Merge tag '5.15-rc-ksmbd-part2' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE   0x04
38 #define LPSS_LTR_SIZE   0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
42 #define LPSS_RESETS                     0x04
43 #define LPSS_RESETS_RESET_FUNC          BIT(0)
44 #define LPSS_RESETS_RESET_APB           BIT(1)
45 #define LPSS_GENERAL                    0x08
46 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
48 #define LPSS_SW_LTR                     0x10
49 #define LPSS_AUTO_LTR                   0x14
50 #define LPSS_LTR_SNOOP_REQ              BIT(15)
51 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US          0x800
53 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
56 #define LPSS_LTR_MAX_VAL                0x3FF
57 #define LPSS_TX_INT                     0x20
58 #define LPSS_TX_INT_MASK                BIT(1)
59
60 #define LPSS_PRV_REG_COUNT              9
61
62 /* LPSS Flags */
63 #define LPSS_CLK                        BIT(0)
64 #define LPSS_CLK_GATE                   BIT(1)
65 #define LPSS_CLK_DIVIDER                BIT(2)
66 #define LPSS_LTR                        BIT(3)
67 #define LPSS_SAVE_CTX                   BIT(4)
68 /*
69  * For some devices the DSDT AML code for another device turns off the device
70  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71  * as ctx register values.
72  * Luckily these devices always use the same ctx register values, so we can
73  * work around this by saving the ctx registers once on activation.
74  */
75 #define LPSS_SAVE_CTX_ONCE              BIT(5)
76 #define LPSS_NO_D3_DELAY                BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81         unsigned int flags;
82         const char *clk_con_id;
83         unsigned int prv_offset;
84         size_t prv_size_override;
85         struct property_entry *properties;
86         void (*setup)(struct lpss_private_data *pdata);
87         bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91         .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95         struct acpi_device *adev;
96         void __iomem *mmio_base;
97         resource_size_t mmio_size;
98         unsigned int fixed_clk_rate;
99         struct clk *clk;
100         const struct lpss_device_desc *dev_desc;
101         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR                   0xF4
126 #define LPSS_UART_CPR_AFCE              BIT(4)
127
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130         unsigned int offset;
131         u32 val;
132
133         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134         val = readl(pdata->mmio_base + offset);
135         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137         val = readl(pdata->mmio_base + LPSS_UART_CPR);
138         if (!(val & LPSS_UART_CPR_AFCE)) {
139                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140                 val = readl(pdata->mmio_base + offset);
141                 val |= LPSS_GENERAL_UART_RTS_OVRD;
142                 writel(val, pdata->mmio_base + offset);
143         }
144 }
145
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148         unsigned int offset;
149         u32 val;
150
151         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152         val = readl(pdata->mmio_base + offset);
153         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154         writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164                                "pwm-lpss-platform"),
165 };
166
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169         struct acpi_device *adev = pdata->adev;
170
171         /* Only call pwm_add_table for the first PWM controller */
172         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173                 return;
174
175         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE                 0x6c
179
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182         const char *uid_str = acpi_device_uid(pdata->adev);
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         long uid = 0;
187
188         /* Expected to always be true, but better safe then sorry */
189         if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208                                "pwm-lpss-platform"),
209 };
210
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213         struct acpi_device *adev = pdata->adev;
214
215         /* Only call pwm_add_table for the first PWM controller */
216         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217                 return;
218
219         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct lpss_device_desc lpt_dev_desc = {
223         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224                         | LPSS_SAVE_CTX,
225         .prv_offset = 0x800,
226 };
227
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230         .prv_offset = 0x800,
231 };
232
233 static struct property_entry uart_properties[] = {
234         PROPERTY_ENTRY_U32("reg-io-width", 4),
235         PROPERTY_ENTRY_U32("reg-shift", 2),
236         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237         { },
238 };
239
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242                         | LPSS_SAVE_CTX,
243         .clk_con_id = "baudclk",
244         .prv_offset = 0x800,
245         .setup = lpss_uart_setup,
246         .properties = uart_properties,
247 };
248
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250         .flags = LPSS_LTR,
251         .prv_offset = 0x1000,
252         .prv_size_override = 0x1018,
253 };
254
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256         .flags = LPSS_SAVE_CTX,
257         .prv_offset = 0x800,
258         .setup = byt_pwm_setup,
259 };
260
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
263         .prv_offset = 0x800,
264         .setup = bsw_pwm_setup,
265         .resume_from_noirq = true,
266 };
267
268 static const struct lpss_device_desc byt_uart_dev_desc = {
269         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
270         .clk_con_id = "baudclk",
271         .prv_offset = 0x800,
272         .setup = lpss_uart_setup,
273         .properties = uart_properties,
274 };
275
276 static const struct lpss_device_desc bsw_uart_dev_desc = {
277         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
278                         | LPSS_NO_D3_DELAY,
279         .clk_con_id = "baudclk",
280         .prv_offset = 0x800,
281         .setup = lpss_uart_setup,
282         .properties = uart_properties,
283 };
284
285 static const struct lpss_device_desc byt_spi_dev_desc = {
286         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
287         .prv_offset = 0x400,
288 };
289
290 static const struct lpss_device_desc byt_sdio_dev_desc = {
291         .flags = LPSS_CLK,
292 };
293
294 static const struct lpss_device_desc byt_i2c_dev_desc = {
295         .flags = LPSS_CLK | LPSS_SAVE_CTX,
296         .prv_offset = 0x800,
297         .setup = byt_i2c_setup,
298         .resume_from_noirq = true,
299 };
300
301 static const struct lpss_device_desc bsw_i2c_dev_desc = {
302         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
303         .prv_offset = 0x800,
304         .setup = byt_i2c_setup,
305         .resume_from_noirq = true,
306 };
307
308 static const struct lpss_device_desc bsw_spi_dev_desc = {
309         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
310                         | LPSS_NO_D3_DELAY,
311         .prv_offset = 0x400,
312         .setup = lpss_deassert_reset,
313 };
314
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
317         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
318         {}
319 };
320
321 #else
322
323 #define LPSS_ADDR(desc) (0UL)
324
325 #endif /* CONFIG_X86_INTEL_LPSS */
326
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328         /* Generic LPSS devices */
329         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331         /* Lynxpoint LPSS devices */
332         { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333         { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339         { "INT33C7", },
340
341         /* BayTrail LPSS devices */
342         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347         { "INT33B2", },
348         { "INT33FC", },
349
350         /* Braswell LPSS devices */
351         { "80862286", LPSS_ADDR(lpss_dma_desc) },
352         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358         /* Broadwell LPSS devices */
359         { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360         { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366         { "INT3437", },
367
368         /* Wildcat Point LPSS devices */
369         { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371         { }
372 };
373
374 #ifdef CONFIG_X86_INTEL_LPSS
375
376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378         struct resource r;
379
380         return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
386 static inline void lpt_register_clock_device(void)
387 {
388         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
389                                                        PLATFORM_DEVID_NONE,
390                                                        NULL, 0);
391 }
392
393 static int register_device_clock(struct acpi_device *adev,
394                                  struct lpss_private_data *pdata)
395 {
396         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
397         const char *devname = dev_name(&adev->dev);
398         struct clk *clk;
399         struct lpss_clk_data *clk_data;
400         const char *parent, *clk_name;
401         void __iomem *prv_base;
402
403         if (!lpss_clk_dev)
404                 lpt_register_clock_device();
405
406         clk_data = platform_get_drvdata(lpss_clk_dev);
407         if (!clk_data)
408                 return -ENODEV;
409         clk = clk_data->clk;
410
411         if (!pdata->mmio_base
412             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
413                 return -ENODATA;
414
415         parent = clk_data->name;
416         prv_base = pdata->mmio_base + dev_desc->prv_offset;
417
418         if (pdata->fixed_clk_rate) {
419                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
420                                               pdata->fixed_clk_rate);
421                 goto out;
422         }
423
424         if (dev_desc->flags & LPSS_CLK_GATE) {
425                 clk = clk_register_gate(NULL, devname, parent, 0,
426                                         prv_base, 0, 0, NULL);
427                 parent = devname;
428         }
429
430         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
431                 /* Prevent division by zero */
432                 if (!readl(prv_base))
433                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
434
435                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
436                 if (!clk_name)
437                         return -ENOMEM;
438                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
439                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
440                                                       prv_base, 1, 15, 16, 15, 0, NULL);
441                 parent = clk_name;
442
443                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
444                 if (!clk_name) {
445                         kfree(parent);
446                         return -ENOMEM;
447                 }
448                 clk = clk_register_gate(NULL, clk_name, parent,
449                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
450                                         prv_base, 31, 0, NULL);
451                 kfree(parent);
452                 kfree(clk_name);
453         }
454 out:
455         if (IS_ERR(clk))
456                 return PTR_ERR(clk);
457
458         pdata->clk = clk;
459         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
460         return 0;
461 }
462
463 struct lpss_device_links {
464         const char *supplier_hid;
465         const char *supplier_uid;
466         const char *consumer_hid;
467         const char *consumer_uid;
468         u32 flags;
469         const struct dmi_system_id *dep_missing_ids;
470 };
471
472 /* Please keep this list sorted alphabetically by vendor and model */
473 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
474         {
475                 .matches = {
476                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
477                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
478                 },
479         },
480         {}
481 };
482
483 /*
484  * The _DEP method is used to identify dependencies but instead of creating
485  * device links for every handle in _DEP, only links in the following list are
486  * created. That is necessary because, in the general case, _DEP can refer to
487  * devices that might not have drivers, or that are on different buses, or where
488  * the supplier is not enumerated until after the consumer is probed.
489  */
490 static const struct lpss_device_links lpss_device_links[] = {
491         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
492         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
493         /* CHT iGPU depends on PMIC I2C controller */
494         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
495         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
496         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
497          i2c1_dep_missing_dmi_ids},
498         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
499         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
500         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
501         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
502 };
503
504 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
505                                   const struct lpss_device_links *link)
506 {
507         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
508 }
509
510 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
511                                   const struct lpss_device_links *link)
512 {
513         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
514 }
515
516 struct hid_uid {
517         const char *hid;
518         const char *uid;
519 };
520
521 static int match_hid_uid(struct device *dev, const void *data)
522 {
523         struct acpi_device *adev = ACPI_COMPANION(dev);
524         const struct hid_uid *id = data;
525
526         if (!adev)
527                 return 0;
528
529         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
530 }
531
532 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
533 {
534         struct device *dev;
535
536         struct hid_uid data = {
537                 .hid = hid,
538                 .uid = uid,
539         };
540
541         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
542         if (dev)
543                 return dev;
544
545         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
546 }
547
548 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
549 {
550         struct acpi_handle_list dep_devices;
551         acpi_status status;
552         int i;
553
554         if (!acpi_has_method(adev->handle, "_DEP"))
555                 return false;
556
557         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
558                                          &dep_devices);
559         if (ACPI_FAILURE(status)) {
560                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
561                 return false;
562         }
563
564         for (i = 0; i < dep_devices.count; i++) {
565                 if (dep_devices.handles[i] == handle)
566                         return true;
567         }
568
569         return false;
570 }
571
572 static void acpi_lpss_link_consumer(struct device *dev1,
573                                     const struct lpss_device_links *link)
574 {
575         struct device *dev2;
576
577         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
578         if (!dev2)
579                 return;
580
581         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
582             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
583                 device_link_add(dev2, dev1, link->flags);
584
585         put_device(dev2);
586 }
587
588 static void acpi_lpss_link_supplier(struct device *dev1,
589                                     const struct lpss_device_links *link)
590 {
591         struct device *dev2;
592
593         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
594         if (!dev2)
595                 return;
596
597         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
598             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
599                 device_link_add(dev1, dev2, link->flags);
600
601         put_device(dev2);
602 }
603
604 static void acpi_lpss_create_device_links(struct acpi_device *adev,
605                                           struct platform_device *pdev)
606 {
607         int i;
608
609         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
610                 const struct lpss_device_links *link = &lpss_device_links[i];
611
612                 if (acpi_lpss_is_supplier(adev, link))
613                         acpi_lpss_link_consumer(&pdev->dev, link);
614
615                 if (acpi_lpss_is_consumer(adev, link))
616                         acpi_lpss_link_supplier(&pdev->dev, link);
617         }
618 }
619
620 static int acpi_lpss_create_device(struct acpi_device *adev,
621                                    const struct acpi_device_id *id)
622 {
623         const struct lpss_device_desc *dev_desc;
624         struct lpss_private_data *pdata;
625         struct resource_entry *rentry;
626         struct list_head resource_list;
627         struct platform_device *pdev;
628         int ret;
629
630         dev_desc = (const struct lpss_device_desc *)id->driver_data;
631         if (!dev_desc) {
632                 pdev = acpi_create_platform_device(adev, NULL);
633                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
634         }
635         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
636         if (!pdata)
637                 return -ENOMEM;
638
639         INIT_LIST_HEAD(&resource_list);
640         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
641         if (ret < 0)
642                 goto err_out;
643
644         list_for_each_entry(rentry, &resource_list, node)
645                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
646                         if (dev_desc->prv_size_override)
647                                 pdata->mmio_size = dev_desc->prv_size_override;
648                         else
649                                 pdata->mmio_size = resource_size(rentry->res);
650                         pdata->mmio_base = ioremap(rentry->res->start,
651                                                    pdata->mmio_size);
652                         break;
653                 }
654
655         acpi_dev_free_resource_list(&resource_list);
656
657         if (!pdata->mmio_base) {
658                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
659                 adev->pnp.type.platform_id = 0;
660                 /* Skip the device, but continue the namespace scan. */
661                 ret = 0;
662                 goto err_out;
663         }
664
665         pdata->adev = adev;
666         pdata->dev_desc = dev_desc;
667
668         if (dev_desc->setup)
669                 dev_desc->setup(pdata);
670
671         if (dev_desc->flags & LPSS_CLK) {
672                 ret = register_device_clock(adev, pdata);
673                 if (ret) {
674                         /* Skip the device, but continue the namespace scan. */
675                         ret = 0;
676                         goto err_out;
677                 }
678         }
679
680         /*
681          * This works around a known issue in ACPI tables where LPSS devices
682          * have _PS0 and _PS3 without _PSC (and no power resources), so
683          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
684          */
685         acpi_device_fix_up_power(adev);
686
687         adev->driver_data = pdata;
688         pdev = acpi_create_platform_device(adev, dev_desc->properties);
689         if (!IS_ERR_OR_NULL(pdev)) {
690                 acpi_lpss_create_device_links(adev, pdev);
691                 return 1;
692         }
693
694         ret = PTR_ERR(pdev);
695         adev->driver_data = NULL;
696
697  err_out:
698         kfree(pdata);
699         return ret;
700 }
701
702 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
703 {
704         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
705 }
706
707 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
708                              unsigned int reg)
709 {
710         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
711 }
712
713 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
714 {
715         struct acpi_device *adev;
716         struct lpss_private_data *pdata;
717         unsigned long flags;
718         int ret;
719
720         ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
721         if (WARN_ON(ret))
722                 return ret;
723
724         spin_lock_irqsave(&dev->power.lock, flags);
725         if (pm_runtime_suspended(dev)) {
726                 ret = -EAGAIN;
727                 goto out;
728         }
729         pdata = acpi_driver_data(adev);
730         if (WARN_ON(!pdata || !pdata->mmio_base)) {
731                 ret = -ENODEV;
732                 goto out;
733         }
734         *val = __lpss_reg_read(pdata, reg);
735
736  out:
737         spin_unlock_irqrestore(&dev->power.lock, flags);
738         return ret;
739 }
740
741 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
742                              char *buf)
743 {
744         u32 ltr_value = 0;
745         unsigned int reg;
746         int ret;
747
748         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
749         ret = lpss_reg_read(dev, reg, &ltr_value);
750         if (ret)
751                 return ret;
752
753         return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
754 }
755
756 static ssize_t lpss_ltr_mode_show(struct device *dev,
757                                   struct device_attribute *attr, char *buf)
758 {
759         u32 ltr_mode = 0;
760         char *outstr;
761         int ret;
762
763         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
764         if (ret)
765                 return ret;
766
767         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
768         return sprintf(buf, "%s\n", outstr);
769 }
770
771 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
772 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
773 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
774
775 static struct attribute *lpss_attrs[] = {
776         &dev_attr_auto_ltr.attr,
777         &dev_attr_sw_ltr.attr,
778         &dev_attr_ltr_mode.attr,
779         NULL,
780 };
781
782 static const struct attribute_group lpss_attr_group = {
783         .attrs = lpss_attrs,
784         .name = "lpss_ltr",
785 };
786
787 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
788 {
789         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
790         u32 ltr_mode, ltr_val;
791
792         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
793         if (val < 0) {
794                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
795                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
796                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
797                 }
798                 return;
799         }
800         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
801         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
802                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
803                 val = LPSS_LTR_MAX_VAL;
804         } else if (val > LPSS_LTR_MAX_VAL) {
805                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
806                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
807         } else {
808                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
809         }
810         ltr_val |= val;
811         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
812         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
813                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
814                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
815         }
816 }
817
818 #ifdef CONFIG_PM
819 /**
820  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
821  * @dev: LPSS device
822  * @pdata: pointer to the private data of the LPSS device
823  *
824  * Most LPSS devices have private registers which may loose their context when
825  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
826  * prv_reg_ctx array.
827  */
828 static void acpi_lpss_save_ctx(struct device *dev,
829                                struct lpss_private_data *pdata)
830 {
831         unsigned int i;
832
833         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
834                 unsigned long offset = i * sizeof(u32);
835
836                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
837                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
838                         pdata->prv_reg_ctx[i], offset);
839         }
840 }
841
842 /**
843  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
844  * @dev: LPSS device
845  * @pdata: pointer to the private data of the LPSS device
846  *
847  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
848  */
849 static void acpi_lpss_restore_ctx(struct device *dev,
850                                   struct lpss_private_data *pdata)
851 {
852         unsigned int i;
853
854         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
855                 unsigned long offset = i * sizeof(u32);
856
857                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
858                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
859                         pdata->prv_reg_ctx[i], offset);
860         }
861 }
862
863 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
864 {
865         /*
866          * The following delay is needed or the subsequent write operations may
867          * fail. The LPSS devices are actually PCI devices and the PCI spec
868          * expects 10ms delay before the device can be accessed after D3 to D0
869          * transition. However some platforms like BSW does not need this delay.
870          */
871         unsigned int delay = 10;        /* default 10ms delay */
872
873         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
874                 delay = 0;
875
876         msleep(delay);
877 }
878
879 static int acpi_lpss_activate(struct device *dev)
880 {
881         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
882         int ret;
883
884         ret = acpi_dev_resume(dev);
885         if (ret)
886                 return ret;
887
888         acpi_lpss_d3_to_d0_delay(pdata);
889
890         /*
891          * This is called only on ->probe() stage where a device is either in
892          * known state defined by BIOS or most likely powered off. Due to this
893          * we have to deassert reset line to be sure that ->probe() will
894          * recognize the device.
895          */
896         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
897                 lpss_deassert_reset(pdata);
898
899 #ifdef CONFIG_PM
900         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
901                 acpi_lpss_save_ctx(dev, pdata);
902 #endif
903
904         return 0;
905 }
906
907 static void acpi_lpss_dismiss(struct device *dev)
908 {
909         acpi_dev_suspend(dev, false);
910 }
911
912 /* IOSF SB for LPSS island */
913 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
914 #define LPSS_IOSF_UNIT_LPIO1            0xAB
915 #define LPSS_IOSF_UNIT_LPIO2            0xAC
916
917 #define LPSS_IOSF_PMCSR                 0x84
918 #define LPSS_PMCSR_D0                   0
919 #define LPSS_PMCSR_D3hot                3
920 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
921
922 #define LPSS_IOSF_GPIODEF0              0x154
923 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
924 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
925 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
926 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
927
928 static DEFINE_MUTEX(lpss_iosf_mutex);
929 static bool lpss_iosf_d3_entered = true;
930
931 static void lpss_iosf_enter_d3_state(void)
932 {
933         u32 value1 = 0;
934         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
935         u32 value2 = LPSS_PMCSR_D3hot;
936         u32 mask2 = LPSS_PMCSR_Dx_MASK;
937         /*
938          * PMC provides an information about actual status of the LPSS devices.
939          * Here we read the values related to LPSS power island, i.e. LPSS
940          * devices, excluding both LPSS DMA controllers, along with SCC domain.
941          */
942         u32 func_dis, d3_sts_0, pmc_status;
943         int ret;
944
945         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
946         if (ret)
947                 return;
948
949         mutex_lock(&lpss_iosf_mutex);
950
951         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
952         if (ret)
953                 goto exit;
954
955         /*
956          * Get the status of entire LPSS power island per device basis.
957          * Shutdown both LPSS DMA controllers if and only if all other devices
958          * are already in D3hot.
959          */
960         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
961         if (pmc_status)
962                 goto exit;
963
964         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
965                         LPSS_IOSF_PMCSR, value2, mask2);
966
967         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
968                         LPSS_IOSF_PMCSR, value2, mask2);
969
970         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
971                         LPSS_IOSF_GPIODEF0, value1, mask1);
972
973         lpss_iosf_d3_entered = true;
974
975 exit:
976         mutex_unlock(&lpss_iosf_mutex);
977 }
978
979 static void lpss_iosf_exit_d3_state(void)
980 {
981         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
982                      LPSS_GPIODEF0_DMA_LLP;
983         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
984         u32 value2 = LPSS_PMCSR_D0;
985         u32 mask2 = LPSS_PMCSR_Dx_MASK;
986
987         mutex_lock(&lpss_iosf_mutex);
988
989         if (!lpss_iosf_d3_entered)
990                 goto exit;
991
992         lpss_iosf_d3_entered = false;
993
994         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
995                         LPSS_IOSF_GPIODEF0, value1, mask1);
996
997         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
998                         LPSS_IOSF_PMCSR, value2, mask2);
999
1000         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1001                         LPSS_IOSF_PMCSR, value2, mask2);
1002
1003 exit:
1004         mutex_unlock(&lpss_iosf_mutex);
1005 }
1006
1007 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1008 {
1009         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1010         int ret;
1011
1012         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1013                 acpi_lpss_save_ctx(dev, pdata);
1014
1015         ret = acpi_dev_suspend(dev, wakeup);
1016
1017         /*
1018          * This call must be last in the sequence, otherwise PMC will return
1019          * wrong status for devices being about to be powered off. See
1020          * lpss_iosf_enter_d3_state() for further information.
1021          */
1022         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1023             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024                 lpss_iosf_enter_d3_state();
1025
1026         return ret;
1027 }
1028
1029 static int acpi_lpss_resume(struct device *dev)
1030 {
1031         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1032         int ret;
1033
1034         /*
1035          * This call is kept first to be in symmetry with
1036          * acpi_lpss_runtime_suspend() one.
1037          */
1038         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1039                 lpss_iosf_exit_d3_state();
1040
1041         ret = acpi_dev_resume(dev);
1042         if (ret)
1043                 return ret;
1044
1045         acpi_lpss_d3_to_d0_delay(pdata);
1046
1047         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1048                 acpi_lpss_restore_ctx(dev, pdata);
1049
1050         return 0;
1051 }
1052
1053 #ifdef CONFIG_PM_SLEEP
1054 static int acpi_lpss_do_suspend_late(struct device *dev)
1055 {
1056         int ret;
1057
1058         if (dev_pm_skip_suspend(dev))
1059                 return 0;
1060
1061         ret = pm_generic_suspend_late(dev);
1062         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1063 }
1064
1065 static int acpi_lpss_suspend_late(struct device *dev)
1066 {
1067         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068
1069         if (pdata->dev_desc->resume_from_noirq)
1070                 return 0;
1071
1072         return acpi_lpss_do_suspend_late(dev);
1073 }
1074
1075 static int acpi_lpss_suspend_noirq(struct device *dev)
1076 {
1077         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1078         int ret;
1079
1080         if (pdata->dev_desc->resume_from_noirq) {
1081                 /*
1082                  * The driver's ->suspend_late callback will be invoked by
1083                  * acpi_lpss_do_suspend_late(), with the assumption that the
1084                  * driver really wanted to run that code in ->suspend_noirq, but
1085                  * it could not run after acpi_dev_suspend() and the driver
1086                  * expected the latter to be called in the "late" phase.
1087                  */
1088                 ret = acpi_lpss_do_suspend_late(dev);
1089                 if (ret)
1090                         return ret;
1091         }
1092
1093         return acpi_subsys_suspend_noirq(dev);
1094 }
1095
1096 static int acpi_lpss_do_resume_early(struct device *dev)
1097 {
1098         int ret = acpi_lpss_resume(dev);
1099
1100         return ret ? ret : pm_generic_resume_early(dev);
1101 }
1102
1103 static int acpi_lpss_resume_early(struct device *dev)
1104 {
1105         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1106
1107         if (pdata->dev_desc->resume_from_noirq)
1108                 return 0;
1109
1110         if (dev_pm_skip_resume(dev))
1111                 return 0;
1112
1113         return acpi_lpss_do_resume_early(dev);
1114 }
1115
1116 static int acpi_lpss_resume_noirq(struct device *dev)
1117 {
1118         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1119         int ret;
1120
1121         /* Follow acpi_subsys_resume_noirq(). */
1122         if (dev_pm_skip_resume(dev))
1123                 return 0;
1124
1125         ret = pm_generic_resume_noirq(dev);
1126         if (ret)
1127                 return ret;
1128
1129         if (!pdata->dev_desc->resume_from_noirq)
1130                 return 0;
1131
1132         /*
1133          * The driver's ->resume_early callback will be invoked by
1134          * acpi_lpss_do_resume_early(), with the assumption that the driver
1135          * really wanted to run that code in ->resume_noirq, but it could not
1136          * run before acpi_dev_resume() and the driver expected the latter to be
1137          * called in the "early" phase.
1138          */
1139         return acpi_lpss_do_resume_early(dev);
1140 }
1141
1142 static int acpi_lpss_do_restore_early(struct device *dev)
1143 {
1144         int ret = acpi_lpss_resume(dev);
1145
1146         return ret ? ret : pm_generic_restore_early(dev);
1147 }
1148
1149 static int acpi_lpss_restore_early(struct device *dev)
1150 {
1151         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152
1153         if (pdata->dev_desc->resume_from_noirq)
1154                 return 0;
1155
1156         return acpi_lpss_do_restore_early(dev);
1157 }
1158
1159 static int acpi_lpss_restore_noirq(struct device *dev)
1160 {
1161         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1162         int ret;
1163
1164         ret = pm_generic_restore_noirq(dev);
1165         if (ret)
1166                 return ret;
1167
1168         if (!pdata->dev_desc->resume_from_noirq)
1169                 return 0;
1170
1171         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1172         return acpi_lpss_do_restore_early(dev);
1173 }
1174
1175 static int acpi_lpss_do_poweroff_late(struct device *dev)
1176 {
1177         int ret = pm_generic_poweroff_late(dev);
1178
1179         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1180 }
1181
1182 static int acpi_lpss_poweroff_late(struct device *dev)
1183 {
1184         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1185
1186         if (dev_pm_skip_suspend(dev))
1187                 return 0;
1188
1189         if (pdata->dev_desc->resume_from_noirq)
1190                 return 0;
1191
1192         return acpi_lpss_do_poweroff_late(dev);
1193 }
1194
1195 static int acpi_lpss_poweroff_noirq(struct device *dev)
1196 {
1197         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1198
1199         if (dev_pm_skip_suspend(dev))
1200                 return 0;
1201
1202         if (pdata->dev_desc->resume_from_noirq) {
1203                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1204                 int ret = acpi_lpss_do_poweroff_late(dev);
1205
1206                 if (ret)
1207                         return ret;
1208         }
1209
1210         return pm_generic_poweroff_noirq(dev);
1211 }
1212 #endif /* CONFIG_PM_SLEEP */
1213
1214 static int acpi_lpss_runtime_suspend(struct device *dev)
1215 {
1216         int ret = pm_generic_runtime_suspend(dev);
1217
1218         return ret ? ret : acpi_lpss_suspend(dev, true);
1219 }
1220
1221 static int acpi_lpss_runtime_resume(struct device *dev)
1222 {
1223         int ret = acpi_lpss_resume(dev);
1224
1225         return ret ? ret : pm_generic_runtime_resume(dev);
1226 }
1227 #endif /* CONFIG_PM */
1228
1229 static struct dev_pm_domain acpi_lpss_pm_domain = {
1230 #ifdef CONFIG_PM
1231         .activate = acpi_lpss_activate,
1232         .dismiss = acpi_lpss_dismiss,
1233 #endif
1234         .ops = {
1235 #ifdef CONFIG_PM
1236 #ifdef CONFIG_PM_SLEEP
1237                 .prepare = acpi_subsys_prepare,
1238                 .complete = acpi_subsys_complete,
1239                 .suspend = acpi_subsys_suspend,
1240                 .suspend_late = acpi_lpss_suspend_late,
1241                 .suspend_noirq = acpi_lpss_suspend_noirq,
1242                 .resume_noirq = acpi_lpss_resume_noirq,
1243                 .resume_early = acpi_lpss_resume_early,
1244                 .freeze = acpi_subsys_freeze,
1245                 .poweroff = acpi_subsys_poweroff,
1246                 .poweroff_late = acpi_lpss_poweroff_late,
1247                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1248                 .restore_noirq = acpi_lpss_restore_noirq,
1249                 .restore_early = acpi_lpss_restore_early,
1250 #endif
1251                 .runtime_suspend = acpi_lpss_runtime_suspend,
1252                 .runtime_resume = acpi_lpss_runtime_resume,
1253 #endif
1254         },
1255 };
1256
1257 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258                                      unsigned long action, void *data)
1259 {
1260         struct platform_device *pdev = to_platform_device(data);
1261         struct lpss_private_data *pdata;
1262         struct acpi_device *adev;
1263         const struct acpi_device_id *id;
1264
1265         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266         if (!id || !id->driver_data)
1267                 return 0;
1268
1269         if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1270                 return 0;
1271
1272         pdata = acpi_driver_data(adev);
1273         if (!pdata)
1274                 return 0;
1275
1276         if (pdata->mmio_base &&
1277             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1278                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1279                 return 0;
1280         }
1281
1282         switch (action) {
1283         case BUS_NOTIFY_BIND_DRIVER:
1284                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1285                 break;
1286         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1287         case BUS_NOTIFY_UNBOUND_DRIVER:
1288                 dev_pm_domain_set(&pdev->dev, NULL);
1289                 break;
1290         case BUS_NOTIFY_ADD_DEVICE:
1291                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292                 if (pdata->dev_desc->flags & LPSS_LTR)
1293                         return sysfs_create_group(&pdev->dev.kobj,
1294                                                   &lpss_attr_group);
1295                 break;
1296         case BUS_NOTIFY_DEL_DEVICE:
1297                 if (pdata->dev_desc->flags & LPSS_LTR)
1298                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1299                 dev_pm_domain_set(&pdev->dev, NULL);
1300                 break;
1301         default:
1302                 break;
1303         }
1304
1305         return 0;
1306 }
1307
1308 static struct notifier_block acpi_lpss_nb = {
1309         .notifier_call = acpi_lpss_platform_notify,
1310 };
1311
1312 static void acpi_lpss_bind(struct device *dev)
1313 {
1314         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1315
1316         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1317                 return;
1318
1319         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1320                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1321         else
1322                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1323 }
1324
1325 static void acpi_lpss_unbind(struct device *dev)
1326 {
1327         dev->power.set_latency_tolerance = NULL;
1328 }
1329
1330 static struct acpi_scan_handler lpss_handler = {
1331         .ids = acpi_lpss_device_ids,
1332         .attach = acpi_lpss_create_device,
1333         .bind = acpi_lpss_bind,
1334         .unbind = acpi_lpss_unbind,
1335 };
1336
1337 void __init acpi_lpss_init(void)
1338 {
1339         const struct x86_cpu_id *id;
1340         int ret;
1341
1342         ret = lpss_atom_clk_init();
1343         if (ret)
1344                 return;
1345
1346         id = x86_match_cpu(lpss_cpu_ids);
1347         if (id)
1348                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1349
1350         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1351         acpi_scan_add_handler(&lpss_handler);
1352 }
1353
1354 #else
1355
1356 static struct acpi_scan_handler lpss_handler = {
1357         .ids = acpi_lpss_device_ids,
1358 };
1359
1360 void __init acpi_lpss_init(void)
1361 {
1362         acpi_scan_add_handler(&lpss_handler);
1363 }
1364
1365 #endif /* CONFIG_X86_INTEL_LPSS */