restore_early(struct device *dev)
1142 {
1143         int ret = acpi_lpss_resume(dev);
1144
1145         return ret ? ret : pm_generic_restore_early(dev);
1146 }
1147
1148 static int acpi_lpss_restore_early(struct device *dev)
1149 {
1150         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1151
1152         if (pdata->dev_desc->resume_from_noirq)
1153                 return 0;
1154
1155         return acpi_lpss_do_restore_early(dev);
1156 }
1157
1158 static int acpi_lpss_restore_noirq(struct device *dev)
1159 {
1160         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1161         int ret;
1162
1163         ret = pm_generic_restore_noirq(dev);
1164         if (ret)
1165                 return ret;
1166
1167         if (!pdata->dev_desc->resume_from_noirq)
1168                 return 0;
1169
1170         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1171         return acpi_lpss_do_restore_early(dev);
1172 }
1173
1174 static int acpi_lpss_do_poweroff_late(struct device *dev)
1175 {
1176         int ret = pm_generic_poweroff_late(dev);
1177
1178         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1179 }
1180
1181 static int acpi_lpss_poweroff_late(struct device *dev)
1182 {
1183         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184
1185         if (dev_pm_skip_suspend(dev))
1186                 return 0;
1187
1188         if (pdata->dev_desc->resume_from_noirq)
1189                 return 0;
1190
1191         return acpi_lpss_do_poweroff_late(dev);
1192 }
1193
1194 static int acpi_lpss_poweroff_noirq(struct device *dev)
1195 {
1196         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1197
1198         if (dev_pm_skip_suspend(dev))
1199                 return 0;
1200
1201         if (pdata->dev_desc->resume_from_noirq) {
1202                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1203                 int ret = acpi_lpss_do_poweroff_late(dev);
1204
1205                 if (ret)
1206                         return ret;
1207         }
1208
1209         return pm_generic_poweroff_noirq(dev);
1210 }
1211 #endif /* CONFIG_PM_SLEEP */
1212
1213 static int acpi_lpss_runtime_suspend(struct device *dev)
1214 {
1215         int ret = pm_generic_runtime_suspend(dev);
1216
1217         return ret ? ret : acpi_lpss_suspend(dev, true);
1218 }
1219
1220 static int acpi_lpss_runtime_resume(struct device *dev)
1221 {
1222         int ret = acpi_lpss_resume(dev);
1223
1224         return ret ? ret : pm_generic_runtime_resume(dev);
1225 }
1226 #endif /* CONFIG_PM */
1227
1228 static struct dev_pm_domain acpi_lpss_pm_domain = {
1229 #ifdef CONFIG_PM
1230         .activate = acpi_lpss_activate,
1231         .dismiss = acpi_lpss_dismiss,
1232 #endif
1233         .ops = {
1234 #ifdef CONFIG_PM
1235 #ifdef CONFIG_PM_SLEEP
1236                 .prepare = acpi_subsys_prepare,
1237                 .complete = acpi_subsys_complete,
1238                 .suspend = acpi_subsys_suspend,
1239                 .suspend_late = acpi_lpss_suspend_late,
1240                 .suspend_noirq = acpi_lpss_suspend_noirq,
1241                 .resume_noirq = acpi_lpss_resume_noirq,
1242                 .resume_early = acpi_lpss_resume_early,
1243                 .freeze = acpi_subsys_freeze,
1244                 .poweroff = acpi_subsys_poweroff,
1245                 .poweroff_late = acpi_lpss_poweroff_late,
1246                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1247                 .restore_noirq = acpi_lpss_restore_noirq,
1248                 .restore_early = acpi_lpss_restore_early,
1249 #endif
1250                 .runtime_suspend = acpi_lpss_runtime_suspend,
1251                 .runtime_resume = acpi_lpss_runtime_resume,
1252 #endif
1253         },
1254 };
1255
1256 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1257                                      unsigned long action, void *data)
1258 {
1259         struct platform_device *pdev = to_platform_device(data);
1260         struct lpss_private_data *pdata;
1261         struct acpi_device *adev;
1262         const struct acpi_device_id *id;
1263
1264         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1265         if (!id || !id->driver_data)
1266                 return 0;
1267
1268         if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1269                 return 0;
1270
1271         pdata = acpi_driver_data(adev);
1272         if (!pdata)
1273                 return 0;
1274
1275         if (pdata->mmio_base &&
1276             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1277                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1278                 return 0;
1279         }
1280
1281         switch (action) {
1282         case BUS_NOTIFY_BIND_DRIVER:
1283                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1284                 break;
1285         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1286         case BUS_NOTIFY_UNBOUND_DRIVER:
1287                 dev_pm_domain_set(&pdev->dev, NULL);
1288                 break;
1289         case BUS_NOTIFY_ADD_DEVICE:
1290                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1291                 if (pdata->dev_desc->flags & LPSS_LTR)
1292                         return sysfs_create_group(&pdev->dev.kobj,
1293                                                   &lpss_attr_group);
1294                 break;
1295         case BUS_NOTIFY_DEL_DEVICE:
1296                 if (pdata->dev_desc->flags & LPSS_LTR)
1297                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1298                 dev_pm_domain_set(&pdev->dev, NULL);
1299                 break;
1300         default:
1301                 break;
1302         }
1303
1304         return 0;
1305 }
1306
1307 static struct notifier_block acpi_lpss_nb = {
1308         .notifier_call = acpi_lpss_platform_notify,
1309 };
1310
1311 static void acpi_lpss_bind(struct device *dev)
1312 {
1313         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1314
1315         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1316                 return;
1317
1318         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1319                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1320         else
1321                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1322 }
1323
1324 static void acpi_lpss_unbind(struct device *dev)
1325 {
1326         dev->power.set_latency_tolerance = NULL;
1327 }
1328
1329 static struct acpi_scan_handler lpss_handler = {
1330         .ids = acpi_lpss_device_ids,
1331         .attach = acpi_lpss_create_device,
1332         .bind = acpi_lpss_bind,
1333         .unbind = acpi_lpss_unbind,
1334 };
1335
1336 void __init acpi_lpss_init(void)
1337 {
1338         const struct x86_cpu_id *id;
1339         int ret;
1340
1341         ret = lpt_clk_init();
1342         if (ret)
1343                 return;
1344
1345         id = x86_match_cpu(lpss_cpu_ids);
1346         if (id)
1347                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1348
1349         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1350         acpi_scan_add_handler(&lpss_handler);
1351 }
1352
1353 #else
1354
1355 static struct acpi_scan_handler lpss_handler = {
1356         .ids = acpi_lpss_device_ids,
1357 };
1358
1359 void __init acpi_lpss_init(void)
1360 {
1361         acpi_scan_add_handler(&lpss_handler);
1362 }
1363
1364 #endif /* CONFIG_X86_INTEL_LPSS */